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We go beyond a systematic review of the semiclassical approaches for determining the scaling
dimensions of fixed-charge operators in Uð1Þ and OðNÞ models by introducing a general strategy apt at
determining the relation between a given charge configuration and the associated operators for more
involved symmetry groups such as theUðNÞ × UðMÞ. We show how, varying the charge configuration, it is
possible to access anomalous dimensions of different operators transforming according to a variety of
irreducible representations of the non-Abelian symmetry group without the aid of diagrammatical
computations. We illustrate our computational strategy by determining the anomalous dimensions
of several composite operators to the next-to-leading order in the semiclassical expansion for the
UðNÞ × UðMÞ conformal field theory (CFT) in 4 − ϵ dimensions. Thanks to the powerful interplay
between semiclassical methods and group theory we can, for the first time, extract scaling dimensions for a
wide range of operators.
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I. INTRODUCTION

Recently there has been a flurry of interest in studying
conformal field theories with continuous global symmetries
in the limit of a large conserved charge Q̄ in order to access
nonperturbative corners of quantum field theories (QFT)s.
By identifying the emergence of effective field theories
(EFT)s stemming from the large charge dynamics [1–4]
one can use them to extract relevant data in inverse powers
of the charge as reviewed in [5]. Typically one is led to
determine the scaling dimension of certain fixed-charge
operators for a subgroup of QFTs that display conformal
invariance and denoted as CFTs. One can, however, go
beyond the CFT limit [6,7] which is relevant for establish-
ing the spectrum and dynamics of near conformal dynamics

emerging from quantum phase transitions [8,9]. The
approach is often referred to as semiclassical in the sense
that the path-integral is typically dominated by trajectories
near the solution of the classical equation of motion.
The hurdle in the strongly coupled regime is that the

identification and construction of the specific operators
associated to a given charge configuration are impossible
before solving the theory. This is the reason why such an
identification, except perhaps for some symmetry-protected
operators, is left unspecified in the literature.
There is, however, another relevant limit in which the

semiclassical approach is useful. This is the one in which
the CFT is perturbative and controlled by a small parameter
ϵ emerging because there is a nontrivial interacting fixed
point near the loss of asymptotic freedom of either
perturbatively safe [10] or infrared nature of the Banks-
Zaks type [11]. For the safe case this was investigated first
in [12]. Another way to introduce a small parameter is to
slightly modify the number of space-time dimensions
typically injecting, for UV free theories, perturbative
infrared fixed points in lower than four dimensions.
Here, the charge expansion captures higher orders in the
ordinary perturbative coupling corrections [13–17]. The
reason being that the presence of a small parameter allows
studying the fixed-charge sectors of a CFT by defining a
’t Hooft-like coupling A ¼ ϵQ̄ in which one can take the
limit ϵ → 0while maintainingA fixed. In fact, one can now
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resum ordinary perturbation series by providing all-order
results in the A coupling. In particular, much attention has
been paid to the time-honored OðNÞ model, first inves-
tigated for any N in 4 − ϵ dimensions in [15]. The results
were recently successfully tested against ordinary pertur-
bation theory in [18] to four loops. Later the O(N) model
was investigated via the semiclassical approach at large N
in various dimensions in [19,20].
Another, yet unexplored possibility, is to introduce two

independent small parameters, one that takes into account
the deformation of the number of space-time dimensions
and the other that controls the original fixed point [21]. This
last case has not yet been investigated in the literature and
will be considered elsewhere.
Compared to conventional perturbation theory according

to which one chooses a specific composite operator and
then diagrammatically determines its scaling dimension, in
the semiclassical fixed-charged framework one needs to
reverse engineer the given charge configuration to deter-
mine the irreducible representation of the related composite
operator. This has, so far, restricted the semiclassical
method to the highest weight representation operators
where there is no ambiguity with respect to the chosen
charge configuration. In this work we show how to access
different operators belonging to distinct irreducible repre-
sentations. This is achieved by means of group-theoretical
considerations applied to the semiclassical approach. The
resulting efficient procedure will entail:

1. Establishing the mathematical connection between
classical operator dimensions and group-theoretical
weights;

2. Varying the charge configuration and using the first
point to arrive at different operators transforming in
a variety of irreducible representations and deter-
mine their scaling dimensions;

3. Developing the strategy to deal with charge con-
figurations that give rise to nontrivial chemical
potentials.

To test the power of our strategy we investigate several
non-Abelian global symmetries in various space-time
dimensions culminating in the general UðNÞ ×UðMÞ
global symmetry case.
The work is organized as follows. In Sec. II, we

introduce the semiclassical methods at fixed charge focus-
ing on their applications and limitations. In doing this, we
review a series of results obtained in the literature for Uð1Þ
and OðNÞ invariant theories. We then move to Sec. III in
which we provide the map between operators and their
group structure. we show how to identify the fixed charge
operators in theUð1Þ,OðNÞ and we then generalize it to the
case of the UðNÞ ×UðMÞ symmetry group. In Sec. IV we
study various charge configurations in the UðNÞ ×UðMÞ
model, compute the associated scaling dimensions, and
identify the corresponding fixed charge operators. The
results are used to establish the connection between charge

configuration and fixed charge operators. We offer our
conclusions in Sec. V. The Appendix contains details
related to the scaling dimensions of the UðNÞ ×UðMÞ
model. Readers already familiar with the basics of fixed-
charge semiclassical methods may start reading from
Sec. III, while readers who wish to quickly get to the
main results of this work may directly start from Sec. IV.

II. REVIEW OF SEMICLASSICAL METHODS
AT FIXED CHARGE IN WEAKLY COUPLED

THEORIES

A. The Uð1Þ model in 4 − ϵ and 3 − ϵ dimensions

We start this section with a brief introduction to semi-
classical methods at fixed charge in QFT by considering the
Abelian Uð1Þ theory in both 4 − ϵ and 3 − ϵ spacetime
dimensions. These two cases have been investigated in
[13,14,22,23] and [17,24], respectively. The Lagrangian
reads

L ¼ ∂ϕ̄∂ϕþ Vðϕ̄ϕÞ; ð1Þ

where Vd¼4−ϵ ¼ N 4λ0ðϕ̄ϕÞ2 and Vd¼3−ϵ ¼ N 3λ
2
0ðϕ̄ϕÞ3,

with λ0 the bare coupling and N 3;4 the normalizations.
By virtue of the Noether theorem, the Uð1Þ symmetry

implies the existence of a conserved charge Q̄ given by

Q ¼
Z

dd−1xj0; with jμ ¼ ϕ̄∂μϕ − ϕ∂μϕ̄: ð2Þ

We adopt conventions such that ϕ and ϕ̄ have charge Q̄ ¼
þ1 and Q̄ ¼ −1, respectively. This model exhibits an
infrared Wilson-Fisher (WF) fixed point (FP) λ� ¼ λ�ðϵÞ
in both d ¼ 4 − ϵ and d ¼ 3 − ϵ dimensions [25]. The
corresponding fixed point theory is scale invariant, and we
assume it to be invariant under the full set of conformal
transformations. Furthermore, for ϵ ≪ 1 the theory is
weakly coupled. Our goal is to compute the fixed point
scaling dimension ΔϕQ̄ of the ϕQ̄ operators, which we
define to be the charge Q̄ operators with the smallest
scaling dimension.1

The CFT associated with the WF fixed point defined in a
flat spacetime can be mapped to a QFT defined on a cylinder
geometry in a Weyl-invariant manner. Weyl invariance then
dictates a correspondence between correlation functions of
the two theories.2 Considering polar coordinates ðr;Ωd−1Þ
for Rd, the map reads

1Since in the free theory limit derivatives increase the scaling
dimension, in the perturbative regime ϕQ̄ is the lowest-lying
operator with charge Q̄. On the other hand, at large coupling,
level crossing with other operators can, in principle, occur.

2We refer the reader to Refs. [26,27] for introductory accounts
of the Weyl map, and especially Ref. [28] for conceptual
clarification between conformal invariance and Weyl invariance
including the implication for correlation functions.
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Rd → R × Sd−1; ðr;Ωd−1Þ → ðτ;Ωd−1Þ;

r ¼ Reτ=R; ds2cyl ¼ dτ2 þ R2dΩ2
d−1 ¼

R2

r2
ds2flat

ð3Þ

with R the radius of the sphere and τ the time coordinate on
the cylinder. According to the state-operator correspondence
[29,30], the action of an operatorO at τ ¼ −∞ creates a state
with the same quantum numbers and with energy given by
EO ≡ ΔO

R . Since we are looking for the smallest scaling
dimension, our goal turned to the computation of the ground
state energy (at fixed charge Q̄) on the cylinder,EϕQ̄ . This can
be calculated by considering the expectation value of the
evolution operator e−HT (with H the Hamiltonian and
T ¼ τf − τi) in an arbitrary state jQ̄i with fixed charge Q̄
and then taking the limit T → ∞ to project out the ground
state from it. That is

hQ̄je−HT jQ̄i ¼
T→∞

Ñ e−EϕQ̄
T : ð4Þ

Notice that we only require jQ̄i have a nonzero overlap with
the lowest-lying state in the fixed charge sector. Then when
we insert a complete set of energy eigenstates in the left-hand
side (lhs) of the above equation, only the contribution of the
lowest energy state survives, with a prefactor Ñ that is
independent of T but depends on the overlap between the
states. Therefore, we may always extract the ground state
energy from the T-dependent part of the expectation value.
We consider polar coordinates for the field:

ϕ ¼ ρffiffiffi
2

p eiχ ; ϕ̄ ¼ ρffiffiffi
2

p e−iχ : ð5Þ

Then a convenient choice for jQ̄i yields [13]3

hQ̄je−HT jQ̄i ¼ Z−1
Z

DρDχe−Seff ; ð6Þ

where

Seff ¼
Z

T=2

−T=2
dτ

Z
dΩd−1

�
1

2
ð∂ρÞ2 þ 1

2
ρ2ð∂χÞ2 þ Ṽðρ2Þ

þ i
Q̄

Rd−1Ωd−1
_χ

�
;

Ṽðρ2Þ ¼ Vðρ2Þ þm2

2
ρ2: ð7Þ

The prefactor Z is a T-independent constant that does not
affect the determination of the scaling dimension. The mass

termm2 ¼ 1
4
d−2
d−1R in (7) arises from the conformal coupling

to the Ricci scalar R of Sd−1 [31]. On a d − 1-dimensional

sphere of radius R, we have R ¼ ðd−1Þðd−2Þ
R2 and thus

m2 ¼ ðd−2
2R Þ2. Rescaling the field as ρ → ρ=λ1=20 and collect-

ing an overall λ−10 as loop counting parameter, we see that, at
small coupling, this path integral can be computed via a
saddle point expansion, resulting in

REϕQ̄ ¼
X
k¼−1

λk0ekðA0; dÞ ¼
X
k¼−1

λkēkðA; RM; dÞ: ð8Þ

where M is the renormalization group (RG) scale,
ēkðA; RM; dÞ the renormalized coefficients of the semi-
classical expansion and we introduced the ’t Hooft coupling
A0 ≡ λ0Q̄ (A≡ λQ̄ as the renormalized one). In the last
equality, we have renormalized the result by separating the
divergent part in every term of the expansion and absorbing it
in the Ñ coefficient in (4). At the fixed point, the dependence
on RM drops and we obtain

ΔϕQ̄ ¼ 1

λ�
Δ−1ðA�Þ þ Δ0ðA�Þ þ λ�Δ1ðA�Þ þ � � � ; ð9Þ

where the star notation “�” denotes the value of the coupling
at the FP, and the Δk are the (kþ 1)-loop corrections in the
saddle point expansion.Note that the equation above can also
be written in an equivalent “dual” form4 as a large charge
expansion in 1=Q in the limit Q → ∞ and A fixed, i.e.,

ΔϕQ̄ ¼
X
k¼−1

1

Q̄k Δ̃kðA�Þ; Δ̃k ≡ ΔkAk; ð10Þ

which is akin to the large number of flavor expansions in
gauge theories5 [32–45].
To compute the leading order (LO) contributions

Δ−1ðA�Þ, we need to solve the classical system and
evaluate Seff on the solution. The solution of the EOM
with the lowest energy at fixed Q̄ is spatially homogeneous
and reads

ρ ¼ f; χ ¼ −iμτ þ const; ð11Þ

3Since jQ̄i can be chosen arbitrarily as long as it has a nonzero
overlap with the lowest lying fixed charge state, we do not impose
any boundary condition on ρ. This allows us to compute the
saddle point expansion for the path integral.

4These two dual forms are equivalent to each other. It can be
easily shown that the ’t Hooft coupling A plays the role as a
standard “ruler”. For any chosen ’t Hooft coupling (no matter in
the perturbative regime A ≪ 1 or super-fluid regime A ≫ 1), to
make the semiclassical expansion order by order under control,
we can either deduce the upper bound of λ or the equivalent lower
bound of Q̄ simply through Q̄ ¼ A=λ.

5A key difference of 1=Nf expansion in gauge theories is that it
has a finite radius convergence in the ’t Hooft coupling which is
determined by the pole structure. For example in QED, the radius
convergence isA ¼ λNf ¼ 15=2, and if we fixA ≤ 15=2 we can
obtain a lower bound on Nf to make the 1=Nf expansion under
control [32]. However, less is known about the pole structure of
the charge expansion.
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where

μ2 ¼ 1

f
∂Ṽðρ2Þ
∂ρ

����
ρ¼f

Q̄
Rd−1Ωd−1

¼ μf2: ð12Þ

Fixing the charge produces spontaneous symmetry breaking and the fields take a nonzero vev with μ playing the role of a
fixed chemical potential. Δ−1ðA�Þ is then given by Eq. (7) evaluated on the solution (11) at the fixed point

1

λ�
Δ−1ðA�Þ

R
¼ Seff

T
¼ 1

2
μQþ Ṽðf2Þ: ð13Þ

Then, by plugging the second equation in (12) into the first one, we have

ðRμÞ2d−1d−2 −
�
d − 2

2

�
2

ðRμÞ 2
d−2 ¼ CA� 2

d−2; C ¼ N 3;4M
d

2−d16
1

2−ddπ−
d

d−2

Γðd
2
Þ− 2

d−2ðd − 2Þ ; ð14Þ

where N 3;4 and M are the normalizations of the potential and the kinetic term, respectively. Inserting the solution of
Eq. (14) into Eq. (13) one obtains Δ−1 as a function of the ’t Hooft coupling A�.
The case d ¼ 4 − ϵ (with N 4 ¼ 1=4) has been considered in [13]. The results read

Δ−1

A� ¼ 1

4
F4dðxÞ; F4dðxÞ≡ 3

2
3x

1
3

3
1
3 þ x

2
3

þ 3
1
3ð31

3 þ x
2
3Þ

x
1
3

; x ¼ 9
A�

ð4πÞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 81

A�2

ð4πÞ4

s
: ð15Þ

Notice that this classical result resums an infinite series of Feynman diagrams in the conventional perturbative expansion. In
particular, it resums the leading power of Q̄ at every perturbative order.
The next leading order (NLO) contributions Δ0 is given by the functional determinant of the fluctuation around the

classical solution. Its bare form can be written in terms of the dispersion relations of the fluctuations, wþ and w−, as

e0ðA0; dÞ ¼
R
2

X∞
l¼0

nl½ωþðlÞ þ ω−ðlÞ�: ð16Þ

where l labels the eigenvalues of the Laplacian on the sphere J2l ¼ lðlþ d − 2Þ=R2 and nl ¼ ð2lþd−2ÞΓðlþd−2Þ
Γðlþ1ÞΓðd−1Þ is the

Laplacian multiplicity on Sd−1. By expanding around the classical solution as

ρðxÞ ¼ f þ rðxÞ; χðxÞ ¼ −iμτ þ 1

f
ffiffiffi
2

p πðxÞ; ð17Þ

we obtain the action at the quadratic order in the fluctuations

Sð2Þ ¼
Z

T=2

−T=2
dτ

Z
dΩd−1

�
1

2
ð∂πÞ2 þ 1

2
ð∂rÞ2 þ 2

d − 2
ðμ2 −m2Þr2 − 2iμr _π

�
: ð18Þ

where _π ¼ ∂π
∂τ. From the quadratic action we can then easily obtain the dispersion relations of the spectrum, which read

ω�ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 2ÞJ2l þ 2ðd − 1Þμ2 − 2m2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ μ2ððd − 2Þ2J2l − 2ðd − 1Þm2Þ þ ðd − 1Þ2μ4

q
d − 2

vuut
: ð19Þ

The spectrum contains one relativistic Goldstone boson (the conformal mode) and one massive state with

mass 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd−1Þμ2−m2

ðd−2Þ

q
.

