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Summary

For a set of objects distributed in the space of a given volume, the Quantizer
problem is finding a minimum of the sum of the squared distances between
arbitrary spatial positions and the given set. Such optimal configuration tes-
sellates the space in a way that the generating set is placed in the geometric
centroids of the Voronoi cells. Obviously, the Quantizer problem has trivial
solutions where the generating objects are equidistant. Finding non-trivial,
disordered solutions, however, has been a difficult task. The work presented
in this thesis addresses precisely this challenge.

Initially, solutions to the Quantizer problems are searched for point gen-
erators. The solution is sought using the iterative optimization procedure
known as Lloyd’s algorithm, the generalization of the famous k-means clus-
tering primarily used to construct centroidal Voronoi diagrams. Lloyd’s it-
eration is applied to a number of sets comprising points obtained from pro-
cesses generating different types of disorder in 2D and 3D. Notably, a uni-
versal local Quantizer minimal state is obtained, irrespective of the starting
configuration. Remarkably, while being fully amorphous in nature, this final
state is also effectively hyperuniform, which means that long-range density
fluctuations are suppressed.

Motivated by the previous findings, a generalization of the Quantizer
problem to the systems built of extended convex objects rather than points is
attempted. As a preliminary step, random assemblies of non-overlapping el-
lipses were generated using established algorithms. The obtained assemblies
are fully characterized from the geometric and the topological points of view
as a function of the shape and density of ellipses. This analysis provides de-
tailed insights into the distributions of the scalar and vectorial morphological
measures of the cells emerging from the set-based Voronoi tessellations. Fur-
thermore, it analyses their cross-correlations, which is particularly important
for comparison with experimental data.

The ensuing effort focused on solving the Quantizer problem for these
"random" assemblies of ellipses. This required rephrasing of the Quantizer
energy to account for the finite size of the generating objects. The optimal so-
lution is now associated with finding the infimum of the sum of the squared
distances between arbitrary spatial positions and the boundaries of a given
set. By analogy with finding the solution to the Quantizer problem with point
generators, local optimal distribution of ellipses is attempted using Lloyd’s
algorithm, which now has to be adapted to avoid overlap of ellipses. In the
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limit of zero packing fraction, the solution of the point process optimisation is
found. Beyond this limit, the structure of the spatially optimised assemblies
is both shape and density-dependent. Nonetheless, the effectively hyperuni-
form assemblies are found in a broad range of the parameter space, which is
extended to higher packing density as the ellipse becomes less elongated. At
high packing fractions performing Lloyd iterations and avoiding overlap is
not possible with the current algorithm, and no structure change is observed.

As the application of the above-developed concepts, the structure of a ma-
turing epithelium tissue is analysed. The epithelium is typically comprised
of a single layer of cells and can be regarded as tilling emerging from the
set Voronoi tessellation built from the cell nuclei. It was found that mor-
phologically, the tissue strongly resembles random packings at all stages of
development. However, careful analysis of experimental data shows that
during the process of tissue densification, nuclei are repositioned relative to
the centre of the cell, which can be captured by initiating but not converg-
ing Lloyd’s optimisation. As the tissue acquires its homeostatic steady state,
density fluctuations are suppressed on well-defined length scales compris-
ing neighbourhoods of 2 and 4 cells at low and high densities, respectively.
However, at small wave vectors, the structure factor grows exponentially to
a final value, contrary to predictions of the vertex model, which is the current
state of the art approach to modelling tissue development. This analysis thus
clearly demonstrates the need for quantitative statistical analysis of data. Fi-
nally, it points to a need for an improvement of tissue models.
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Zusammenfassung

Für eine Menge von Objekten, die in einem Raum mit festem Volumen verteilt
sind, besteht das Quantisierer-Problem darin, ein Minimum der Summe der
quadratischen Abstände zwischen beliebigen Positionen im Raum und der
gegebenen Menge von Objekten zu finden. Eine solche optimale Konfigura-
tion tesseliert den Raum so, dass die erzeugende Menge in den geometrischen
Zentren der Voronoi-Zellen platziert wird. Offensichtlich hat das Quantisierer-
Problem triviale Lösungen, bei denen die erzeugenden Objekte äquidistant
sind. Nichttriviale, ungeordnete Lösungen zu finden ist jedoch eine schwierige
Aufgabe. Die vorliegenden Arbeit befasst sich genau mit dieser Heraus-
forderung.

Zunächst wird in den Lösungen für das Quantisierer-Problem nach Punk-
tgeneratoren gesucht. Die Lösung wird mit Hilfe eines iterativen Optimierungsver-
fahrens gefunden, das als Lloyd-Algorithmus bekannt ist, der Verallgemeinerung
des berühmten k-means-Algorithmus, welcher in erster Linie zur Konstruk-
tion von Schwerpunkt-Voronoi-Diagrammen verwendet wurde. Der Lloyd’sche
Iterations-Algorithmus wird auf eine Reihe von Punktesätzen angewendet,
die aus Prozessen stammen, die verschiedene Arten von Unordnung in 2D
und 3D erzeugen. Dabei wird unabhängig von der Ausgangskonfiguration
ein universeller lokaler Quantisierer-Minimalzustand erreicht. Bemerkenswert-
erweise ist dieser Endzustand, obwohl er völlig amorph ist, auch effektiv
hyperuniform, was bedeutet, dass weitreichende Dichtefluktuationen unter-
drückt werden.

Motiviert durch die vorangegangenen Erkenntnisse wird eine Verallge-
meinerung des Quantisierer-Problems auf Systeme versucht, die nicht aus
Punkten, sondern aus ausgedehnten konvexen Objekten bestehen. In einem
ersten Schritt wurden mit Hilfe etablierter Algorithmen zufällige Anordnun-
gen von sich nicht überlappenden Ellipsen erzeugt. Die erhaltenen Anord-
nungen können aus geometrischer und topologischer Sicht vollständig als
Funktion von Form und Dichte der Ellipsen charakterisiert werden. Diese
Analyse liefert detaillierte Einblicke in die Verteilungen der skalaren und
vektoriellen morphologischen Maße der Zellen, die sich aus den mengen-
basierten Voronoi-Tessellierungen ergeben. Außerdem werden ihre Kreuzko-
rrelationen analysiert, was für den Vergleich mit experimentellen Daten beson-
ders wichtig ist.

Die anschließende Arbeit konzentrierte sich auf die Lösung des Quantisierer-
Problems für diese "zufälligen" Anordnungen von Ellipsen. Dies erforderte
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eine Umformulierung der Quantisierungsenergie, um der endlichen Größe
der erzeugenden Objekte Rechnung zu tragen. Die optimale Lösung ist nun
mit der Suche nach dem Infimum der Summe der quadratischen Abstände
zwischen beliebigen räumlichen Positionen und den Grenzen einer gegebe-
nen Menge verbunden. In Analogie zur Lösung des Quantisierer-Problems
mit Punktgeneratoren wird eine lokal optimale Verteilung der Ellipsen mit
Hilfe des Lloyd-Algorithmus versucht, der nun angepasst werden muss, um
eine Überlappung der Ellipsen zu vermeiden. Im Grenzwert von verschwinden-
den Packungsdichten wird die Lösung der Punktprozessoptimierung gefun-
den. Jenseits dieser Grenze ist die Struktur der räumlich optimierten Anord-
nung sowohl form- als auch dichteabhängig. Nichtsdestotrotz werden in
einem breiten Bereich des Parameterraums effektiv hyperuniforme Anord-
nungen gefunden. Der Parameterraum vergrößert sich zu höheren Pack-
ungsdichten wenn die Ellipsen weniger langgestreckt sind. Bei hohen Pack-
ungsanteilen ist die Durchführung von Iterationen des Lloyd-Algorithmus
und die Vermeidung von Überlappungen der Ellipsen mit dem derzeitigen
Algorithmus nicht möglich und es wird keine Strukturänderung beobachtet.

