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We compute the scaling dimensions of a family of fixed-charge operators at the infrared fixed point of
theOðNÞmodel featuring cubic interactions in d ¼ 6 − ϵ for arbitrary N to leading and subleading order in
the charge but to all orders in the couplings. The results are used to analyze the conjectured equivalence
with the OðNÞ model displaying quartic interactions at its ultraviolet fixed point. This is performed by
comparing the cubic model scaling dimensions against the known large N results for the quartic model and
demonstrating that they match. Our results reinforce the conjectured equivalence and further provide novel
information on the finite N physics stemming from the computations in the cubic model just below six
dimensions.
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I. INTRODUCTION

The OðNÞ model with quartic interactions has a long
history with applications ranging from condensed matter to
high energy physics [1–6] (e.g., the Standard Model
Higgs), including string theory [7,8]. It has been inves-
tigated in several space-time dimensions and its dynamics
discussed within and beyond perturbation theory and/or in
different thermodynamic regimes of temperature and matter
density. Despite the relevance and the energies devoted, its
full dynamics remains unknown. For example, consider the
theory just below six dimensions. It was Parisi [9] to show
that in the large N expansion and for 4 < d < 6 an
ultraviolet (UV) fixed point (FP) emerges in the OðNÞ
model with quartic couplings, rendering the theory non-
perturbatively renormalizable in the 1=N expansion. At the
same time, the finite N dynamics is not yet solved. Is it

possible to make progress beyond the large N limit? In
order to positively answer this question and make a dent in
this direction, we will consider a slight detour. The latter
uses an alternative model, known as the cubic model,
according to which rather than having quartic interactions
the theory features an OðNÞ singlet field interacting with
the OðNÞ fields via a cubic operator [10]. The relation
between the two models is expected to hold in between four
and six dimensions because both theories are simultane-
ously critical in this range.
In fact, in [10], the authors proposed a dual description of

the UV FP of the quartic theory in 4 < d < 6 in terms of the
infrared (IR) FP of the cubicmodel. For the cubic theory, one
can show that it has upper critical dimension d ¼ 6, and thus
it is usually investigated in d ¼ 6 − ϵ via the ϵ expansion.
Within this expansion one observes a critical value of N
above which the model features an IR FP. The one-loop
guesstimate obtained pushing ϵ to one gives Ncrit ¼ 1038

[10] that should be confronted with the four- and five-loop
resummed results [11,12] that place it at Ncrit ≈ 400.
The equivalence between the quartic and the cubic critical

theories has been supported by a series of investigations
regarding the scaling dimensions at the cubic FP of various
operators [10–14], and a few operator product expansion
(OPE) coefficients [15], which strikingly match their coun-
terparts in the critical quartic theory. Since the cubic and
quartic models are usually investigated via the ϵ and 1=N
expansion, respectively, the comparison is usually per-
formed at the level of the terms which appear in both
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expansion schemes at the considered order of expansion. In
Table I (see later sections formore details about the operators
and expansion scheme), we summarize, together along with
the new results reported in the present paper, the checks of
the dual picture which appeared in the literature so far.
On the other hand, even if the critical OðNÞ theory is

well defined and unitary order by order in the 1=N
expansion, the quartic theory cannot exhibit a stable FP
[22–24] because it occurs at negative values of the quartic
coupling. In the cubic theory, the instability of the quartic
FP is manifested by the fact that the cubic potential is
unbounded from below. As shown in [25], the instability is
realized by instantonic effects which mediate the tunneling
from the vacuum at 0 values of the fields to large negative
values of the singlet scalar field and give rise to complex
conformal field theory (CFT) data. Remarkably, in [25], the
nonperturbative instantonic contribution to the CFT data
has been computed in both theories finding agreement
between the two pictures. This contribution is exponen-
tially suppressed at large N. As a result, when N is large
enough, the imaginary part of the CFT data is negligible
and the UV FP of the quartic theory can be studied via the
conformal bootstrap as done in [26–28], where the authors
found a region in the parameter space where the CFT data
are in good agreement with the results from the 1=N
expansion. The instability of the cubic FP at large N has
been confirmed by functional studies [29,30].
Here we use large-charge semiclassical methods [16,

31–49] to further test the equivalence between the two

CFTs. We compute the scaling dimensions of a whole
family of fixed-charge operators for the cubic model in d ¼
6 − ϵ and compare the results with the existing OðNÞ
literature. In particular, our semiclassical expansion resums
an infinite series of Feynman diagrams and allows compar-
ing terms at arbitrarily high perturbative orders providing
interesting insights of the dual picture.
The first test of the equivalence of the large-charge sector

has been carried out in [14], where the authors calculated
the scaling dimension of traceless symmetric OðNÞ oper-
ators in d ¼ 6 − ϵ dimensions at the leading order in both
the charge and ϵ, obtaining the same result in both models.1

We summarize below the highlights of our work:
(1) We compute the scaling dimensions of a family of

fixed-charge operators at the infrared fixed point of
the OðNÞ model featuring cubic interactions in d ¼
6 − ϵ to leading (LO) and next-to-leading (NLO)
order in the fixed-charge expansion for arbitrary N
and to all orders in the cubic model couplings.

(2) We use the results above to analyze the envisioned
equivalencewith the criticalOðNÞmodelwith quartic
interactions by comparing them against the known
large N results for the quartic model. The results are
summarized in Table I (at the end of Sec. III).

(3) Once established that our results further support
the equivalence of the two model descriptions of the

TABLE I. Summary of the duality between OðNÞ cubic theory and quartic theory. In each line, we show a term of the scaling
dimensions which matches between the OðNÞ cubic and quartic theories together with the expansion scheme according to which it has
been computed. All the comparisons made in this work have been summarized in the upper part of the Table (above the two-line dividing
line). The lower part of the Table covers the existing results in the literature where NA denotes not applicable. In the last two lines of the
table, ðϕiϕiÞ2 (similarly σ3) operator in the quartic theory matches to the primary operator from mixing of the σ2 and ϕiϕi (similarly
σ3; σϕϕ) in the cubic theory.

OðNÞ Cubic theory (d ¼ 6 − ϵ) OðNÞ Quartic theory (4 < d < 6)

Operator Term compared Eq. & Ref. Expansion scheme Order Eq. Expansion scheme Order Ref.

TQ Qkþ1ð ϵNÞk; k ≥ 1 (41) P∞
k¼−1

ΔkðQϵ;NÞ
Qk

LO (16) P∞
k¼−1

ΔkðQ=N;dÞ
Nk

LO [16]

TQ ðQϵÞkð1NÞk−1; k ≥ 1 (52) P∞
k¼−1

ΔkðQϵ;NÞ
Qk

NLO (17) P∞
k¼−1

ΔkðQ=N;dÞ
Nk

LO [16]

TQ
4Qϵ
N

(55) P∞
k¼−1

ΔkðQϵ;NÞ
Qk

NLO (8) P∞
k¼−1

ΔkðQ=N;dÞ
Nk

LO [16]

TQ − 8
3
Qϵ2

N
(55) P∞

k¼−1
ΔkðQϵ;NÞ

Qk
NNLO (8) P∞

k¼−1
ΔkðQ=N;dÞ

Nk
LO [16]

TQ − 132Q2ϵ
N2

(55) P∞
k¼−1

ΔkðQϵ;NÞ
Qk

LO (8) P∞
k¼0

ΔkðQ;dÞ
Nk

NLO [17]

TQ
176Qϵ
N2

(55) P∞
k¼−1

ΔkðQϵ;NÞ
Qk

NLO (8) P∞
k¼0

ΔkðQ;dÞ
Nk

NLO [17]

TQ 855Q2ϵ2

2N2
(55) P∞

k¼−1
ΔkðQϵ;NÞ

Qk
NLO (8) P∞

k¼0
ΔkðQ;dÞ

Nk
NLO [17]