We proceed by fixing d ¼ 4 − ϵ andN 4 ¼ 1=4. Equation (16) needs to be renormalized. This is achieved by expanding
λ0 ¼ MϵλZλ in Eq. (8) and keeping the terms of order λ0. Then, to obtain Δ0 we set d ¼ 4 in ē0ðA; RM; dÞ and add the
expansion of the LO term ē−1=λ to first order in ϵ. Notice that the procedure mixes different orders of the bare expansion. In
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particular, ē0ðA; RM; dÞ contains two 1
ϵ terms that have to cancel each other in order to be able to take d ¼ 4 and obtain Δ0.

The first comes from renormalizing e−1 while the second can be isolated by regularizing the sum over l in e0 which
formally diverges. Thus, since these two terms come from different orders of the bare expansion, their cancellation can be
used as a nontrivial self-consistency check of the correctness of the calculations which can be particularly useful when
dealing with more complicated models. We have:

Δ0ðA�Þ ¼ −
15μ4R4 þ 6μ2R2 − 5

16
þ 1

2

X∞
l¼1

σðlÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ2R2 − 1

p ffiffiffi
2

p ; ð20Þ

where

σðlÞ ¼ Rð1þ lÞ2½ωþðlÞ þ ω−ðlÞ� − 2l3 − 6l2 − ð2μ2R2 þ 4Þl − 2μ2R2 þ 1

l
5

4
ðμ2R2 − 1Þ2; ð21Þ

with Rμ given by Eq. (14) in d ¼ 4. Summing Δ−1 and Δ0, expanding the result for small A�, and using the FP value
λ� ¼ 1

5
ϵþ 3

25
ϵ2 þOðϵ3Þ, we have

ΔϕQ̄ ¼ Q̄

�
d
2
− 1

�
þ ϵ

10
Q̄ðQ̄ − 1Þ − ϵ2

50
Q̄ðQ̄2 − 4Q̄Þ þOðϵ2Q̄; ϵ3Q̄4Þ: ð22Þ

This result has been obtained in [13] and checked via a Feynman diagram calculation. Similarly, the expansion for largeA is

ΔϕQ̄ ¼ 1

ϵ

�
2

5
ϵQ̄

�4−ϵ
3−ϵ
�
15

8
þ ϵ

�
−0.575331þ 3

8

�
þOðϵ2Þ

�
þ 1

ϵ

�
2

5
ϵQ̄

�2−ϵ
3−ϵ
�
5

4
þ ϵ

�
−0.9371 −

1

4

�
þOðϵ2Þ

�
þOððϵQ̄Þ0Þ;

ð23Þ

The above expression is of the form predicted by the large charge EFT approach, which in arbitrary dimensions reads [5]

ΔOQ̄
¼ Q̄

d
d−1½α1 þ α2Q̄

−2
d−1 þ α3Q̄

−4
d−1 þ…� þ Q̄0½β0 þ β1Q̄

−2
d−1 þ…� þ…: ð24Þ

In [13], the authors have compared Eq. (23) with the results of lattice studies of the 3-dimensional Uð1Þ model in the large
charge limit [46], with mild results compatible with the limitations related to taking ϵ ¼ 1. A similar comparison has been
performed in [22] via a slightly different approach and reaching a similar conclusion.
We now move to consider the d ¼ 3 − ϵ case with N 3 ¼ 1=36. Unlike the previous case, the beta function of the model

starts at two loops, and thus the 1-loop theory is conformal invariant in exactly three dimensions. This allows a more direct
comparison to the predictions of the large charge EFT of three-dimensional CFT. In particular, we can compare the
coefficient of the Q̄0 term in (24), which in three dimensions is calculable and a theory-independent number related to the
sound speed and the 1-loop Casimir energy on the sphere [1]. The value of this coefficient as computed in the EFTapproach
reads: β0jd¼3 ¼ −0.0937256 [2,47] and agrees with the result of Monte Carlo simulations [46]. Reproducing this number
via semiclassical methods provides a nontrivial consistency check of the large charge expansion framework.
The leading order energy follows again from Eqs. (13) and (14), which give

Δ−1ðA�Þ
A� ¼ F3d

�
A�2

12π2

�
; F3dðxÞ≡ 1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p þ x=3ffiffiffi

2
p ð1þ ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p Þ3=2 ; ð25Þ

while Δ0 is obtained by regularizing Eq. (16). Since the 1-loop beta function vanishes, the result is finite in d ¼ 3 and reads

Δ0ðA�Þ ¼ 1

4
− 3ðRμÞ2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2μ2 − 1

q
þ 1

2

X∞
l¼1

σðlÞ; ð26Þ

where
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σðlÞ ¼ ð1þ 2lÞR½ωþðlÞ þ ω−ðlÞ� − 4lðlþ 1Þ − 6ðRμÞ2 þ 1

2
: ð27Þ

Combining the previous results and expanding in the perturbative regime, we obtain

ΔϕQ̄ ¼ Q̄
2
þ κ

�
Q̄3 − 3Q̄2

9
þOðQ̄Þ

�
− κ2

�
Q̄5

9
−
Q̄4ð64 − 9π2Þ

72
þOðQ̄3Þ

�

þ κ3
�
2Q̄7

9
þ 2

9

�
−13þ 10

9
π2 þ 3

32
π4
	
Q̄6 þOðQ̄5Þ

�
þOðκ4Þ; ð28Þ

where κ ¼ ð λ
8πÞ2. This 6-loops result has been verified via diagrammatic computations in [17].

We now proceed by analyzing the largeA� limit which is
captured by the large charge EFT. Δ−1 can be expanded
analytically while Δ0 can be computed numerically and
then fitted to the expected functional form (24). The value
of the coefficients can be found in [17,24]. Here, we just
report the result for β0 which reads

β0jd¼3 ¼ −0.0937255; ð29Þ

with an error of 3 on the last digit. The universal coefficient
β0 agrees to high accuracy with the value obtained in the
EFT approach and Monte Carlo simulations.
It has been recently pointed out that in 4 dimensions the

large charge EFT predicts the existence of a universal log Q̄
term with calculable coefficient δ0jd¼3 ¼ − 1

48
ffiffi
3

p [48].6 It

would be interesting to test this prediction in the semi-
classical framework as done for the three-dimensional case.

B. The OðNÞ model in 4− ϵ and 3− ϵ dimensions

In this section, we analyse the large charge expansion in
the non-Abelian OðNÞ vector model, which constitutes the
natural generalization of the Uð1Þmodel investigated in the
previous section. For N ¼ 1, 2, 3, it defines respectively
the Ising, XY, andHeisenberg universality classes while for
N ¼ 4, it describes the standard model Higgs. In Euclidean
spacetime, the OðNÞ theory is defined by the action

S ¼
Z

ddx
1

2
∂μϕa∂μϕa þ VðϕaϕaÞ a ¼ 1;…; N: ð30Þ

As before, we consider the massless theory in d ¼ 4 − ϵ
and d ¼ 3 − ϵ with potentials Vd¼4−ϵ ¼ N 4g0ðϕ̄aϕaÞ2 and
Vd¼3−ϵ ¼ N 3g20ðϕ̄aϕaÞ3 with g0 the bare coupling and
N 3;4 the normalization. The conserved Noether current
associated with the global OðNÞ symmetry transforms in
the adjoint representation of OðNÞ and it is given by

ðjμÞab ¼ ðϕa∂μϕb − ϕb∂μϕaÞ: ð31Þ

The corresponding conserved charge is matrix-valued
and can be decomposed in terms of the generators of the
algebra TA

Qab ¼
Z

dd−1xðj0Þab ¼
X
A

QAðTAÞab: ð32Þ

The OðNÞ group with even or odd N has rank N
2
or N−1

2

respectively, which corresponds to the number of “charges”
QA we can fix. Without loss of generality, we focus on the
even-N case and we fix k < N=2 charges via k constraints
Qi ¼ Q̄i, where fQ̄ig is a set of fixed constants and
i ¼ 1;…; k. Using the fact that the OðNÞ model has a
SUðN=2Þ ×Uð1Þ subalgebra, it is useful to introduce N=2
complex field variables as

φ1 ¼
1ffiffiffi
2

p ðϕ1 þ iϕ2Þ ¼
1ffiffiffi
2

p σ1eiχ1 ;

φ2 ¼
1ffiffiffi
2

p ðϕ3 þ iϕ4Þ ¼
1ffiffiffi
2

p σ2eiχ2 ; φ3 ¼ …; ð33Þ

such that φi or φ̄i has charge Q̄i ¼ þ1 or −1 respectively.
As before, we will consider the OðNÞ theory on a cylinder
Sd−1 ×R where the action reads

Scyl ¼
Z

ddx
ffiffiffi
g

p �
1

2
gμν∂μσi∂νσi

þ 1

2
σiσigμνð∂μχi∂νχiÞ þ ṼðσiσiÞ

�
;

ṼðσiσiÞ ¼ VðσiσiÞ þ
m2

2
σiσi; i ¼ 1;…; N=2: ð34Þ

In analogy with the Abelian case, we look for a spatially
homogeneous solution of the EOM. This has the lowest
energy at fixed charge and reads

6This term arises in the renormalization of β0, which features a
pole for d ¼ 4.
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�
σi ¼ Ai; χi ¼ −iμt i ¼ 1;…; k;

φkþj ¼ 0; j ¼ 1;…; N=2 − k:
ð35Þ

The chemical potential μ is the same for all the χi even if the
charges Q̄i are all different. For i ¼ 1;…; k this ground
state describes circular motion in the plane spanned by the
real and imaginary parts of φi. The motions in different
planes are synchronous with the same angular velocity μ
and different radii of the circles Ai. These parameters are
fixed by the EOM and Eq. (31) as

μ2 ¼ Fðv2Þ Q̄
Rd−1Ωd−1

¼ μv2; ð36Þ

where we have defined

v2≡Xk
i¼1

A2
i ; Q̄≡Xk

i¼1

Q̄i; Fðv2Þ¼ 1

Aj

∂ṼðσiσiÞ
∂σj

����
σj¼Aj

;

ð37Þ

with Q̄ the sum of the charges.
It can be shown that the symmetry breaking pattern

induced by fixing the charges can be seen as an explicit
symmetry breaking OðNÞ → OðN − 2kÞ ×UðkÞ followed
by a spontaneous symmetry breaking (SSB) UðkÞ →
Uðk − 1Þ [2,15]. The latter can be understood by noting
that we can always use an OðNÞ rotation to rotate the
ground state to

1ffiffiffi
2

p ðA1;…; Ak; 0;…; 0Þ →
�
0;…; 0|fflfflffl{zfflfflffl}

k−1

;
vffiffiffi
2

p ; 0;…; 0|fflfflffl{zfflfflffl}
N=2−k

�
: ð38Þ

This analysis shows that we can organize the saddle
point computation as a single coupling ’t Hooft expansion
in A ¼ gQ̄ in full analogy with the Uð1Þ case. The sum of
the charges acts as a single Uð1Þ charge while the charge
configuration plays no role at all. In order to access more
general charge configurations is necessary to consider
nonhomogeneous ground states as done for the Oð4Þ
critical model in [49–51]. The above considerations lead
directly to the path integral expression for the ground state
energy, which reads

hQ̄je−HT jQ̄i ¼ 1

Z

Z
Dφ̄Dφe−Seff ; ð39Þ

where

Seff ¼
Z

T=2

−T=2
dt

Z
dΩd−1

ffiffiffi
g

p �
gμν∂μφ�

i ∂νφi þm2φ�
iφi

þ Vð2φ�
iφiÞ þ

i
Rd−1Ωd−1

Q̄_χk

�
: ð40Þ

Computing this path integral via a saddle point expansion,
the scaling dimension at the fixed point A� ≡ g�Q̄ of the
lowest-lying operator carrying a total charge Q̄ takes the
form

ΔTQ̄
¼ ETQ̄

R ¼
X∞
j¼−1

g�jΔjðA�Þ ¼
X∞
j¼−1

1

Q̄j Δ̃jðA�Þ: ð41Þ

As in the Uð1Þ case, the leading term Δ−1ðA�Þ is given by
Eq. (13) with Rμ and A related by Eq. (14).
To compute the leading quantum corrections Δ0 we fix

all the charges ðk ¼ N=2Þ, and consider the ground state
in (38). Then we parametrize the uctuations around the
latter as8>><
>>:
φi¼ 1ffiffi

2
p eiμEt½siðxÞþ ipiðxÞ�;i¼1;:::; N=2−1;μE→−iμ;

χN=2¼−iμtþ 1
vπðxÞ;

σN=2¼vþrðxÞ
;

ð42Þ

The Lagrangian at the quadratic order in the fluctuations
reads

L2 ¼
1

2
ð∂πÞ2 þ 1

2
ð∂rÞ2 þ 2

d − 2
ðμ2 −m2Þr2

− 2iμr _π þ 1

2
∂si∂si þ 1

2
∂pi∂pi − 2iμsi _pi: ð43Þ

The spectrum contains states that are already present in
the Uð1Þ case, i.e., the conformal mode χN=2 and one
massive state σN=2 with dispersion relations given by
Eq. (19).
Additionally, we now have also N

2
− 1 nonrelativistic

(type II) Goldstone bosons χi and as many massive states σi
with mass 2μ and dispersion relations

ω��ðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ μ2

q
� μ: ð44Þ

According to the Nielsen-Chada theorem [52], type II
Goldstone bosons count double with respect to the number
of broken generators. Thus we have

1þ 2×

�
N
2
− 1

�
¼N − 1¼ dim

�
U

�
N
2

�
=U

�
N
2
− 1

��
:

ð45Þ

Δ0 is again given by the fluctuation functional determi-
nant. It can be easily shown that the generalization of
Eq. (16) to general non-Abelian scalar theories is