Als Anwendung der oben entwickelten Konzepte wird die Struktur eines
sich entwickelnden Epithelgewebes analysiert. Das Epithel besteht typis-
cherweise aus einer einzigen Schicht von Zellen und kann als ein aus dem
Voronoi-Diagramm der Zellkerne gebildetes Mosaik betrachtet werden. Es
wurde festgestellt, dass das Gewebe morphologisch in allen Entwicklungssta-
dien stark an zufällige Packungen erinnert. Eine sorgfältige Analyse der ex-
perimentellen Daten zeigt jedoch, dass bei steigender Zelldichte des Epithel-
gewebes die Zellkerne relativ zum Zentrum der Zelle neu positioniert wer-
den, was durch eine initiierende, aber nicht konvergierende Lloyd-Optimierung
erfasst werden kann. Wenn das Gewebe seinen homöostatischen Gleichgewicht-
szustand erreicht, werden Dichteschwankungen auf wohldefinierten Län-
genskalen unterdrückt, die Nachbarschaften von 2 bzw. 4 Zellen bei niedri-
gen bzw. hohen Dichten umfassen. Bei kleinen Wellenvektoren wächst der
Strukturfaktor jedoch exponentiell bis zu einem endgültigen Wert an, was
im Gegensatz zu den Vorhersagen des Vertex-Modells steht, das den derzeit-
igen Stand der Wissenschaft bei der Modellierung der Gewebeentwicklung
darstellt. Diese Analyse verdeutlicht somit die Notwendigkeit einer quan-
titativen statistischen Analyse der Daten. Schließlich zeigt sie auf, dass die
derzeitigen Gewebemodelle verbessert werden müssen.
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Chapter 1

Introduction

1.1 Optimizations in systems of particles

Systems containing particles or points are present all around us. Those sys-
tems can exist in reality, such as sand and snow, or be virtual, like points in
a mesh representing a character in a computer game. Interactions and rela-
tions between concerned particles are of universal importance because they
define the nature and behaviour of such systems. The equilibrium state of
such systems can be associated with an optimization of an appropriate func-
tional that depends on relations between constitutive particles.

Because of practical purposes, optimization problems of systems contain-
ing particles have been subjects of interest through the history [7]. The prop-
erty of granular matter that drew people’s attention the most in the past is
the system’s density. Density can be defined as a number of particles in some
volume or a fraction of space occupied by concerning particles, later known
as global packing fraction φg. The motivation behind optimizing the den-
sity of particles in the system is very intuitive. The denser system is, the
less space is occupied for the same amount of items which is important for
practical purposes. For example, Johannes Kepler, motivated by the pack-
ing of cannonballs on ships, studied the highest possible packing fraction of
equally sized spheres [7]. He conjectured in his book De Nive Sexangula(1611)
that if the centers of spheres are placed as the atoms in the face centred cu-
bic lattice (FCC, Figure 1.1a), the packing density is highest possible with
value π

3
√

2
≈ 0.74048. Kepler’s conjecture, despite its simplicity, remained

unproven for centuries. In 1998, Thomas Hales proved right the Kepler con-
jecture by representing the problem in the finite number of dimensions and
further solving it using interval arithmetic and linear programming methods
that require extensive use of computers [61].
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FIGURE 1.1: a) Packing of cannonballs with face centred cubic
(FCC) unit cell. The image was taken from reference [22]. b)
Weaire-Phelan structure inspired Tristram Carfrae when he de-
signed Beijing National Aquatics Centre for the 2008 Olympic

Games. The image was taken from reference [159].

Besides Kepler’s conjecture that considers the maximum density of the
system, optimizations of many other structural properties in the systems
were subjects of interest. Thus, Sir William Thomson (Lord Kelvin), when
investigating ideal structures of bubbles, set a problem of dividing space into
cells with equal volume while minimizing their surface area [7]. Lord Kelvin
suggested the tetrakaidecahedron shape of the cell, also known as a bitrun-
cated cubic honeycomb cell, as a solution to this problem. It took over a
century for people to disprove his conjecture when Denis Weaire and Robert
Phelan found a structure with 0.3% smaller surface area than the Kelvin
structure, later known as Weaire-Phelan structure [157] (Figure 1.1b).

Alongside these most famous structure optimization problems, we can
think of many other similar questions both for scientific and industrial con-
text [30, 4, 120, 94]. In this thesis, we will study the problem that concentrates
on finding the nearest particle in the space from a given position, well known
as the Quantizer problem. In the following sections of this chapter, we will de-
fine the Quantizer problem, provide a theoretical analysis of the quantization
effects and present the method for solving the Quantizer problem. Moreover,
we will define the properties of the systems that will be studied in the context
of solutions to the Quantizer problem. Finally, we will give an overview of
the research questions that will be addressed in this thesis.
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1.2 Quantizer problem

1.2.1 Definition of Quantizer problem

Let us suppose that we have a collection of points contained in a volume.
For any position in the volume, we can calculate the distance to the nearest
of the concerning points. The Quantizer problem finds a point configuration
that minimizes previously described distances for all positions in observed
volume.

Because of its simplicity, the question of the Quantizer problem is very
applicable [143]. For example, a bank has to solve the Quantizer problem
to distribute ATMs optimally in some area. A telecommunication company
addresses it when constructing the network of transmitters [111]. Other ex-
amples can be found in digital communications [30] as well as in computer
sciences where quantization is vital for digital visualization of objects [30].
Moreover, the Quantizer problem is widely used in cryptography [18] and
in the field of unsupervised machine learning where various clustering algo-
rithms are based on quantization of the data set [23].

In order to define quantization more precisely and set it as an optimiza-
tion problem, we have to introduce formal mathematical definitions of a few
basic concepts such as point process, the density of a point process, and the
closest neighbourhood of a point, the latter known as Voronoi cell.

Therefore, as it was defined in references [149, 164], let us consider d-
dimensional Euclidean space Rd and configuration R = {ri, i ∈ N} that are
elements of Rd (ri ∈ Rd, ∀i). The collection of points R will be called a point
process if two natural assumptions are met:

1. ri 6= rj, ∀i 6= j, meaning there are no overlapping points in the system
and

2. each bounded subset S of Rd contains only a finite number of points
which will be labeled with N ∈N.

Following the previous assumptions, a point process can be statistically char-
acterized by the specific probability density functions PN(r1, . . . , rN) which
provides probabilities of finding N points around the given positions (r1, . . . , rN).
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From here, we can define the n-particle generic probability density function la-
belled as ρn(r1, . . . , rn), n < N with

ρn(r1, . . . , rn) =
N!

(N − n)!

∫
V

. . .
∫
V

PN(r1, . . . , rN)drn+1 . . . drN. (1.1)

The generic n-particle probability density function ρn(r1, . . . , rn) is a non-
negative function that is proportional to the probability of finding n ≤ N
particles around the positional configuration (r1, . . . , rn).

The former definition becomes more clear if we set n = 1 and calculate
ρn(r1, . . . , rn) for statistically homogeneous point process. Then, the single-
particle generic density function ρ1(r1) = ρ ≡ limN,V→∞

N
V , is nothing more

than the intensity of the point process. From the intensity of point process
ρ we can simply calculate the expected number of points in some volume dr
around the position r, which is given by ρdr. Furthermore, if a point process
is translation invariant and uncorrelated, we have ρn(r1, . . . , rn) = ρn. An
example of such point process is the Poisson point process where point posi-
tions ri are randomly and uniformly distributed in the volume V.

As we mentioned before, the Quantizer problem optimizes distances to
the nearest point of a point process, and thus it is of major interest to define
the closest neighbourhood of each point in a point process. Division of space
into cells from a given set of points due to a simple rule of occupying the
nearest neighbourhood is provided by Voronoi tessellation.

FIGURE 1.2: Examples of Voronoi diagrams that are found in
nature. a) White stripes on giraffe skin form Voronoi diagram.
This image was taken from reference [57]. b) Voronoi diagram
at the wing of a dragonfly. This image was taken from reference
[142]. c) Voronoi diagram is a good model for epithelial tissue

membranes [75].

For a given set of points R = {ri, i ∈ N} in d-dimensional Euclidean
space, a Voronoi cell Vi of point ri consists of all points in space that are
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closer to ri than to any other of the given points. Formally, the Voronoi cell
Vi of point ri is given by

Vi = {x ∈ Rk|‖x− ri‖ ≤ ‖x− rj‖∀j 6= i, j ∈N} (1.2)

where ‖ · ‖ is the Euclidean norm in Rk. A collection of Voronoi cells
V = {Vi, i ∈ N} is called Voronoi diagram and points ri are called gener-
ators of Voronoi diagram V . Because of its generality and applicability to
various problem, Voronoi diagrams have been widespread in nature [115] as
well as a useful model used in various scientific studies [115, 19, 128, 113].
An example of Voronoi diagrams in a living systems are presented in Figure
1.2.