TQ Nϵ
1−2k
5 ðQNÞ

6−2k
5 k ¼ 0, 1, 2 (42) P∞

k¼−1
ΔkðQϵ;NÞ

Qk
LO (22) P∞

k¼−1
ΔkðQ=N;dÞ

Nk
LO [16]

ϕ Pk¼5;j¼3
k¼1;j¼1

ϵkakj
Nj

[10,12,13]
P∞

k¼0 ΔkðNÞϵk N4LO NA P∞
k¼0

ΔkðQ;dÞ
Nk

NNLO [10,13,18]

σ Pk¼3;j¼2
k¼1;j¼1

ϵkbkj
Nj

[10,12,13]
P∞

k¼0 ΔkðNÞϵk NNLO NA P∞
k¼0

ΔkðQ;dÞ
Nk

NLO [10,13,19]

ðϕiϕiÞ2σ2;ϕiϕi
Pj¼2

j¼1

ϵcj
Nj

[10,13]
P∞

k¼0 ΔkðNÞϵk NLO NA P∞
k¼0

ΔkðQ;dÞ
Nk

NLO [10,13,20]

σ3σ3; σϕϕ − 420ϵ
N

[10,13]
P∞

k¼0 ΔkðNÞϵk LO NA P∞
k¼0

ΔkðQ;dÞ
Nk

LO [10,13,21]

1This result is obtained from the exponentiation of the
diagrams with the leading charge scaling at every loop order.
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critical dynamics we provide novel results on the
finite N physics stemming from the cubic compu-
tation near d ¼ 6 dimensions.

(4) We analyze the onset of complex CFT dynamics of
the large-charge sectors of the two models by
determining the critical charge above which the
anomalous dimensions become complex.

The paper is organized as follows. In Sec. II we review
large-N results on the scaling dimension of traceless
symmetric OðNÞ operators in the quartic model. Then,
in Sec. III, we semiclassically compute the same quantities
in the cubic theory, and we compare them with the quartic
model’s results mentioned above. In Sec. IV, we study the
emergence of complex CFT data above a critical value of
the charge, which we compute in the ϵ expansion. We offer
our conclusions in Sec. V. Appendix A discusses how to
select the chemical potential from its multiple solutions in
the large t’Hooft coupling regime. Appendix B contains
details on the 1-loop renormalization of the semiclassical
expansion in the cubic model.

II. THE OðNÞ QUARTIC MODEL IN 4 < d < 6:
TRACELESS SYMMETRIC OPERATORS

In this section, we collect relevant results in the literature
about the scaling dimensions of operators transforming in
the traceless symmetric representations of the OðNÞ group
at the UV FP of the OðNÞ quartic model in 4 < d < 6
dimensions. In the next section, we will semiclassically
compute the same quantities at the IR FP of theOðNÞ cubic
model in 6 − ϵ dimensions and compare the results. Their
equality will provide a stringent test of the proposed
equivalence between the two FPs, at least at large N and
near six dimensions. The Euclidean action of the OðNÞ
quartic model in d dimensions is written as

S ¼
Z

ddx

�ð∂ϕaÞ2
2

þ ð4πÞ2g0
4!

ðϕaϕaÞ2
�
: ð1Þ

Here ϕa; a ¼ 1; 2;…; N are a set of N real scalar fields
which collectively transform as an OðNÞ vector. In the
above expression, the summation over a from 1 to N is
understood. In what follows, we will be interested in
operators transforming as traceless fully symmetric tensors
of OðNÞ and that can be expressed as

TQ ¼ t
a1…aQ
Q ðϕaÞ; ð2Þ

where t
a1…aQ
Q ðϕaÞ is a homogeneous polynomial of degree

Q in the ϕa’s that is fully symmetric in the indices and
traceless (i.e., contraction of any two indices gives zero).
The explicit form of the first three t

a1…aQ
Q polynomials reads

ta1ðϕÞ ¼ ϕa; tab2 ðϕÞ ¼ ϕaϕb −
1

N
δabϕ2;

tabc3 ðϕÞ ¼ ϕaϕbϕc −
ϕ2

N þ 2
ðϕaδbc þ ϕbδac þ ϕcδabÞ; ð3Þ

where ϕ2 ≡P
a¼N
a¼1 ϕaϕa. The classical scaling dimension

of TQ isQðd=2 − 1Þ. Furthermore,Q can be identified with
its total charge as follows. For simplicity, suppose N is
even, then we can define N=2 Cartan charges as

QðjÞ ¼
Z

dd−1xðϕ2j−1∂0ϕ2j − ϕ2j∂0ϕ2j−1Þ;

j ¼ 1; 2;…; N=2; ð4Þ
and fix their values as QðjÞ ¼ QðjÞ with fQðjÞg a set of
constants. It is then possible to show that all operators that
have the same value of Q ¼ Pj¼N=2

j¼1 jQðjÞj, and have the
minimal classical scaling dimension, span the same space
as the operator TQ [33]. Then, in the perturbative regime,
i.e., when the anomalous dimensions are small, the TQ are
the lowest-lyingOðNÞ operators with total chargeQ. As we
shall see in the next section, this property will be relevant
for our semiclassical computations.
At the fixed point, the scaling dimension of the TQ

operators (denotedΔQ)
2 can be computed nonperturbatively

via Monte Carlo simulations [53] and the conformal boot-
strap method [54]. Furthermore, ΔQ is usually computed
perturbatively in the ϵ expansion in d ¼ 4 − ϵ dimensions
[55–57] and in the large N expansion [17,21,58,59]. Nice
expositions of these conventional approaches are available
in the literature, e.g., Ref. [1] for the ϵ expansion and
Ref. [60] for the large N expansion. While most of the
literature investigated ΔQ in the range 2 < d < 4, which is
relevant for condensed matter experiments, the 1=N expan-
sion iswell defined and unitary also in 4 < d < 6. The upper
limit d < 6 is set by observing that the scaling dimension at
the UV FP of theϕ2 operators is 2þOð1NÞ in any d, and thus
it violates the unitarity bound (d=2 − 1) when d > 6 [10].
The large N expansion is generated by performing a

Hubbard-Stratonovich transformation,3 turning the
Lagrangian (1) into

2Alternatively, the large N computations of another two
interesting observables CT , CJ , which are coefficients of two-
point correlations of energy momentum tensor and conserved
current, respectively, have been worked out in [50,51]. The
equivalence check of these two observables have been done in
Sec. 6 of [10] and later on in [52].

3Hubbard-Strantonovich method here corresponds to intro-
ducing the σ auxiliary field in the OðNÞ singlet channel.
Alternatively, one may also imagine introducing the auxiliary
field through the tensor channel as shown in [61] where only
N ¼ 2, 3 provides nontrivial real IR fixed points for the cubic
model in the 6 − ϵ dimensions. However, to check the equiv-
alence between cubic and quartic models, it is necessary to obtain
CFT data in both models near six dimensions, which further
requires large N for the quartic model. Thus, N ¼ 2 or N ¼ 3 is
not sufficiently large.
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S¼
Z

ddx

�
1

2
ð∂ϕaÞ2þ

1

2
σϕaϕa−

3σ2

2g0ð4πÞ2
�
; ð5Þ

wherewe introduced an auxiliary field σ that can be integrated

out via its equation of motion (EOM), σ ¼ ð4πÞ2g0
6

ϕaϕa, to
come back to the original action (1). At the critical point, it is
possible to neglect the last term and one is left with the
following action [62]:

Scrit ¼
Z

ddx

�
1

2
ð∂ϕaÞ2 þ

1

2
σϕaϕa

�
: ð6Þ

The 1=N expansion is then generated by integrating out the
fields ϕa, which appear quadratic in Scrit. Note that ΔQ has
been computed in the 1=N expansion for arbitraryQ and d to
order Oð 1

N2Þ [17,21],

ΔQ ¼
�
d
2
− 1

�
Q −

1

N

�
2d−3d sinðπd

2
ÞΓðd−1

2
Þ

π3=2Γðd
2
þ 1Þ

�
QðQ − 2Þ þ 4Q

d

��
þ 1

N2

�
ηQ −

8ðQ − 1ÞQsin2ðπd
2
ÞΓðd − 2Þ2

3π2ðd − 2Þ3dΓðd
2
− 1Þ4

×

�
−12ððd − 3Þdþ 4Þðd − 2Þ

�
Hd−3 þ π cot

�
πd
2

��

þ dðd − 2Þ2ðQ − 2Þ
�
π2 − 6ψ ð1Þ

�
d
2

��
þ 12ðd − 3Þd

��
þO

�
1

N3

�
; ð7Þ

where H denotes the harmonic numbers and η is the coefficient of the ð 1
N2Þ term in the scaling dimension of ϕa.