Δ0 ¼
R
2

X∞
l¼0

nl
X
i

giωiðlÞ; ð46Þ
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where the sum over i runs over all the fluctuations’ dispersion relations ωi, each counted with its multiplicity gi. In theOðNÞ
case, we have

Δ0 ¼
R
2

X∞
l¼0

nl

�
ωþðlÞ þ ω−ðlÞ þ

�
N
2
− 1

�
ðωþþðlÞ þ ω−−ðlÞÞ

�
: ð47Þ

It is instructive to analyze what happens to our computation if we do not fix all the N=2 chargesQi but only k < N=2 out
of them. It is easy to show that in such a case, the number of type II Goldstone bosons and massive particles with dispersion
relation in Eq. (44) becomes k − 1, whereas the spectrum is completed by 2 × ½ðN=2 − 1Þ − ðk − 1Þ� ¼ N − 2k new
massive states with mass μ and dispersion relation

ω�ðlÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ μ2

q
: ð48Þ

Accordingly, the expression for Δ0 becomes

Δ0 ¼
R
2

X∞
l¼0

nl½ωþðlÞ þ ω−ðlÞ þ ðk − 1ÞðωþþðlÞ þ ω−−ðlÞÞ þ ðN − 2kÞω��: ð49Þ

Since ωþþðlÞ þ ω−−ðlÞ ¼ 2ω�ðlÞ, Δ0 does not depend on the number of charges that are fixed. This result is consistent
with the scaling dimension not being sensitive to the charge configuration but only to the sum of the charges.
In parallel with the previous section, we now proceed by providing explicit results starting from the case d ¼ 4 − ϵ and

N 4 ¼ ð4πÞ2
4!

which has been considered by us in [15]. As his Abelian relative, this theory features an infrared WF FP, which
for small ϵ can be expressed as a power series in ϵ.
The computation of the leading order Δ−1 is analogous to the Uð1Þ case and leads to the same result

Δ−1

A� ¼ 1

4
F4dðxÞ; x≡ 6A� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ 36A�2

p
; ð50Þ

where F4d has been defined in Eq. (15). To compute the leading quantum correction, we start from Eq. (47) and we follow
the procedure of Sec. II A in order to regularize and renormalize the fluctuation determinant. As a result, we obtain

Δ0ðA�Þ ¼ −
15μ4R4 þ 6μ2R2 − 5

16
þ 1

2

X∞
l¼1

σðlÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μ2R2 − 1

p ffiffiffi
2

p −
1

16

�
N
2
− 1

�
½7þ Rμð−16þ 6Rμþ 3R3μ3Þ�: ð51Þ

where

σðlÞ ¼ Rð1þ lÞ2
�
ωþðlÞ þ ω−ðlÞ þ

�
N
2
− 1

�
ðωþþðlÞ þ ω−−ðlÞÞ

�
þ 1

8
ðN þ 8ÞðR2μ2 − 1Þ2 1

l

þ 1

2
ð2 − N − ðN þ 2ÞR2μ2Þ þ 1

2
ð2 − 5N − ð2þ NÞR2μ2Þl − 3Nl2 − Nl3: ð52Þ

Again all the quantities are evaluated in d ¼ 4 dimensions.
To check this result in the perturbative regime, we sum classical contribution (50) and leading quantum correction (51),

and we perform an expansion for small A� ¼ g�Q, obtaining
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ΔTQ̄
¼ Δð0Þ

TQ̄
þ Δð1Þ

TQ̄
þ Δð2Þ

TQ̄
þ Δð3Þ

TQ̄
þ Δð4Þ

TQ̄
þOðϵ5Þ

¼ Q̄|{z}þ
�
−
Q̄
2
þ Q̄ðQ̄ − 1Þ

8þ N

�
ϵ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} −

�
184þ Nð14 − 3NÞ

4ð8þ NÞ3 Q̄þ ðN − 22ÞðN þ 6Þ
2ð8þ NÞ3 Q̄2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ 2

ð8þ NÞ2 Q̄
3

�
ϵ2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þ

�
8

ð8þ NÞ3 Q̄
4 þ −456 − 64N þ N2 þ 2ð8þ NÞð14þ NÞζð3Þ

ð8þ NÞ4 Q̄3

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ −N4 − 57N3 þ 258N2 − 24ðN þ 6ÞðN þ 8ÞðN þ 26Þζð3Þ þ 8176N þ 31008

4ðN þ 8Þ5 Q̄2

þ−69504þ 3N½−5216þ Nð184þ Nð86þ NÞÞ� þ 64ð8þ NÞð178þ Nð37þ NÞÞζð3Þ
16ðN þ 8Þ5 Q̄

�
ϵ3

þ Δð4Þ
TQ̄

þOðϵ5Þ ð53Þ

where the ϵ4 order contribution Δð4Þ
TQ̄

is given by:

Δð4Þ
TQ̄

¼
�
−

42

ð8þ NÞ4 Q̄
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}þ
1

ð8þ NÞ5 ð−4N
2 − 5ðN þ 8ÞðN þ 30Þζð5Þ þ 476N þ 3344|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

−2ðN þ 8Þð6N þ 65Þζð3ÞÞQ̄4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}þ 1

60ð8þ NÞ6 ðπ
4N4 þ 60N4 þ 38π4N3 þ 4020N3

þ 528π4N2 − 88800N2 − 4200ðN − 2ÞðN þ 8Þ2ζð5Þ − 1577280N − 5662560

−60ðN þ 8ÞðNðNð3N − 44Þ − 1720Þ − 7464Þζð3Þ þ 7168π4 þ 3200π4NÞQ̄3

−
1

80ðN þ 8Þ7 ð10N
6 þ 4π4N5 þ 915N5 þ 224π4N4 þ 34120N4 þ 4464π4N3 þ 86600N3

þ41600π4N2 − 3928440N2 − 400ðN þ 8Þ2ðNð65N þ 958Þ þ 2496Þζð5Þ þ 185344π4N

−20ðN þ 8ÞðNðNðNðNðN þ 52Þ þ 904Þ − 12224Þ − 181184Þ − 514112Þζð3Þ

−35161600N þ 319488π4 − 87127680ÞQ̄2 þ 1

960ð8þ NÞ7 ð45N
6 þ 32π4N5 þ 5820N5

þ1952π4N4 þ 322440N4 þ 40256π4N3 þ 1972440N3 þ 380416π4N2 − 16196640N2

−9600ðN þ 8Þ2ðNð25N þ 418Þ þ 1240Þζð5Þ þ 1699840π4N − 191091840N þ 2916352π4

−240ðN þ 8ÞðNðNðNðNðN þ 40Þ þ 1056Þ − 3496Þ − 100480Þ − 300096Þζð3Þ − 494461440ÞQ̄
�
ϵ4; ð54Þ

where the terms highlighted with underbrace stem from the
semi-classical computation. To two loops, they agree with
the known 2-loop anomalous dimension of the Q̄-index
traceless symmetric OðNÞ tensor with classical dimension
Q̄ [53], which can be depicted as a Q̄-boxes Young tableau
with one row. In [15], we also obtained all the black terms
at three and four loops by combining the knowledge of the
red ones with the known perturbative results for the Q̄ ¼ 1

[54], Q̄ ¼ 2 [55,56] and Q̄ ¼ 4 [57] cases. This result
corrects and extends the one obtained long ago in [58]. This
is an example of how the semiclassical expansion at fixed
charge can be helpful in improving and checking pertur-
bative results. Conversely, the diagrammatic check of the

semiclassical computation has been recently further
extended to the 4-loop level in [18]. Notice that for Q̄ ¼
1 the relevant operator is the ϕ field, while for Q̄ ¼ 2,
it is the bilinear traceless symmetric OðNÞ tensor
ϕaϕb − 1

N ϕcϕc, which is of interest to many critical
phenomena being responsible for crossover behavior in
the OðNÞ theory. Its anomalous dimension defines a so-
called crossover exponent describing the instability of the
theory against anisotropy [59]. As we will see in the next
section, in the perturbative regime the operator identifica-
tion can be proven via group-theoretical arguments. For
sake of completeness, we report here also the large A
expansion of ΔTQ̄

[18]
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ΔTQ̄
¼ 1

ϵ

�
4ϵQ̄
N þ 8

� d
d−1
�
3ðN þ 8Þ

16
þ ϵ

�
−1.5559 − 0.2293N þ 3ð3N þ 14Þ

16ðN þ 8Þ
�
þOðϵ2Þ

�

þ 1

ϵ

�
4ϵQ̄
N þ 8

�d−2
d−1
�
N þ 8

8
þ ϵ

�
−0.05413þ 0.0383N −

3N þ 14

8ðN þ 8Þ
�
þOðϵ2Þ

�
þO½ðϵQ̄Þ0�: ð55Þ

We end this review section with the OðNÞ sextic theory in d ¼ 3 − ϵ dimension withN 3 ¼ 1
48
which has been studied in

[17]. The leading order energy is once again given by Eqs. (13) and (14) and reads

Δ−1ðA�Þ
A� ¼ F3d

�
A�2

2π2

�
; ð56Þ

where F3d has been defined in Eq. (25).
The regularized version of Eq. (47) provides the 1-loop correction in the semiclassical expansion as

Δ0ðA�Þ ¼ 1

4
− 3ðRμÞ2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2μ2 − 1

q
−
�
N
2
− 1

��
1

4
þ ðRμÞ2 − Rμ

�
þ 1

2

X∞
l¼1

σðlÞ; ð57Þ

where

σðlÞ ¼ ð1þ 2lÞR
�
ωþðlÞ þ ω−ðlÞ þ

�
N
2
− 1

�
ωþþðlÞ þ ω−−ðlÞ

�
− 4lðlþ 1Þ −

�
6ðRμÞ2 − 1

2

�
−
�
N
2
− 1

�

×

�
4lðlþ 1Þ þ 2ðRμÞ2 þ 1

2

�
; ð58Þ

which is again constructed so that the sum is convergent in
d ¼ 3. In [17], this result has been verified via conventional
diagrammatic techniques at the 6-loop level. The large A�
expansion can be studied numerically, as in the Uð1Þ case.
The outcome is corrections (proportional to N − 2) to the
Uð1Þ values of the α’s coefficients in (24), while the β’s
receives no new contributions.

III. FROM GROUP THEORY
TO OPERATORS: THE MAP

A. The power of symmetries

Our knowledge of a quantum field theory (QFT) is
generally encoded in the correlation functions of local
operators. If the QFT under consideration has some internal
global compact symmetry group G which is neither
explicitly broken nor spontaneously broken, then without
loss of generality we may restrict ourselves to local
operators that transform under definite unitary irreducible
representations of G, since any other local operator should
be able to be expressed as a linear combination of those
local operators with definite transformation properties.
Therefore let us consider a set of local operators

Op
1 ;O

p
2 ;…;Op

dp
that transform under a dp-dimensional

unitary irreducible representation Γp of G.7 This implies
they have implicitly the same spacetime (Lorentz) trans-
formation properties, and form a basis of a carrier space Vp

for Γp, that is, for i ¼ 1; 2;…; dp and all T ∈ G

ΦðTÞOp
i ¼

Xj¼dp

j¼1

ΓpðTÞjiOp
j ð59Þ

where ΦðTÞ denotes the linear transformation operator
corresponding to T ∈ G that acts on Vp, and ΓpðTÞ denotes
the representation matrix corresponding to T ∈ G. It is
important to note that the complete symmetry property of
an operator is encoded in two indices. For the set of
operatorsOp

i , one index is p, which refers to the irreducible
representation the operator belongs to, up to equivalence.
The other index is i, referring to which row of Γp the
operatorOp

i transforms according to. There is a counterpart

7Much of the basic group theory introduced in this section is
based on the textbooks by J. F. Cornwell [60,61] and by B. C.
Hall [62], which leads us to the proofs of several important results
needed for application in the fixed-charge semiclassical approach
to CFT.
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of Eq. (59) in Lie algebra representation theory. Suppose L̃
is the complexification of the real Lie algebra of G, then for
i ¼ 1; 2;…; dp and all a ∈ L̃

ΦðaÞOp
i ¼

Xj¼dp

j¼1

ΓpðaÞjiOp
j ð60Þ

where nowΦðaÞ denotes the linear transformation operator
corresponding to a ∈ L̃ that acts on Vp and ΓpðaÞ denotes
the representation matrix corresponding to a ∈ L̃. LetH be
a Cartan subalgebra of L̃. Without loss of generality we
may assume that, the set of operators Op

i are chosen such
that ΓpðhÞ is diagonal for all h ∈ H. This fact can be
represented by the following equation:

ΦðhÞOp
i ¼ λiðhÞOp

i ð61Þ

for i ¼ 1; 2;…; dp. This defines dp linear functionals λiðhÞ
that act on H, which are the weights of the irreducible
representation Γp in mathematical terms. Therefore, the
index i plays the role of labeling the weights of Γp. From a
physical point of view, a weight when acting on a set of
elements inH, gives the Cartan charges associated with the
elements, and thus specifies a charge configuration.
We state two important consequences of the intact (i.e.,

neither explicitly nor spontaneously broken) symmetry G.
Consequence 1:Operators of different symmetry proper-

ties (i.e., belonging to inequivalent irreducible representa-
tions of G, or belonging to equivalent irreducible
representations of G but correspond to different weights)
do not mix under the renormalization group.
Consequence 2: In a conformal field theory (CFT),

operators that transform in the same irreducible represen-
tations of G but correspond to different weights have
identical scaling dimensions, if they do not mix with
operators that do not belong to their carrier space under
renormalization.
Here and hereafter, we always assume that for equivalent

irreducible representations an appropriate similarity trans-
formation has been applied to make them identical. The
first consequence above is simply the requirement that
renormalization of the theory preserves its global sym-
metry. The second consequence can be verified by exam-
ining the two-point correlator of the operators in question
and making use of the Wigner-Eckart theorem, which states
that matrix elements of irreducible tensor operators can be
factorized into two parts, with the first part solely deter-
mined by the corresponding Clebsch-Gordan coefficients,
and the remaining part called reduced matrix elements
which are independent of the magnetic quantum numbers
(weights). When we consider two-point correlators like
hΩjOp

i ðxÞOq
j ðyÞjΩi (jΩi being the vacuum), we may view

Oq
j ðyÞjΩi;Op

i ðxÞjΩi as a whole, and the identity operator

as the irreducible tensor operator, in order to apply the
Wigner-Eckart theorem. The Clebsch-Gordan coefficients
are trivial for p ¼ q and the Wigner-Eckart theorem tells us
for i ¼ j the two-point correlator is independent of the
weight label i. With the further assumption that this set of
operators do not mix with other operators, we deduce
that their scaling dimensions must be the same (since in a
CFT scaling dimension Δ of an operator O can be
completely determined from its two-point correlator as
hΩjOðxÞOðyÞjΩi ¼ jx − yj−2Δ). Note that it is important to
require the two operators to transform in the same irre-
ducible representation, i.e., they live in the same irreducible
carrier space. If they both merely transform according to
some irreducible representation Γp, but are not in the same
irreducible carrier space, then we cannot claim anything
about their scaling dimensions.

