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Compositional stability
of sediment microbial
communities during a
seagrass meadow decline
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Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Utrecht
University, Den Burg, Netherlands
The presence of seagrass shapes surface sediments and forms a specific

environment for diverse and abundant microbial communities. A severe

decline of Cymodocea nodosa, a widespread seagrass species in the

Mediterranean Sea, has been documented. To characterise and assess the

changes in microbial community composition during the decline of a

Cymodocea nodosa meadow, Illumina MiSeq sequencing of the V4 region of

the 16S rRNA gene was performed. Samples of surface sediments from two

sites, one without any vegetation and one with a declining Cymodocea nodosa

meadow, were collected at monthly intervals from July 2017 to October 2018.

Microbial communities were stratified by sediment depth and differed between

the vegetated and the nonvegetated site. Although the Cymodocea nodosa

meadow declined to a point where almost no leaves were present, no clear

temporal succession in the community was observed. Taxonomic analysis

revealed a dominance of bacterial over archaeal sequences, with most

archaeal reads classified as Nanoarchaeota , Thermoplasmatota ,

Crenarchaeota, and Asgardarchaeota. The bacterial community was mainly

composed of Desulfobacterota, Gammaproteobacteria, Bacteroidota,

Chloroflexi, Planctomycetota, and Campylobacterota. Our results show that

sediment microbial communities are remarkably stable and may resist major

disturbances such as seagrass meadow decline.

KEYWORDS

sediment microbial communities, Cymodocea nodosa, seagrass meadow decline,
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Introduction

Shallow coastal sediments are often colonized by

seagrasses, which cover approximately 0.1 to 0.2% of the

global ocean (Duarte, 2002). Seagrasses penetrate the

sediment with their roots and rhizomes forming extensive

meadows. The presence of seagrass meadows shapes surface

sediments and provides a specific environment for diverse and

abundant microbial communities (Duarte et al., 2005).

Sediments colonized by seagrasses are considered hotspots

for microbial activity as seagrass meadows enrich the

underlying sediment with organic matter (Duarte et al.,

2005). High organic matter content is mainly achieved by

releasing dissolved organic carbon from seagrass roots and

by trapping organic particles from the water column (Duarte,

2002). Moreover, seagrasses stabilize the underlying sediment,

promoting the accumulation of organic matter and sediment

particles (Fonseca and Kenworthy, 1987; Terrados and Duarte,

2000; van Katwijk et al., 2010). In addition, seagrass beds can

also increase the availability of organic matter through the

decomposition of detached leaves, roots and rhizomes (Jensen

et al., 2007; Liu et al., 2017).

Studies of marine sediment microbial communities

primarily focus on changes in microbial abundance and

activity with sediment depth (Jørgensen and Marshall, 2016;

Petro et al., 2017; Starnawski et al., 2017; Orsi, 2018). Depth-

dependent changes in taxonomic composition have been well

described differentiating surface sediment communities

dominated by Bacteria, especially Proteobacteria, from deeper

communities characterized by Archaea (Orcutt et al., 2011;

Chen et al., 2017; Petro et al., 2017). Coastal surface sediments

colonized by seagrass are not as well investigated due to studies

focusing primarily on rhizosphere communities and only

occasionally including sediment communities for comparison

(Cúcio et al., 2016; Rabbani et al., 2021). Communities in the

rhizosphere are not species-specific and differ from those in the

sediment (Cúcio et al., 2016; Ettinger et al., 2017; Zhang et al.,

2020). One of the main differences is the higher relative

abundance of Desulfobacterota, one of the most abundant

sulphate reducing bacteria in seagrass sediments, in contrast

to the rhizosphere, which is characterized by Epsilon

proteobacteria (Ettinger et al., 2017). When sediment

microbial communities were described, the main focus was

on the differences between vegetated and nonvegetated sites

(Zheng et al., 2019; Sun et al., 2020). In addition, these studies

showed that communities differ even with respect to the

meadow edge (Ettinger et al., 2017). However, little is known

about the response of these communities to seagrass decline.

As only limited information is available on the succession of

microbial communities in seagrass sediments it is hard to
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predict how and if seagrass decline influences the underlying

sediment communities. It was reported that the sulphate-

reducing community in seagrass sediments changes over time

(Smith et al., 2004) and that seagrass sediment microbial

communities change according to nutrient availability

(Guevara et al., 2014). Furthermore, seagrass restoration was

also found to alter the sediment microbial community

(Bourque et al., 2015). These studies suggest that a temporal

community pattern may be observed in sediment communities

of seagrass meadows and that these communities could also

change as a result of seagrass decline.

In the Mediterranean Sea, Cymodocea nodosa is a

widespread seagrass species declining in coastal areas (Ruiz

Fernandez et al., 2009; Tuya et al., 2014; Orlando-Bonaca et al.,

2015). The rhizosphere and epiphytic communities of C.

nodosa have been described (Cúcio et al., 2016; Korlević

et al., 2021a), however, little is known about sediment

communities underlying C. nodosa meadows. The aim of the

present study was to characterize the taxonomic composition

of sediment communities of a C. nodosa meadow and to assess

the temporal dynamics of these communities. As the studied

meadow experienced a major decline (Najdek et al., 2020), we

investigated whether this event affected the sediment microbial

community structure.
Materials and methods

Sampling

Sediment cores were sampled in a declining C. nodosa

meadow (vegetated site) and at an adjacent area without any

vegetation (nonvegetated site) both located in the Bay of Saline,

east coast of the northern Adriatic Sea (45°7'5'' N, 13°37'20'' E).