Now, after introducing precisely the basic concepts such as a point pro-
cess and Voronoi cell, we can formalize the Quantizer problem and define
it as an optimization problem. Like we had before, let R = {ri, i ∈ N} be
a point process in d-dimensional Euclidean space Rd with a single-particle
generic density function ρ1(r1) which will further be denoted just with ρ(r)
and referred to as mass density function. Moreover, let ‖ · ‖ be an Euclidean
norm on Rd. Then, solutions or minimal (optimal) states of Quantizer prob-
lem are identified with a choice of point positions ri, i ∈N that minimize the
following scaled dimensionless error [143]:

EQ =

lim
n→∞

1
n

n
∑

i=1

∫
Vi

ρ(x)‖x− ri‖2dx

d〈V(V)〉1+ 2
d

(1.3)

where 〈V(V)〉 is the expected value of Voronoi cell volume,

〈V(V)〉 = lim
n→∞

1
n

n

∑
i=1

V(Vi). (1.4)

Moreover, for the reasons of simplicity, for an arbitrary region K ⊂ Rd and
point y ∈ Rd we will denote the integral in the Equation 1.3 with:

E(K, y) =
∫
K

ρ(x)‖x− y‖2dx. (1.5)

The scaled dimensionless error EQ defined in the Equation 1.3 from now on
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will be referred to as the Quantizer error or Quantizer energy. It is worth men-
tioning that in case of a finite number of points in set R, both limits in Equa-
tions 1.3 and 1.4 have to be dropped. In that case, numerator in the Equation
1.3 becomes mean of the integral E(Vi, ri) and 〈V(V)〉 is the mean Voronoi
volume.

1.2.2 Analysis of Quantizer error

The Quantizer error is proportional to the ratio of the expected value of inte-
gral E(Vi, ri) and the Voronoi cell volume expected value. Since the expected
volume (i.e., the average when a system contains a finite number of points)
of Voronoi cells in the system can be set to any value by rescaling the system,
it becomes clear that the integral E(K, y) plays a pivotal role in the Quantizer
error EQ.

In definition of integral E(K, y) (Equation 1.5) we can see that the distance
between points of region K and a fixed point y are being integrated. Hence,
the value of the integral E(K, y) will be minimized if the previously described
distances are as small as possible. Thus, if we fix the area of a region K and
make the region very elongated, the integral E(K, y) will have greater value,
and if K is a sphere, the value of E(K, y) will be minimized. From there, we
can conclude that by minimizing the Quantizer error EQ, we are trying to
find the tessellation of space where constitutive cells are as close to spheres
as possible. Of course, concerned cells can not ever be spherical because they
wouldn’t be able to tessellate space.

In order to further investigate the Quantizer error, we have to define cer-
tain tools that will simplify our analysis. Thus, for a subset Kof d-dimensional
Euclidean space with mass density ρ(x), we define Minkowski tensors of
rank a [134] with:

Wa,0
0 (K) =

∫
K

xaρ(x)dx (1.6)

where potential term xa = x⊗ x . . .⊗ x︸ ︷︷ ︸
a times

. Moreover, for x = (x1, . . . , xd)

and y = (y1, . . . , yd), (x⊗ y)i,j = xiyj is a tensor product. Minkowski tensors
can be defined more general and thus Equation 1.6 provides only a small
subset of them [134]. By inserting different values of a into Equation 1.6 we
can obtain Minkowski tensor W0,0

0 that is equal to the volume of body K,
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W1,0
0 that is proportional to a mass centroid of K and W2,0

0 which produces a
covariance matrix assuming W1,0

0 = 0.
Furthermore, let us define a translation for a vector v as tv : Rd → Rd with

formula tv(x) = x + v. We can generalize translation tv to the case when
we want to translate any subset of Rd for a vector v by defining mapping
Tv : P(Rd)− > P(Rd) with formula:

Tv(K) = {tv(x), x ∈ K} (1.7)

where P(Rd) is the partitive set of Rd.

Now, with the previous two definitions, we can derive the following cal-
culations from the Equation 1.5:

E(K, y) =
∫
K

ρ(x)‖x− y‖2dx (1.8)

=
∫

T−y(K)

ρ(x)‖x‖2dx (1.9)

=
∫

T−y(K)

ρ(x)(x2
1 + x2

2 + . . . + x2
d)dx (1.10)

=
∫

T−y(K)

ρ(x)x2
1dx +

∫
T−y(K)

ρ(x)x2
2dx + . . . +

∫
T−y(K)

ρ(x)x2
ddx (1.11)

=
(

W2,0
0
(
T−y(K)

))
1,1

+
(

W2,0
0
(
T−y(K)

))
2,2

+ . . . +
(

W2,0
0
(
T−y(K)

))
d,d

(1.12)

= tr
(

W2,0
0
(
T−y(K)

))
. (1.13)

In the previous set of equations, Equation 1.9 follows from the definition
of translation (Equation 1.7), Equation 1.10 from the definition of Euclidean
norm ‖ · ‖ on Rd and Equation 1.11 is a consequence of integral being a lin-
ear operator. Further, Equation 1.12 follows from the definition of a tensor
product and Equation 1.13 from the definition of the trace of a matrix.

From the previous set of equations, we can see that the integral E(K, y) is
nothing more than a trace of Minkowski tensor W2,0

0 calculated for a region
K translated for a vector −y. Since by solving the eigenvalue problem of
Minkowski tensor W2,0

0 we can calculate the moments of inertia of a body, it
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becomes even more clear that the Quantizer error defined in Equation 1.3 is
closely related to the shape of Voronoi cells that tessellate the space.

Furthermore, by using the following property of Minkowski tensors [134]:,

Wa,0
0 (Tv(K)) =

a

∑
c=0

(
a
c

)
vc ⊗Wa−c,0

0 (K) (1.14)

we can eliminate the translation T−y(·) from the Equation 12 by:

E(K, y) = tr
(

W2,0
0
(
T−y(K)

))
(1.15)

= tr
( 2

∑
c=0

(
2
c

)
(−y)c ⊗W2−c,0

0 (K)
)

(1.16)

= tr
(

W2,0
0 (K)− 2y⊗W1,0

0 (K) + W0,0
0 (K)y⊗ y

)
(1.17)

= tr
(

W2,0
0 (K)

)
− 2tr

(
y⊗W1,0

0 (K)
)
+ W0,0

0 (K)tr
(

y⊗ y
)

(1.18)

= tr
(

W2,0
0 (K)

)
− 2y ·W1,0

0 (K) + W0,0
0 (K)y · y (1.19)

where · is a dot product of vectors. In the previous set of equations, Equa-
tion 1.16 follows from the Minkowski tensor property defined in Equation
1.14. Furthermore, Equation 1.17 is obtained by rewriting Equation 1.16 and
calculating the binomial coefficients and Equation 1.18 follows from the lin-
earity of matrix trace. Finally, Equation 1.19 is derived from the homogeneity
of matrix trace and the fact that tensor product equals the dot product if con-
cerned vectors are of the same dimension.

From the previous set of equations, we have learned that the integral
E(K, y), which is the key for the Quantizer error, depends directly on the
Minkowski tensors of ranks 0,1 and 2 of the region K. Moreover, previous
equations provide us an efficient way to calculate Quantizer energy since the
tools for calculation of Minkowski tensors are already familiar [134].

1.2.3 Lloyd’s algorithm

In previous subsections, we have defined the Quantizer problem and related
it to the Quantizer error that has to be minimized to find solutions to the
problem. Quantizer error EQ can always be minimized via some frequently
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used method such as gradient descent. However, even more efficient mini-
mization can be achieved by Lloyd’s algorithm.

Lloyd’s algorithm is an iterative procedure that belongs to a class of clus-
tering algorithms, and it is a generalization of the famous K-means algo-
rithm. While the K-means algorithm deals with clustering with a discrete car-
dinal number, Lloyd’s algorithm does the matching job in Euclidean space.
Therefore, Lloyd’s algorithm is well represented in many fields, particularly
industry. In that manner, applications of Lloyd’s algorithm can be found in
artificial intelligence such as clustering problems, image analysis, and pat-
tern recognition [23] as well as in biology as a model for explaining animal
behaviour [42].