B. The nature of charge fixing

The fixed-charge approach has proven to be very power-
ful in probing the dynamics of a QFT with global
symmetries in regimes that are difficult to access by
conventional methods. In most applications so far a CFT
is considered since one can employ the Weyl invariance of
the theory to map the CFT to a cylinder, with the
computation of scaling dimensions of fixed-charge oper-
ators turned into the computation of the ground state
energies in the corresponding fixed-charge sectors of the
cylinder theory. Obtaining results for non-CFTs may also
be possible in various cases [16], however for the moment
we will restrict our presentation to the case of CFTs for
simplicity. Conventional perturbation theory can probe the
small-charge regime, up to a certain power in the coupling
expansion, limited by computational capabilities, while the
large-charge regime is beyond its validity range. In the
fixed-charge approach, however, both the small-charge and
large-charge regimes are dealt with by a semiclassical
expansion around a nontrivial fixed-charge trajectory in the
path integral.
An important feature of the fixed-charge approach to

scaling dimension computation is that a priori it does not
fix the full symmetry properties of the fixed-charge
operator under consideration. This can be inferred from
the general discussion of the fixed-charge path integral (see
Sec. II), in which only the eigenvalues corresponding to a
set of Cartan charges are required. Put it simpler, only
weights are known and fixed, and we do not know which
irreducible representation the operator belongs to. Multiple
irreducible representations can share the same weight,
while a given irreducible representation can be realized
by different sets of local operators. This is where the Lie
algebraic theory cannot tell us more and we need some
dynamical information.
The dynamical information is hidden in the starting point

of the derivation of a fixed-charge path integral. In a
Euclidean field theory, one considers the expectation of the
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evolution operator e−HT in an arbitrary state jψi with a
given fixed charge (i.e., weight). In the limit T → ∞ the
expectation gets saturated by the lowest energy state
contained in jψi which typically has a nonzero overlap
with the lowest-lying energy state corresponding to the
given charge. Therefore by using state-operator correspon-
dence, the scaling dimension one obtains for the fixed-
charge operator should correspond to the scaling dimension
of the lowest-lying operators with the given fixed charge.
Unfortunately, for a given fixed charge, we still do not

know a priori which operator in which irreducible repre-
sentation is lowest-lying. Nevertheless, progress can be
made by

1. Assuming that the lowest-lying operator has the
minimal classical scaling dimension (MCSD) with
which an operator can be constructed corresponding
to a given charge configuration. This will be called
the MCSD assumption. If the MCSD assumption is
valid with a unique operator OMCSD saturating the
MCSD for a given charge configuration, thenOMCSD
must have a definite scaling dimension (i.e., it does
not mix with other operators). However, in more
general cases multiple operators may saturate the
MCSD for a given charge configuration, and some
appropriate linear combination of them will become
the genuine lowest-lying operator and have a definite
scaling dimension. For spin-0 fixed-charge opera-
tors8 (corresponding to homogeneous ground states
in the cylinder theory) the MCSD assumption
obviously requires we consider nonderivative oper-
ators only, as extra spacetime derivatives necessarily
increase the classical scaling dimension.

2. Carrying out semiclassical computations for various
weights of a given irreducible representation. Then,
for each weight, list all the irreducible representa-
tions that contain it. If semiclassical computation
gives different results of scaling dimensions for
different weights, and the MCSD assumption and
Consequence 2 are used, it might be possible to pin
down the correspondence between weights and
representations in the semiclassical computation.

To summarize, an important feature of the fixed-charge
semiclassical computation is that a priori it only fixes the
weight, while the correspondence between the weight and
the irreducible representation is hidden in the fact that only
the lowest-lying state is projected out. Further progress in
disentangling weights and representations can be made by
making the MCSD assumption and carrying out semi-
classical computations for multiple weights in question. To
illustrate the main idea, in the following we will first review
the simpler case ofUð1Þ andOðNÞ vector models, and then

turn to the more complicated UðNÞ ×UðMÞ linear sigma
model which entails a sophisticated group-theoretic
analysis.
Here, we would like to highlight a few important

motivations to figure out the correspondence between
the weight and the irreducible representation. First, logi-
cally one should always prove the existence of the fixed-
charge operators. Simply obtaining the result from a fixed-
charge semiclassical computation does not guarantee that
the results obtained are correct. Second, when comparing
the results of the fixed-charge semiclassical computation
with results obtained by other methods (e.g., conventional
perturbation theory), it is relevant to know the correspon-
dence between theweight and the irreducible representation,
or the explicit form of the fixed-charge operator. Third, for
theory and application purposes we might just wish to know
the scaling dimension of certain operators that transform
according to given irreducible representations.

C. Group-theoretic analysis: Uð1Þ and
OðNÞ vector models

The simplest QFT with an internal continuous global
symmetry is the theory of a complex scalar field ϕ that has
theUð1Þ symmetry transformation ϕ → e−iαϕ with α being
an arbitrary constant real phase. To allow for a nontrivial
fixed point we consider the theory in d ¼ 4 − ϵ Euclidean
spacetime dimensions. The Lagrangian of the theory and
the Noether charge Q associated with the global symmetry
can be read off from in Eq. (1) and Eq. (2). One can derive
the commutation relation

½Q;ϕ� ¼ ϕ ð62Þ

from canonical commutation relations for the field operator
ϕ. The integrated form of Eq. (62) reads

e−iαQϕeiαQ ¼ e−iαϕ ð63Þ

for an arbitrary real phase constant α. It is from Eq. (62) and
Eq. (63) that we deduce the Uð1Þ charge of ϕ to be þ1.
Then the operator ϕn (n is a positive integer) has Uð1Þ
charge n. The normalization of the Uð1Þ charge changes by
multiplying via a nonzero real number. Nevertheless, one
can always compute the Uð1Þ charge of a local operator O
by computing the parameter q in the commutator equation

½Q;O� ¼ qO ð64Þ

IfO carries a definiteUð1Þ charge, then there should exist a
real number q such that Eq. (64) holds. If the charge
normalization is such that ϕ carries the charge þ1, then q
must be an integer, as long as O can be written as a linear
combination of products of ϕ and its derivatives (non-
integer powers operators are ill-defined). This simple Uð1Þ
example illustrates the well known fact that the charge is

8In this work we are only concerned with spin-0 fixed-charge
operators. Operators with nonzero spin would correspond to
inhomogeneous ground states on the cylinder [49].
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discretized for well-defined local operators of the theory,
regardless of the normalization convention while, after a
Weyl map to the cylinder, the charge density can be
adjusted continuously by changing the compactification
volume.
For a given Uð1Þ charge n > 0, the operator with MCSD

is obviously ϕn. Any additional ðϕ̄ϕÞ factor or derivative
would necessarily increase the classical scaling dimension.
Therefore, with the MCSD assumption we expect a semi-
classical computation in the charge-n sector with a homo-
geneous ground state to deliver the scaling dimension of the
operator ϕn.
From a group-theoretic point of view, the next-to-simplest

case turns out to be the critical OðNÞ vector model in d ¼
4 − ϵ dimensions (cf. Sec. II B). This model features a
N-component real scalar field ϕ ¼ ðϕ1;ϕ2;…;ϕNÞ. Its
Lagrangian density in Euclidean spacetime is given in
Eq. (30). For definiteness, let us consider the case where
N is even. Extension to the case of oddN is straightforward.
The maximal commuting set of charges we can fix corre-
sponds to themaximal set of Cartan generators, which can be
made explicit by defining the complex fields φ1¼
1ffiffi
2

p ðϕ1þiϕ2Þ;φ2¼ 1ffiffi
2

p ðϕ3þiϕ4Þ;…φN=2¼ 1ffiffi
2

p ðϕN−1þiϕNÞ.
For each j ¼ 1; 2;…; N=2, there exists an independent phase
rotation φj → φje−iαj as a symmetry transformation of the
theory corresponding to a Cartan generator, with αj being
an arbitrary real phase. A generic charge configuration
(i.e., weight) can thus be characterized by ½m�≡
ðm1; m2;…; mN=2Þ, with mi representing the charge asso-
ciatedwith the ith Cartan generator. The normalization of the
Cartan charges can be chosen such that φi corresponds to
ð0; 0;…; mi ¼ þ1; 0;…; 0Þ for i ¼ 1; 2;…; N=2, whichwe
adopt. This implies for a generic charge configuration
½m� ¼ ðm1; m2;…; mN=2Þ,mi’s are all integers. Without loss
of generality wemay consider only the case in which allmi’s
are non-negative since the sign of the Cartan charge is a
matter of convention. The operator with MCSD that corre-
sponds to ½m� ¼ ðm1; m2;…; mN=2Þ is then easily con-
structed:

O½m� ≡
Yi¼N=2

i¼1

ðφiÞmi ð65Þ

If somemi is negative,wemay simply useφ�
i insteadofφi for

the corresponding factor. As in theUð1Þ case, any additional
factor of ðφ̄iφiÞ or derivative would necessarily increase the
classical scaling dimension.
Let us note O½m� thus constructed live in the traceless

fully symmetric subspace of OðNÞ transformations. It is
fully symmetric because it is a product of commuting scalar
fields. It is traceless because otherwise it would contain
some factor like ϕ2 which would violate the MCSD
assumption. Therefore, O½m� corresponds to an irreducible
representation of OðNÞ and has a definite scaling

dimension. The argument also shows that operators that
have the same value of

Pi¼N=2
i¼1 jmij and MCSD all belong

to the same irreducible OðNÞ representation and thus have
the same scaling dimension, in agreement with the expect-
ation that by an OðNÞ rotation we can associate all charges
to a single Cartan generator.

D. Group-theoretic analysis:
The UðNÞ × UðMÞ linear sigma model

1. Introduction

The OðNÞ vector model is simple in the fixed-charge
semiclassical approach as charge fixing can always be
associated with a single Cartan charge by virtue of a
symmetry rotation. Thus all charge configurations are
similar and solely characterized by

Pi¼N=2
i¼1 jmij.

To allow for more variations in the charge configuration,
here we consider the UðNÞ ×UðMÞ linear sigma model
in d ¼ 4 − ϵ dimensions, with N > 1 and M > 1 being
integers. The Lagrangian density in Euclidean spacetime is
given by

L ¼ Trð∂μH†∂μHÞ þ u0TrðH†HÞ2 þ v0ðTrH†HÞ2: ð66Þ

Here H denotes an N ×M complex matrix scalar field.
Without loss of generality we may assume N ≤ M. The
model has the global symmetry

G≡ SUðNÞL × SUðMÞR ×Uð1ÞA ð67Þ

in which Uð1ÞA is the universal phase rotation of the H
field.9 Under SUðNÞL × SUðMÞR, the H and H† fields
transform as

H → LHR†; H† → RH†L† ð68Þ

with L being an arbitrary N × N constant special unitary
matrix, and R being an arbitrary M ×M constant special
unitary matrix.
Depending on the value of N and M, the model may

feature fully interacting real or complex fixed points. At
such a fixed point, we perform a Weyl map to a cylinder of
radius R (i.e., Rd → R × Sd−1), with the cylinder action
given by

Scyl ¼
Z

ddx
ffiffiffi
g

p ½Trð∂μH†∂μHÞ þ u0TrðH†HÞ2

þ v0ðTrH†HÞ2 þm2TrðH†HÞ�: ð69Þ

9It does not matter whether this universal Uð1Þ rotation acts
from the left or from the right. Therefore precisely speaking the
global symmetry should be written as Eq. (67). Writing it as
UðNÞ × UðMÞ is less rigorous but more convenient, see [63] for
example.
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Here g denotes the metric determinant and m2 ¼ ðd−2
2R Þ2 is

the coefficient of the conformal coupling required by Weyl
invariance.
We consider a homogeneous ground state with the ansatz

H0ðτÞ ¼ e2iMEτB̄; ð70Þ

where τ denotes the cylinder time and ME is an N × N
diagonal matrix. B̄ is an N ×M matrix in the form

B̄N×M ¼ ðBN×N 0N×ðM−NÞ Þ ð71Þ

in which B is an N × N diagonal matrix. The Noether
charges associated with Cartan generators are encoded in
the following charge configuration matrices:

QL ¼ −V _H0H
†
0; Q̄R ¼ VH†

0
_H0 ð72Þ

with V ¼ Rd−1Ωd−1 being the volume of Sd−1. Plugging in
the ansatz Eq. (70), it is straightforward to show

QL ¼ −2iVMEB†B;

Q̄R ¼ 2iVME

�
B†B 0N×ðM−NÞ

0ðM−NÞ×N 0ðM−NÞ×ðM−NÞ

�
ð73Þ

If we parametrize Q̄R as

Q̄R ¼
�

QR 0N×ðM−NÞ
0ðM−NÞ×N 0ðM−NÞ×ðM−NÞ

�
; ð74Þ

then from Eq. (73) we find the constraint

QL þQR ¼ 0: ð75Þ

As B is diagonal,QL,QR are also diagonal. We will restrict
our attention to the sector neutral under Uð1ÞA, which
implies

TrQL ¼ TrQR ¼ 0: ð76Þ

To simplify the notation, in the following we use Q to
denote QL, that is

Q≡QL ¼ −QR: ð77Þ

In the following, we will first determine what are the
admissible charge configuration matrices Q and then we
will disentangle which irreducible representations they
correspond to. Although we work in d ¼ 4 − ϵ dimensions
we indicate the classical scaling dimensions (CSD) with the
corresponding one in 4 dimensions. For example, the CSD
of the fieldH is 1 and the one of the operator TrðH†HÞ is 2.
The transition to d ¼ 4 − ϵ dimensions is straightforward.
All the discussion will be restricted to the homogeneous

ground state ansatz in Eq. (70) and the associated traceless
charge configuration of Q.
We first introduce and prove several propositions that

underlay the determination of the irreducible representation
associated with a given charge configuration from Lie
algebraic considerations.
Proposition 1. Suppose O is a fixed-charge operator

that corresponds to a traceless charge configuration with
MCSD. Let us denote the CSD of O by D. Let us also
suppose O belongs to some irreducible representation
ðΓL;ΓRÞ of SUðNÞL × SUðMÞR in the Uð1ÞA-neutral sec-
tor. Then ΓL must appear in ðAdjLÞD=2, with AdjL being
the adjoint representation of SUðNÞL; ΓR must appear in
ðAdjRÞD=2, with AdjR being the adjoint representation
of SUðMÞR.
Proof of proposition 1.—Since we are considering a

homogeneous ground state, the corresponding fixed-charge
operator O must be a Lorentz scalar. Within the MCSD
assumption, this implies no derivative can appear in the
construction of O, and thus the operator O with CSD D
must be built out of the product of D=2 H fields and D=2
H† fields (so that O is also neutral under Uð1ÞA). Now,
under SUðNÞL × SUðMÞR

H ∼ ðFL; F̄RÞ; H† ∼ ðF̄L;FRÞ: ð78Þ

Here FL denotes the fundamental representation of
SUðNÞL, and F̄L denotes the antifundamental representa-
tion of SUðNÞL. The notation for representations of
SUðMÞR is self-explanatory. Therefore O must transform
as an irreducible component inside the reducible represen-
tation

ðΓL0;ΓR0Þ; with ΓL0 ≡ ðFL ⊗ F̄LÞD=2;

ΓR0 ≡ ðFR ⊗ F̄RÞD=2: ð79Þ

Now for representations of special unitary groups we know
that

FL ⊗ F̄L ¼ 1L ⊕ AdjL; FR ⊗ F̄R ¼ 1R ⊕ AdjR

ð80Þ

and thus

ΓL0 ¼ ð1L ⊕ AdjLÞD=2; ΓR0 ¼ ð1R ⊕ AdjRÞD=2:

ð81Þ

All singlet components in 1L ⊕ AdjL and 1R ⊕ AdjR can
actually be dropped because O corresponds to an MCSD
operator. If a singlet component contributes then one would
be able to construct another operator that corresponds to the
same charge configuration with less number of H and H†

fields, in contradiction to the MCSD requirement.
Therefore we conclude that the operator O belongs to
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ðΓL;ΓRÞ, where ΓL and ΓR must appear respectively in
ðAdjLÞD=2 and ðAdjRÞD=2.
Proposition 2. Suppose that the CDS of O is D and the

MCDS fixed-charge operator corresponds to a traceless
charge configuration. Let us also suppose O belongs to
some irreducible representation ðΓL;ΓRÞ of SUðNÞL ×
SUðMÞR in the Uð1ÞA-neutral sector. Then ðΓL;ΓRÞ must
appear in the Uð1ÞA-neutral sector of the decomposition of
the D-index traceless fully symmetric tensor of Oð2NMÞ
under the branching

Oð2NMÞ ⊃ SUðNMÞ ×Uð1ÞA
⊃ SUðNÞL × SUðMÞR ×Uð1ÞA ð82Þ

Proof of proposition 2.—H is a complex N ×M matrix
field with 2NM real components. As O is constructed with
MCSD, it cannot contain derivatives and therefore if its
CSD isD, it must live in the carrier space of aD-index fully
symmetric tensor of Oð2NMÞ. On the other hand the real
symmetry of the theory is SUðNÞL × SUðMÞR ×Uð1ÞA ⊂
SUðNMÞ ×Uð1ÞA ⊂ Oð2NMÞ, therefore ðΓL;ΓRÞ must
appear in the decomposition of a D-index fully symmetric
tensor of Oð2NMÞ under the branching in Eq. (82). In fact
the D-index fully symmetric tensor must be traceless,
because we are considering operators constructed with
MCSD. If the tensor contains a trace part, then it would be
possible to factor out the trace and build a new operator
with the same symmetry properties but with a smaller CSD,
in contradiction to the MCSD assumption.