(Figure 1). One sediment core from each site was collected

monthly from July 2017 to October 2018 (Supplementary

Table S1) by diving using 15 cm long plastic core samplers.

Sediment samples were immediately transported on ice to the

laboratory and stored at −80°C until further processing. A

detailed description of the study site, the decline of the C.

nodosameadow and the dynamics of environmental conditions

during the decline are provided in Najdek et al. (2020). Briefly,

at the beginning of the study the seagrass C. nodosa formed a

large and dense meadow at the vegetated site. Seagrass roots

and rhizomes penetrated into slightly gravelly sandy mud,

while shoots and leaves were present from the southwestern

coastal area up to the central part of the bay which was without

any vegetation. Following the regular vegetation minimum in

November 2017, shoots and leaves started to decline, while

roots and rhizomes persisted longer. At the end of the study,
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after a severe meadow decline at the vegetated site only very

small patches persisted along the shoreline.
DNA isolation

Total DNA from sediment samples was extracted following a

modified (Pjevac et al., 2018) isolation protocol of Zhou et al.

(1996). Prior to DNA isolation, cores were cut into four different

1 cm sections: top (0 – 1 cm), bottom (7 – 8 cm), and two middle

sections: upper middle (1 – 3 cm) and lower middle (3 – 6 cm)

section. Sediment samples were weighted (2 g) avoiding roots and

rhizomes from vegetated cores, mixed with 5.4 ml of extraction

buffer (100 mM Tris [pH 8.0], 100 mM sodium EDTA [pH 8.0],

100 mM Na3PO4 [pH 8.0], 1.5 M NaCl, 1% CTAB) and 10 µl of

proteinase K (20 mg ml-1) and incubated by horizontal shaking at

225 rpm at 37°C for 30 min. Thereafter 1.2 ml of 10% SDS was

added and themixture incubated again by horizontal shaking at 225

rpm at 65°C for 60 min. The supernatant was collected after

centrifugation at 3220 × g at room temperature for 10 min and

mixed with an equal volume of chloroform:isoamyl alcohol (1:1).

The aqueous phase was retrieved after centrifugation at 3220 × g at

room temperature for 10 min. The extraction procedure with the

organic solvent mixture was repeated twice. After the final

extraction 0.6 volumes of isopropanol were added to precipitate

the DNA. The mixture was incubated at 22°C for 60 min and

centrifuged at 3220 × g at room temperature for 45 min. The

obtained pellet was washed twice with 10 ml of chilled 70% ethanol,
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centrifuged at 3220 × g at room temperature for 10 min after each

washing, and finally resuspended in 100 ml of deionized water.
Illumina 16S rRNA sequencing

The V4 region of the 16S rRNA gene was sequenced using a

two-step PCR approach described previously (Korlević et al.,

2021b). Briefly, the V4 region was amplified using the 515F (5'-

GTGYCAGCMGCCGCGGTAA-3 ' ) and 806R (5 ' -

GGACTACNVGGGTWTCTAAT-3') primers from the Earth

microbiome project (https://earthmicrobiome.org/protocols-

and-standards/16s/), which contained a sequence tag on the 5'

end (Caporaso et al., 2011; Caporaso et al., 2012; Apprill et al.,

2015; Parada et al., 2016). Purified samples were sent for

Illumina MiSeq sequencing (2 × 250 bp) at IMGM

Laboratories (Martinsried, Germany) where the second PCR of

the two-step PCR approach was performed using primers

targeting the tag region incorporated in the first PCR. These

primers also contained adapter and sample-specific index

sequences. For each sequencing batch, a positive and a

negative control were also sequenced. The positive control

consisted of a mock community composed of uniformly mixed

DNA from 20 different bacterial strains (ATCC MSA-1002,

ATCC, USA), while PCR reactions without DNA template

served as the negative control. Sequences obtained in this

study have been deposited in the European Nucleotide Archive

at EMBL-EBI under the accession numbers SAMEA11293274 –

SAMEA11293412 and SAMEA6648825.
FIGURE 1

Location of the vegetated (declining Cymodocea nodosa meadow) and nonvegetated site in the Bay of Saline, northern Adriatic Sea, together
with visual representations of vegetated and nonvegetated sediment cores (© OpenStreetMap contributors, www.openstreetmap.org/copyright).
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Sequence and data analysis

Sequences were analysed on the computer cluster Isabella

(University Computing Centre, University of Zagreb) using

version 1.45.2 of mothur (Schloss et al., 2009) according to the

MiSeq Standard Operating Procedure (MiSeq SOP; https://

mothur.org/wiki/miseq_sop) (Kozich et al., 2013) and

recommendations given by the Riffomonas project (https://

riffomonas.org) to foster data reproducibility. Alignment and

classification were performed using the 138.1 release of the

SILVA SSU Ref NR 99 database (https://www.arb-silva.de)

(Quast et al., 2013; Yilmaz et al., 2014). A cut-off of 97% was

used to cluster sequences into operational taxonomic

units (OTUs).

Pipeline data processing and visualization were done using R

(version 3.6.3) (R Core Team, 2020) combined with packages vegan

(version 2.5.7) (Oksanen et al., 2020) tidyverse (version 1.3.1)

(Wickham et al., 2019) and multiple other packages (Neuwirth,

2014; Xie, 2014; Xie, 2015; Xie et al., 2018; Xie, 2019; Edwards, 2020;

Wilke, 2020; Xie et al., 2020; Xie, 2021a; Xie, 2021b; Allaire et al.,

2021; Zhu, 2021). Observed number of OTUs, Chao1, ACE,

exponential of the Shannon diversity index and Inverse Simpson

diversity index were calculated after normalization to the minimum

number of reads per sample to account for different sequencing

depths using vegan’s function rrarefy (Oksanen et al., 2020).

