
1 
 

Abstract 1 

The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns 2 

on their toxicity in both aquatic and terrestrial environments. These polymer-based materials have 3 

implications for plants, wildlife and human health, threatening food chain integrity and ultimate 4 

ecosystem resilience. An extensive – and growing – body of literature is available on MP- and NP-5 

associated effects, including in a number of aquatic biota, with as yet limited reports in terrestrial 6 

environments. Effects range from no detectable, or very low level, biological effects to more 7 

severe outcomes such as (but not limited to) increased mortality rates, altered immune and 8 

inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-9 

established exposure route to MPs and NPs involves ingestion with subsequent incorporation into 10 

tissues. MP and NP exposures have also been found to lead to genetic damage, including effects 11 

related to mitotic anomalies, or to transmissible damage from sperm cells to their offspring, 12 

especially in echinoderms. Effects on the proteome, transcriptome and metabolome warrant ad 13 

hoc investigations as these integrated “omics” workflows could provide greater insight into 14 

molecular pathways of effect. Given their different physical structures, chemical identity and 15 

presumably different modes of action, exposure to different types of MPs and NPs may result in 16 

different biological effects in biota, thus comparative investigations of different MPs and NPs are 17 

required to ascertain the respective effects. Furthermore, research on MP and NP should also 18 

consider their ability to act as vectors for other toxicants, and possible outcomes of exposure may 19 

even include effects at the community level, thus requiring investigations in mesocosm models.  20 
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1. Introduction 28 

Micro- and nano-plastics (MPs and NPs) are novel environmental contaminants of emerging 29 

international interest due to their increasing levels in aquatic and terrestrial environments with 30 

demonstrable effects at numerous biological levels. MP and NP pollution is an emerging threat to 31 

ecosystem health and integrity as reported in earlier reviews (Ryan et al. 1988; Moore 2008; Zarfl 32 

et al. 2011; Guzzetti et al., 2018). Beyond the biological effects resulting from exposure and 33 

uptake of MPs and NPs in the environment, macroscopic plastic debris represents another 34 

environmental threat to biota through impacts on increased frequency of suffocation, 35 

entanglement, and ingestion, especially in marine wildlife such as birds, sea turtles, marine 36 

mammals, invertebrates and fish (Kühn and Franeker, 2020). These effects are often translated 37 

into impacts on movement, feeding and reproduction, skin ulcerations and necrosis, and even 38 

death (Provencher et al. 2017, 2018; Rezani et al. 2018; de Souza Machado et al. 2018). A 39 

growing body of literature in recent years has been devoted to understanding the biological effects 40 

of exposure to MP/NPs in biota, including spatial and temporal patterns of exposure and effect 41 

(see for example: Alimba et al. 2019; Alimi et al. 2018; Chae et al. 2018, 2019; Foley et al. 2018; 42 

Saleem et al. 2018; Wang et al. 2018; Ferreira et al. 2019; Rochman et al. 2019; Wu et al. 2019; 43 

Barbosa et al. 2020). The present review aims at providing a synthesised update on the reported 44 

effects from exposure to MP/NPs in biota, if any, and will outline some knowledge gaps that could 45 

inform future research and monitoring priorities.  46 

As a preliminary step, a a comprehensive literature review was undertaken to extract relevant 47 

manuscripts published in the last 10 years using search terms such as “microplastics” and 48 

“nanoplastics” with “toxicity”, “embryo”, “gene”, “growth”, and “oxidative stress”. Databases such 49 

as PubMed, Scopus, Google Scholar and Web of Science were queried. That search provided a set 50 

of peer-reviewed works that were evaluated against a set of inclusion and exclusion criteria. 51 

Studies that reported MP/NP exposure and uptake with effects (or no effect reported) at the 52 

molecular to the organismal and community levels (about 8 % of the identified studies) were 53 

retained for analysis. Studies that did not quantify exposure levels, or doses, or biological effects 54 
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were not retained for analysis. Further, quality control and quality assurance data in manuscripts 55 

needed to include the use of procedural blanks and/or positive controls, duplicates (or triplicates) 56 

and industry-recognised chemical analysis procedures for retention and inclusion in our database. 57 