2. The correspondence between weight and charge
configuration

In the above propositions, no explicit reference is made
yet about the charge configuration matrix Q which we will
consider now. Let us start with the explicit form of Q and
determine the precise correspondence between the charge
configuration matrix and the weight of an irreducible
representation. The matrix Q belongs to the special linear
algebra slðN;CÞ, which is the space of all N × N complex
matrices X for which TrX ¼ 0. slðN;CÞ is exactly the
complexification of the real Lie algebra of the SUðNÞ
group [62]. The Cartan subalgebra h of slðN;CÞ can be
characterized by

h¼

8>><
>>:
0
B@λ1

…

λN

1
CA
������λj∈C; λ1þ���þλN ¼0

9>>=
>>; ð83Þ

A weight is a linear functional on h. Nevertheless, it is
convenient to identify linear functionals on h with elements
of h itself, by virtue of an inner product on h. Suppose
K and K0 are two elements of h, we define their inner
product by

hK;K0i ¼ TrðK�K0Þ ð84Þ

If ϕ is a linear functional on h, there is a unique element λ in
h such that

ϕðKÞ ¼ hλ; Ki ð85Þ

for all K ∈ h. Therefore, a weight μ can be thought of as an
element in h, by virtue of the inner product defined
in Eq. (84).
The charge configuration matrix Q should be propor-

tional to some weight μ of a representation of slðN;CÞ. Let
us now determine the precise correspondence, assuming
Q ¼ QL is normalized as in Eq. (72). Suppose Q can be
decomposed as

Q ¼
XN−1

j¼1

xjĥj ð86Þ

with ĥj being a set of orthonormal basis elements of h, with
the orthogonality defined by virtue of the inner product in
Eq. (84), and the normalization condition being

Trðĥ2jÞ ¼
1

2
; j ¼ 1; 2;…; N − 1: ð87Þ

For example, the following choice of one element is
normalized

ĥ1 ¼
1

2
ðE11 − E22Þ ð88Þ

where Eij denotes a N × N matrix with a “1” in the ði; jÞ
entry and “0” elsewhere. The normalization of basis
elements is required as in Eq. (87) because, for example,
one can compute the commutation relation

½ĥ1; E12� ¼ E12 ð89Þ

which implies a raising operator constructed with a single
E12 will carry charge þ1 corresponding to ĥ1. One may
wish to make this argument more precisely by rewriting
Eq. (89) as a commutation relation between the corre-
sponding charge operator and the corresponding fixed-
charge operator, computed with the help of canonical
commutation relations of fundamental fields.
Then xj in Eq. (86) gives the Cartan charge associated

with ĥj, and can be computed as

xj ¼ 2TrðQĥjÞ: ð90Þ

On the other hand, for the weight μ, the Cartan charge
associated with ĥj is given by
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μðĥjÞ ¼ hμ; ĥji ¼ Trðμ�ĥjÞ: ð91Þ

Here we use the same symbol μ for the weight as a linear
functional and as an element in h. We will only be
concerned with the case of real μ and therefore the
Cartan charge reads

μðĥjÞ ¼ TrðμĥjÞ: ð92Þ

Comparing Eq. (90) and Eq. (92) we conclude the
correspondence between Q and μ is

Q ¼ 1

2
μ: ð93Þ

This leads to the following proposition.
Proposition 3. Suppose O is a fixed-charge operator

that corresponds to a traceless charge configuration Q with
MCSD, with the CSD ofO beingD. Let us also supposeO
belongs to some irreducible representation ðΓL;ΓRÞ of
SUðNÞL × SUðMÞR in the Uð1ÞA-neutral sector. Then
2Q must be a weight of ΓL, and −2Q must be a weight
of ΓR.
Since we know that the weights of Lie algebra repre-

sentations sit on a discrete weight lattice, we then deduce
from Eq. (93) that the charge configuration Q is also
quantized.
Because we want to consider fixed-charge operators

corresponding to a traceless charge configuration Q with
MCSD, according to Proposition 1, the weights of our
interest should belong to ðAdjLÞD=2, when we consider the
SUðNÞL factor. The nonzero weights of AdjL are nonzero
roots of slðN;CÞ, which are given by [62]

αjk ¼ ej − ek; j ≠ k; j; k ¼ 1; 2;…; N ð94Þ

where ej’s denote the standard basis elements of CN , that is

ej ¼ f0;…; 0|fflfflffl{zfflfflffl}
j−1

; 1; 0;…; 0|fflfflffl{zfflfflffl}
N−j

g ð95Þ

for j ¼ 1; 2;…; N. Note that in this representation of roots
we have identified h with the subspace of CN consisting of
vectors whose components sum to zero [62]. Because all
the weights of a tensor product representation are given by
the sum of weights of the component representations [61],
we conclude that if μ is a weight of ðAdjLÞD=2, then μmust
be able to be expressed as

μ ¼
XD=2

p¼1

spαjpkp ; with sp ¼ 1 or 0 ð96Þ

and for p ¼ 1; 2;…; D=2, αjpkp ¼ ejp − ekp with jp ≠ kp
is one of the weights in Eq. (94). From Eq. (96) we deduce

that if we write μ ¼ ðμ1; μ2;…; μNÞ, then μi ∈ Z,
∀ i ¼ 1; 2;…; N, and then Eq. (93) tells us the diagonal
entries of Q must be integers or half-integers.
Now for any vector ν≡ ðν1; ν2;…; νNÞ ∈ CN, define the

A-length of A½ν� of ν as

A½ν�≡XN
i¼1

jνij ð97Þ

Suppose ν; ρ ∈ CN , then the following triangle inequality
holds

A½νþ ρ� ≤ A½ν� þ A½ρ� ð98Þ

This can be proved easily: Suppose ν≡ ðν1; ν2;…; νNÞ,
ρ ¼ ðρ1; ρ2;…; ρNÞ, then

A½νþ ρ� ¼
XN
i¼1

jνi þ ρij ≤
XN
i¼1

jνij þ
XN
i¼1

jρij ¼ A½ν� þA½ρ�

ð99Þ

It is also obvious that the A-length has a linearity property
with respect to multiplication by a c-number

A½cν� ¼ jcjA½ν�; ∀ c ∈ C ð100Þ

Then by using the triangle inequality and linearity property
of the A-length, from Eq. (96) we can deduce

A½μ� ≤
XD=2

p¼1

A½spαjpkp � ¼
XD=2

p¼1

jspjA½αjpkp �: ð101Þ

Now let us note that

jspj ≤ 1; A½αjpkp � ¼ 2 ð102Þ
and thus

A½μ� ≤ 2 ×D=2 ¼ D: ð103Þ

On the other hand, we see the charge configuration Q
corresponding to μ satisfies Q ¼ μ

2
. To make a comparison

we should also map Q into CN in the obvious manner, i.e.,

Q ¼ diagfQ1; Q2;…; QNg → ðQ1; Q2;…; QNÞ ∈ CN:

ð104Þ

Then we can write

A½Q� ¼ 1

2
A½μ�: ð105Þ

Combining Eq. (103) and Eq. (105) we see immediately
that
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D ≥ 2A½Q�: ð106Þ

This leads to the following proposition.
Proposition 4. Suppose O is a fixed-charge operator

that corresponds to a traceless charge configuration
Q ¼ diagfQ1; Q2;…; QNg. Let us denote the CSD of O
by D. Then D satisfies the inequality

D ≥ 2
Xi¼N

i¼1

jQij: ð107Þ

3. Scaling dimension and operator construction

All the conclusions achieved up to now are deduced
without the need of explicitly constructing the fixed-charge
operators. On the other hand, one can show that the equality
sign in Eq. (106) and Eq. (107) can always be achieved by
constructing an operator corresponding to a given charge
configuration. To this end, we first consider building blocks
that have simple definite transformation properties under
SUðNÞL × SUðMÞR × Uð1ÞA and are Uð1ÞA-neutral. For
example, we may consider

TrðτLHτ†RH
†Þ ð108Þ

where τL is an N × N matrix in some root subspace of the
slðN;CÞ Lie algebra, and τR is an M ×M matrix related to
τL in the following manner

τR ¼
�

τL 0N×ðM−NÞ
0ðM−NÞ×N 0ðM−NÞ×ðM−NÞ

�
: ð109Þ

Obviously, the building block in Eq. (108) lives in the bi-
adjoint representation of SUðNÞL × SUðMÞR, i.e.,
ðAdjL;AdjRÞ. It is constructed in such a manner that
QL þQR ¼ 0 is manifestly satisfied, with QL correspond-
ing to a weight ofAdjL. The explicit form of τL is given by

τL ¼ Epq ð110Þ

for some p; q ¼ 1; 2;…; N and p ≠ q. This is because we
have the commutation relation

½ĥj; Epq� ¼
1

2
ðδjp − δjq − δjþ1;p þ δjþ1;qÞEpq: ð111Þ

Here j ¼ 1; 2;…; N − 1 and ĥj is defined by

ĥj ≡ 1

2
ðEj;j − Ejþ1;jþ1Þ ð112Þ

which satisfy the normalization condition Trðĥ2jÞ ¼ 1
2
.

Let us first identify the charge configuration associated
with Eq. (108). Define a set of N linear functionals εp; p ¼
1;…; N acting on h as follows

εpðĥjÞ ¼
1

2
ðδjp − δjþ1;pÞ: ð113Þ

Then Eq. (111) can be written as

½ĥj; Epq� ¼ fεpðĥjÞ − εqðĥjÞgEpq ð114Þ

which means Epq corresponds to the root εp − εq, which
when mapped into h using the inner product Eq. (84)
gives αpq defined in Eq. (94).

10 This αpq just corresponds to
the weight of AdjL associated with Eq. (108) and the
corresponding charge configuration is simply 1

2
αpq, accord-

ing to Eq. (93).
To build operators in more general charge configura-

tions, we may consider

Tr½ΠjðτLjHτ†RjH
†Þyj �: ð115Þ

Here yj > 0 is a positive integer, and τLj is anN × N matrix
with the explicit form given by τLj ¼ EpðjÞqðjÞ for some
p; q ¼ 1; 2;…; N that depend on j. The way that Eq. (115)
is constructed implies that its charge configurationQ is just
the appropriate linear combination of the charge configu-
ration Qj of its corresponding building blocks

Q ¼
X
j

yjQj ð116Þ

where

Qj ¼
1

2
αpðjÞqðjÞ: ð117Þ

We can now reverse the logic and ask for a given Q how
one may choose τLj and yj in order to construct a MCSD
operator in the form of Eq. (115). To this end, we may
rewrite Eq. (116) as

2Q ¼
X
j

yjαpðjÞqðjÞ ð118Þ

Note 2Q ∈ CN , with all entries being integers and the sum
of all entries is zero. We also have αpðjÞqðjÞ ∈ CN , which for
a given j there exists only two nonzero entries, filled byþ1
and −1 respectively. MCSD requires the minimization ofP

j yj for a given Q. We can rewrite Eq. (118) as

2Q −
X
j

yjαpðjÞqðjÞ ¼ 0 ð119Þ

where now the left-hand side indicates a process in which
we subtract αpðjÞqðjÞ’s from the given CN vector 2Q.

10This can be deduced from the results in Appendix G of the
textbook by J. F. Cornwell [61].
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Suppose each time we are only allowed to subtract one
αpðjÞqðjÞ, which we call an elementary subtraction. (For a
given j we therefore eventually subtract it yj times). The
sum

P
j yj therefore equals the total number of times we

need to perform such elementary subtractions to make the
resulting CN vector vanish. To minimize

P
j yj it is then

obvious that during the subtraction process each entry of
the CN vector should change in a monotonic manner (or
remain unchanged for some steps). As a concrete example,
suppose 2Q ¼ ð2;−1;−1Þ. The following subtraction
process is monotonic

ð2;−1;−1Þ → ð1; 0;−1Þ → ð0; 0; 0Þ ð120Þ

while the following subtraction is not monotonic

ð2;−1;−1Þ → ð1; 0;−1Þ → ð1;−1; 0Þ → ð0; 0; 0Þ: ð121Þ

It can be seen manifestly in this simple example that
nonmonotonic subtraction leads to an increase of the total
number of times we need to subtract the vector to zero, and
this obviously generalize to general cases. Monotonic
subtraction can always be realized, by subtracting from
the positive entry with the largest absolute value and
negative entry with the largest absolute value each time.
In such a case, the total number of times we need to perform
elementary subtractions simply equals A½2Q�=2 ¼ A½Q�,
that is

A½Q� ¼
X
j

yj: ð122Þ

On the other hand, from it is obvious that the CSD D of the
operator in Eq. (115) is

D ¼ 2
X
j

yj: ð123Þ

Therefore we conclude the MCSD can be achieved, with
the relation

D ¼ 2A½Q� ð124Þ

which is compatible with our previous finding Eq. (107)
without explicit construction of the fixed-charge operator.
Therefore we are led to the following proposition
Proposition 5. The equality sign in Eq. (107) can

always be achieved.
We emphasize that the method does not guarantee the

unicity of the MCSD operator. In fact, one may choose to
redistribute the trace operation (i.e., splitting one single
trace to multiple traces), change the order of matrix
products for different τLjHτ†RjH

† factors, or change the
root basis, to obtain more operators associated with the
same charge configuration. Even if we impose the MCSD

requirement there can be multiple solutions. Algebraically
they may lead to different or identical results. It is also not
known whether the above method based on the τLjHτ†RjH

†

building blocks with appropriate application of the trace
operation covers all fixed-charge MCSD operators.
Nevertheless, for a special type of charge configuration
matrix, there is a unique answer and we know the above
way of explicit construction must lead to the unique
answer. This charge configuration is

QL;J ¼ diagf−J; J; 0;…; 0g ð125Þ

with J being an integer or half-integer. This charge configu-
ration corresponds to the highest weight in the tensor product
of AdjL, which is in turn the sum of the highest weight of
AdjL. The uniqueness results from the fact that the highest
weight of a representation is always simple. The irreducible
representation associatedwith such a highest weight then has
the Dynkin label ð2J; 0;…; 0; 2JÞ.
The above five propositions we proved pave the way for

a general identification of irreducible representations for a
given charge configuration prescribed in a fixed-charge
semiclassical computation. With the MCSD assumption the
MCSD can be determined by virtue of Proposition 4 and 5
from the given charge configuration Q. Then the candidate
irreducible representations must satisfy the requirements of
Proposition 1–3.