Lloyd’s algorithm is one of the methods used for obtaining a centroidal
Voronoi diagram (CVD) from a particular set of points [73]. Centroidal Voronoi
diagrams are a class of more regular Voronoi diagrams where generators of
Voronoi cells coincide with mass centroids of their Voronoi cells.

More formally, let zi be a mass centroid of Voronoi cell Vi, for i ∈N , i.e.

zi =

∫
Vi

xρ(x)dx∫
Vi

ρ(x)dx
. (1.20)

A centroidal Voronoi diagram V (notation form Equation 1.2) is a Voronoi
diagram where ri = zi, ∀i.

Examples of CVD when ρ(x) = 1 are crystal lattices such as simple cubic
(SC), body centred cubic (BCC), face centred cubic (FCC), hexagonal close
packed (HCP) in 3D, and triangular, square and hexagonal lattices in 2D.
Even though previous examples are crystal lattices are hence, well ordered,
there exist structures that are CVD and amorphous at the same time [42].
Therefore, it is vital to understand how amorphous CVDs are formed and if
such configurations share some common structural and geometrical proper-
ties.

As mentioned before, Lloyd’s algorithm is an iterative procedure which
means that the same step is repeated until some stopping criterion is met. As
input for Lloyd’s algorithm, we can use any desired point pattern, which is
because of the practical purposes finite, R = ri, i ∈ {1, . . . , n} contained in Ω,
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FIGURE 1.3: A visualization of Lloyd’s iteration. Centres of
mass of Voronoi diagrams are calculated, and then all of the
generator points are replaced with the belonging centres of
mass. This procedure is iteratively repeated. This picture was

taken from the reference [85].

a subset of the d-dimensional Euclidean space with a mass density ρ : Rd →
R. An algorithm repeats the following three steps:

1. Calculate the Voronoi diagram V of Ω where ri, i ∈ {1, . . . , n} are gen-
erators.

2. Calculate the mass centroids zi of Vi for each i ∈ {1, . . . , n} and replace
current generators with mass centroids, i.e. ri = zi, ∀i.

3. Go to step 1. until some stopping criterion is met.

By closely studying previous steps of Lloyd’s algorithm, we can see that
Lloyd’s algorithm pushes the Voronoi generators to centres of mass of Voronoi
cells and, in that way, after a certain number of iterations, tries to force a
point pattern to become a centroidal Voronoi diagram. However, we still
need more rigorous proof that the algorithm’s output will be a CVD and that
such an algorithm converges. Moreover, it is not clear how does Lloyd’s al-
gorithm provide solutions to the Quantizer problem.
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In order to address previous questions, we introduce an energy functional
that depends on regions of Rd, K = {Ki, i = 1, . . . , n} and any points Y =

{yi, i = 1, . . . , n} contained in Ω ⊂ Rd with formula:

EL(K, Y) =
n

∑
i=1

E(Ki, y). (1.21)

The energy functional EL from now on will be referred to as the Lloyd’s
energy or Lloyd’s error. We can note that Lloyd’s error is proportional to the
Quantizer error. Indeed, two errors defer only by a scaling factor in the def-
inition of Quantizer error (Equation 1.3). Because of that, solutions to the
Quantizer problem minimize Lloyd’s error EL as well. However, it remains
unclear if Lloyd’s iterations minimize Lloyd’s energy.

The fundamental link between Lloyd’s energy EL and Lloyd’s algorithm
is provided in reference [43]. There, Du et al. present the theoretical proof
that Lloyd’s algorithm decreases the value of Lloyd’s energy EL in each it-
eration. That significant result proves the convergence of Lloyd’s algorithm
since the sequence of Lloyd’s energies EL generated by Lloyd’s iterations is
decreasing and bounded from below (EL > 0). Then, the concerned sequence
converges due to the statement of the theorem that bounded and monotonic
sequence is convergent. This result allows us to define the stopping criterion
for Lloyd’s iterations. Thus, we can terminate Lloyd’s algorithm when the
difference in energy EL between two consecutive iterations falls below some
threshold value.

Another essential theoretical result states that the local minima of Lloyd’s
energy EL are achieved when set of regions K (Equation 1.21) is Voronoi tes-
sellations V and points Y are generators and mass centroids of Voronoi di-
agram V , namely when V is CVD [20]. This result proves that Lloyd’s al-
gorithm produces a CVD implying that solutions of the Quantizer problem
obtained with Lloyd’s algorithm are also CVDs. Therefore, we will some-
times refer to the process of solving the Quantizer problem for a given set of
points as a centralization procedure.

1.2.4 Solutions to Quantizer problem

Finding the globally optimal solution to the Quantizer problem has been a
subject of study for many years. A pioneer work regarding the minima of
the Quantizer problem in 3D was done by Allen Gersho in 1979 [56]. He con-
jectured that the body centred cubic (BCC) lattice is a structure that globally
optimizes the Quantizer energy. The Gersho conjecture remains unproven
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even though the supporting evidence was presented in [44] using computa-
tional means. However, it was shown that BCC is the optimal solution of the
Quantizer problem among all of the crystal lattices [14]. In 2D, the globally
optimal state of the Quantizer problem is proven to be a hexagonal lattice
[31, 143].

Structure Dimension Et
Hexagonal 2D 0.080187

Square 2D 0.08333
Body centered cubic (BCC) 3D 0.078543
Face centered cubic (FCC) 3D 0.078745

A15 3D 0.08098
Bravais lattice 3D 0.081236

Simple cubic (SC) 3D 0.08333
Integer (Z) 3D 0.08666

TABLE 1.1: Values of the total energy Et for different lattices in
two and three dimensional space [44, 85].

The fact that many crystal lattices were found to be locally optimal states
of the Quantizer problem [56, 14] indicates that the landscape of Quantizer
energy EQ is complex with many valleys that correspond to local minima of
EQ. Because of that, it is crucial to understand the nature of Quantizer min-
ima when starting from initial structures with different spatial properties.
It is exciting to see if Lloyd’s algorithm starting from an arbitrary structure
will lead to a solution with crystalline order, or it will converge to an amor-
phous solution of the Quantizer problem. Moreover, many crystalline struc-
tures that solve the Quantizer problem, such as BCC and FCC lattices, corre-
spond to packings of equally sized spheres. This fact motivates to generalize
the Quantizer problem to the systems consisting of particles with non-trivial
volume. In such a case, it would be interesting to address how solutions to
the generalized Quantizer problem depend on the geometrical and structural
properties of systems that are being optimized.

Last but not least, in order to effectively quantify solutions of the Quan-
tizer problem, we introduce the dimensionless rescaled total energy of system of
n points Y contained in Ω ⊂ Rd with:

Et =
n

2
d

dV(Ω)1+ 2
d

EL(V , Y) (1.22)
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where V(Ω) is volume of Ω and V is Voronoi diagram generated by points
Y . Moreover the total energy of a single cell is obtained by including n = 1
and Ω = Vi in Equation 1.22, i.e.

Et =
1

dV(Vi)
1+ 2

d
E(Vi, yi) (1.23)

The total energy Et is proportional both to Quantizer energy EQ and Lloyd’s
energy EL. However, we introduced the total energy Et because it is most
commonly used in the literature to quantify Quantizer minimal states (same
as Lloyd’s algorithm minimal states due to EQ being proportional to EL) [43].
Total energy values for some notable lattices and structures are given in Table
1.1.

1.3 Hyperuniformity of systems

Properties related to density of the point patterns or systems of particles
played a major role in many studies through the history [84, 129, 78, 16, 38,
7, 61]. An exciting feature of density is how it changes through different po-
sitions in the system. Therefore, fluctuations of the density in a system can
provide essential information about the observed structures. Density fluctu-
ations are essential for many fields of science such as physics, mathematics,
chemistry, material science, biology, and engineering [147, 117, 155]. The
study of density fluctuations in various systems was stimulated even more
in the last 20 years by introducing a new concept well known as hyperunifor-
mity [149].