Presence and absence of effects were noted, as well as the nature and/or level of reported 58 

biological effect, including: impacts on behaviour, mortality and reproduction, molecular-level 59 

effects (such as cytotoxicity, biotransformation enzymes, neurotoxicity, hematological changes, 60 

oxidative stress, immunity, genotoxicity, metabolic changes) and other organismal-level effects 61 

(including physical effects, malformations, etc.). Any biological effects assessment of plastic 62 

pollution should include the well-known feeding impairment effect due to obstruction of the 63 

digestive tract (Besseling et al. 2014, 2015). However, this review is not aimed at evaluating the 64 

effects of macroplastic ingestion, but rather is focused on other MP- and/or NP-associated 65 

biological effects, including those molecular initiating events.  66 

As shown in Figure 1, a steady increase in MP-focused reports up to 2020 is evident while 67 

studies on NPs have picked up recently with a greater number of publications in 2019-2020 (It 68 

should be noted that the 2020 data are confined to the first six months of the calendar year . An 69 

extensive body of evidence was accumulated showing a number of more or less severe effects 70 

associated with MP/NP exposures in a number of different biota including aquatic and terrestrial 71 

animals, plants, bacteria and cell cultures. 72 

Altogether, the present review aims to outline different MP/NP types, sizes and concentrations 73 

tested in the peer-reviewed literature in order to identify differing size-, type- or concentration-74 

dependent toxicities, allowing us to suggest potentially important biological effect pathways among 75 

different polymers or different sizes.  76 

 77 

2. MP ingestion without relevant adverse effects 78 

From the 94 studies identified and retained for analysis, only 15% (14/94) measured and detected 79 

MP ingestion without reporting any major resultant biological effect (Table 1). This was the case in 80 

some reports on exposures to either micro-polyethylene (mPE), virgin micro-polyvinylchloride 81 
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(mPVC), micro-polyethylene terephthalate (mPET), or MP mixtures in fish Sparus aurata or sea 82 

urchins Tripneustes gratilla and Paracentrotus lividus which showed microparticle ingestion, yet 83 

without any major effects on embryonic development, growth rates or stress (Kaposi et al. 2014; 84 

Beiras et al. 2018; Beiras and Tato, 2019; Jovanovíc et al. 2018).  85 

Other studies on crustaceans were conducted using Aristeus antennatus, Daphnia magna, 86 

Artemia franciscana, Gammarus fossarum, Gammarus pulex and Macrobrachium nipponense to 87 

test the effects, if any, of MP exposures including mPE, and several other MPs and MP mixtures. 88 

The findings confirmed exposure through ingestion of MPs, yet without any major discernable 89 

adverse effects (Frydkjær et al. 2017; Straub et al. 2017; Carreras-Colom et al.; 2018; Kokalj et al. 90 

2018; Weber et al. 2018; Li et al. 2020a). Similar results were reported in two other studies of MP-91 

associated effects in mussels Dreissena polymorpha and Mytilus galloprovincialis which, again, 92 

failed to show any relevant adverse outcomes (Magni et al. 2018; Gonçalves et al. 2019). 93 

Rochman et al. (2017) evaluated the effects of four different MPs in a clam and sturgeon model 94 

(Corbicula fluminea and Acipenser transmontanus, respectively), failing to find pertinent adverse 95 

outcomes except for slight bioaccumulation in clams, but a lack thereof in sturgeons. Other fish 96 

species were tested for MP-associated effects using several MP types; beyond ingestion and 97 

bioaccumulation in lower trophic aquatic biota (i.e. clams), no effects were detected in early life 98 

stages or on lipid peroxidation (Jovanović et al. 2018; Rainieri et al. 2018). 99 

Altogether, the negative results summarised in Table 1 suggest that some biota failed to 100 

exhibit, or some laboratory bioassays failed to induce detectable MP-associated damage. These 101 

lack of effects do not extend to all biota as demonstrated in the studies presented in Table 2. 102 

 103 

3. MP- associated adverse effects in biota 104 

The toxicity of various MP/NPs across different organisms, expressed through a number of 105 

adverse effects, are summarised in Figure 2 and Table 2. The top three most commonly observed 106 

changes were related to physical effects, oxidative stress and reproduction. Moreover, there is a 107 

large amount of literature investigating the toxicity of MP/NPs in aquatic biota, whereas research in 108 
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terrestrial models (such as humans and rodents) is currently more limited (Figure 3). This 109 

represents a significant knowledge gap considering that MPs are present in terrestrial ecosystems 110 

due to accidental loss and poor waste management (de Souza Machado et al. 2018; Dris et al. 111 