Chao1 and ACE estimators were calculated using vegan’s function

estimateR, while Shannon and Inverse Simpson diversity

indices were obtained using vegan’s function diversity

(Oksanen et al., 2020). To express both diversity indices in terms

of effective number of OTUs the exponential of the Shannon

diversity index was retrieved (Jost, 2006). The proportions of

shared community members between different sediment layers

and the two sites were expressed as the Bray-Curtis similarity

coefficient calculated on the OTU data table using vegan’s

function vegdist and transformed from dissimilarities to

similarities (Legendre and Legendre, 2012; Borcard et al., 2018;

Oksanen et al., 2020). The Principal Coordinate Analysis (PCoA)

was performed on Bray-Curtis dissimilarities based on OTU

abundances using the function wcmdscale (Legendre and

Legendre, 2012; Oksanen et al., 2020). Differences between

communities of different layers, sites, years, and decay periods

were tested by performing the Analysis of Similarities (ANOSIM)

using vegan’s function anosim and 1000 permutations (Oksanen

et al., 2020). When differences between years or decay periods were

tested samples were grouped based on sampling year (2017 and

2018) and decay of roots and rhizomes (before and after decay). The

period prior to the decay included samples retrieved from the

begining of the study until and including February 2018, while the

period after the decay included samples taken after February 2018.

To calculate the proportion of OTU community variation explained

by environmental variables (redox potential [Eh], oxygen [O2],

hydrogen sulfide [H2S], sulfur [S0], organic matter content, and
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prokaryotic abundance) reported in Najdek et al. (2020) vegan’s

function RsquareAdj was applied on the results of the distance-

based Redundancy Analysis (db-RDA) (Borcard et al., 2018;

Oksanen et al., 2020). To calculate the db-RDA vegan’s function

capscale on OTU data and explanatory environmental variables

was performed. The analysis was computed using the Bray-Curtis

dissimilarity index and the Lingoes correction for negative

eigenvalues (Legendre and Legendre, 2012; Borcard et al., 2018;

Oksanen et al., 2020). In addition, differences between richness

estimators, diversity indices, and relative sequence abundances were

tested by performing the Mann-Whitney U test (function

wilcox.test), when two groups were compared, or the

Kruskal-Wallis H test (function kruskal.test) followed

by a pairwise comparison using the Mann-Whitney U test

(function pairwise.wilcox.test), when more than two

groups were compared. Bonferroni correction was applied to

address the problem of multiple comparisons.

In total 3.3 million sequences were obtained after quality

curation and exclusion of sequences without known relatives (no

relative sequences), and eukaryotic, chloroplast, and

mitochondrial sequences. Altogether, 68 samples from the

vegetated site and 68 from the nonvegetated site were

analysed. The number of reads per sample ranged from 9,722

to 55,381 (Supplementary Table S1). Even with the highest

sequencing effort the rarefaction curves did not level off as

commonly observed in high-throughput 16S rRNA amplicon

sequencing approaches (Supplementary Figures S1, S2). After

quality curation and exclusion of sequences as mentioned above,

reads were clustered into 89,488 different OTUs. Normalization

to the minimum number of sequences (9,722) described earlier

resulted in 64,335 distinct OTUs ranging from 1,774 to 3,576

OTUs per sample (Supplementary Figure S3). Based on the

positive control, a sequencing error rate of 0.01% was calculated

which is in line with previously reported values for high-

throughput sequencing data (Kozich et al., 2013; Schloss et al.,

2016). Following quality curation, the negative controls yielded

on average 34.2 ± 62.6 sequences. The detailed analysis

procedure is available in a Github repository (https://github.

com/MicrobesRovinj/Markovski_SalineSediment16S_

FrontMarSci_2022).
Results

To assess the richness and diversity of microbial

communities in sediments of the Bay of Saline the observed

number of OTUs, Chao1, ACE, exponential of the Shannon

diversity index, and Inverse Simpson diversity index were

calculated (Figure 2). The observed number of OTUs was

similar between the vegetated (2,746.7 ± 398.4 OTUs) and the

nonvegetated site (2,883.0 ± 353.1 OTUs) and showed no

statistical difference (p = 0.06). Interestingly, both the highest
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FIGURE 2

The observed number of OTUs, Chao1, ACE, exponential of the Shannon diversity index, and Inverse Simpson diversity index of sediment
microbial communities sampled in different sediment layers of the vegetated and nonvegetated site in the Bay of Saline. Different letters
correspond to statistically significant differences.
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and lowest number of OTUs were observed at the vegetated site,

more specifically the highest number was found in the top layer

(2,976.1 ± 262.0 OTUs) and lowest in the bottom layer (2,500.4

± 462.7 OTUs). These layers were also the only ones showing

statistical difference at the vegetated site (Figure 2 and

Supplementary Table S2). In contrast, the observed number of

OTUs at the nonvegetated site was similar across sediment layers

and did not show significant differences (Figure 2 and

Supplementary Table S3), although the lowest value was also

observed in the bottom layer (2,700.8 ± 378.8 OTUs). During the

study period, the observed number of OTUs was variable, with

no clear temporal trend observed (Supplementary Figure S3).