1.3.1 Definition of hyperuniformity

Hyperuniformity is a geometrical property that classifies the behaviour of
long-wavelength density fluctuations in particle materials so that a partic-
ular structure is considered hyperuniform only if it has suppressed long-
wavelength density fluctuations. While it is obvious to see that well-ordered
structures as crystals and quasi-crystals possess that property, a substan-
tial collection of amorphous materials have been found hyperuniform [147].
Therefore, we can consider hyperuniformity as a system feature that charac-
terizes order that may not be visible at first.
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The easiest way to understand the concept of hyperuniformity more thor-
oughly is to examine the behaviour of the number variance σ2

N(R) [147]. In
order to define the number variance, let us consider a set of points Y in a d-
dimensional Euclidean space Rd and an arbitrary sphere Ω of radius R in Rd

(see Figure 1.4). When Omega is placed randomly in space, it is always pos-
sible to count the number of points N(R) contained in Ω. With the change
of Ω position, the number of points contained in it may also change(Figure
1.4). Therefore, it is convenient to define the number variance σ2

N(R) as a
variance of a random variable N(R). The number variance σ2

N(R) measures
fluctuations of the number of points in a fixed volume and the fluctuations
of density within a point pattern. Consequently, it is possible to characterize
the concept of hyperuniformity as a long-range order with the behaviour of
σ2

N(R) when R is large enough.

FIGURE 1.4: Visualization of the number variance in 2 - dimen-
sional Euclidean space. The number of points N(R) contained
in the observation window Ω varies with the change of obser-
vation window position. a) The observation window Ω con-
tains 14 points. b) The observation window Ω contains 8 points.

Following on from the previous discussion, a point pattern is considered
hyperuniform when σ2

N(R) grows more slowly than the volume of the ob-

servation window Ω. More precisely, σ2
N(R)
Rk has to be a decreasing function

and

lim
R→∞

σ2
N(R)
Rk = 0. (1.24)

The visualization of a hyperuniform point pattern is presented in Figure 1.5.

A natural question that arises from the previous definition is how fast
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does the limit in Equation 1.24 approach 0 if the observed point pattern is hy-
peruniform. It is well known that the number variance σ2

N(R) can not grow
slower than the surface area of the observation window for statistically ho-
mogeneous and isotropic point patterns [149]. Consequently, the growth rate
of σ2

N(R) has to be somewhere between Rd−1 and Rd for a point process to
be hyperuniform which raises the motivation to classify hyperuniform point
patterns more precisely.

Therefore, based on the behaviour of σ2
N(R), this is convergence speed in

the limit in Equation 1.24, we can observe three different classes of hyperuni-
form point processes [147]:

• CLASS I σ2
N(R) ∼ Rd−1

• CLASS II σ2
N(R) ∼ Rd−1 ln R

• CLASS III σ2
N(R) ∼ Rd−ε, 0 < ε < 1

FIGURE 1.5: Visualization of the hyperuniform structure found
in the chicken eyes. This image was taken from reference [25].

Class I structures, where number variance grows proportional to the sur-
face area of observation window Ω are most ordered among hyperuniform
structures. Naturally, representatives of Class I are crystals [149], some qua-
sicrystal structures [164, 114], perturbed lattices [53, 54, 55], Weyl-Heisenberg
ensembles [3], one-component plasmas [67] and hard-sphere plasmas [95,
96]. Among the members of Class II structures are some quasi-crystals [114],
and also a few exciting point patterns relevant in mathematics, such as ze-
ros of Riemann zeta function [148, 59] and eigenvalues of random matrices
[104]. Moreover, density fluctuations in early Universe [117], and maximally
random jammed packings [40, 69, 87] also have the behaviour of number
variance that classifies them into this class of hyperuniform structures. In the
end, the most notable representatives of Class III hyperuniform structures
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are some perturbed lattices [79] and random organization models [63].

As we can see from the previous lines, hyperuniformity was found in var-
ious systems that have different spatial characteristics. Among them, amor-
phous hyperuniform structures [100, 147] have raised a particular focus be-
cause, in such systems, the suppression of long-range density fluctuations is
not intuitive as in systems with crystalline order. Moreover, it is fascinating
to understand the origin of hyperuniformity in such amorphous systems, i.e.,
what procedure or property is vital for the observed system to be hyperuni-
form [146, 148, 117]. Furthermore, the property of hyperuniformity was not
only identified in point patterns but also in systems consisting of non-trivial
particles [40, 95, 87]. Therefore, it is crucial to understand why a particu-
lar particle system is hyperuniform and relate the geometric and structural
properties of such systems to their hyperuniformity.

1.3.2 Structure factor of hyperuniform point patterns

In order to measure correlations between points in the system, building on
the definition of n-particle probability density function (Equation 1.1) for a
point process R = ri, i ∈ N, we can introduce the n-particle correlation func-
tions with

gn(r1, . . . , rn) =
ρn(r1, . . . , rn)

ρn . (1.25)

N-particle probability density function gn(r1, . . . , rn) measures the correla-
tions in observed point process respective to the totally non-correlated point
process such as Poisson point process. If the point process R is non-correlated
it is clear that the value of gn(r1, . . . , rn) is equal to 1. The n-particle correla-
tion function of particular importance for the transnationally-invariant point
processes is the pair correlation function (n = 2), formalized with

g2(r) =
ρ2(r)

ρ2 , where r = r2 − r1. (1.26)

Thus, the pair correlation function can be interpreted as a probability of find-
ing two points at a distance r respective to the Poisson point process.

Furthermore, from the pair correlation function we can calculate the total
correlation function with

h(r) = g2(r)− 1 (1.27)
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which is important for definition of structure factor of translational-invariant
point process R. Structure factor S(k) is defined with

S(k) = 1 + ρĥ(k) (1.28)

where ĥ(k) is the Fourier transform of the total correlation function. Here,
vector k is known as a wave vector. The length of a wave vector k, known
as a wavenumber |k|, corresponds to the wavelength λ in the system with
formula

|k| = 1
2πλ

. (1.29)

Structure factor is a well-known mathematical tool used to clarify mate-
rial scattering and scattering patterns in X-ray, electron or neutron diffraction
experiments. In the scattering experiments, the values of structure factors are
proportional to the scattered intensity of radiation from a system of points.
Moreover, structure factor is a non-negative quantity, meaning S(k) ≥ 0, for
all wave vectors k.

Hyperuniformity of a given point process is defined by the behaviour of
the structure factor for infinite wavelengths, that is, when the wavenumber
|k| approaches 0. More precisely, a point pattern is considered hyperuniform
when S(k) vanishes as the wavenumber |k| tends to zero, i.e.,

lim
|k|→0

S(k) = 0. (1.30)

Similarly, as when hyperuniformity was defined via number variance σ2
N(R),

the three classes of hyperuniformity can be characterized by examining the
way structure factor approaches 0. In this sense, let us consider hyperuni-
form structure for which the structure factors obtains a power law in the
vicinity of 0, i.e.,

S(k) = |k|α, α > 0 (1.31)

It is possible to show that the asymptotic behaviour of σ2
N(R) depends on

the coefficient α in the Equation 1.31 [147]. Therefore, the classification of the
hyperuniformity can be extended in the following way:

• CLASS I σ2
N(R) ∼ Rd−1 when α > 1

• CLASS II σ2
N(R) ∼ Rd−1 ln R when α = 1



18 Chapter 1. Introduction

• CLASS III σ2
N(R) ∼ Rd−α, 0 < α < 1.

Besides the three classes of hyperuniformity, another two categories of
hyperuniform point patterns are worth mentioning. First of them is stealthy
hyperuniform point processes, which are characterized by the property that
their structure factor is equal to 0 for all wave vectors k that are shorter than
some threshold value ε [146]. Furthermore, since the condition from Equa-
tion 1.24 is quite strict and difficult to prove rigorously when numerical data
is analysed, it is convenient to consider some point processes "nearly" hy-
peruniform or hyperuniform for numerical purposes. Such point processes
are said to be effectively hyperuniform. For a strict description of effectively
hyperuniform point patterns, we have to define a measure that characterizes
how close a structure is to perfect hyperuniformity. Therefore, we define H
measure [10, 100, 147] with

H =
Ŝ(0)

S(kpeak)
. (1.32)

where Ŝ(0) is an estimated value of structure factor for k = 0 via linear
regression and S(kpeak) is the value of structure factor at its largest peak.
Then, the system is considered effectively hyperuniform if H ≤ 10−3 [147].

1.4 Outlook of this thesis

In previous sections of the introduction to this thesis, we have described the
Quantizer problem and long-range density fluctuations of the hyperuniform
system. Hence, those two topics and their appearance in biological systems
will be the central theme of this thesis.