IV. SEMICLASSICS AND ANOMALOUS
DIMENSIONS IN THE UðNÞ × UðMÞ MODEL

In this section, we start the exploration of UðNÞ ×UðMÞ
model in 4 − ϵ dimensions with the fixed-charge semi-
classical method. The necessary group-theoretic results
(especially the 5 propositions in Sec. III) will be used,
and we refer the readers who are interested in the detailed
proofs to the previous section. In Euclidean spacetime, the
Lagrangian of the theory reads

L ¼ Trð∂μH†∂μHÞ þ u0TrðH†HÞ2 þ v0ðTrH†HÞ2; ð126Þ

where H is a N ×M complex matrix. For N ¼ M and
v0 > 0, it describes the finite-temperature phase transition
in massless quantum chromodynamics [64] with H the
order parameter. We work in the MS scheme. The cou-
plings are renormalized as

u0M−ϵ ¼ uþ
X∞
n¼0

aðnÞu ðu; vÞ
ϵn

;

v0M−ϵ ¼ vþ
X∞
n¼0

aðnÞv ðu; vÞ
ϵn

: ð127Þ

The beta functions of the couplings are given by
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βu ≡ du
d logM

����
ϵ¼0

¼ −ϵuþ u
∂að1Þu

∂u þ v
∂að1Þu

∂v − að1Þu ; βv ≡ dv
d logM

����
ϵ¼0

¼ −ϵvþ u
∂að1Þv

∂u þ v
∂að1Þv

∂v − að1Þv ; ð128Þ

and, at 1-loop, read [65]

βuðu; vÞ ¼ −ϵuþ 1

4π2
ð6uvþ ðN þMÞu2Þ; ð129Þ

βvðu; vÞ ¼ −ϵvþ 1

4π2
ððNM þ 4Þv2 þ 2ðN þMÞuvþ 3u2Þ: ð130Þ

At the 1-loop level there are always a Gaussian FP (u� ¼ v� ¼ 0) and an Oð2NMÞ one (u� ¼ 0). Furthermore there are
other two FPs given by

u�� ¼ 4π2
AMN ∓ 3

ffiffiffiffiffiffiffiffiffi
RMN

p
DMN

ϵ; v�� ¼ 4π2
BMN � ðM þ NÞ ffiffiffiffiffiffiffiffiffi

RMN
p

2DMN
ϵ; ð131Þ

where

AMN ¼ NM2 þMN2 − 5N − 5M; BMN ¼ 36 − ðM þ NÞ2;
RMN ¼ 24þM2 þ N2 − 10MN; DMN ¼ ðMN − 8ÞðM þ NÞ2 þ 108: ð132Þ

The beta functions to five loops have been derived in [63], where the authors concluded that no stable FP exists for N ¼ M
and d ¼ 3, suggesting that the chiral phase transition in light QCD at finite temperature is first-order. When RMN < 0 the
fixed points are complex, and we expect regions of the parameters space in which the theory features near-conformal
dynamics of the walking type [66,67].
Since the u coupling breaks Oð2NMÞ symmetry to SUðMÞ × SUðNÞ subgroup, it is convenient to think about

representations of this model as a decomposition of theOð2NMÞmultiplets with defining (vector) and the 2-index traceless
symmetric representations of Oð2NMÞ as

□Oð2NMÞ ¼ 2NM ¼ ½N; M̄� ⊕ ½N̄;M�: ð133Þ

ð134Þ

where in the last line we explicitly show the dimension of the representations appearing in the decomposition.

A. Charging the system

In this section, we analyze the symmetry breaking pattern induced by charge fixing and set up the semiclassical
computation. After a Weyl map to the cylinder, our starting points are the cylinder action (69) and the spatially
homogeneous ground state ansatz given by Eq. (70). The Noether charges QL and QR associated with the UðNÞ ×UðMÞ
global symmetry are given by Eq. (72) and satisfy the constraint (75) QL þQR ¼ 0. The Euler-Lagrange equations read
(m2 ¼ ðd−2

2R Þ2)

∂2
0H þ∇2H þ 2u0HðH†HÞ þ 2v0TrðH†HÞH þm2H ¼ 0: ð135Þ

and for our homogeneous ansatz Eq. (70), they reduce to:
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2M2
EB ¼ −u0B†B2 − v0TrðB†BÞB −

m2

2
B: ð136Þ

We label the entries on the diagonal of ME;ii with ME;ii ¼ −iμi. In this subsection μi is a chemical potential and should
not be mistaken with the group theoretical weight matrix μ used elsewhere in the paper. For Bii we have Bii ¼ bi, we can
now rewrite the EOM as

2μ2i ¼ u0b2i þ v0
XN
k¼1

b2k þ
m2

2
; ð137Þ

while the corresponding “charges” read

Ji ≡ ðQLÞii ¼ −2Vb2i μi: ð138Þ

The classical energy E is given by evaluating the cylinder Lagrangian Lcyl in (69) with an appropriate boundary term

−
P

N
i¼1 μi

∂Lcyl

∂μi , which implements the charge fixing. We obtain

E
V
¼ Lcyl −

XN
i¼1

μi
∂Lcyl

∂μi ¼ 4
XN
i¼1

b2i μ
2
i þ u0

XN
i¼1

b4i þ v0

�XN
i¼1

b2i

�2

þm2
XN
i¼1

b2i : ð139Þ

We proceed by considering a 2-parameters family of charge configurations

QL;J;s ¼ diagðJ; J;…|fflfflffl{zfflfflffl}
s

;−J;−J;…|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s

; 0; 0;…|fflfflffl{zfflfflffl}
N−2s

Þ: ð140Þ

For N ¼ M and varying s, this charge configuration interpolates between the ones considered in [16] (s ¼ 1; given in
Eq. (125) and [12] (s ¼ N=2). As we will see later, at fixed CSD we can access the anomalous dimension of operators
transforming in various irreducible representations by varying the parameters s and J. This is the first time that the fixed-
charge semiclassical methods are used to access the scaling dimension of operators with the same CSD and different
irreducible representation by varying the charge configuration.
The classical energy for this charge configuration can be easily computed along the lines of Sec. II. By parametrizing the

ME and B matrices as follow

μi ¼
8<
:

μ i ¼ 1;…; s;

−μ i ¼ sþ 1;…; 2s;

0 i ¼ 2sþ 1;…; N;

bi ¼
�
b i ¼ 1;…; 2s;

0 i ¼ 2sþ 1;…; N;
ð141Þ

the charge condition and EOM become

J ¼ 2Vμb2; 2μ2 ¼ ðu0 þ 2sv0Þb2 þ
m2

2
: ð142Þ

From Eq. (124) we have that the CSD in four dimensions is Q̄ ¼ 4sJ. Since J ≥ 1=2, this implies that the results obtained
in [12] for the case M ¼ N, s ¼ N=2 make sense only when Q̄ ≥ N and not for arbitrary values of Q̄ and N.
It is useful to define rescaled (renormalized) ’t Hooft couplings as

Ah ¼ J
uN
ð4πÞ2 ; Av ¼ J

2svN
ð4πÞ2 : ð143Þ

Then the above equations imply

2
μ

m
¼ 3

1
3 þ x

2
3

3
2
3x

1
3

; x ¼ 72

N
ðAh þAvÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ

�
72

N
ðAh þAvÞ

�
2

s
; ð144Þ
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and our semiclassical expansion takes the form

ΔOJ;s
¼

X
k¼−1

1

Jk
ΔkðA�

h;A
�
vÞ: ð145Þ

The leading order in the semiclassical expansion follows straightforwardly from the results above by setting d ¼ 4 and
Ah;v ¼ A�

h;v, where the star denotes the value of the couplings at the FP. We have

Δ−1ðA�
h;A

�
vÞ ¼

sN
144ðA�

h þA�
VÞ

1

x�
4
3

ð
ffiffiffi
3

3
p

x�8=3 − 3x�4=3 þ 6
ffiffiffi
3

3
p

x�2=3 þ 232=3x�2 þ 35=3Þ: ð146Þ

The expansion for small A�
h;v reads

JΔ−1ðA�
h;A

�
vÞ ¼ Q̄

�
1þ 4

�
A�

h þA�
v

N

�
− 32

�
A�

h þA�
v

N

�
2

þ 512

�
A�

h þA�
v

N

�
3

þO
�
A�

h þA�
v

N

�
4
�
: ð147Þ

Notice that the leading order depends neither onM nor N when rewritten in terms of the original couplings u� and v�. This
is because at the classical level only the fields which take a nonzero vev contribute and whose number depends on s.
Before proceeding with the computation of Δ0, it is useful to study the induced symmetry breaking pattern. The explicit

breaking can in general be deduced by adding the charge-fixing boundary term to the Lagrangian and check which
symmetries it preserves. We obtain

SUðNÞL ⊗ SUðMÞR ⊗ Uð1ÞA ⇒
explicit

CðRÞL ⊗ SUðMÞR ⊗ Uð1ÞA; ð148Þ

where CðRÞL is the SUðNÞL subgroup that commutes with P1 ¼ diagð1; 1;…|fflfflffl{zfflfflffl}
s

;−1;−1;…|fflfflfflfflfflffl{zfflfflfflfflfflffl}
s

; 0; 0;…|fflfflffl{zfflfflffl}
N−2s

Þ and it is explicitly

given by

CðRÞL ¼ SUðsÞLu ⊗ SUðsÞLd ⊗ SUðN − 2sÞLd ⊗ Uð1ÞL3 ⊗ Uð1ÞL5; ð149Þ

where SUðsÞLu and SUðsÞLd are rotations in the first and second upper s × s blocks of SUðNÞL while SUðN − 2sÞLd
rotates the lower N − 2s × N − 2s block. Finally Uð1ÞL3 and Uð1ÞL5 are generated, respectively, by P1 and
P2 ¼ diagð1; 1;…|fflfflffl{zfflfflffl}

2s

; 0; 0;…|fflfflffl{zfflfflffl}
N−2s

Þ and act on the left factor.

The spontaneous symmetry breaking is determined by the vacuum configuration, which is proportional to the P2 matrix
defined above. We have

CðRÞL ⊗ SUðMÞR ⊗ Uð1ÞA⇒
SSB

SUðsÞLu ⊗ SUðsÞLd ⊗ SUðN − 2sÞLd ⊗ Uð1ÞD3 ⊗ Uð1ÞD5 ⊗ SUðM − 2sÞRd ⊗ Uð1ÞA6:
ð150Þ

Here,Uð1ÞD3;5 are the diagonal subgroup ofUð1ÞL3;5 ⊗ Uð1ÞR3;5 whereUð1ÞR3;5 are the counterparts ofUð1ÞL3;5 acting on
the right factor. Finally, SUðM − 2sÞRd is defined as the SUðM − 2sÞ rotation in the lower M − 2s ×M − 2s block of
SUðMÞR. To define Uð1ÞA6, we first introduceUð1ÞL6 which is generated by diagð0; 0;…|fflfflffl{zfflfflffl}

2s

; 1; 1;…|fflfflffl{zfflfflffl}
N−2s

Þ and acts on the left, and

Uð1ÞR6 which is generated by diagð0; 0;…|fflfflffl{zfflfflffl}
2s

; 1; 1;…|fflfflffl{zfflfflffl}
M−2s

Þ and acts on the right.Uð1ÞA6 is then defined as the axial part ofUð1ÞL6

and Uð1ÞR6. Note the diagonal part of Uð1ÞL6 and Uð1ÞR6 is not independent from Uð1ÞD5 and is thus not counted.
Altogether, the number of broken generators is

M2 − 1 − ½ðM − 2sÞ2 − 1� ¼ 4sðM − sÞ: ð151Þ
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We parametrize the fluctuations as

Hðτ;xÞ ¼ e2iMEτðB̄þΦðτ;xÞÞ; ð152Þ

where Φðτ;xÞ is a N ×M matrix. We have

Lquad ¼
XN
i¼1

XM
j¼1

∂μΦij∂μΦ�
ij − 2μ

�Xs

i¼1

XM
j¼1

ðð∂0ΦijÞΦ�
ij −Φij∂0Φ�

ijÞ −
X2s
i¼sþ1

XM
j¼1

ðð∂0ΦijÞΦ�
ij −Φij∂0Φ�

ijÞ
�

þ 2u0b2
XN
i¼1

X2s
j¼1

Φ�
ijΦij þ u0b2

X2s
i¼1

X2s
j¼1

ðΦijΦji þΦ�
ijΦ�

jiÞ þ v0b2
�X2s
i¼1

ðΦii þΦ�
iiÞ
�
2

þ ð4sv0b2 þm2Þ
XN

i¼2sþ1

XM
j¼1

ΦijΦ�
ij: ð153Þ

It is useful to write Φ in block form as

Φ ¼

0
B@ Φð11Þ

2s×2s Φð12Þ
2s×ðM−2sÞ

Φð21Þ
ðN−2sÞ×2s Φð22Þ

ðN−2sÞ×ðM−2sÞ

1
CA: ð154Þ

The blocks decouple and we can decompose Lquad as Lquad ¼ Lð11Þ
quad þ Lð12Þ

quad þ Lð21Þ
quad þ Lð22Þ

quad. The dispersion relations of
the fluctuations read

ω1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2

q
4sðN − 2sÞ d:o:f:

ω2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þm2

2

q
2ðN − 2sÞðM − 2sÞ d:o:f:

ω3;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2

q
∓ 2μ 2sð2M − 3sÞ d:o:f:

ω5;6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ2 þm2

1

q
� 2μ 2s2 d:o:f:

ω7;8 ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2l þm2

1 þ 16μ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2l þm2

1 þ 16μ2Þ2 − 4J2lðJ2l þm2
1Þ

qr
4s2 − 2 d:o:f:

ω9;10 ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J2l þm2

0 þ 16μ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J2l þm2

0 þ 16μ2Þ2 − 4J2lðJ2l þm2
0Þ

qr
2 d:o:f:; ð155Þ

where

m2
0 ¼ 8μ2 − 2m2; m2

1 ¼ ð8μ2 − 2m2Þ u0
u0 þ 2sv0

; m2
2 ¼ 4sv0b2 þm2: ð156Þ

ω3 describes type II Goldstone bosons while ω8 and ω10 correspond to relativistic type I Goldstone bosons. The remaining
dispersion relations describe gapped modes. It is easy to check that the number of real d.o.f. sums to 2NM while the
counting of Goldstone modes with respect to the number of broken generators is

2 × sð2M − 3sÞ þ 2s2 − 1þ 1 ¼ 4sðM − sÞ; ð157Þ

which agrees with Eq. (151), saturating the Nielsen-Chadha bound. The NLO in the semiclassical expansion is given by the
general formula Eq. (46). Regularization and renormalization are performed as explained in Sec. II, yielding
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Δ0ðA�
h;A

�
vÞ¼ρðx�;M;N;s;A�

h;A
�
vÞþ

1

2

X∞
l¼0

�
Rð1þlÞ2

�X
i
giðM;N;sÞωiðl;x�;A�

h;A
�
vÞ
�

d¼4

þσðl;x�;M;N;s;A�
h;A

�
vÞ
�
;

ð158Þ

where x� has been defined in Eq. (144) while ρðx�;M;N; s;A�
h;A

�
vÞ and σðl; x�;M;N; s;A�

h;A
�
vÞ are given in Appendix.