2016). Furthermore, the toxic effects of PS are more commonly explored with significantly less 112 

attention paid to other MPs/NPs. This clearly indicates the need for further targeted investigations 113 

based on polymer type as there is a broad variety of plastic particles present in the environment,  114 

including PE, PET, PVC and PMMA. 115 

It has been reported that exposures to MPs can lead to altered behaviour and subsequent 116 

impacts on survivorship and mortality rates. For example, a recent report by Mak et al. (2019) 117 

found that zebrafish, Danio rerio, exposed to mPE, underwent altered gene expression (cyp1a and 118 

vtg1) and abnormal behaviour. Further, Lei et al. (2018) provided evidence of MP-associated 119 

toxicity in D. rerio  and in a nematode (Caenorhabditis elegans) exposed to five different MPs. In 120 

their study, changes in development, heart rate, swimming activity, body length and reproduction 121 

were pronounced (Lei et al. 2018). Exposure to virgin and aged MPs was also found to affect 122 

behaviour in Sparus aurata, with fish more active during feeding and bolder in their interactions 123 

with other individuals (Rios-Fustera et al., 2021). In contrast, exposure of European bass 124 

Dicentrarchus labrax over 90 days to mPVC (<300 μm) added to feed at concentrations of 0.1% 125 

w/w was not found to result in altered behaviour although caused significant histopathological 126 

alterations in the distal intestine which could with time affect feeding patterns (Pedà et al. 2016). 127 

Studies in echinoderms (e.g. sea urchin bioassays) reported similar developmental toxicity in 128 

several MP types, including mPE, mPS and mPVC, and their leachates. In some instances, these 129 

leachates displayed more severe effects compared to mPS alone such as in Paracentrotus lividus 130 

(Martínez-Gómez et al. 2017; Oliviero et al. 2019) and in the mussel Perna perna (Gandara e Silva 131 

et al. 2016), whereas the opposite effect was detected in Lytechinus variegatus by Nobre et al. 132 

(2015). Other research teams documented decreased larval size in mPS-exposed P. lividus larvae, 133 

along with growth inhibition or developmental defects in other tested aquatic biota (ascidians, 134 

insects, corals, bacteria, microalgae, and rotifers) (Chapron et al. 2018; Messinetti et al. 2018; 135 
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Gambardella et al. 2018; Mouchi et al. 2019; Natarajan et al. 2020; Parenti et al. 2020). In a 136 

recent study, urchin Sphaerechinus granularis displayed significantly increased developmental 137 

defects in pluteus larvae either exposed during embryogenesis or in the offspring of mPS and 138 

mPMMA -exposed sperm (Trifuoggi et al. 2019). Additionally, cytogenetic anomalies and 139 

mitotoxicity were also observed in S. granularis embryos exposed to these MPs (Trifuoggi et al. 140 

2019). 141 

These types of physical effects (including developmental defects) were not constrained to 142 

echinoderm models, but were also detected in crustacean D. magna where growth inhibition was 143 

prominent (Martins and Guilhermino, 2018). In their study, Martins and Guilhermino made the 144 

remarkable discovery that exposure to these microplastic polymers not only affected parental 145 

mortality and growth inhibition, but these effects were even detectable across four generations of 146 

offspring, suggesting transmissible damage to the offspring as similarly observed in echinoderms. 147 

Growth inhibition was also commonly reported in crustacean models (Artemia parthenogenetica 148 

and Eriocheir sinensis) along with other related developmental effects such as abnormal 149 

ultrastructures of intestinal epithelial cells and increased number of mitochondria and 150 

autophagosomes (Wang et al. 2019; Yu et al. 2018).  151 

Microalgal (Chlorella pyrenoidosa, Karenia mikimotoi, Skeletonema costatum and Chlorella 152 

vulgaris) and plant models (Triticum aestivum and Cucumis sativus)  were tested for adverse 153 

effects of MPs in a number of studies. Biological effects in plant models included reduced 154 

photosynthesis and again, growth inhibition following exposures to mPS, mPE or mPVC (Mao et al. 155 