The latter has been computed to order Oð 1
N3Þ in [63]. In d ¼ 6 − ϵ, we have η ¼ 44ϵ − 835

6
ϵ2 þOðϵ3Þ, and the above

becomes

ΔQ ¼ 2Q −
ϵ

2
Qþ 1

N

�
ð−3Q2 þ 4QÞϵþ

�
7

4
Q2 −

8

3
Q

�
ϵ2 þOðϵ3Þ

�

þ 1

N2

�
ð−132Q2 þ 176QÞϵ −

�
45Q3 −

857

2
Q2 þ 1568

3
Q

�
ϵ2 þOðϵ3Þ

�
þO

�
1

N3

�
: ð8Þ

Recently, these operators have been studied in the double
scaling limit Q → ∞, N → ∞ with fixed ’t Hooft-like
coupling J ≡Q=N in d ¼ 3 [40] and 2 < d < 6 [16]. In
this limit, the scaling dimension of TQ takes the form

ΔQ ¼
X
k¼−1

1

Nk Δ̃kðJÞ; ð9Þ

corresponding to a semiclassical expansion around the
classical solution of the theory at fixed charge. The LO
Δ̃−1 is the classical term of the saddle-point expansion and
has been computed in [16]

Δ̃−1 ¼
�
fðcσÞ þ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d
2
− 1

�
2

þ cσ

s �
cσ¼cσðJÞ

; ð10Þ

where cσðJÞ solves

d
dcσ

�
fðcσÞ þ J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
d
2
− 1

�
2

þ cσ

s �
¼ 0; ð11Þ

and fðcσÞ is given by

fðcσÞ ¼ −
cσ

d − 2

Z
∞

0

dt
J2ð ffiffiffiffiffi

cσ
p

tÞ
tð2 cosh t − 2Þd2−1 ; ð12Þ

with J2 the Bessel function of the first kind. The small J
expansion of Δ̃−1 reads [16]

Δ̃−1 ¼
�
d
2
− 1

�
J þ h2ðdÞJ2 þ h3ðdÞJ3 þ…; ð13Þ

where

h2ðdÞ ¼ −
2d−3d sinðπd

2
ÞΓðd−1

2
Þ

π3=2Γðd
2
þ 1Þ ;

h3ðdÞ ¼ −
ðd − 2Þd2Γðd − 2Þ2ðπ2 − 6ψ ð1Þðd

2
ÞÞ

6Γð2 − d
2
Þ2Γðd

2
− 1Þ4Γðd

2
þ 1Þ2

h4ðdÞ ¼ …; ð14Þ
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Δ̃−1 resums an infinite number of terms of the conventional large N expansion. Specifically, it resums all the terms with the
leading Q scaling at every 1=N order.4 This fact will allow us to probe the equivalence of quartic and cubic theories by
comparing terms up to arbitrarily high orders in the 1=N expansion by performing a similar computation in the cubic theory.
In d ¼ 6 − ϵ, Δ̃−1 can be expanded as

NΔ̃−1 ¼ 2Q −
ϵ

2
QþQ

X
j

�
Q
N

�
j
ðαjϵj þ βjϵ

jþ1 þ γjϵ
jþ2 þ…Þ: ð15Þ

For later comparison with the cubic model, we list below the values of the first αj and βj coefficients,

α1 ¼ −3; α2 ¼ −45; α3 ¼ −1350; α4 ¼ −
213597

4
; α5 ¼ −2457216

α6 ¼ −
995773905

8
; α7 ¼ −6739459200; α8 ¼ −

24526111620285

64
: ð16Þ

β1 ¼
7

4
; β2 ¼

3

4
ð48ζð3Þ þ 31Þ; β3 ¼

27

2
ð128ζð3Þ þ 40ζð5Þ þ 41Þ;

β4 ¼
81

16
ð18208ζð3Þ þ 7168ζð5Þ þ 1792ζð7Þ þ 3117Þ; β5 ¼ 648ð8202ζð3Þ þ 3510ζð5Þ þ 1218ζð7Þ þ 252ζð9Þ þ 677Þ

β6 ¼
2187

32
ð4727888ζð3Þ þ 2109440ζð5Þ þ 836864ζð7Þ þ 256000ζð9Þ þ 45056ζð11Þ þ 110211Þ: ð17Þ

It is interesting to consider also the large J expansion of Δ̃−1, which reads

ΔQ ¼ NJ
d

d−1ðδ0 þ δ1J
−2
d−1 þ δ2J

−4
d−1 þ…Þ; ð18Þ

where [16]

δ0 ¼
�
1 −

1

d

�
C

1
2

0; δ1 ¼
ðd − 1Þðd − 2Þ

12
C
−1
2

0 ; δ2 ¼ −
ðd − 1Þðd − 2Þ2ð3d − 2Þ

1440
C
−3
2

0 ; ð19Þ

with

C0 ¼
�
−
2d

πd
sin

�
πd
2

�
Γ
�
d
2

��
1þ d

2

�� 2
d−1
: ð20Þ

Equation (18) agrees with the general form of the large-charge expansion in OðNÞ symmetric models [31,32]

ΔQ ¼ Q
d

d−1½α1 þ α2Q
−2
d−1 þ α3Q

−4
d−1 þ…� þQ0½β0 þ β1Q

−2
d−1 þ…� þOðQ− d

d−1Þ; ð21Þ

which has been predicted using effective field theory methods, which do not rely on the presence of other expansion
parameters besides Q. Since C0 is complex in 4 < d < 6, the scaling dimensions in the large J expansion are complex as
well. It can be shown that the imaginary part in ΔQ arises at a critical value of J, above which there are no real solutions to
the saddle-point equations [16]. Note that Jc depends nontrivially on d and has been estimated numerically in [16] in the
whole range 4 < d < 6. Accordingly, we shall see that also the cubic FP exhibits the presence of a critical charge. Assuming
the validity of the dual description, in Sec. IV we will compute Jc analytically in the ϵ expansion in both d ¼ 6 − ϵ and
d ¼ 4þ ϵ. In d ¼ 6 − ϵ dimensions, the large J expansion of Δ̃−1 reads

NΔ̃−1 ¼ −e�i4π=5 5N
3

ð2ϵÞ1=5J6=5ð1þOðϵÞÞ þ e�iπ=5 5N
6

ð2ϵÞ−1=5J4=5ð1þOðϵÞÞ

− e�3iπ=5 N
9
ð2ϵÞ−3=5J2=5ð1þOðϵÞÞ þOðJ0Þ: ð22Þ

4In fact it can be checked that h2ðdÞ and h3ðdÞ agree with the diagrammatic result (7).
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III. THE SEMICLASSICAL EXPANSION
IN THE CUBIC MODEL