We checked the cancellation of the divergent terms between Δ−1 and Δ0 as explained above Eq. (20). For Ah ¼ 0 the
result reduces to its counterpart in the Oð2NMÞ model. Finally, for N ¼ M and s ¼ 2 we obtain the results in [16].
The perturbative expansion for small t’ Hooft couplings reads

Δ0ðA�
h;A

�
vÞ ¼ −

4

NðA�
h þA�

vÞ
½2sA�2

h ðM þ N þ 7sÞ

þA�
hA

�
vð2sð2ðM þ NÞ þ sÞ þ 7Þ þ ðMN þ 5ÞA�2

v �

−
16

N2
½2sA�2

h ðM þ N − sÞ þ 4A�
hA

�
vðsðM þ N − 2sÞ − 1Þ þ ðMN − 3ÞA�2

v �

þ 128

N3
½2A�2

h A�
vð6ζð3ÞðsðM þ N þ 5sÞ þ 2Þ þ 3Msþ 3Ns − 28s2 − 13Þ

þA�
hA

�2
v ð12ζð3ÞðsðM þ NÞ þ 3Þ þMN þ 4Msþ 4Ns − 24s2 − 44Þ

þ 2sA�3
h ð2ζð3ÞðM þ N þ 18sÞ þM þ N − 16sÞ

þA�3
v ð2ζð3ÞðMN þ 7Þ þMN − 18Þ� þOðA�4

v;hÞ: ð159Þ

From the above results, we can also extract the full 1-loop scaling dimension, which we rewrite as a power series in the
couplings

Δ1−loop
QJ;s

¼ Q̄

�
1 −

ϵ

2

�
þ 4

N
ðA�

hðQ̄ − 2s2Þ þ ðQ̄ − 1ÞA�
vÞ ¼ Q̄

�
1 −

ϵ

2

�
þ Q̄ðQ̄ − 2s2Þ

ð4πÞ2s u� þ 2Q̄ðQ̄ − 1Þ
ð4πÞ2 v�; ð160Þ

and depends neither on N nor M when rewritten in terms of the original couplings u and v. We conclude that for the
considered family of charge configurations, there is no scaling dimension degeneracy in the perturbative regime and thus the
corresponding operators transform in different irreducible representations. These are accessed by varying s at fixed CSD Q̄.
In the next section, we will study few concrete examples by setting Q̄ ¼ 2, 4, 8. To this end, it is useful to consider one more
charge configuration given by

QL ¼ diagf−2J; J; J; 0;…; 0g: ð161Þ

The ME and B matrices can be parametrized as

ME ¼ −idiagfμ1; μ2; μ2; 0;…; 0g; B ¼ diagfb1; b2; b2; 0;…; 0g: ð162Þ

The EOM and the charge conditions read

J ¼ Vμ1b21; 2μ21 ¼ u0b21 þ v0ðb21 þ 2b22Þ þ
m2

2
;

J ¼ −2Vμ2b22; 2μ22 ¼ u0b22 þ v0ðb21 þ 2b22Þ þ
m2

2
: ð163Þ

The physical solution is

μ1 ¼
2Jμ2m3v0

C
; b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

4π2μ2v0

s
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

Jm3

4π2μ2

s
; ð164Þ

where C ¼ Jm3ðu0 þ 2v0Þ þ 8π2μ32 − 2π2μ2m2 and μ2 solves the following equation
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−
16J3μ22m

9v30
C3

þ Jm3ð− 2Jm3v2
0

C þ u0 þ v0Þ
2π2μ2

þ Jm5v0
C

¼ 0: ð165Þ

We choose the solution of the above equation such that it reproduces the Oð2NMÞ limit when u0 ¼ 0. The perturbative
expansion of this solution reads

μ2¼−
m
2
−
Jmðu0þ4v0Þ

4π2
þJ2mð3u20þ28u0v0þ48v20Þ

16π4
þJ3ð−4mu30−67mu20v0−240mu0v20−256mv30Þ

16π6
þOððu0JÞ4;ðv0JÞ4Þ:

ð166Þ

The range of validity of this solution is determined by the constraint C < 0, which we found out to be always satisfied in the
perturbative regime. The leading contribution in the semiclassical approximation is given by the classical energy (139)
evaluated on this solution:

JΔ−1 ¼ Q̄

�
1þ Q̄ð3u� þ 8v�Þ

64π2
−
Q̄2ð5u�2 þ 24u�v� þ 32v�2Þ

1024π4
þ Q̄3ð9u�3 þ 59u�2v� þ 144u�v�2 þ 128v�3Þ

8192π6

þOððu�Q̄Þ5; ðv�Q̄Þ5Þ
�
; ð167Þ

where we set the couplings to their FP values and Q̄ ¼ 8J is the classical scaling dimension, as expected from Eq. (124). We
checked that we recover the Oð2NMÞ case when u ¼ 0. To compute the fluctuation spectrum, we expand around the
classical trajectory as in Eq. (152). The result for the dispersion relations reads

ω̃1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ21

q
2ðN − 3Þ d:o:f:

ω̃2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ22

q
4ðN − 3Þ d:o:f:

ω̃3;4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ21

q
� 2μ1 2 × ðM − 3Þ d:o:f:

ω̃5;6 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 4μ22

q
� 2μ2 2 × 2ðM − 3Þ d:o:f:

ω̃7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þm2

3

q
2ðN − 3ÞðM − 3Þ d:o:f:

ω̃8;9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2l þ 2ub22 þ 8μ22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ2l þ 2ub22 þ 8μ22Þ2 − J2lðJ2l þ 4ub22Þ

qr
2 × 3 d:o:f:

ω̃10;11;12;13∶ðJ2l − ω2 � 2ωðμ1 − μ2ÞÞ½J2l − ω2 � 2ωðμ1 − μ2Þ þ 2uðb21 þ b22Þ�
� 4uωðb21 − b22Þðμ1 þ μ2Þ − 4ω2ðμ1 þ μ2Þ2 ¼ 0 2 × 4 d:o:f:

ω̃14;15;16;17∶ detDAðω; J2lÞ ¼ 0 4 d:o:f:; ð168Þ

where m2
3 ¼ 2v0ðb21 þ 2b22Þ þm2 and

DAðω; J2lÞ ¼

0
BBBBBB@

ω2 − J2l þ z00 − 4
3
iðμ1 þ 2μ2Þω z02 − 4

3

ffiffiffi
2

p
iðμ1 − μ2Þω

4
3
iðμ1 þ 2μ2Þω ω2 − J2l

4
3

ffiffiffi
2

p
iðμ1 − μ2Þω 0

z02 − 4
3

ffiffiffi
2

p
iðμ1 − μ2Þω ω2 − J2l þ z22 − 4

3
ið2μ1 þ μ2Þω

4
3

ffiffiffi
2

p
iðμ1 − μ2Þω 0 4

3
ið2μ1 þ μ2Þω ω2 − J2l

1
CCCCCCA; ð169Þ
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z00 ¼ −
4

3
½ðu0 þ v0Þb21 þ 4v0b1b2 þ 2ðu0 þ 2v0Þb22�; z02 ¼ −

4

3

ffiffiffi
2

p
ðb1 − b2Þ½ðu0 þ v0Þb1 þ ðu0 þ 2v0Þb2�;

z22 ¼ −
2

3
½4ðu0 þ v0Þb21 − 8v0b1b2 þ 2ðu0 þ 2v0Þb22�: ð170Þ

Although not obvious, for u ¼ 0 we recover the fluctuation
spectrum of the Oð2NMÞ model discussed in Sec. II B
when k ¼ 3M charges have been fixed. In particular one of
the last four d.o.f. reduces to the Uð1Þ conformal mode.
We were not able to find an analytical expression for Δ0

in this case. Instead, we computed it numerically at fixed
values of parameters and as a function of ϵ. The results are
given in the next section.

B. On how to identify the fixed-charge operators

In this section, we focus on identifying the fixed charge
operators associated with a certain charge configuration. In
particular, we propose a practical identification procedure
which we outline by performing detailed examples in the
UðNÞ × UðMÞ model. Since the MSCD assumption can be
violated at large coupling, the procedure is valid only when
the anomalous dimensions of the operators involved are
much smaller than one, i.e., in the perturbative regime.
Since in weakly coupled theories it is easy to find the
explicit form of the MSCD operator once the irrep in which
it transforms is known, we focus on identifying the latter.
We first list the conclusions below before conducting a
more detailed discussion.

(i) The representation of the fixed charge operators can
be uniquely determined when a charge configuration
is chosen. This conclusion is based on the three
conditions summarized in Propositions 1–3 in
Sec. III D.

(ii) To determine the representation of the fixed charge
operators, both group theory and the actual semi-
classical computations of the scaling dimensions
should be implemented. Group theory alone is not
sufficient.

We start our analysis by considering operators with
Q̄ ¼ 2; Eq. (124) implies that we can build only one N × N
charge matrix

QL;1=2 ¼ diagf−1=2; 1=2; 0;…; 0g: ð171Þ

This charge configuration is of the special type consid-
ered in Eq. (125). Then we can immediately identify the
irreducible representation in which the corresponding fixed
charge operator sits as the bi-adjoint representation
ðAdj;AdjÞ ¼ ðN2 − 1;M2 − 1Þ. The underlying reason
is that, at the level of operators with Q̄ ¼ 2 fields, only
this representation contains the weight (171). In the
perturbative regime, the corresponding operator can be

written as Tr½TaHTbH†�. In [16], the anomalous dimension
of this operator has been computed in the semiclassical
expansion for N ¼ M and the result has been validated via
a diagrammatic calculation at the 1-loop level. The result
for general N, M has been given in the previous section,
being a special case (s ¼ 1, J ¼ 1=2) of the charge
configuration (140).
The simplest nontrivial example is obtained by fixing

N ¼ M ¼ 3 and considering operators with CSD Q̄ ¼ 4. It
has been proved in the previous section (Proposition 1) that
the fixed charge operators belong to the irreducible
representations ðΓL;ΓRÞ of SUðNÞL × SUðNÞR where
ΓL ¼ ΓR ¼ ðAdjÞQ=2. Thus, in the case at hand, the
operators live in the decomposition of the tensor product
8 ⊗ 8, which reads

8 ⊗ 8 ¼ 1 ⊕ 2ð8Þ ⊕ 10 ⊕ 10 ⊕ 27: ð172Þ

To construct all the relevant charge configurations, it
needs to satisfy the following three requirements:

1. The matrix of charge configuration is diagonal and
traceless, i.e., trQ ¼ 0;

2. The diagonal elements of the charge configuration
matrix can only be integer or half-integer (Proposi-
tion 3);

3. The sum of the absolute value of the diagonal
elements is equal to Q̄=2 ¼ 2 (Proposition 4).

By following the above three constraints, we can only
construct two different charge matrices:

Qð4Þ
3A ¼

0
B@1 0 0

0 −1 0

0 0 0

1
CA; Qð4Þ

3B ¼

0
B@1 0 0

0 −1=2 0

0 0 −1=2

1
CA:

ð173Þ
It was shown in the previous section that the weight and the
charge satisfy: μ ¼ 2Q. The nonzero roots of SUð3Þ are

α1 ¼

0
B@ 1 0 0

0 −1 0

0 0 0

1
CA; α2 ¼

0
B@ 0 0 0

0 1 0

0 0 −1

1
CA:

α3 ¼ α1 þ α2; ð174Þ

and −α1, −α2, −α3. We, therefore, obtain μð4Þ3A ¼ 2α1 and

μð4Þ3B ¼ 2α1 þ α2. By using the Cartan matrix of the SUð3Þ
algebra
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ASUð3Þ ¼
�

2 −1
−1 2

�
; ð175Þ

we obtain

α1 ¼ 2w1 − w2; α2 ¼ −w1 þ 2w2 ð176Þ

where w1 and w2 are the fundamental weights of SUð3Þ.
Then we can decompose the weights μð4Þ3A ; μ

ð4Þ
3B as

μð4Þ3A ¼ 4w1 − 2w2 ¼ ð4;−2Þ;
μð4Þ3B ¼ 3w1 ¼ ð3; 0Þ: ð177Þ

The next step is to determine the representations containing
the above weights. By analyzing the weight diagrams of the
irreducible representation appearing in the rhs of (172), we
see that ð4;−2Þ only appears in27while (3,0) appears in both
27 and 10. Thus, we can set the following correspondence

Qð4Þ
3A∶ð27; 27Þ; Qð4Þ

3B∶
� ð27; 27Þ
ð10; 10Þ ; ð178Þ

wherewe have already excluded asymmetric representations
such as ð27; 10Þ since they do not appear in the decom-
position of the four indices traceless symmetric Oð2NMÞ
tensor (Proposition 2). Notice that Qð4Þ

3A is again of the type
(125) and, indeed, it can be directly uniquely associated
with ð27; 27Þ.
Using group theory only, (178) is the best we can

achieve. To further disentangle the representations, we
need to employ the fixed-charge semiclassical method,
computing at least the first two orders in the semiclassical
expansion for both charge matrices. Then, if the corre-
sponding scaling dimensions at the fixed point are different

functions of ϵ11 we have that Qð4Þ
3B corresponds to ð10; 10Þ.