Thus, in Chapter 2, we will study solutions of the Quantizer problem
obtained by Lloyd’s optimization of various amorphous and random point
patterns in 3D. We will investigate long-range density fluctuations in the sys-
tems both before and after the application of Lloyd’s algorithm. Further, we
will study the morphology of concerned point patterns by studying volumes
and total energies of Voronoi cells generated by the points. We will provide
a mutual comparison of various Quantizer solutions properties and investi-
gate the amorphousness of the observed structures. Finally, we will motivate
the centralization of the Quantizer problem to systems consisting of particles
with non-trivial volume.
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In order to generalize the Quantizer problem for systems of non-trivial
particles, in Chapter 3, we will define structures that will be later used as
an input for generalized Quantizer optimization. Therefore, we will study
random assemblies of ellipses with different elongations assembled at vari-
ous packing fractions and an algorithm used to generate studied assemblies.
By calculating the Voronoi diagram generated from ellipses, we will study
the effects of ellipse shape and assembly packing fraction on various geo-
metrical properties of systems such as area, perimeter, elongation, and more.
Moreover, we will investigate the topology of ellipse assemblies and relate
it to morphology by reproducing various previously known laws. Finally,
we will study the effects of centralization and jamming in the ellipse systems
governed by the system’s density.

Chapter 4 of this thesis will expand the Quantizer problem to systems of
non-trivial particles and try to find an extension of Lloyd’s algorithm that
solves it. We will study the link between two new definitions and optimize
ellipse assemblies from Chapter 3 with modified Lloyd’s algorithm. We will
relate ellipse shape and assembly packing fraction to how the newly mod-
ified Lloyd’s algorithm introduces changes to assemblies. Finally, we will
investigate the concept of hyperuniformity in the ellipse assemblies before
and after the application of modified Lloyd’s algorithm.

Last but not least, in Chapter 5, we will apply previously studied theory
to structures appearing in cellular geometries of the epithelial tissue. Will
describe the theoretical model for epithelium that is based on ellipse assem-
blies and Voronoi tessellation. Furthermore, we will investigate optimization
properties related to the Quantizer problem in the context of epithelial tis-
sue. At last, we will calculate structure factors of epithelial tissue and try to
reproduce actual experiments with our model where random assembly and
Lloyd’s algorithm have a pivotal role.
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Chapter 2

Universal hidden order in
amorphous cellular geometries
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Bruce S. Gardiner htimSanačnuS-anA Gerd E. Schröder-Turk

Salvatore Torquato



2.1. Introduction 23

2.1 Introduction

This chapter will investigate solutions to the Quantizer problem in 3D more
thoroughly. As we brought up in the introduction chapter of this thesis, the
landscape of Quantizer energy EQ is complex and has many local minima
that correspond to crystal lattices [56, 14]. Therefore, it is interesting to in-
vestigate which solution of the Quantizer problem will Lloyd’s algorithm
provide when we start from an arbitrary initial configuration.

The case when we use crystalline structures as initial configurations for
Lloyd’s optimization is trivial because such patterns are fixed points of the
algorithm. Indeed, crystalline structures are already CVDs, and Lloyd’s iter-
ation will not introduce any structural change to them [42, 43, 20]. A more
interesting case is applying Lloyd’s algorithm to point globally amorphous
configurations. Then, Lloyd’s algorithm will solve the Quantizer problem
that possesses different spatial characteristics than the initial structure.

An exciting phenomenon to address is whether Lloyd’s algorithm will
converge to a globally optimal solution [56] when starting from an arbitrary
disordered pattern or if Lloyd’s algorithm will produce some of the local
minima of the Quantizer problem. Moreover, it is very thought-provoking
to study if obtained solutions will correspond to some of the already known
Quantizer minima with crystalline order [56, 43] or amorphousness of the
initial structure will be preserved throughout Lloyd’s iterations.

We will study various properties of point patterns before and after the ap-
plication of Lloyd’s algorithm. We want to understand what changes are in-
troduced to point processes when Lloyd’s iterations are applied and what ge-
ometric characteristics are specific for minimal states of the Quantizer prob-
lem. Therefore, we will investigate probability distributions of volume and
total energy Et of Voronoi cells generated by concerned point processes. More-
over, we will study structure factors calculated from point patterns of our
interest. This way, we will address previously recognised questions regard-
ing the amorphousness of concerned systems and characterize how initial
configurations and Quantizer solutions are arranged.
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2.2 Methods

2.2.1 Initial configurations

We have applied Lloyd’s algorithm to the following 3D structures with dif-
ferent structural properties:

• Binomial point process

• Permanental point process

• Hyperplane intersection process

• Determinantal point process

• Maximally random jammed state

• Lubachevsky-Stillinger algorithm for sphere packings

• Stealthey hyperuniform point process.

Some text from this subsection is paraphrased from reference [JL1].

Binomial point process (BPP)

The binomial point process is a point process that simulates the positions of
ideal gas molecules in a container at some particular moment [27]. Hence, the
binomial point process points are positioned uniformly and randomly inside
the simulation box and mutually uncorrelated. A visualization of a binomial
point process is presented in Figure 2.1a).

FIGURE 2.1: a) Binomial point processes in three dimensional
space visualized by Jmol [71]. Point processes is contained in
cuboidal simulation box with periodic boundary conditions. b)

Structure factor of binomial point process.
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Structure factor S(k) of the binomial point process is trivial and S(k) = 1,
for all wave vectors with wavenumbers |k| > 0 (Figure 2.1b). Thus, structure
factor of binomial point process is often used as a reference when character-
izing density fluctuations.

We have used three samples of 128000 points as an input of Lloyd’s algo-
rithm and run it for approximately 12400 iterations.

Determinantal point process (DPP)

The determinantal point process is used to model random systems where
particles exhibit repulsion. Examples of such systems are fermions in quan-
tum mechanics as well as transmitters in wireless networks [86, 34]. For-
mally, given the kernel K : Rk ×Rk → R, n-point correlation functions of
DPP are defined with:

gn(x1, . . . , xn) = ρ−ndet(K(xi, xj))1≤i,j≤n

where det is a determinant of a kernel.

FIGURE 2.2: a) Determinantal point processes in three dimen-
sional space visualized by Jmol [71]. b) Structure factor of de-

terminantal point process.

We simulated 2 samples consisting of around 2750 points generated by
the power exponential spectral model, a member of a broad class of DPP
models [90]. The points were generated using a package Spatstat [12, 13, 11]
with parameters ν = 10, α = 0.12 in notation as in paper [90]. The example of
such point pattern can be seen in Figure 2.2a). Generated point patterns, later
used as an input of Lloyd’s algorithm, are not hyperuniform even though
point patterns generated by the power exponential spectral model can be
hyperuniform [85] (Figure 2.2b ).
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Permanental point process (PPP)

FIGURE 2.3: a) Permanental point processes in three dimen-
sional space visualized by Jmol [71]. b) Structure factor of per-
manental point process. Density fluctuations in z-direction are

present due to grouping of the points in separate clusters.

The permanental point process is an attractive counterpart of the repul-
sive determinantal point process and it is used to model bosons in quantum
mechanics [86]. It can be defined, similarly to the Determinantal point pro-
cess, using a kernel K : Rk ×Rk → R, with

gn(x1, . . . , xn) = ρ−n per(K(xi, xj))1,≤i,j≤n

where per is a permanent of a kernel (sum of products of sets of matrix ele-
ments that lie in distinct rows and columns).

We simulated two samples of the Gaussian random waves model, a sub-
class of the PPP, using parameters L = 25, |ki| = 10

L , aw = 1
2 , ω = 0.1 as

explained in reference [86]. Such system have a strong density fluctuations
in a z-direction in Cartesian coordinate system as it can be observed from
Figure 2.3).

Hyperplane (Hyperfluctuating) intersection process

The hyperplane intersection process is a point process generated by inter-
sections of randomly placed hyperplanes in space, known as Poisson hyper-
plane tessellations [62]. The Poisson hyperplane tessellation is constructed
so that a certain number (drown from Poisson distribution) of hyperplanes
is randomly placed inside a ball in Euclidean space. Then, the point process
is obtained by the intersections of three hyperplanes in space. The visualiza-
tion of the characteristic clusters of points from two different angles of the
hyperplane intersection process is presented in Figure 2.4a.
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FIGURE 2.4: a) Hyperplane intersection process in cuboidal
container visualized by Jmol [71]. Significant clustering of the
points is present which indicates strong density fluctuations
in the systems. Different view angle reveals shapes of hyper-
planes embedded in space. b) Structure factor of hyperplane

intersection point process.