As mentioned, an alternative description of the critical
quartic OðNÞ model in 4 < d < 6, is given by the infrared
FP of a theory with N þ 1 fields, OðNÞ symmetry, and
Lagrangian

L ¼ 1

2
ð∂ϕaÞ2 þ

1

2
ð∂ηÞ2 þ g0

2
ηðϕaÞ2 þ

h0
6
η3; ð23Þ

where ϕa is again an OðNÞ vector. This model is usually
studied near its upper critical dimension, d ¼ 6, where the
infrared dynamics become free. In d ¼ 6 − ϵ, the 1-loop
beta functions of the model read

βg ¼ −
ϵ

2
gþ ðN − 8Þg3 − 12g2hþ gh2

12ð4πÞ3 ;

βh ¼ −
ϵ

2
hþ −4Ng3 þ Ng2h − 3h3

4ð4πÞ3 : ð24Þ

At large enough N, the model features an IR FP at real
values of the two couplings which, at the one-loop level,
read

g� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 22

N
þ 726

N2
−
326180

N3
þ � � � þOðϵÞ

�
;

h� ≡ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ϵð4πÞ3

N

r �
1þ 162

N
þ 68766

N2
þ 41224420

N3

þ � � � þOðϵÞ
�
: ð25Þ

The 5-loop beta functions have been derived in [12]. On
can check that at the leading order in 1=N, the FP couplings
are exact at order

ffiffiffi
ϵ

p
.

A. Leading order

We now proceed by computing the ΔQ to NLO in the
semiclassical large-charge expansion, i.e., in the double
scaling limit ϵ → 0, Q → ∞ with A≡Qϵ fixed. We start
by introducing N=2 complex fields as

φj ¼
1ffiffiffi
2

p ðϕ2j−1 þ iϕ2jÞ; j ¼ 1;…; N=2; ð26Þ

and mapping the theory to the cylinder Rd → R × Sd−1

[64]. Considering polar coordinates ðr;Ωd−1Þ for Rd, the
map reads

ðr;Ωd−1Þ → ðτ;Ωd−1Þ; r ¼ Reτ=R; ð27Þ

with R the radius of Sd−1. The cylinder Lagrangian,

Lcyl ¼ ∂φ�
j∂φj þ

1

2
∂η∂ηþ g0ηðφ�

jφjÞ

þ h0
6
η3 þm2

2
η2 þm2φ�

jφj; ð28Þ

contains mass terms stemming from the conformal cou-
pling of the fields to the Ricci scalar of the cylinder [65].
The mass reads m ¼ d−2

2R . According to the state-operator
correspondence (e.g., [64]), the action of an operator
τ ¼ −∞ creates a state on the cylinder with the same
quantum numbers and with energy related to its scaling
dimension by

E ¼ Δ
R
: ð29Þ

As anticipated, TQ is the lowest-lying operator with total
charge Q and, as a consequence, we can compute ΔQ by
considering the expectation value of the evolution operator
e−HT (with H the Hamiltonian and T ¼ τf − τi) in an
arbitrary state jQiwith fixed (total) chargeQ and taking the
limit T → ∞ in order to project out the ground state from it.
That is

hQje−HT jQi ¼
T→∞

Ñ e−EQT ¼ Ñ e−
ΔQ
R T; ð30Þ

with Ñ a normalization factor. As discussed in [33], the
anomalous dimension of TQ is not affected by the number
of Cartan charges (4) we fix as long as it is different from
0. In other words, one is free to rotate all the nonzero
Cartan charges of the OðNÞ vector model into one single
component without loss of generality. This special prop-
erty is known to apply to the OðNÞ vector model and
ΔQ only and fails in more general cases where the
distribution of individual Cartan charges affects the
physics [34,35,66]. For the sake of simplicity, we fix only
one charge to Q. Then the solution of the EOM with
the minimal energy is spatially homogeneous and
reads [33]

�
ρ ¼ f; χ ¼ −iμτ; η ¼ v;

φi ¼ 0 i ¼ 2;…; N=2;
ð31Þ

where φ1 ¼ 1ffiffi
2

p ρeiχ and μ has the role of the chemical

potential associated with the fixed charge. The parameters
f, v, and μ are fixed by the EOM and the expression for
the Noether charge as
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μ2 −m2 ¼ g0v;
g0
2
f2 þ h0

2
v2 þm2v ¼ 0;

Q
Ωd−1Rd−1 ¼ μf2: ð32Þ

For convenience, we choose jQi as

jQi ¼
Z

Dαðn⃗Þ
�
exp

�
iQ

Rd−1Ωd−1

Z
dΩd−1αðn⃗Þ

��
× jf; 0;αðn⃗Þ; vi; ð33Þ

where n⃗ identifies points on Sd−1 and jf; 0; αðn⃗Þ; vi
is the state with fixed values of the fields ρðn⃗Þ ¼ f,
φi≠1ðn⃗Þ ¼ 0, χðn⃗Þ ¼ αðn⃗Þ, and ηðn⃗Þ ¼ v. The term in the
brace can be thought of as a wave functional for the
state, which fixes one charge to Q. Equation (33)
leads to

hQje−HT jQi ¼ 1

Z

Z
DηDφDφ̄ e−Ŝ; ð34Þ

where Z is an unimportant normalization constant and

Ŝ ¼
Z

T=2

−T=2
dt

Z
dΩd−1

�
Lcyl þ

iQ
Ωd−1Rd−1 _χ

�
: ð35Þ

Equation (34) can be computed semiclassically around the
solution (31), resulting in5

ΔQ ¼
X
k¼−1

1

Qk ΔkðAÞ; A≡Qϵ; ð36Þ

which is an expansion in inverse powers of Q at fixed and
finite ’t Hooft-like coupling A. This is similar to the
semiclassical expansion of Eq. (9). The leading order Δ−1

is given by the action Ŝ evaluated on the classical solution.
From Eq. (32), we have

Rμ½ðRμÞ2 − 4�ð8g0 þ h0½ðRμÞ2 − 4�Þ þQg30
π3

¼ 0; ð37Þ

which, once rewritten at the FP, implicitly defines the
chemical potential as a function of the ’t Hooft coupling
A. The above equation can be solved numerically or
analytically for small/large values of A. The first terms of
the former expansion read b

Rμ ¼ 2 −
g20Q
64π3

−
g30Q

2ð3g0 þ 2h0Þ
16384π6

−
g40Q

3ð2g20 þ 2g0h0 þ h20Þ
524288π9

þOðQ4Þ: ð38Þ

The leading order is the classical energy on the cylinder
and reads

Q
Δ−1

R
¼ −

f2μ2

2
þ g0vf2

2
þ h0v3

6
þm2f2

2

þm2v2

2
þ Qμ

Ωd−1Rd−1 : ð39Þ

Using Eq. (38) in the classical energy above and
evaluating the result at the FP, we obtain the leading order
Δ−1ðAÞ of the semiclassical large-charge expansion.
Notice that this classical result resums at once an infinite
series of Feynman diagrams. By expanding Δ−1 for small
values of A, we obtain

Δ−1 ¼ 2 −
g2Q
128π3

−
g3Q2ð3gþ 2hÞ

49152π6
−
g4Q3ð2g2 þ 2ghþ h2Þ

2097152π9
−
g5Q4ð21g3 þ 28g2hþ 20gh2 þ 8h3Þ

1073741824π12

−
g6Q5ð24g4 þ 40g3hþ 36g2h2 þ 21gh3 þ 7h4Þ

51539607552π15

−
3g7Q6ð143g5 þ 286g4hþ 308g3h2 þ 224g2h3 þ 112gh4 þ 32h5Þ

35184372088832π18

−
g8Q7ð192g6 þ 448g5hþ 560g4h2 þ 480g3h3 þ 300g2h4 þ 132gh5 þ 33h6Þ

562949953421312π21

−
11g9Q8ð12597g7 þ 33592g6hþ 47736g5h2 þ 46800g4h3 þ 34320g3h4 þ 19008g2h5 þ 7488gh6 þ 1664h7Þ