2018; Zhao et al. 2019; Qi et al. 2018; Zhu et al. 2019; Hazeem et al. 2020; Li et al. 2020c).  156 

Altogether, the data on MP-associated toxicity, obtained in a number of biota, support the 157 

hypothesis that exposure to MPs can result in several negative biological outcomes tied to physical 158 

development, essential to life and survival. 159 

 160 

4. MP-associated molecular effects 161 
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There is a growing body of literature published on the effects of MP exposures in vertebrate 162 

models including mouse, fish and other test models as shown in Table 2.  163 

Terrestrial mammals (including mice) exposed to mPS underwent a number of metabolic 164 

disorders including altered energy and lipid metabolism, oxidative stress, neurotoxicity, and 165 

intestinal barrier dysfunction (Deng et al. 2017; Jin et al. 2018, 2019). Luo et al. (2019a,b) 166 

submitted pregnant and lactating mice to mPS exposures, and found transmissible damage in their 167 

F1 and F2 offspring in terms of altered metabolic parameters including, for example, alterations in 168 

serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and 169 

low-density lipoprotein cholesterol (LDL-C) levels. In zebrafish D. rerio, MP-induced gut 170 

microbiome dysbiosis affected energy metabolism, glucose metabolism and lipid metabolism (Wan 171 

et al. 2019). The same mechanistic pathway of effect could also be true in terrestrial mammals, 172 

warranting further investigation. 173 

A series of studies on D. rerio provided some important mechanistic information on MP-174 

associated molecular effects (Table 2). These effects included dysmetabolic events such as excess 175 

expression of proinflammatory cytokines, glutathione S-transferase, cytochrome P4501A1 176 

induction, and oxidative stress (Jin et al. 2018; Lei et al. 2018; Batel et al. 2018; Wan et al. 2019). 177 

Other fish models, including Clarias gariepinus, D. labrax, Symphysodon aequifasciatus and S. 178 

aurata,  were used to test the effects of MP exposures and yielded similar results to those obtained 179 

in earlier studies in D. rerio, namely increase in proinflammatory markers and oxidative stress 180 

response evaluated through the activities of superoxide dismutase and glutathione peroxidase 181 

enzymes, as well as the over-expression of a number of dysmetabolic markers (Karami et al. 2016; 182 

Espinosa et al. 2018; Granby et al. 2018; Wen et al. 2018; Solomando et al., 2020). In some 183 

cases, these effects were explained as the result of MP exposure that could lead to covalent 184 

binding with DNA or inhibition of DNA synthesis, contributing to genotoxicity and altered gene 185 

expression profiles resulting in altered cell division or DNA replication (Ribeiro et al. 2017). As a 186 

result it has been hypothesised that the oxidative stress responses in those cases could be a 187 

defense mechanism in response to MP-induced genotoxicity. Other aquatic invertebrate studies in 188 



8 
 

molluscs Scrobicularia plana and Mytilus spp. corroborated these findings by linking the oxidative 189 

stress response to DNA damage and neurotoxicity (Ribeiro et al. 2017; Paul-Pont et al. 2016; 190 

Magara et al. 2018). Mao et al. (2018) reported that these findings extended to an algal model (C. 191 

pyrenoidosa) suggesting that the effects of MP-induced genotoxicity, inflammatory and oxidative 192 

stress responses extend beyond the animal kingdom.  193 

The available literature focuses primarily on mPS, with far fewer reports on the other types of 194 

MPs (redox homeostasis, particularly for mPS and molluscs, was recently reviewed by Trestrail et 195 

al. 2020); by considering the extensive number of different polymer types, much work needs to be 196 

done on testing other MP particles. 197 

 198 

5. Impacts of NP-exposure on biota 199 

Unlike the literature focused on MP-associated effects, the currently available literature on NP-200 

associated effects is almost confined to nanopolystyrene (nPS), with two exceptions to the best of 201 

our knowledge; Brandts et al. (2018) investigated exposure to nPMMA in a D. labrax, while Greven 202 

et al. (2016) determined the impacts of nano-polycarbonate (nPC) particles in fathead minnow 203 