We simulated two samples of the hyperplane intersection process, con-
taining around 10500 and 99700 points. Spatial density fluctuations in the hy-
perplane intersection process have an arbitrary long range, which is referred
to in the literature as a hyperfluctuating [147]. It was calculated that the
number variance σ2

N(R) grows like R2k−1 in k-dimensional space, i.e., faster
than the volume of the observation window. Hence the structure factor S(k)
diverges when |k| → 0 (Figure 2.4b).

Maximally random jammed state (MRJ)

The maximally random jammed state is a state that minimizes any order pa-
rameter among all of the isotropic and statistically homogeneous jammed
states of an identical sphere system. Intuitively, it is the most random among
all of the systems where any of the particles cannot be moved without mov-
ing all of the other particles [145].

We applied Lloyd’s algorithm to 1015 such packings consisting of 2000
monodisperse spheres generated with procedures described in [144, 9]. The
point process is obtained by taking centres of mass of jammed spheres. Such
point process was found hyperuniform [40] and it is visualized in Figure2.5).

Lubachevsky-Stillinger algorithm for sphere packings (LSPP)

This point process consists of centres of jammed packings of monodisperse,
frictionless hard spheres obtained by the Lubachevsky-Stillinger algorithm
[98, 78]. Lubachevsky-Stillinger algorithm is one of the most famous numer-
ical procedures that simulate a packing of hard particles by compressing their
assembly to the given simulation box.
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FIGURE 2.5: a) Maximally random jammed point processes in
three dimensional space visualized by Jmol [71]. b) Structure

factor of MRJ point process.

FIGURE 2.6: a) Point process generated by Lubachevsky-
Stillinger algorithm for sphere packings in three dimensional

space visualized by Jmol [71]. b) Structure factor of LSPP.

Our two samples consisted of 40000 spheres packed at global packing
fraction φg = 0.640639 and φg = 0.661073 (see Figure 2.6a)). The difference
in the packing fraction of two samples is key for one of the vital properties of
the system. Sphere packing at packing fraction φg = 0.640639 is fully amor-
phous, meaning there are no crystalline patches in the system while packing
fraction φg = 0.661073 exceeds random close packing limit [78] when crys-
talline domains start to form. The systems were generated using parameters
taken from reference [78], and implementation of the Lubachevsky-Stillinger
algorithm from [139].

Stealthy hyperuniform point process (Stealthy PP)

Stealthy hyperuniform point processes are a class of point structures char-
acterized by a structure factor S(k) that equals 0 for wavenumbers below
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FIGURE 2.7: a) Stealthy hyperuniform point process in three
dimensional space visualized by Jmol [71]. b) Structure factor

of stealthy hyperuniform point process.

some threshold value ε (Figure 2.7b). Trivial examples of stealthy hyper-
uniform point processes are crystal structures whose structure factors only
have Bragg peaks [146]. However, statistically isotropic stealthy hyperuni-
form point processes can be surprisingly disordered, but still, hyperuniform
[146].

For m ∈ N points in the exclusion sphere, we can define parameter χ =
m

d(n−1) that measures the degeneracy and disorder in stealth hyperuniform
point processes. With value χ < 0.5, a stealthy hyperuniform point process
is disordered and degenerate while for value χ = 0.5 the system transitions
to crystalline state.

We generated twelve samples with disordered or so-called entropy favoured
ground states (χ = 0.494), each containing 500 points using procedure de-
scribed in reference [167] in order to apply Lloyd’s algorithm to them. An
example of the stealthy hyperuniform point process is presented in Figure
2.7a.

2.2.2 Implementation and convergence of Lloyd’s algorithm

We implemented Lloyd’s algorithm using two open-source software pack-
ages. We constructed Voronoi diagrams with Pomelo, a software package
developed initially for calculation 3D set Voronoi diagrams for generic par-
ticles [131]. For calculation of mass centroids and total energies, we used
Karambola [132, 134, 105], a software that calculates arbitrary Minkowski
tensors of bodies and surfaces in 3D. In our simulations, all of the simula-
tion boxes have periodic boundary conditions. Moreover, we self-developed



30 Chapter 2. Universal hidden order in amorphous cellular geometries

all other necessary scripts for calculations and data analysis in R [122], and
Python [151]. For visualization of structures, we used Jmol: an open-source
Java viewer for chemical structures in 3D [71].

FIGURE 2.8: Total energy Et (Introduction, Equation 22) calcu-
lated for Lloyd iterations. Different colours denote different ini-
tial configurations. Yellow solid line stands for total energy of
BCC lattice, Et ≈ 0.078543. a) In first 10 iterations total en-
ergy decreases rapidly, while later the curve representing total
energy saturates. b) After approximately 103 iterations, total
energy is invariant on different initial structures. Moreover, the
curve decreases slower over time indicating the convergence of

Lloyd’s algorithm.

We applied O(104) iteration of Lloyd’s algorithm to all of the structures
described in Subsection 2.2.1 of this chapter. In order to justify convergence
of Lloyd’s algorithm after O(104) iterations, we can observe the behaviour
of the total energy Et (Introduction, Equation 22) throughout the application
of the algorithm (Figure 2.8). In the figure, different colours refer to different
initial configurations, and the solid yellow line represents the total energy
value of BCC, Et ≈ 0.078543. Concerned initial configurations were chosen
because they have the greatest values of the total energy among the 7 initial
configurations and are most instructive to present.

Hence, Figure 2.8a illustrates that values of the total energy Et decrease
quickly under Lloyd’s algorithm, especially in the first 10 iterations. After
that, the decrease in the total energy values is slighter, and the difference be-
tween values that correspond to different iterations gets smaller and smaller.
Moreover, in Table 2.1 we present values of the total energy after a vari-
ous number of Lloyd’s iterations for all three different initial configurations.
From there, we can observe that values of the total energy between iterations
1000 and 10000 differ only at the order of magnitude 10−5. Thus, based on
the previous analysis, we can conclude the performed number of iterations is
sufficient to consider Lloyd’s algorithm fully converged. Therefore, obtained



2.2. Methods 31

Iteration Binomial PP PPP Hyperfluctuating
0 0.1157 0.14656 0.39667

10 0.08172 0.08453 0.116045
100 0.07961 0.0798 0.08393

1000 0.07927 0.07928 0.07929
10000 0.07921 0.07921 0.07922

TABLE 2.1: Total energy of system given different initial struc-
tures and different number of Lloyd’s iterations.

structures are suitable for further analysis.

Furthermore, from Figure 2.8b, we observe that after iteration 1000, the to-
tal energy values are nearly independent of the initial structure even though
at the beginning, there is a significant difference between values of the total
energy. Those differences between values of the total energy regarding dif-
ferent initial configurations diminish through time. In the beginning, before
the application of Lloyd’s algorithm, different systems have different values
of the total energy Et (Table 2.1). Interestingly, as the initial structure is more
disordered and density fluctuations in the system are higher, the total energy
value is greater and further from the total energy of BCC, which is considered
a global optimum. This greater gap to the optimal value can be explained by
Voronoi cells of many different shapes in such systems, especially more elon-
gated ones that adopt higher values of the total energy. As we mentioned,
while the number of iterations increases, the difference between the total en-
ergy values of different initial configurations vanishes. In particular, after
10000 iterations, differences between the total energies of different systems
are the order of magnitude 10−5 or even lower.

Another important aspect regarding the convergence of Lloyd’s algorithm
is the effect of the sample size of the configurations optimized by Lloyd’s al-
gorithm. We applied Lloyd’s algorithm to two samples of the binomial point
process, one consisting of 500 points and the other one consisting of 50000
points. We can observe from Figure 2.9a) that even though before the ap-
plication of Lloyd’s iterations exists a difference in total energy between two
systems, the total energy value is nearly equal between samples for all except
the first few iterations. Indeed, the difference is of order of magnitude 10−4

or even lower even after 100 iterations (Figure 2.9b)).