13835058055282163712π24

þOðA9Þ: ð40Þ

5As a slight abuse of notation, here we denote the coefficients of the semiclassical expansion as Δk, which should not be mistaken for
the full scaling dimension ΔQ.
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Rewriting the above at the FP (25) gives

QΔ−1 ¼ 2Q −
ϵQ2

N

�
3þ 132

N
þ 5808

N2
þ…

�
−
Q3ϵ2

N2

�
45þ 9000

N
þ 3043440

N2
þ…

�

−
Q4ϵ3

N3

�
1350þ 495720

N
þ 223974720

N2
þ…

�
−
Q5ϵ4

N4

�
213597

4
þ 28653588

N
þ 15700511880

N2
þ…

�

−
Q6ϵ5

N5

�
2457216þ 1736458560

N
þ 1109489011200

N2
þ…

�

−
Q7ϵ6

N6

�
995773905

8
þ 109168708635

N
þ 79449296874570

N2
þ…

�

−
Q8ϵ7

N7

�
6739459200þ 7060148282880

N
þ 5757420242165760

N2
þ…

�

−
Q9ϵ8

N8

�
24526111620285

64
þ 933675673809285

2N
þ 421344743454254565

N2
þ…

�
þOðQ10ϵ9Þ: ð41Þ

The above remarkably reproduces the αj coefficients
in Eq. (16) for the scaling dimension in the quartic OðNÞ
model. Notice that Δ̃−1ðJÞ in (15) andΔ−1ðAÞ in (41) are the
leading order in two distinct expansion schemes denoted,
respectively, as

P
k¼−1

ΔkðQ=NÞ
Nk and

P
k¼−1

ΔkðQϵÞ
Qk . However,

since at LO in 1=N the FP (25) isOð ffiffiffi
ϵ

p Þ exact, all (and only)
the terms scaling as QðQϵ

N Þj appear at the LO of both
expansions and can be compared. We can thus check terms
up to arbitrarily high orders in the conventional loop
expansion. Furthermore, we can compare also the term
−132 ϵQ2

N2 which is not contained in (15) but appears in the
diagrammatic result (8). Assuming the validity of the dual
description,Δ−1 represents a new result forΔQ in the quartic
theory. All the terms scaling as Q

N ðQϵ
N Þj are contained in the

NLO Δ̃0 of the semiclassical expansion (9) and can be used
to check future computations of Δ̃0 in the quartic theory.
We now move to consider the expansion of Δ−1 for large

’t Hooft coupling A. One needs to select a root of the
quintic equation (37). This corresponds to choosing a root
of ð−1Þ1=5. In general, we have

QΔ−1 ¼ −x
5N
3

ð2ϵÞ1=5J6=5
�
1þO

�
1

N

��

−
1

x
5N
6

ð2ϵÞ−1=5J4=5
�
1þO

�
1

N

��

þ 1

x3
N
9
ð2ϵÞ−3=5J2=5

�
1þO

�
1

N

��
þOðJ0Þ;

ð42Þ

where the five solutions are parametrized by
x ¼ f1; e�4iπ

5 ; e�2iπ
5 g, and we have rewritten the result in

terms of J ≡Q=N to compare with the quartic model result
(22). As shown in Appendix A, the physical (complex

conjugate) solutions satisfy the criteria Re½Δ−1� > 0, which
fixes x ¼ e�4iπ

5 . This solution matches the quartic result
of Eq. (22).

B. Next-to-leading order

We move to compute the leading quantum correction Δ0

in the semiclassical expansion, which is given by the
functional determinant of the fluctuation around the
classical solution (31). First, we note that fixing one charge
induces the symmetry breaking pattern below [33]

SOðdþ 1; 1Þ ×OðNÞ
→

Explicit
SOðdÞ ×D ×OðN − 2Þ ×Uð1Þ

→
Spontaneous

SOðdÞ ×D0 ×OðN − 2Þ; ð43Þ

where D0 ¼ Dþ μQ with D the generator of the time
translations on the cylinder. This symmetry breaking pattern
defines a conformal generalized superfluid state of matter
[67,68] which occurs naturally in CFT at fixed charge. The
spontaneous part of the symmetry breaking results in one
relativistic Goldstone boson (the so-called conformal
phonon), which at large μ propagates at the speed of sound

c ¼
ffiffiffiffiffiffi
1

d−1

q
dictated by the tracelessness of the energy-

momentum tensor. Furthermore, fixing only one charge,
we are left withN − 2 “spectator”massive states, with gap μ
and dispersion relation given by [33,39]

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ μ2

q
; ð44Þ

with p the momentum, which is quantized on the cylinder.
For the remaining d.o.f., we expand the fluctuations as

follows:
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�
ρ ¼ f þ rðxÞ; χ ¼ −iμτ þ πðxÞ

f ;

η ¼ vþ η̃ðxÞ:
ð45Þ

The quadratic Lagrangian for these three modes reads

L̂ð2Þ ¼ 1

2
ð∂rÞ2 þ 1

2
ð∂η̃Þ2 þ 1

2
ð∂πÞ2

− 2iμr _π þ g0fη̃rþ
h0
2
vη̃2 þm2

2
η̃2 þm2

2
r2: ð46Þ

The dispersion relations can be computed in the momentum
space by considering the inverse propagator P−1ðpÞ, which
is defined by the quadratic action as

Ŝð2Þ ¼
Z

ddp
ð2πÞd ½rð−pÞπð−pÞη̃ð−pÞ�P

−1ðpÞ

2
64
rðpÞ
πðpÞ
η̃ðpÞ

3
75: ð47Þ

Then the dispersion relations are the positive energy
solutions of detP−1ðpÞ ¼ 0, where

P−1ðpÞ¼

0
BB@

1
2
ðω2−p2Þ iωμ A

−iωμ 1
2
ðω2−p2Þ 0

A 0 1
2
ðω2−p2Þ−B

1
CCA;

ð48Þ

with

A ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 − μ2Þ½2g0m2 þ h0ðμ2 −m2Þ�

g0

s
;

B ¼ 1

2

�
m2 þ h0

g0
ðμ2 −m2Þ

�
: ð49Þ

It is easy to check that one of the dispersion relations
describes the conformal phonon with speed c ¼ 1ffiffi

5
p for

large μ and d → 6.
Clearly, at large N the N − 2 spectator fields provide the

leading N contribution to Δ0, which we denote as ΔðNÞ
0 .