The scaling dimension of Qð4Þ
3A at NLO in the semiclassical

expansion has been computed analytically in the previous
section (s ¼ J ¼ 1, N ¼ M ¼ 3 case of Eq. (140) while

Qð4Þ
3B corresponds to the J ¼ 1=2, N ¼ M ¼ 3 case of

Eq. (161) and thus the associated scaling dimension has
been obtained numerically. The results for the scaling
dimensions at NLO are shown in Fig. 1 where the black

line and red dots denote, respectively, the cases Qð4Þ
3A and

Qð4Þ
3B . The error bar on the red dots takes into account all the

potential numerical errors.12 Clearly, the two scaling
dimensions are different functions of ϵ, and thus we can
unequivocally associate representations and charges as

Qð4Þ
3A∶ ð27; 27Þ; Qð4Þ

3B∶ ð10; 10Þ: ð179Þ

Notice that the scaling dimension corresponding to Qð4Þ
3B is

smaller than the one associated withQð4Þ
3A , consistently with

the minimal scaling dimension criteria selecting the fixed-
charge operators.
As a third example, we keep Q̄ ¼ 4 and we set

N ¼ M ¼ 4. We can now build three independent charge
matrices

Qð4Þ
4A ¼

0
BBB@

1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

1
CCCA;

Qð4Þ
4B ¼

0
BBB@

1 0 0 0

0 −1=2 0 0

0 0 −1=2 0

0 0 0 0

1
CCCA;

Qð4Þ
4C ¼

0
BBB@

1=2 0 0 0

0 −1=2 0 0

0 0 1=2 0

0 0 0 −1=2

1
CCCA: ð180Þ

To connect this example with our semiclassical calcula-

tions, we note that Eq. (140) encompassesQð4Þ
4A (s ¼ J ¼ 1,

FIG. 1. The results for the real part of the scaling dimension at
the fixed point for the Uð3Þ × Uð3Þ operators with CSD Q̄ ¼ 4,

carrying the charges Qð4Þ
3A (black line) and Qð4Þ

3B (red dots) as a
function of ϵ. The error bars encode the numerical error in

evaluating Δ0 for Qð4Þ
3B .

11In the small ’t Hooft coupling regime we also expect that the
scaling dimension corresponds to Qð4Þ

3B is smaller than that of
Qð4Þ

3A . Since the fixed point values are complex, bigger/smaller
refers to the real part of the scaling dimensions.

12The main source of error comes from performing a numerical
Taylor expansion in ϵ of the one-loop functional determinant
during the renormalization procedure. We estimate the numerical
error as the difference of the scaling dimensions of Qð4Þ

3B with the
one of Qð4Þ

3A in the limiting case of u → 0. As we know, in this
case, the scaling dimensions for Qð4Þ

3B and Qð4Þ
3A should be equal

and coincide with the Oð18Þ result.
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N ¼ M ¼ 4) andQð4Þ
4C (s ¼ 2, J ¼ 1=2,N ¼ M ¼ 4) while

Eq. (161) reduces to Qð4Þ
4B when J ¼ 1=2 and N ¼ M ¼ 4.

By denoting the three fundamental weights of SUð4Þ as
W1, W2, and W3, we can express the weights associated
with the above charge matrices as

μð4Þ4A ¼ 4W1 − 2W2 ¼ ð4;−2; 0Þ;
μð4Þ4B ¼ 3W1 −W3 ¼ ð3; 0;−1Þ;
μð4Þ4C ¼ 2W1 − 2W2 þ 2W3 ¼ ð2;−2; 2Þ: ð181Þ

The tensor product of two adjoint representations of SUð4Þ
decomposes as

15 ⊗ 15 ¼ 1 ⊕ 2ð15Þ ⊕ 200 ⊕ 45 ⊕ 45 ⊕ 84: ð182Þ

Inspecting the weight diagram of the above representations,
we obtain the correspondence summarized below:

Qð4Þ
4A∶ ð84;84Þ; Qð4Þ

4B∶
�ð84;84Þ
ð45;45Þ; Qð4Þ

4C∶

8>><
>>:
ð84;84Þ
ð45;45Þ
ð200;200Þ

:

ð183Þ

Again there is one charge matrix,Qð4Þ
4A , which is of the type

considered in (125) and thus corresponds to a unique
representation, ð84; 84Þ. Then one can proceed by comput-

ing the scaling dimensions associated withQð4Þ
4A andQð4Þ

4B in

the semiclassical expansion. If they are different then Qð4Þ
4B

corresponds to ð45; 45Þ and we can proceed by computing

the scaling dimension corresponding to Qð4Þ
4C . If the latter is

also different from the previous ones, then we can further
conclude that the operator with scaling dimension ΔQð4Þ

4C
is

in the ð200; 200Þ representation. This is actually the case, as
can be seen from the results for the real13 and imaginary
part of scaling dimensions at NLO, which are shown in
Figs. 2 and 3, respectively. Due to the numerical error, in
this case it is necessary to look also at the imaginary part to
disentangle the results. If the results for ΔQð4Þ

4A
were the

same, we would not have been able to identify the

representation associated with Qð4Þ
4B , and would have been

necessary to compute higher orders in the semiclassical
expansion to check whether they broke the degeneracy or
not. However, we could always deduce the irrep related to

Qð4Þ
4C as ð200; 200Þ.14
In conclusion, we have

Qð4Þ
4A∶ ð84;84Þ; Qð4Þ

4B∶ ð45;45Þ; Qð4Þ
4C∶ð200;200Þ: ð184Þ

FIG. 2. The results for the real part of scaling dimension for the
Uð4Þ × Uð4Þ operators with CSD Q̄ ¼ 4, carrying the charges

Qð4Þ
4A (black line), Qð4Þ

4B (red dots) and Qð4Þ
4C (blue lines) as a

function of ϵ. The error bars encode the numerical error in

evaluating Δ0 for Qð4Þ
4B .

FIG. 3. The imaginary part of the scaling dimension for the
Uð4Þ × Uð4Þ operators with CSD Q̄ ¼ 4, carrying the charges

Qð4Þ
4A (black line),Qð4Þ

4B (red dots) andQð4Þ
4C (blue lines) at the fixed

point values as a function of ϵ. The error bars encode the

numerical error in evaluating Δ0 for Qð4Þ
4B .

13From Fig. 2, one could deduce that Re½Δ
Qð4Þ

4B
� > Re½Δ

Qð4Þ
4A
�, in

violation of the minimal scaling dimension criteria. This apparent
puzzle can be solved by taking into account the numerical errors.
In addition, the fact that the comparison of the magnitude of the
scaling dimensions at small ϵ should in principle be performed in
the expansion of conventional perturbation theory rather than in
the semiclassical expansion. The difference is of order OðQ̄ϵ2Þ,
but prefactors may magnify it and invert the scaling dimension
hierarchy. By making use of the full 2-loop result of [16,68], we
estimated a difference between 0.04% and 0.5% for Δ

Qð4Þ
4A

at

ϵ ¼ 0.1. However, the difference in Δ
Qð4Þ

4B
for the same value of

epsilon may be much larger.

14If Re½Δ
Qð4Þ

4A
� ¼ Re½Δ

Qð4Þ
4B
�, it follows that Re½Δð45;45Þ� ≥

Re½Δð84;84Þ�, but since Re½ΔQð4Þ
4C
� < Re½Δð84;84Þ�, then Re½Δ

Qð4Þ
4C
� ¼

Re½Δð200;200Þ�
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As the last example, we keep N ¼ M ¼ 4 and consider Q̄ ¼ 8. The fourth tensor power of the adjoint representation
decomposes as

15⊗4 ¼ 9ð1Þ ⊕ 43ð15Þ ⊕ 30ð200Þ ⊕ 9ð35Þ ⊕ 9ð35Þ ⊕ 39ð45Þ ⊕ 39ð45Þ ⊕ 42ð84Þ
⊕ 4ð105Þ ⊕ 39ð175Þ ⊕ 3ð189Þ ⊕ 3ð189Þ
⊕ 24ð256Þ ⊕ 24ð256Þ ⊕ 6ð280Þ ⊕ 6ð280Þ ⊕ 12ð3000Þ ⊕ 2ð3600Þ ⊕ 2ð3600Þ ⊕ 9ð729Þ
⊕ ð825Þ ⊕ 3ð875Þ ⊕ 3ð875Þ: ð185Þ

We can build seven charge matrices

Qð8Þ
4A ¼ diagf2;−2; 0; 0;…; 0g; Qð8Þ

4B ¼ diagf−2; 1; 1; 0;…; 0g;
Qð8Þ

4C ¼ diagf1;−1; 1;−1; 0;…; 0g; Qð8Þ
4D ¼ diagf2;−3=2;−1=2; 0;…; 0g;

Qð8Þ
4E ¼ diagf2;−1;−1=2;−1=2; 0;…; 0g; Qð8Þ

4F ¼ diagf3=2; 1=2;−3=2;−1=2; 0;…; 0g;
Qð8Þ

4G ¼ diagf3=2; 1=2;−1;−1; 0;…; 0g: ð186Þ

The corresponding weights, expressed in the fundamental weight basis, read

μð8Þ4A ¼ ð8;−4; 0Þ; μð8Þ4B ¼ ð6; 0;−2Þ; μð8Þ4C ¼ ð4;−4; 4Þ; μð8Þ4D ¼ ð7; 2;−1Þ;
μð8Þ4E ¼ ð6;−1; 0Þ; μð8Þ4F ¼ ð2; 4;−2Þ; μð8Þ4G ¼ ð2; 3; 0Þ: ð187Þ

By analyzing the weight diagrams and checking the decomposition of the Oð2NMÞ traceless symmetric tensor of rank
Q ¼ 8, we obtain the correspondence below

Qð8Þ
4A∶ ð825; 825Þ; Qð8Þ

4D∶

( ð825; 825Þ
ð875; 875Þ ; Qð8Þ

4B∶

8>><
>>:

ð825; 825Þ
ð875; 875Þ
ð3600; 3600Þ

; Qð8Þ
4F∶

8>><
>>:

ð825; 825Þ
ð875; 875Þ
ð729; 729Þ

;

Qð8Þ
4E∶

8>>>>><
>>>>>:

ð825; 825Þ
ð875; 875Þ
ð3600; 3600Þ
ð189; 189Þ

Qð8Þ
4G∶

8>>>>>>>><
>>>>>>>>:

ð825; 825Þ
ð875; 875Þ
ð729; 729Þ
ð3600; 3600Þ
ð280; 280Þ

; Qð8Þ
4C∶

8>>>>>>>>><
>>>>>>>>>:

ð825; 825Þ
ð875; 875Þ
ð729; 729Þ
ð3600; 3600Þ
ð280; 280Þ
ð105; 105Þ

: ð188Þ

If all the corresponding semiclassical computations give
different functions of ϵ as result, then we can uniquely
identify all the irreps where the fixed charge operators sit.
These are the representations outlined with underline above
in Eq. (188). To be more precise, to allow a complete
identification it is not needed that all the scaling dimensions

differ; for instance, the results for Qð4Þ
4B and Qð4Þ

4F or for Qð4Þ
4E

and Qð4Þ
4F can be equal.

To summarize, a general identification procedure con-
sists in inspecting the weight diagrams of the various

representations in order to obtain correspondences as
Eq. (188) and then looking if the corresponding scaling
dimensions are degenerate or not, following a sort of
“identification chain” that starts from “highest weight”
charge matrices of the form (125) for which there is only
one candidate for the corresponding irrep. In the second
step, the choice will be between this irrep plus one new
candidate, and so on. We analyzed many other examples
and our findings strongly suggest that this identification
procedure can always be implemented and fails only in
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presence of particular degeneracies in the semiclassical
results.

V. CONCLUSIONS

We introduced a general strategy apt at determining the
relation between a given large charge configuration and the
associated operators. In fact, we demonstrated how, varying
charge configurations, we could determine the specific
anomalous dimensions of distinct operators transforming
according to a variety of irreducible representations of the
non-Abelian symmetry group going beyond traditional
diagrammatical computations.
To demonstrate the usefulness of our methodology,

which fuses semiclassical methods with group theoretical
considerations, we determined the anomalous dimensions
of several composite operators to the next-to-leading order
in the semiclassical expansion of the UðNÞ ×UðMÞ model
in 4 − ϵ dimensions.
Our work brings us one step closer to investigating the

dynamics of theories similar in structure to the standard
model of particle interactions which, in many respects, can
be seen as a slight deformation of a CFT [69,70].
Additionally one can envision computing processes involv-
ing large number of SM Higgses useful for the next
generation of colliders [71–73] that have attracted past
[74,75] and recent attention [76].
In fact, critical phenomena play an important role also

for applications to social and health sciences. For example,

it has been recently shown that (near) fixed points are a
useful way to organize the dynamics and diffusion of
infectious diseases. The approach, known as the epidemio-
logical renormalization group approach [77] has been
shown to emerge in [78] from either stochastic (percolation
models, random walks, diffusion models) or deterministic
(compartmental-type) models that themselves can be
viewed as mean field theories at criticality [79].
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APPENDIX: THE FUNCTIONS ρðx�;M;N;s;A�
h;A

�
vÞ

AND σðl;x�;M;N;s;A�
h;A

�
vÞ

In this Appendix, we provide explicit expression for the
functions appearing in Eq. (158). Recalling that

x� ¼ 72
N ðA�

h þA�
vÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3þ ð72N ðA�

h þA�
vÞÞ2

q
, we have

ρðx�;M;N; s;A�
h;A

�
vÞ ¼ ρ1ðx�;M;N; s;A�

h;A
�
vÞ þ ρ2ðx�;M;N; s;A�

h;A
�
vÞ ðA1Þ

ρ1ðx�;M;N; s;A�
h;A

�
vÞ ¼

1

144x�4=3ðAh þA�
vÞ2

× ½A�
hA

�
vc1ðx�;M;N; sÞ þA�

h
2c2ðx�;M;N; sÞ þA�

v
2c3ðx�;M;N; sÞ� ðA2Þ

ρ2ðx�;M;N; s;A�
h;A

�
vÞ ¼ ðM − 2sÞðN − 2sÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�

h þ 4ðx�2=3þ ffiffi
33

p Þ2A�
v

3
ffiffi
33

p
x�2=3

A�
h þA�

v

vuut
þ s2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x�2=3ðA�
h þA�

vÞ

s
½6ð232=3x�4=3 þ 9x�2=3 þ 6

ffiffiffi
3

3
p

ÞA�
h

þ 4ð32=3x�4=3 þ 6x�2=3 þ 3
ffiffiffi
3

3
p

ÞA�
v�1=2

þ 2s2 − 1

2
d1ðx�;A�

h;A
�
vÞ þ

2s2 − 1

2
d2ðx�;A�

h;A
�
vÞ

þ 4sðx�2=3 þ ffiffiffi
33

p ÞðM − NÞ
32=3

ffiffiffiffiffi
x�3

p þ 8sðx�2=3 þ ffiffiffi
33

p ÞðN − 2sÞ
32=3

ffiffiffiffiffi
x�3

p þ 2s2ðx�2=3 þ ffiffiffi
33

p Þ
32=3

ffiffiffiffiffi
x�3

p ðA3Þ

where the underlined functions c1, c2, c3, d1, d2 are defined as follows
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c1ðx�;M;N; sÞ ¼ −2 × f2M½102Nx�4=3 þ 24
ffiffiffi
3

3
p

Nx�2=3 þ 832=3Nx�2

þ sð16
ffiffiffi
3

3
p

x�8=3 þ 291x�4=3 þ 216
ffiffiffi
3

3
p

x�2=3 þ 7232=3x�2 þ 4832=3Þ�
þ 2Nsð16

ffiffiffi
3

3
p

x�8=3 þ 291x�4=3 þ 216
ffiffiffi
3

3
p

x�2=3 þ 7232=3x�2 þ 4832=3Þ
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ffiffiffi
3

3
p

x�8=3 þ 753x�4=3 þ 552
ffiffiffi
3

3
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ffiffiffi
3

3
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3
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3

3
p
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Finally, the σ function is given by

σðl; x�;M;N; s;A�
h;A

�
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�
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