Pimephales promelas. 204 

Table 2 also summarises the reported effects induced by NPs in a number of test organisms 205 

and cell models, including fish, sea urchins, crustaceans, bivalves, nematodes, plants, diatoms, 206 

bacteria, and human cell lines (Poma et al. 2019; Xu et al. 2019; Rubio et al. 2020). In each of the 207 

NP-focused studies, biological effects were detected, suggesting that a wide array of organisms 208 

are sensitive to NP-exposure to the same polymer types, at similar concentrations [see, for 209 

example, Chen et al. (2017); Ding et al. (2020); Duan et al. (2020); Sökmen et al. 2020; Jeong et 210 

al. (2017)].  211 

nPS-associated toxicity in fish (D. rerio) was for example demonstrated through 212 

developmental abnormalities and maternal transfer to offspring in a study investigating five 213 

different NPs, with biological consequences on heart rate, swimming activity, body length and 214 

reproduction (Pitt et al. 2018a,b). Other studies of nPS-induced effects in D. rerio found 215 
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dysmetabolic damage including oxidative stress (superoxide-dismutase and glutathione peroxidase 216 

enzymatic activity), disrupted glucose metabolism and cortisol levels, and disturbed membrane 217 

function (Brun et al. 2019; Parenti et al. 2019; Liu et al. 2019). Investigations in crustacean D. 218 

pulex revealed that genes involved in metabolism, growth regulation, ROS metabolism, and sex 219 

difference changed after NP exposure (Zhang et al. 2020). Consistently, NPs had significant effects 220 

pertaining to development, fecundity, oxidative stress and response compared to larger particle 221 

sizes (MP) of the respective polymers (Jeong et al. 2016; 2018). It was suggested that surface 222 

charges (cationic vs. anionic) may lead to different uptake and biodistribution, potentially 223 

disrupting these physiological processes (Bergami et al. 2016;2017). A number of other crustacean 224 

studies were conducted to probe NP-induced effects, including Daphnia and Artemia. Altogether, 225 

these studies found NP-induced anomalies in protein and gene expression, oxidative damage, and 226 

delayed larval development, similar to what has been observed in MP exposure studies, but often 227 

at lower concentrations (Nasser and Lynch 2016; Bergami et al. 2016; 2017; Zhang et al. 2019; 228 

2020; Liu et al. 2018; 2019; Varó et al. 2019; Kelpsiene et al. 2020). These findings are most likely 229 

due to increased distribution of these smaller plastic polymers in the organisms’ tissues. 230 

A report by Della Torre et al. (2014) focused on the comparative effects of two nPS (with 231 

carboxylate and amine –functionalised surfaces) in the sea urchin P. lividus, and found 232 

embryotoxicity in larvae exposed to NH2-PS, but not to COOH-PS, while both nPS preparations 233 

induced different changes in gene regulation. Other studies focused on nPS-induced damage in 234 

sea urchin P. lividus, reporting on a series of dysmetabolic effects including decreased lysosomal 235 

membrane stability, modulated protein and gene profile, and affected cellular phagocytosis 236 

(Marques-Santos et al. 2018; Pinsino et al. 2017). These functional effects were not only reported 237 

in echinoderm models, but were also observed in mollusc Crassostrea gigas (González-Fernández 238 

et al. 2018). 239 

A set of studies of NP-induced effects in bivalves Crassostrea and Mytilus resulted in damage 240 

to fertilisation, embryogenesis and metamorphosis, and oxidative stress (Canesi et al. 2015; 2016; 241 

Balbi et al. 2017; Tallec et al. 2018; González-Fernández et al. 2018; Rist et al. 2019). 242 
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Other studies focused on the nematode C. elegans and on the rotifer Brachionus koreanus; when 243 

exposed to nPS, these organisms exhibited oxidative stress and inhibition of multi-drug resistance 244 

proteins and dysregulated gene expression (Qu et al. 2018; Jeong et al. 2018). Multiple species 245 

representing important links in food chains were tested for mPS and nPS exposure; for example, 246 

histopathological changes were noted in D. rerio liver after treatment with 5 μm PS particles, 247 

including necrosis, infiltration and presence of lipid droplets in hepatocytes, in addition to 248 

significant changes to the hepatic metabolome (Lu et al. 2016). Furthermore, lipid accumulation 249 

and inflammation were accompanied by oxidative stress, as indicated by increased catalase and 250 

superoxide dismutase activity, after exposure to both 70 nm and 5 μm particles. In addition, nPS 251 