Chao1, ACE, exponential of the Shannon diversity index and the

Inverse Simpson diversity index of sediment communities at the

site with and without vegetation were very similar, with no

estimate or index showing a statistically significant difference (all

p > 0.1). In addition, the Chao1 and ACE richness estimators

also showed no significant differences between sediment layers

(Figure 2 and Supplementary Tables S2, S3). In contrast,

diversity indices at the vegetated site showed a difference

between the top and bottom layer and between the upper

middle and bottom layer, with exponential of the Shannon

diversity index also showing a significant difference between

the top and lower middle layer (Figure 2 and Supplementary

Table S2). At the nonvegetated site, the different sediment layers
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showed no statistical difference in either richness or diversity

(Figure 2 and Supplementary Table S3). Temporal variability in

richness estimates and diversity indices was high at both sites,

with no clear trend (Supplementary Figures S3, S4).

To evaluate the dynamics of sediment microbial

communities Principal Coordinate Analyses (PCoA) of Bray-

Curtis distances based on OTU community data were

performed. PCoA of all samples differentiated communities

based on sediment depth along the first axis, whereas samples

from the vegetated and nonvegetated site were separated along

the second axis (Figure 3). ANOSIM confirmed that sediment

communities in the Bay of Saline differed between sediment

layers with some overlap (R = 0.48, p < 0.001), while the

communities of the vegetated and nonvegetated site showed a

higher degree of overlap (R = 0.27, p < 0.001). When

communities of different sediment layers were analysed

separately, a clearer differentiation between communities of

the vegetated and nonvegetated site was observed (R = 0.45 –

0.49, all p < 0.001). Interestingly, when samples from the same

layer of the vegetated and nonvegetated site were compared, the

top layers of the sediment showed the highest degree of

similarity (Bray-Curtis, 0.64), while the lowest degree of

similarity was observed in samples from the upper middle and

bottom layers (Bray-Curtis, 0.59) (Figure 3 and Supplementary

Figure S5). When samples from each site were analysed
FIGURE 3

Principal Coordinates Analysis (PCoA) of Bray-Curtis dissimilarities based on OTU abundances of sediment microbial communities sampled in
the Bay of Saline. Samples from different sites are labelled with different symbols while samples from different sediment layers are indicated by
colour. The proportion of explained variation by each axis is shown on the corresponding axis in parentheses.
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separately, the previously observed differentiation of samples

based on sediment depth was noted (Figure 4) (ANOSIM;

vegetated, R = 0.50, p < 0.001 and nonvegetated R = 0.49, p <

0.001) with the highest degree of similarity observed between

samples from middle layers (Bray-Curtis; vegetated, 0.71 and

nonvegetated, 0.71) and between lower middle and bottom

layers (Bray-Curtis; vegetated, 0.69 and nonvegetated, 0.71)

(Supplementary Figure S5). Also, to determine the main

environmental parameters governing community changes

OTU data were linked to a set of environmental variables

reported by Najdek et al. (2020) using db-RDA. Only a small

proportion (R2
a = 18:3%) of the observed community variation

could be explained by the environmental variables. To determine

whether there is a temporal succession in the community

pattern, samples from each layer and site were analysed

separately to exclude the effects of sediment depth and

vegetation, which have been shown to primarily influence

sediment community structure (Figure 4). No grouping of

samples by month was observed in any of the layers and sites

analysed. Although Najdek et al. (2020) described a sharp

decline in above ground biomass in the same meadow since

the beginning of 2018, we did not detect a clearly defined

grouping of samples based on sampling year in all the

analysed layers (ANOSIM; vegetated, R = 0.06 – 0.26, p = 0.05

– 0.18 and nonvegetated, R = 0.03 – 0.18 p = 0.05 – 0.29). In

addition, we also analysed the samples according to the reported

decline of roots and rhizomes, as belowground biomass showed

a later onset of decline than the aboveground biomass (Najdek

et al., 2020). However, this analysis also did not reveal a grouping

in any of the tested layers (ANOSIM; vegetated, R = 0.07 – 0.19,

p = 0.05 – 0.18 and nonvegetated, R = 0.16 – 0.20, p = 0.05 –

0.06). Furthermore, as with the community analysis, taxonomic

classification of all samples also did not indicate a temporal

succession but a fairly stable community composition was

detected in all layers both at the vegetated and nonvegetated

site (Supplementary Figure S6).

Archaeal sequences comprised 9.5 ± 4.7% of all reads.

Sequences classified as Archaea increased in relative

abundance from the top (4.5 ± 1.6%) to the bottom sediment

layer (14.1 ± 4.0%). The archaeal community was comprised of

Nanoarchaeota, Thermoplasmatota, Crenarchaeota, and

Asgardarchaeota (Figure 5). Nanoarchaeota comprised 3.6 ±

1.3% of all sequences and were evenly distributed across the

different sediment layers, whereas all other archaeal phyla

showed a depth-related pattern. All Nanoarchaeota related

sequences were classified as Woesearchaeales, with 28.2 ±

13.5% of sequences further classified as SCGC AAA011-D5. A

particularly pronounced depth-related pattern was found in

Thermoplasmatota. Sequences classified as Thermoplasmatota

comprised 4.1 ± 1.2% of all sequences in the bottom sediment

layer and only 0.7 ± 0.6% in the top layer. The majority of

sequences related to this group was further classified as Marine

Benthic Group D and DHVEG-1. Crenarchaeota comprised 1.8
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± 2.3% of all reads. This group had a higher relative sequence

abundance at the nonvegetated (2.7 ± 2.8%) than at the

vegetated site (1.0 ± 0.9%) (p < 0.0001). The vast majority of

Crenarchaeota related sequences were classified as Bathyarcheia.