Since our goal is to compare with large N results in the

quartic model, we start by computing ΔðNÞ
0 . The compu-

tation of the functional determinant associated with the
spectator fields is given in Appendix B, together with the
details on its renormalization. The final result reads

ΔðNÞ
0 ¼N

25R6μ6−130R4μ4−640R2μ2þ2304Rμ−1568

4608

þN
2

X∞
l¼1

σðNÞðlÞ; ð50Þ

where the sum over l converges and σðlÞ is given by

σðNÞðlÞ ¼ 1

192

�
16ðlþ 1Þðlþ 2Þ2ðlþ 3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2μ2 þ lðlþ 4Þ

q
−
1

l
½R6μ6 þ 32ðR2μ2 − 1Þ

−2ðlðlþ 2Þ þ 5ÞR4μ4 þ 8lðlþ 2Þðlðlþ 4Þ þ 5ÞR2μ2 þ 16lðlþ 2Þ3ðlðlþ 4Þ þ 1Þ�
�
: ð51Þ

The sum over l can be computed numerically or analytically for small/large values of the ’t Hooft coupling. In order to
compare with the large N results of Sec. II, we note that all the terms scaling as NðϵQN Þj in Δ0 receive contribution only from

the spectator fields, i.e., they can be read off from ΔðNÞ
0 . Furthermore, they have exactly the right scaling to match the βj

coefficients in Eq. (17). We have

Δ0¼−Qϵ

�
1

2
þO

�
1

N

��
þðQϵÞ2

N

�
7

4
þO

�
1

N

��
þðQϵÞ3

N2

�
3

4
ð48ζð3Þþ31ÞþO

�
1

N

��

þðQϵÞ4
N3

�
27

2
ð128ζð3Þþ40ζð5Þþ41ÞþO

�
1

N

��
þðQϵÞ5

N4

�
81

16
ð18208ζð3Þþ7168ζð5Þþ1792ζð7Þþ3117ÞþO

�
1

N

��

þðQϵÞ6
N5

½648ð8202ζð3Þþ3510ζð5Þþ1218ζð7Þþ252ζð9Þþ677ÞþO
�
1

N

��

þðQϵÞ7
N6

�
2187

32
ð4727888ζð3Þþ2109440ζð5Þþ836864ζð7Þþ256000ζð9Þþ45056ζð11Þþ110211ÞþO

�
1

N

��
þOððQϵÞ8Þ; ð52Þ

in remarkable agreement with the values listed in Eq. (17) for the quartic model.

MORE ON THE CUBIC VERSUS QUARTIC INTERACTION … PHYS. REV. D 104, 085002 (2021)

085002-9



The subleading 1=N orders in every square bracket in the
equation above receive contributions also from the fluc-
tuation in Eq. (45). This can be computed by the same
procedure used for the spectator fields and outlined in
Appendix B, but with two differences. First, now one
cannot truncate the expressions to the leading 1=N order.
Second, since the dispersion relations are more involved,
the fluctuation determinant has to be regularized and
evaluated numerically at fixed values of N, Q, and ϵ.
Unfortunately, this fact obscures the comparison with the
results in the quartic model. We, therefore, limit ourselves
to the numerical calculation of the coefficient of the leading

ϵ term in Δ0. We extract it by computing numerically Δ0 −
ΔðNÞ

0 at small values of g and fitting the result to the

functional form ðΔ0 − ΔðNÞ
0 Þ ≈ CQg2, which follows from

Eq. (38). The fit gives C ¼ 0.0020997ð3Þ ≈ 25
384π3

.
Considering the result at the FP (25) and neglecting the
numerical error, we obtain

Δ0¼Qϵ

�
−
1

2
þ 4

N
þ176

N2
þ360544

N3
þO

�
1

N4

��
þOðQ2ϵ2Þ:

ð53Þ

It is easy to check that the first three terms match the quartic
result of Eq. (8). Finally, we numerically estimate the term

of order ϵ2Q2

N2 , which receives contributions from both Δ−1
6

and Δ0. We have

Q2ϵ2

N2

�
−2219

2
þ 1382ð2Þ þ 155

�
¼ Q2ϵ2

N2

855ð4Þ
2

; ð54Þ

again in agreement with Eq. (8). The three terms in brackets
come, respectively, from the N − 2 spectator fields, the
remaining three d.o.f, and Δ−1. To summarize the com-
parison with Eq. (8), we add QΔ−1 to Δ0 and rewrite our
findings as

ΔQ ¼ 2Q −
ϵ

2
Qþ 1

N

�
ð−3Q2 þ 4.000ð3ÞQÞϵþ

�
7

4
Q2 −

8

3
Q

�
ϵ2 þOðϵ3Þ

�
þ 1

N2

�
ð−132Q2 þ 176.0ð1ÞQÞϵ

−
�
45Q3 −

855ð4Þ
2

þOðQÞ
�
ϵ2 þOðϵ3Þ

�
þO

�
1

N3

�
: ð55Þ

The term of order Qϵ2

N has been estimated by requiring
consistency with the known anomalous dimension of ϕa,
which reads Δϕa

¼ 2 − ϵ
2
þ 1

N ðϵ − 11
12
ϵ2 þ…Þ þOð 1

N2Þ and
has to stem from Eq. (55) when Q ¼ 1.
All the checks of the duality between the critical cubic

and quartic theories are summarized in Table I.

IV. COMPLEX ANOMALOUS DIMENSIONS

As for the quartic model in 4 < d < 6, our result (42)
reveals the existence of a critical value of the charge Qc

above which the scaling dimensions are complex. Here we
analytically estimate Qc in d ¼ 6 − ϵ in the cubic model
and in d ¼ 4þ ϵ in the quartic model to the leading order
in the ϵ expansion. In d ¼ 6 − ϵ dimensions, the imaginary
part occurs first in the chemical potential μ, which is given
implicitly by Eq. (37). Let us fix R ¼ 1 and rewrite Eq. (37)
at the FP (25). Truncating the FP values at the leading order
in 1=N, Eq. (37) can be transformed into

F6ðμÞ≡ 1

192
μð3μ4−20μ2þ32Þ¼−

Qϵ

N
þO

�
1

N2

�
: ð56Þ

The plot of F6ðμÞ in the physical region μ > 0 is shown in
Fig. 1; we note that only a limited range of values of the
product Qϵ

N > 0 allows for a real and positive chemical
potential. As in the OðNÞ case, above Qc ≡Qcðϵ; NÞ there
are no physical solutions to the saddle-point equations, and
the scaling dimensions acquire an imaginary part. Note that
Qc is determined by the value of F6ðμÞ at its minimum

Qc ¼
N
90ϵ

ð−9þ
ffiffiffiffiffiffiffiffi
105

p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

30
ð15þ

ffiffiffiffiffiffiffiffi
105

p
Þ

r
: ð57Þ

At Q ¼ Qc, the chemical potential is nonanalytic. Notice
that, since the 1-loop FP is real only when N > 1038 in this
range of values of N, the inclusion of the subleading 1=N
orders in Eq. (56) results solely in small corrections to Qc.
For the sake of completeness, we study the quarticOðNÞ

model in d ¼ 4þ ϵ, which is obtained by continuing our
results [33] in d ¼ 4 − ϵ, to negative ϵ. There, we studied
ΔQ in the double scaling limit ϵ → 0, Q → ∞ with Qϵ
fixed. This results in a semiclassical expansion analogous
to Eq. (36). In that case, we found the chemical potential of
the system as the solution of a cubic equation

μ3 − μ ¼ 4

3
Qg�; ð58Þ

with g� ¼ g�ðϵÞ the fixed point coupling. The physical
solution, which is real below d ¼ 4 and matches perturba-
tion theory for small Qg�, reads

6In this case, one needs to consider the values of the FP
coupling g� to 2-loops.
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Rμ ¼ 3
1
3 þ ð6g�Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 36ðg�QÞ2

p
Þ23

3
2
3ð6g�Qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 36ðg�QÞ2

p
Þ13

: ð59Þ

As before, to study the appearance of complex
scaling dimensions, we rewrite Eq. (58) at the FP g�ðϵÞ ¼
− 3

Nþ8
ϵ as

F4ðμÞ≡ 1

4
ðμ3 − μÞ ¼ −

Qϵ

N þ 8
þOðϵ2Þ: ð60Þ

The plot of F4ðμÞ for μ > 0 is shown in Fig. 1: we have two
regimes corresponding to ϵ positive and negative. For
negative ϵ we are in d < 4, F4ðμÞ is positive and mono-
tonic, and there are no complex anomalous dimensions, as
expected. For positive ϵ, there is a minimum in μ ¼ 1ffiffi

3
p , and

we have

Qc ¼ −ðN þ 8Þ
F4ð 1ffiffi

3
p Þ
ϵ

¼ N þ 8

6
ffiffiffi
3

p
ϵ
: ð61Þ

In general, by using Eq. (58) one can obtainQc ¼ − 1

2
ffiffi
3

p
g�ðϵÞ

and study the corrections to Qc due to higher ϵ orders
in g�ðϵÞ.
Finally, to make contact with the numerical estimation of

Qc in 4 < d < 6 made in [16], we consider large N and
introduce JcðdÞ≡QcðdÞ=N. In Fig. 2, we show the two
tails we found for Jc around six and four dimensions
together with the numerical result of [16].