(30-35 nm hydrodynamic diameters) was found able to penetrate embryo walls in D. rerio and 252 

accumulatein the yolk sac of hatched juveniles, testifying to increased tissue distribution and 253 

impacts deriving from maternal transfer to eggs and/or embryos (Pitt et al. 2018a). Altogether, 254 

nPS induced multiple adverse effects in the food chains (Mattsson et al. 2017; Chae et al. 2018), 255 

including on lower trophic levels such as in plants, diatoms and bacteria (e.g. Myriophyllum 256 

spicatum and Elodea sp., Phaeodactylum tricornutum and Halomonas alkaliphila, respectively) 257 

where decreased photosynthesis, growth inhibition and induction of oxidative stress were 258 

commonly reported (Bhattacharya et al. 2010; van Weert et al. 2019; Sendra et al. 2019; Sun et 259 

al. 2018). 260 

 261 

6. Knowledge gaps and concluding remarks 262 

The current and growing body of peer-reviewed literature on the effects of MP and NP pollution 263 

raises significant environmental concern on a global level. The present review evaluated the 264 

multiple outcomes of MP/NP exposures, ranging from a general lack of detectable effects at the 265 

organismal level to strong adverse effects ranging from the sub-cellular to the whole organism 266 

level. While broad consensus has yet to form on the degree of risk, it is increasingly acknowledged 267 

that MP/NPs are materials of concern in the environment and their potential to cause deleterious 268 

effects in biota is clearly an issue which should inform environmental policy. Their persistence in 269 
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the environment and toxicity at environmentally relevant levels are concerning. Nevertheless, it 270 

should be recognised that there are still substantial knowledge gaps in the ever growing MP/NP-271 

toxicity field. An important aspect relates to the relative toxicities of the different MPs; this 272 

question is more cogently raised for NPs, whose dataset is mostly confined, as yet, to nPS. The 273 

imbalance between the number of studies of nPS and those on the broad spectrum of other NPs 274 

clearly indicates that much work has yet to be accomplished. Further, gathering such comparative 275 

data may help in refining current risk assessment models to establish relative environmental 276 

concern when evaluating MP/NP-associated toxicities in the environment (e.g. Lithner et al. 2011). 277 

These open questions warrant ad hoc investigations. 278 

Relevant, yet limited information is available concerning MP- and NP-induced effects in plants, 279 

agro-ecosystems and algae, which would have important implications for their possible impact on 280 

food webs (Ng et al. 2018; Rillig et al. 2019). The bioavailability of plastics for marine plants 281 

should be investigated as well as their accumulation in plant cells in the marine environment in 282 

order to extend the currently scarce literature (Bhattacharya et al. 2010; Nolte et al. 2017a,b). 283 

The physical shape of MPs encompasses another area of relatively little study but which may 284 

be important as an additional driver of toxicity (Jemec et al. 2016). Specifically, most research has 285 

focused on MP/NPs that are broadly spherical in shape. However, the degradation of plastics in the 286 

environment may produce fibres of various aspect ratios or ‘jagged’-edged particles which might 287 

not physically or biologically impact in the same way as spherical particles, for example in terms of 288 

uptake and accumulation in biota or leaching of chemicals (Choi et al., 2021).  Moreover, 289 

replacements for traditional plastics such as biodegradable polymers, though catching the public 290 

imagination as a means to reduce human impact on the environment, also have not been 291 

investigated in sufficient detail, particularly as the polymer degradation products may themselves 292 

form MP fragments and particles and become available to biota (Green et al. 2016). In addition, 293 

while microparticulate plastics remain the focus of much research, the potential degradation of 294 

polymer-based textiles to also release even finer plastic fragments and secondary chemicals such 295 
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as dyes and plasticisers during use and laundering has received insufficient attention to date (Dalla 296 

Fontana et al. 2020; Klein et al. 2021). 297 

MP/NPs have most regularly been investigated in isolation from other contaminants which may 298 

be concomitantly present in the environment (Rainieri et al. 2018). Recent studies of mPS as a 299 

vector for certain hydrophobic contaminants have shown that interaction between plastic polymers 300 

and pollutants such as PCBs for example exhibit complex behaviour in simulated gut fluid of worms 301 

and fish (Mohamed Nor and Koelmans 2019). MPs may also even act as a vector for pathogenic 302 

fish bacteria (Viršek et al. 2017). Similarly, nPS showed bioaccumulation in D. rerio by modulating 303 