Out of all reads, Asgardarchaeota comprised 0.9 ± 0.7% of

sequences that could all be further classified as Lokiarchaeia.

Overall, bacterial sequences (90.5 ± 4.7%) dominated over

archaeal ones and were mainly comprised of Desulfobacterota,

Gammaproteobacteria, Bacteroidota, Chloroflexi, Planctomycetota,

and Campylobacterota (Figure 5). Of all reads, Desulfobacterota

was the most abundant taxon in the middle (upper middle, 19.4 ±

2.0% and lower middle, 20.2 ± 3.2%) and bottom layers (18.3 ±

3.1%) (Figures 5, 6). Desulfobacterota consisted mainly of

Desulfosarcinaceae, Desulfatiglandaceae, Desulfocapsaceae,

Desulfobulbaceae, and uncultured members of the order

Syntrophobacterales (Figure 6). Sequences classified as

Desulfocapsaceae showed affinity for the top sediment layer,

where they comprised 26.3 ± 8.2% of Desulfobacterota reads

compared to the bottom layer where they constituted only 3.8 ±

3.3% of Desulfobacterota reads. Desulfosarcinaceae and

Desulfobulbaceae varied depending on the site. In the whole

microbial community, Desulfosarcinaceae reads were more

abundant at the vegetated (8.6 ± 2.7%) than nonvegetated site

(6.1 ± 2.7%) (p < 0.0001), while sequences classified as

Desulfobulbaceae were less represented at the vegetated (0.8 ±

0.7%) than at the nonvegetated site (1.3 ± 0.7%) (p < 0.0001).

Gammaproteobacteria comprised most of the Proteobacteria

sequences (87.6 ± 4.1%) and made up the majority of all reads in

the top sediment layer (23.2 ± 6.2%) (Figures 5, 6). This group

was represented with more sequences at the nonvegetated (14.8

± 8.9%) than at the vegetated site (9.5 ± 7.4%) (p < 0.001). Out of

all gammaproteobacterial sequences, 25.2 ± 8.3% of reads could

not be further classified than to the class Gammaproteobacteria

(Figure 6). Sequences that could be further classified were mainly

assigned to Thiotrichaceae, B2M28,Woeseiaceae,Halieaceae and

Thioalkalispiraceae (Figure 6). The observed difference between

the relative abundance in Gammaproteobacteria at the two sites

was particularly pronounced for Thioalkalispiraceae. Sequences

of this group were more abundant at the nonvegetated (1.1 ±

0.8%) than at the vegetated site (0.3 ± 0.3%) (p < 0.0001).

Sequences classified as Bacteroidota were more abundant in

the top sediment layer (16.9 ± 2.7%) with their relative

abundance decreasing with sediment depth and reaching a

minimum in the bottom layer (6.7 ± 2.2%) (Figures 5, 6). A

higher relative abundance of Bacteroidota sequences was

observed at the vegetated site (12.0 ± 4.5%) than at the

nonvegetated site (9.8 ± 4.6%) (p < 0.01). Bacteroidota were

mainly composed of sequences without known relatives within

Bacteroidales, Bacteroidetes BD2-2, Cyclobacteriaceae ,

Flavobacteriaceae, Prolixibacteraceae and Saprospiraceae

(Figure 6). In contrast to Bacteroidota, sequences classified as

Chloroflexi increased with sediment depth (top layer, 4.8 ± 2.0%

and bottom layer, 13.8 ± 2.7%) (Figures 5, 7). Chloroflexi were
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FIGURE 4

Principal Coordinates Analyses (PCoA) of Bray-Curtis dissimilarities based on OTU abundances of sediment microbial communities, of all and
individual sediment layers, sampled at the vegetated and nonvegetated site in the Bay of Saline. The proportion of explained variation by each
axis is shown on the corresponding axis in parentheses.
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FIGURE 5

Taxonomic classification and relative contribution of the most abundant bacterial and archaeal (≥ 3%) sequences in sediment communities
sampled at the vegetated and nonvegetated site in the Bay of Saline. NR – sequences without known relatives.
FIGURE 6

Taxonomic classification and relative contribution of the most abundant (≥ 2%) taxonomic groups within Desulfobacterota, Gammaproteobacteria, and
Bacteroidota in sediment communities sampled at the vegetated and nonvegetated site in the Bay of Saline. NR – sequences without known relatives.
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mainly composed of Anaerolineaceae, while SBR1031,

uncultured Anaerolineae, sequences without known relatives

within Anaerolineae and Dehalococcoidia, AB-539-J10, and

Ktedonobacteraceae made up the remainder of the Chloroflexi

community (Figure 7).