V. DISCUSSION

We have investigated the large-charge dynamics of the
cubic version of the OðNÞ model for any N just below six
dimensions. In this limit, we computed the scaling
dimensions of a family of fixed-charge operators at the
infrared fixed point of the model to leading and sublead-
ing order in the fixed-charge expansion but to all orders in
the couplings. The so obtained results allowed us to
investigate the conjectured equivalence with the OðNÞ

model featuring quartic interactions at its ultraviolet fixed
point. We compared the newly derived information on the
scaling dimensions with the known large N results for the
quartic interaction model and showed that they agree. Our
work, therefore, strengthens the conjectured equivalence
while providing novel information on the finite N physics
coming from our computations within the critical cubic
model just below six dimensions. Finally, the results
presented here could also be useful in holography since
it is believed that d-dimensional OðNÞ CFTs can have a
holographic description in terms of Vasiliev higher-spin
theories in AdSdþ1 [7,69,70].
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FIG. 2. The behavior of Jc in d ¼ 4þ ϵ (red curve) and d ¼
6 − ϵ (blue curve) to leading order in both 1=N and ϵ. The black
dots correspond to the numerical estimation of Jc to leading order
in 1=N obtained in [16].

FIG. 1. F6ðμÞ (left) and F4ðμÞ (right) as a function of μ. The value of these two functions at their minimum at positive values of μ
determines Qc in d ¼ 6 − ϵ and d ¼ 4þ ϵ, respectively.
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APPENDIX A: SELECTING THE CHEMICAL
POTENTIAL IN THE LARGE ’t HOOFT

COUPLING REGIME

The main point of this Appendix is to show that the
values of x in (42) to be chosen are the ones for which the
real part of the scaling dimension is positive. Arguing for
continuity between large and small charge values compat-
ible with the semiclassical expansion, we can use the
information at small charge to find a lower positive bound
on the real part of the scaling dimension at large charge.
We now move to prove the statement above. In the

semiclassical analysis a key equation is the relation
between the chemical potential μ and the charge Q,
Eq. (37), from which one eliminates μ and expresses the
scaling dimension ΔQ solely in terms of Q (and N, ϵ). This
equation is however quintic, allowing five solutions for μ,
in which one is real and the other four are complex. In the
small ’t Hooft coupling regime (i.e., Qϵ

N ≪ 1), one chooses
the solution that matches the perturbative result for ΔQ. In
the large ’t Hooft coupling regime (i.e., Qϵ

N ≫ 1) other
methods to select among the solutions are needed. As
discussed below Eq. (42), this amounts to select the value
of x from the set f1; e�4iπ

5 ; e�2iπ
5 g.

In the large ’t Hooft coupling regime, the condition
Qϵ
N ≫ 1 implies that the leading contribution in Eq. (42)
comes from the first term on its right-hand side, which we
now write as

T1 ≡ −x
5N
3

ð2ϵÞ1=5J6=5; ðA1Þ

where we ignored the OðN−1Þ correction. With this
expression, only x ¼ e�4iπ

5 leads to a positive real part
for T1 (and accordingly for ΔQ). In the present context, it is
however not possible to use unitarity bound to exclude the
other choices x ¼ 1; e�2iπ

5 which yields a negative real part
for ΔQ. The reason is that we have not proven the OðNÞ
cubic theory in d ¼ 6 − ϵ dimensions is unitary. In fact, it is
likely to be nonunitary for two reasons. First, the Wilson-
Fisher FPs associated with fractional dimensions are known
to be nonunitary [71]. Second, the OðNÞ quartic theory is
known to exhibit complex scaling dimensions in the large-
charge sector [16]. If the equivalence between the cubic and
quartic theories holds, then the cubic theory should also
exhibit complex scaling dimensions in the large-charge
sector.
Nevertheless, as we shall see, we are able to set a

lower bound on ReΔQ. We start by noticing that TQ is
actually an irreducible tensor multiplet with components
corresponding to weights of the Q-index traceless sym-
metric tensor representation of OðNÞ. (A weight is just a
charge configuration in Lie algebraic terms.) Then the
bound on ReΔQ can be obtained following the reason-
ing below:

(1) For a charge configuration with its total charge Q in
the large ’t Hooft coupling regime, the irreducible
tensor multiplet associated with TQ must contain
some component operator OS corresponding to a
charge configuration with total charge QS in the
small ’t Hooft coupling regime.7 (To be
proven below.)

(2) In the irreducible tensor multiplet associated with
TQ, all component operators have the same scaling
dimension according to the Wigner-Eckart theo-
rem. (ReΔQ ¼ ReΔOS

)
(3) Semiclassical computations in the small ’t Hooft

coupling regime sets a lower bound on the real part
of the scaling dimension for all the possible oper-
ators associated with the same charge configuration.
In fact we have ReΔQS

> 0, whereΔQS
is the lowest-

lying scaling dimension among the operators with
the same charge configuration as OS. Then we
have ReΔQ ¼ ReΔOS

≥ ReΔQS
> 0.

Here point 3 is related to the fact that we are computing the
matrix element hQje−HT jQi in the limit of T → þ∞, which
projects out the contribution of the lowest-lying operator
with fixed-charge Q. When the scaling dimension can be
complex, “lowest-lying” refers to the real part of the scaling
dimension. For a charge configuration QS in the small ’t
Hooft coupling regime, conventional perturbation theory
can be trusted, which indicates the scaling dimension ΔQS

associated with the lowest-lying operator in the charge
configuration QS must be real and positive, i.e., ΔQS

> 0.
Therefore, the combination of the three points above leads
to ReΔQ > 0 even for Q in the large ’t Hooft coupling

regime, allowing us to select x ¼ e�
4iπ
5 .

Point 1 above can be proven using Theorem 10.1 of
Ref. [72]. Suppose we have an irreducible representation Γ
of a complex semisimple Lie algebra with the highest
weight ν, the theorem then states that an integral element
(i.e., integer combination of fundamental weights) λ is a
weight of Γ if and only if the following two conditions are
satisfied:

(i) λ belongs to the convex hull of the Weyl-group orbit
of ν.

(ii) ν − λ can be expressed as an integer combination
of roots.

Here the convex hull of a set of vectors v1;…; vM is defined
to be the set of all vectors of the form
c1v1 þ c2v2 þ � � � þ cMvM, where the cj’s are non-
negative real numbers satisfying c1 þ c2 þ � � � þ cM ¼ 1.
Intuitively, the convex hull of the Weyl-group orbit of the

highest weight ν of TQ must encompass a neighborhood of
origin in which one can find some integral element νS that

7There is a simple analogy with the SUð2Þ case where the total
charge corresponds to the total spin while the charge configu-
ration corresponds to its projection along a given direction.
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can be obtained from ν by subtracting an integer combi-
nation of roots. Because νS is close to the origin, it must be
in the small ’t Hooft coupling regime. Thus point 1 follows
from the theorem.
We can make the above intuitive understanding rigorous

by explicitly finding an integral element νS in the small
’t Hooft coupling regime, which simultaneously satisfies
the two conditions of the theorem.
First consider the case of odd N, that is N ¼ 2lþ 1 with

l a positive integer. This corresponds to Bl Lie algebra and
TQ is associated with the highest weight ν ¼ QΛ1, with Λ1

being the first fundamental weight which can be expressed
in terms of the positive simple roots α1; α2;…; αl of Bl
(cf. Appendix F of [73])