Au toxicity (Lee et al. 2019). The relatively scarce knowledge in this area and the enormous 304 

potential for synergistic, additive or antagonistic effects of pollutants adsorbed on MPs – and 305 

presumably NPs - indicates a relatively unmet need for research to understand the ability of 306 

MPs/NPs to act as carriers of harmful substances. In addition, impacts deriving from a range of 307 

other multi-stressors concomitantly present including, for example, engineered nanoparticles and 308 

abiotic parameters such as temperature, UV intensity etc., which may modulate the physico-309 

chemical behaviour of MP/NPs in the environment and the co-transport of pollutants in organisms, 310 

present a significant risk in terms of potential toxicity (Ferreira et al. 2016). However, studies on 311 

such aspects remain relatively limited in number.  312 

Another important knowledge gap to consider stems from the fact that the overwhelming 313 

majority of literature is based on aquatic biota, in spite of the fact that MP pollution extends to 314 

terrestrial locations (see for example Dris et al. 2016) such as landfills. This may be regarded as an 315 

under-investigated source of MP and NP contamination (He et al. 2019) and it will be important in 316 

the future to verify the impact of MP/NP pollution on terrestrial biota, and by extension on human 317 

health, due to potential trophic transfer. 318 

Overall, research on deleterious effects of MP/NPs in biota has focused to a great degree on 319 

specific organisms, with relatively few studies taking a broader perspective, for example 320 

considering trophic transfer of these materials in simplified food webs. This represents a weak 321 

point in current approaches as the significance of negative biological impacts, e.g. oxidative stress, 322 
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energetic deficiencies affecting growth, or transmissible damage to offspring, in organisms has 323 

oftentimes not been translated into a deeper understanding of the wider ecological consequences 324 

at community or ecosystem levels. Furthermore, the tests used for probing the biological effects of 325 

MPs might themselves not be fit for purpose in every case, and there is inadequate focus on using 326 

appropriate controls (Catarino et al. 2019). In terms of widely used biochemical tests, it is clear 327 

that they present only one facet of the toxicological profile of MP/NPs, and future research in this 328 

area will need to focus greater attention on ‘-omics’ approaches which may uncover deeper or 329 

more subtle effects on, for example, the transcriptome. This is further highlighted by the fact that 330 

many chemicals that may leach from polymer particles do not give rise to acute toxicity (most 331 

common type of test conducted) but rather may have low level, though important, chronic effects 332 

such as seen with endocrine disrupting chemicals. 333 

Another important issue is that MP/NPs must be characterised such that their physical 334 

properties can be related to the effects they induce in biota. In particular, completing the matrix of 335 

particle property versus biological effect may eventually permit read-across, allowing predictions to 336 

be made about the potential effects of new MPs based on the properties of similar particles 337 

already tested. While progress is being made in this regard, we are still some way from being able 338 

to implement the adverse outcome pathway paradigm, relating biological effects at cellular or sub-339 

cellular level to impacts at the whole organism level which become relevant for risk assessment. Of 340 

course, it must be borne in mind that there are currently important limitations to the analytical 341 

chemistry toolbox in terms of being able to characterise very small polymer particles, with 342 

microparticles of diameter ∼1 μm typically representing the lower limit. Thus, characterising 343 

polymer particles with diameters in the nano-scale range, or tracking their transport in biota or 344 

uptake in cells and tissues, remains an enormous challenge which still remains to be met. 345 

It is clear that significant strides have been made over the past several years in understanding 346 

the potential threat MP/NPs may present, and interest in this area as a topic of research is growing 347 

rapidly. Even though there are a number of important aspects outlined herein which have not 348 

received sufficient attention to date, and unaddressed would hinder further advances in the area, 349 
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the increasing body of literature in this field may be viewed as a measure of the scientific 350 

community’s resolve to answer these questions, ultimately relating materials’ physical and chemical 351 

properties to an organism’s biological response and eventually to broader ecological effects. 352 
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