Planctomycetota were evenly represented in the middle

(upper middle, 7.3 ± 0.9% and lower middle, 7.6 ± 0.9%) and

bottom layers (7.5 ± 1.0%), and less abundant in the top layer

(6.0 ± 0.7%), showing no difference between the sites (vegetated,

7.0 ± 1.2% and nonvegetated, 7.1 ± 1.0%) (Figures 5, 7). The

Planctomycetota community consisted mainly of SG8-4,

Pirellulaceae, 4572-13, and sequences that could not be further

classified (no relative Planctomycetota) (Figure 7). A high

proportion of Planctomycetota reads (39.1 ± 5.1%) were

assigned to other Planctomycetota, indicating a high diversity

within this group. Campylobacterota comprised on average 3.1 ±

3.0% of all sequences (Figures 5, 7). Overall, no pattern related to

sediment depth was observed for this group. Slightly higher

values were characteristic for the vegetated (3.9 ± 3.5%) than the

nonvegetated site (2.3 ± 2.3%) (p < 0.001). When differences

between sites were tested for all sediment layers, only the

difference in the top layer between the two sites (vegetated, 3.4 ±

1.8% and nonvegetated, 1.5 ± 1.6%) was significant (p < 0.01).

Reads related to Campylobacterota could be further classified into
Frontiers in Marine Science 10
two families, Sulfurimonadaceae and Sulfurovaceae (Figure 7).

Of these two families, Sulfurimonadaceae showed an area-related

difference in relative abundance. Higher values were found at

the vegetated (2.3 ± 3.4%) than at the nonvegetated site (0.7 ±

1.8%) (p < 0.0001). Sulfurimonadaceae consisted of the genus

Sulfurimonas , while Sulfurovaceae consisted of the

genus Sulfurovum.
Discussion

Sediments of seagrass meadows harbour diverse, abundant,

and active microbial communities (Smith et al., 2004; Duarte

et al., 2005; Sun et al., 2015). Although research on microbial

communities of seagrass meadows mainly focused on

rhizosphere communities, some studies also included the

underlying and surrounding sediment (Jensen et al., 2007;

Cúcio et al., 2016; Zhang et al., 2020). As with most

sediments, a vertical structuring has been found in the

microbial communities of seagrass meadow sediments (Sun

et al., 2020). Furthermore, a difference between prokaryotic

communities of seagrass meadow sediments and nonvegetated

sediments has been observed (Ettinger et al., 2017; Zheng et al.,

2019). Temporal studies of these communities are generally rare,
FIGURE 7

Taxonomic classification and relative contribution of the most abundant (≥ 1%) taxonomic groups within Chloroflexi, Planctomycetota, and
Campylobacterota in sediment communities sampled at the vegetated and nonvegetated site in the Bay of Saline. NR – sequences without
known relatives.
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and little is known about howmicrobial communities in seagrass

meadow sediments change with meadow decline and loss. In this

study, we assessed the microbial communities in the sediment of

a declining C. nodosa meadow to gain further insights into the

taxonomic composition, vertical structuring, and dynamics of

microbial communities in seagrass meadow sediments while at

the same time comparing them with bare sediments of a

nearby site.

Shannon and Simpson indices account for both richness and

evenness and are less sensitive to rare taxa than richness

estimators such as ACE and Chao1 (Bent and Forney, 2008).

We found no difference in richness (Chao1 and ACE) between

sediment layers, suggesting that the observed rare taxa did not

play a key role in the vertical structuring of the sediment

community in the Bay of Saline (Figure 2). In contrast,

diversity indices at the vegetated site showed a depth related

pattern (Figure 2). Diversity was highest in the first centimetre of

the sediment and differed from the deepest layer (7 – 8 cm). This

is consistent with previous studies of marine sediments that

describe a decrease in community diversity from the surface to

deeper sediment layers, even at small scales within the first few

meters (Petro et al., 2017; Hoshino et al., 2020). Seagrasses are

known to stabilize the sediment and reduce sediment

resuspension (Terrados and Duarte, 2000; van Katwijk et al.,

2010). It is possible that the presence of the seagrass, especially

roots and rhizomes, increase diversity differences between the

top and bottom layer by stabilizing the sediment. In contrast,

mechanical mixing may homogenise the sediment together with

microbial cells causing more similar microbial diversity in

different layers. In addition, seagrass meadows increase the

organic matter content of the sediment through the decay of

dead tissue (Jensen et al., 2007; Liu et al., 2017), which may have

further contributed to the observed differences between

sediment layers. Vertical structuring of sediment communities

is typically achieved through burial, which is accompanied by

selection based on successive changes in environmental

conditions (Petro et al., 2017; Kirkpatrick et al., 2019; Marshall

et al., 2019). Specific environmental conditions surrounding

roots and rhizomes may act as a filter during burial, separating

the top from the bottom layer. In contrast, the sediment of the

nonvegetated site remained vertically more stable in terms of

richness and diversity.

Another component known to differentiate communities in

marine sediments besides depth stratification is site-specificity

(Polymenakou et al., 2005; Hamdan et al., 2013), which is even

more pronounced in seagrass meadows where sediment

microbial communities differ not only between the vegetated

and nonvegetated area, but also towards the edge of the seagrass

patch (Ettinger et al., 2017). In this study, we also observed a

grouping of samples according to the two sites (Figure 3), while

the microbial communities of both the vegetated and

nonvegetated site were stratified according to sediment depth.

This is in line with Sun et al. (2020) who noted that the seagrass
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Zostera marina and Zostera japonica influence the vertical

organisation of microbial communities in the sediment.