Λ1 ¼
Xl

p¼1

αp: ðA2Þ

Now note that TQ is a real representation, ν̄≡ −νmust be a
weight of TQ and therefore be in the convex hull of the
Weyl-group orbit of ν according to the theorem. Thus let us
consider

νS ≡Qþ 1

2Q
νþQ − 1

2Q
ν̄; ðA3Þ

from which we easily find νS ¼ Λ1 is an integral
element. Also νS belongs to the convex hull ν and ν̄
and, therefore, it belongs to8 the convex hull of the Weyl-
group orbit of ν. Finally, we may easily confirm that
ν − νS ¼ ðQ − 1ÞPl

p¼1 αp, which is an integer combina-
tion of roots. Therefore, νS satisfies all conditions of the
theorem. Moreover, νS is in the small ’t Hooft coupling
regime since νS ¼ Λ1 is the charge configuration associated
with an OðNÞ vector.
Second, consider the case of even N, that is N ¼ 2l with

l a positive integer. This corresponds to Dl Lie algebra and
TQ is associated with the highest weight ν ¼ QΛ1, with Λ1

being the first fundamental weight which can be expressed
in terms of the positive simple roots α1; α2;…; αl of Dl
(cf. Appendix F of [73])

Λ1 ¼
Xl−2
p¼1

αp þ
1

2
αl−1 þ

1

2
αl: ðA4Þ

Again note that TQ is a real representation, ν̄≡ −ν must be
a weight of TQ and therefore be in the convex hull of the
Weyl-group orbit of ν. Thus let us consider

νS ≡Qþ 1

2Q
νþQ − 1

2Q
ν̄; oddQ; ðA5Þ

νS ≡Qþ 2

2Q
νþQ − 2

2Q
ν̄; evenQ: ðA6Þ

By simple computation, we find

νS ¼ Λ1; oddQ; ðA7Þ

νS ¼ 2Λ1; evenQ; ðA8Þ

and

ν − νS ¼ ðQ − 1Þ
Xl−2
p¼1

αp þ
Q − 1

2
αl−1 þ

Q − 1

2
αl; oddQ;

ðA9Þ

ν − νS ¼ ðQ − 2Þ
Xl−2
p¼1

αp þ
Q − 2

2
αl−1 þ

Q − 2

2
αl; evenQ:

ðA10Þ

Therefore, νS obviously satisfies the conditions of the
theorem. It is also in the small ’t Hooft coupling regime
as it corresponds to the charge configuration of an OðNÞ
vector or 2-index traceless symmetric OðNÞ tensor.

APPENDIX B: COMPUTATION OF ΔðNÞ
0

In this Appendix, we illustrate the computation of the
contribution of the spectator fields ΔðNÞ

0 . Being that this is a
quantum contribution, we will need to renormalize our
results. Then, we start by rewriting the expansion (36) in its
bare and renormalized forms,

EðNÞ
Q R ¼

X∞
k¼−1

1

Qk e
ðNÞ
k ðg0; h0; Q; dÞ

¼
X∞
k¼−1

1

Qk ē
ðNÞ
k ðg; h;Q; d; RMÞ; ðB1Þ

where eðNÞ
j and ēðNÞ

j are, respectively, the bare and renor-
malized coefficients of the expansion and M is the

renormalization scale. Note that eðNÞ
0 is determined by

the functional determinant of the spectators’ fluctuations
and can be written in terms of the dispersion relations (44)
as [33,45]

eðNÞ
0 ðg0; h0; Q; dÞ ¼ N

R
2

X∞
l¼0

nlω�ðp2 ¼ JlÞ; ðB2Þ

where the factor of N comes from summing over all the
spectator modes. The expressions of the eigenvalues of the

8Using the definition of the convex hull, it is straightforward to
prove that if C is the convex hull of v1;…; vM, then for
any u1;…; uK ∈ C, the convex hull of u1;…; uK must be a
subset of C.
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Laplacian on the sphere Jl and their multiplicity nl are
given by

J2l ¼ lðlþ d − 2Þ
R2

; nl ¼ ð2lþ d − 2ÞΓðlþ d − 2Þ
Γðlþ 1ÞΓðd − 1Þ :

ðB3Þ

The sum over l in (B2) diverges and needs regularization.
The renormalization is carried out at the one-loop level and
leading order in 1=N. Working in Minimal Subtraction
Scheme scheme, bare and renormalized couplings are
related by [74]

g0 ¼ Mϵ=2

�
gþ

X∞
k¼1

Zg;kðg; hÞ
ϵk

�
;

h0 ¼ Mϵ=2

�
hþ

X∞
k¼1

Zh;kðg; hÞ
ϵk

�
: ðB4Þ

The beta functions of the couplings are related to Zg;k and
Zh;k as

2βg ¼ −ϵgþ g
∂Zg;1ðg; hÞ

∂g þ h
∂Zg;1ðg; hÞ

∂h − Zg;1ðg; hÞ;

2βh ¼ −ϵhþ g
∂Zh;1ðg; hÞ

∂g þ h
∂Zh;1ðg; hÞ

∂h − Zh;1ðg; hÞ:

ðB5Þ

Then, taking the large N limit in Eq. (24), one has

g0¼Mϵ=2

�
gþ g3N

768π3ϵ

�
; h0¼Mϵ=2

�
hþg2Nðh−4gÞ

256π3ϵ

�
:

ðB6Þ

The renormalization is performed by using Eq. (B6) into
Eq. (B1) and expanding every term in powers of couplings.
This procedure mixes the bare orders of the expansion. In
particular, we have

ēðNÞ
0 ðg;h;Q;d;RMÞ¼eðNÞ

0 ðg;h;Q;dÞþfðNÞ
0 ðg;h;Q;d;RMÞ;

ðB7Þ

where

fðNÞ
0 ¼Nðμ2R2−4Þ2ðμ2R2−2Þ

384R

�
1

ϵ
− logðMR

ffiffiffi
π

p Þ
�
−

N
1536R

×ððμ2R2−4Þðð2γ−3Þμ4R4−12γμ2R2

−2μ2R2þ16γþ24ÞÞþOðϵÞ; ðB8Þ

with γ is the Euler-Mascheroni constant. We computed f0
by expanding e−1 (which is obtained as Δ−1 but working in
d ¼ 6 − ϵ instead of d ¼ 6) in powers of the couplings and
retaining the term of order g0 and h0. The next step is to
evaluate this expression at the FP. Being the fixed point
couplings expressed as a power series in ϵ, this step mixes
again different orders of the expansion, now the renormal-

ized ones. In particular, in order to include in ΔðNÞ
0 all the

terms with the right scaling, we need to add the expansion
of Qē−1 to the leading order in ϵ. After this procedure, the
term depending on the renormalization scale M drops, and

ΔðNÞ
0 depends only on A ¼ Qϵ. We have

ΔðNÞ
0 ðAÞ ¼ N

�
limϵ→0

�
R
2

X∞
l¼0

nlω�ðlÞ þ
ðμ2R2 − 4Þ2ðμ2R2 − 2Þ

384Rϵ

��
g;h¼g�ðϵÞ;h�ðϵÞ

: ðB9Þ

The sum over l can be regularized as done in [33,45]. In the
regularization procedure, also the 1

ϵ pole in Eq. (B9)
cancels, and we can consistently take the limit ϵ → 0 in
Eq. (B9), after which we are left with our final result (50),
which is finite. Notice that, since the two 1=ϵ terms come

from different orders of the bare expansion, their cancella-
tion can be used as a nontrivial internal check of the
correctness of our calculations. We checked numerically
that the cancellation of the 1=ϵ pole occurs also in the
renormalization of the full Δ0 coefficient.
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