Although the microbial communities at the vegetated site were

distinct from the ones at the nonvegetated site, a high degree of

overlap was present. Given that the two sampling sites were in

close proximity to each other, a high degree of similarity is not

surprising. The microbial communities in the Bay of Saline most

likely originate from the same source and only through burial

undergo a specific selection characteristic for each site. This type

of community structuring (Hamdan et al., 2013; Walsh et al.,

2016; Petro et al., 2019) is further supported by the highest

degree of similarity between the vegetated and nonvegetated site

observed in the top sediment layer. Also, such a high similarity

of the top sediment layer may be attributed to imports of

seagrass detritus to the nonvegetated site. As one of the main

carbon sources in C. nodosa meadows (Holmer et al., 2004),

seagrass detritus may easily be transported to the adjacent

nonvegetated site forming similar communities in the top

sediment layer. To assess the temporal dynamics of the

microbial community, we analysed each sediment layer and

site separately to exclude the influence of sediment depth and

site-specificity. Because microbial communities of surface

sediments have shorter generation times and higher biomass

than communities at deeper sediment strata, and seagrass

meadow sediments are hotspots for microbial activity (Duarte

et al., 2005; Starnawski et al., 2017), successional changes during

the decline of a seagrass meadow could be expected.

Surprisingly, the decline of the C. nodosa meadow in the Bay

of Saline appeared to have little or no effect on the microbial

community, as we did not observe any grouping of communities

according to month, year, or meadow condition (Figure 4). In

addition, no temporal patterns were observed in the taxonomic

composition, richness, or diversity of the microbial community.

Such a stable community structure and low proportion of

community variation explained by the available environmental

variables (Najdek et al., 2020) could be caused by a greater

proportion of dormant or dead microbial cells remaining in the

sediment, leading to a perceived taxonomic stability (Luna et al.,

2002; Jones and Lennon, 2010; Cangelosi and Meschke, 2014;

Carini et al., 2016; Torti et al., 2018; Bradley et al., 2019).

Taxonomic identification by molecular methods such as

sequencing of the 16S rRNA gene cannot distinguish between

active and dormant cells, nor whether the cell is alive or dead

(Cangelosi andMeschke, 2014). Indeed, it has been reported that

in coastal marine sediments dead cells account for 70% of all

bacterial cells, while among living bacterial cells only 4% grow

actively (Luna et al., 2002). Furthermore, it is possible that the

change in community composition may be delayed given that

microbial communities in marine sediments often have very

long generation times (Jørgensen and Marshall, 2016;

Starnawski et al., 2017) and that some recognizable remnants

of roots and rhizomes were still observed at the end of the study

(Najdek et al., 2020). High metabolic versatility of microbial
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community members which allows functional continuity to be

maintained despite changes in composition (Louca et al., 2018),

may also allow for some degree of compositional stability despite

changing environmental conditions. Indeed, a decoupling of

microbial composition and biogeochemical processes has been

observed in sediments. Bowen et al. (2011) have shown that

microbial communities in sediments are able to resist

compositional changes despite significant variations in external

nutrient supply, while Marshall et al. (2021) found that the

composition of the nitrogen cycling community might change

but these compositional changes are not reflected in

functional changes.

The archaeal community of both sites was comprised of

Nanoarchaeota, Thermoplasmatota, Crenarchaeota, and

Asgardarchaeota which are all typical sediment members (Zheng

et al., 2019; Sun et al., 2020).We found a nearly threefold increase in

the relative abundance of Archaea in the deepest sediment layer

compared to the top layer (Figure 5). This is not surprising as it has

been well documented that Bacteria dominate the upper sediment

layers while at deeper layers the distribution between Bacteria and

Archaea is more uniform (Chen et al., 2017). A particularly

pronounced increase in relative abundance with depth was

observed for Thermoplasmatota at both sites. It is possible that

oxygen penetration in the uppermost sediment layer caused such a

pronounced change as representatives of theMarine Benthic Group

D and DHVEG-1, accounting for the majority of sequences within

the phylum Thermoplasmatota (Rinke et al., 2019), are known to be

restricted to anoxic environments (Lloyd et al., 2013).

The main difference between the archaeal community of the

vegetated and nonvegetated site was the increased presence of

Crenarchaeota in the nonvegetated sediment (Figure 5). This

difference resulted from a much greater increase in the relative

abundance of Bathyarcheia with increasing depth at the

nonvegetated site (Figure 5). In a study comparing archaeal

communities in the sediment of a Zostera marina meadow with

those of bare sediment, a higher presence of Bathyarchaeota was

found in the vegetated sediment, which is not consistent with our

results (Zheng et al., 2019). This discrepancy could have been caused

by patchiness and different sampling strategies. In contrast to the

three samples per vegetated and nonvegetated sediment in the study

ofZheng et al. (2019),we analysed sixty-eight samples fromeach site.

Bathyarcheia, formerly known as the Miscellaneous Crenarchaeotal

Group (MCG), are typically present in deeper sediment layers as they

are well adapted to energy limitation (Kubo et al., 2012). Since

seagrasses are known to directly and indirectly enrich the underlying

sediment with organic matter (Terrados and Duarte, 2000; Duarte,

2002; Duarte et al., 2005; Jensen et al., 2007; van Katwijk et al., 2010;

Liu et al., 2017), it is possible that thepresenceofC.nodosa caused the

observed lower relative abundance of this group in the sediment at

the vegetated site.

The sediment bacterial community of both sites consisted of

taxonomic groups commonly found in marine sediments such as

Desulfobacterota, Gammaproteobacteria, Bacteroidota, Chloroflexi,
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and Planctomycetota (Walsh et al., 2016; Hoshino et al., 2020),

along with Campylobacterota, characteristic of seagrass meadows

(Jensen et al., 2007). These major groups showed different patterns

in relative abundance depending on sediment depth (Figures 6, 7).

The proportion of Gammaproteobacteria and Bacteroidota

decreased with sediment depth, while the relative abundance of

Chloroflexi increased (Figure 6). Although the proportion of

Desulfobacterota remained similar in all sediment layers,

Desulfocapsaceae, a major constituent of the Desulfobacterota

community, decreased with sediment depth (Figure 6).

Gammaproteobacteria and Desulfobacterota (formerly known as

Deltaproteobacteria), were reported to decrease with sediment

depth, while Chloroflexi increased (Petro et al., 2017). Also, Smith

et al. (2004) documented no vertical trend in sulphate-reducing

prokaryotes (Desulfobacterota) over a similarly small depth range.

Reduction of sulphate is one of many processes that affects pH in

sediments, while oxygen penetration controls the depth of pH

minima (Silburn et al., 2017). Because Desulfocapsaceae are

neutrophilic (Galushko and Kuever, 2021) it is possible that

depletion of oxygen below the first centimetre and an increase in

hydrogen sulphide with sediment depth (Najdek et al., 2020)

contributed to the observed vertical trend of this group. The

pronounced decline in Gammaproteobacteria after the top

centimetre could also be attributed to the oxygen penetration

depth observed in the Bay of Saline (Najdek et al., 2020)

coinciding with the abrupt change in the relative abundance of

this class. Oxygen availability could also influence the vertical

distribution of Chloroflexi and Planctomycetota (Figure 7), as

these phyla are known to be prevalent in anoxic sediments

(Hoshino et al., 2020). In addition to oxygen availability, the

decline of Gammaproteobacteria and Bacteroidota with sediment

depth may also be related to the lower availability of fresh organic

matter in deeper layers (Middelburg, 1989), as both of these groups

are known to break down and assimilate fresh detritus in coastal

sediments (Gihring et al., 2009).

The differences in taxonomic composition of microbial

communities from the vegetated and nonvegetated site were not

as pronounced as those influenced by sediment depth.

Gammaproteobacteria made up a large proportion of the

microbial community at the nonvegetated site, and as with

vertical structuring, their higher presence at this site could be

explained by oxygen availability. This class contains

representatives with a wide range of metabolisms, including

aerobic species (Gutierrez, 2019), which could benefit from the

higher oxygen availability at the nonvegetated site (Najdek et al.,

2020). Indeed, a study by Ettinger et al. (2017) also found a higher

presence of Gammaproteobacteria in the sediment outside a

seagrass meadow. The most pronounced difference in the

taxonomic composition of this class between the vegetated and

nonvegetated site is the higher relative abundance of

Thioalkalispiraceae in the nonvegetated sediment (Figure 6).

This higher relative abundance could be due to differences in

organic matter content. In fact, Thioalkalispiraceae are known to
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be chemolithoautotrophs (Mori et al., 2011; Mori and Suzuki,

2014) and thus may rely on inorganic compounds rather than

organic matter supplied by the seagrass. Slight differences were

also observed in the Desulfobacterota community between the

vegetated and nonvegetated site. Desulfosarcinaceae were more

pronounced at the vegetated site, while Desulfobulbaceae were

more pronounced at the nonvegetated site (Figure 6). Although

both families have been associated with the rhizosphere of

seagrasses (Cúcio et al., 2016), our results are consistent with

previous studies that reported a high presence of

Desulfosarcinaceae in vegetated sediments and higher relative

abundances of Desulfobulbaceae in the nonvegetated sediment

(Smith et al., 2004; Garcıá-Martıńez et al., 2009). The most

abundant Desulfobacterota familiy at both the vegetated and

nonvegetated site was Desulfosarcinaceae. The high metabolic

versatility of this group (Watanabe et al., 2020) may have lead

to its even greater proliferation at the vegetated site (Figure 6)

where high concentrations of different carbon substrates may

become available during decomposition of organic matter. In

contrast to Gammaproteobacteria and Desulfobacterota, a higher

relative abundance of Bacteroidota at the vegetated site may be

influenced by the presence of the plant itself. Seagrass cell walls

contain polysaccharides like cellulose (Pfeifer and Classen, 2020)

and Bacteroidota have been identified as decomposers of

macromolecules such as cellulose (Thomas et al., 2011). The

differences between the vegetated and nonvegetated sediment

communities were also reflected in the higher proportion of

Campylobacterota related sequences at the vegetated site.

Campylobacterota, formerly known as Epsilonproteobacteria, are

known to be closely associated with roots and rhizomes of

seagrasses, particularly Sulfurimonadaceae (Jensen et al., 2007).

In this study, the family Sulfurimonadaceae also contributed

highly to Campylobacterota at the vegetated site (Figure 7). This

high contribution may be caused by close proximity of the

sampled sediment to roots and rhizomes. The seagrass selects

the rhizosphere microbial community from the surrounding bulk

sediment by enrichment of certain taxa and depletion of others

(Cúcio et al., 2016; Zhang et al., 2020; Zhang et al., 2022). It may

be possible that roots and rhizomes to some degree also alter the

composition of the community in the surrounding sediment in

their close proximity forming the observed structure of

Campylobacterota in our samples.

Taken together, sediment microbial communities in the Bay

of Saline were depth stratified, and differed between the vegetated

and nonvegetated site, however, remained temporally stable.

Although the C. nodosa meadow experienced a sharp decline

during the investigation period, no pronounced change in the

microbial community was observed. The characterization of the

sediment microbial community of the declining C. nodosa

meadow in the Bay of Saline forms the basis for further studies

based on methods that can differentiate active communities or

methods that can provide insight into the prevailing metabolic

processes during the period of seagrass decline.
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