Accordingly, considering the previous discussion, we can conclude that
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FIGURE 2.9: Total energy Et (Introduction, Equation 22) calcu-
lated for Lloyd iterations. Different colours denote the bino-
mial point process samples with a different number of points.
Yellow solid line stands for total energy of BCC lattice, Et ≈
0.078543. a) In the first few iterations, a small difference be-
tween total energies exists due to different realizations of the bi-
nomial point process. As the number of iterations rises, the dif-
ference between total energies vanishes. b) After approximately
103 iterations, the difference between energies is insignificant,
meaning that Lloyd’s algorithm converges with the same speed

independently of the sample size.

the convergence of Lloyd’s algorithm does not depend on the size of the
systems used and that the number of points in each sample mentioned in
subsection 2.2.1 is sufficient to draw valid conclusions about the properties
of Lloyd’s algorithm. Moreover, we observed that even after 1000 iterations,
there is no significant difference in the total energy, and therefore, O(104)

Lloyd’s iterations are plentiful to obtain fully equilibrated systems. Further
proof of the respective claims arises from the fact that the mean distance be-
tween centres of mass and generators of Voronoi cells after O(104) iterations
is an order of magnitudeO(10−8) when meaning volume in systems is set to
unity. Therefore, obtained configurations are CVD with the error being of an
order of magnitude O(10−8).

2.3 Properties of the Quantizer minimal states

Here, we will present results regarding the application of Lloyd’s algorithm
to structures introduced in Subsection 2.2.1. We will characterize long-range
density fluctuations of Quantizer optimal configurations after applying Lloyd’s
iterations by studying the properties of their structure factors. Furthermore,
we will investigate the amorphousness of the obtained systems by marking
out properties of Voronoi cell energy and volume probability distributions.
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Finally, we will compare the outputs of Lloyd’s algorithm to each other and
examine the level of universality of Quantizer solutions.

2.3.1 Density fluctuations of systems under Lloyd’s algorithm

In order to identify the effect of Lloyd’s iterations to point different pro-
cesses, we studied behaviour of structure factor of point patterns. Figure
2.10 presents structure factors of fully amorphous point processes described
in subsection 2.2.1 before (Figure 2.10a) and after (Figure 2.10b) application
of Lloyd’s algorithm.

We can note that before applying Lloyd’s algorithm, structure factors of
different point configurations adopted different behaviours. Structure factors
of more disordered point processes such as hyperfluctuating and permanen-
tal point processes obtain no peaks at any wavenumbers but diverge when
wavenumber approaches zero. As mentioned before, such structures possess
large density fluctuations at long wavelengths. On the other hand, systems
with suppressed long-wavelength density fluctuations possess structure fac-
tors with expressed peaks at some wavenumbers and property that it ap-
proaches zero for small wavenumbers. Significantly, the structure factor of
the stealthy hyperuniform point process is equal to zero when wavenumber
k is lower than k0 ≈ 5.5. At last, some structure factors are constant with a
value of 1 for all wavenumbers (binomial point process) or slightly fluctuate
around 1 (determinantal point process).

FIGURE 2.10: Structure factors of various amorphous point pro-
cesses before (a) and after (b) application of Lloyd’s algorithm.
Differently coloured symbols denote different point patterns.
Horizontal lines in b) part of the figure denote Bragg peaks of
BCC lattice structure factor. This figure was adapted from ref-

erence [JL1].
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After applying Lloyd’s algorithm, we observe that all structure factors
overlap into a universal curve. The obtained curve has expressed peaks dis-
tinct from Bragg peaks of the structure factor of the BCC lattice, a structure
that is conjectured to be optimal in minimizing total energy Et. Moreover,
the final structure factor decays quickly from its most pronounced peak and
approaches 0 as wavenumber k→ 0.

The previously mentioned phenomenon indicates a high suppression of
long-wavelength density fluctuations in the systems after applying Lloyd’s
algorithm. It drives us to the conclusion that Lloyd’s algorithm introduces
a great order into systems regardless of the initial configuration, and there-
fore it justifies why it is frequently used when structures with desired "good"
properties are needed [42].

FIGURE 2.11: Structure factors of the different point processes
after application of Lloyd’s algorithm. Structure factors are
plotted on log-log scale. Different coloured symbols denote dif-

ferent initial point processes.

In order to further examine the structure factor of the final configurations,
we can picture structure factors on a logarithmic scale (Figure 2.11). Figure
2.11 reveals the order of magnitude to which structure factors dropped at
short wave vectors k. We can see that the structure factor has dropped close
to 10−3 for the smallest considered wavenumbers. That fact confirms the ex-
istence of long-range order and suppression of density fluctuations in final
systems. Moreover, the obtained structure factors are of a similar order as
ones obtained for maximally random jammed sphere packings, which are
considered to be hyperuniform [40].
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However, we can not conclude if obtained CVDs are strictly hyperuni-
form based on our study due to a few technical limitations. As it was dis-
cussed in reference [JL1], "we consider only a finite number of Lloyd’s itera-
tions. As seen from our study, Lloyd’s iterations cancel out long-wavelength
density fluctuations in concerned systems (such as in the case of hyperfluc-
tuating point patterns). More precisely, in each step, a local optimization
event (replacement Voronoi cell generator with its centre of mass) induces
an optimization(suppression) of density fluctuations on a long-range. There-
fore, a finite number of Lloyd’s iterations can not modify density fluctua-
tions on infinite wavelengths meaning valid conclusions about S(0) can not
be made. Moreover, it was shown that Lloyd’s algorithm modifies structure
factor quickly in the first 1000 iterations and after that decays structure factor
towards 0 slower after each iteration [85].

Further limitations of our study are the effects of the finite system size.
The first of them is due to the boundary conditions of our simulation box.
Even though the periodic boundary conditions minimize the boundary ef-
fect, since Lloyd’s iterations influence long-wavelength density fluctuations,
the boundary effect is undoubtedly present. Moreover, the finite size of the
system influences the small wavenumbers that we can consider. The den-
sity fluctuations at the length of the simulation box are hard to calculate, and
therefore, we only consider the wavenumbers greater than 4.5× 1

a where a
is a simulation box length. The exceptions are the Determinantal PP and
Stealthy hyperuniform PP, where we consider the wavenumbers greater than
1.5× 1

a due to small system sizes.
Last but not most negligible effect on our study is a limitation that wavenum-

bers taken into consideration obtain only discrete values meaning only a few
wave vectors are taken in count. Therefore, an effect of low statistics can
cause more significant variations in the estimation of the structure factor."

However, even though we can not address if obtained CVDs are strictly
hyperuniform, we find that they are effectively hyperunifiorm with H mea-
sure H ≤ 10−4. The obtained value of the hyperuniformity measure H is
one of the smallest known among the effective hyperuniform systems [148].
Therefore, we can conclude that obtained CVDs are surely hyperuniform for
all practical purposes while studying strict hyperuniformity is beyond the
reach of this thesis.
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2.3.2 Amorphousness of structures

FIGURE 2.12: Distributions of the total cell energy Et (Intro-
duction Equation 23). Different colours denote different point
patterns. a) Initial configurations. The distributions of the to-
tal cell energy Et differ both in width and in position on the
Et axes depending on different point patterns. b) Final config-
urations. Distributions of the total cell energy overlap for all
initial configurations. A significant fraction of cells (≈ 3%) ob-
tain total energies that are lower than total energy of the BCC

cell (Et ≈ 0.078543).

As mentioned earlier, we applied Lloyd’s algorithm to point processes
that form very different spatial structures but have a common property -
amorphousness. The latter claim can be justified by examining energies (Fig-
ure 2.12) and volumes (Figure 2.13) of Voronoi cells generated by the ob-
served point processes. Indeed, neither do the total cell energy (Figure 2.12a))
or volume (Figure 2.13a)) distributions of the initial structures possess peaks
in the distributions, which would indicate if ordered domains or crystalline
patches are over-expressed in the systems. Observed distributions are smooth,
and some of them are very narrow compared to the others, but they all
have a long tail, as appropriate for amorphous structures. Furthermore, al-
though structure factors of initial configuration differ a lot, no Bragg peaks
that would be characteristic for systems with expressed crystalline domains
are observed (Figure 2.10a).

Surprisingly, even though Lloyd’s algorithm introduces a great amount of
order in the systems and nearly fully suppresses long-range density fluctua-
tions, characteristic of the crystals, the obtained final structures also remain
fully amorphous. Truly, energy (Figure 2.12b)) and volume (Figure 2.13) dis-
tributions associated with the final structures have no overexpressed peaks
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FIGURE 2.13: Distributions of the Voronoi cell volumes. Dif-
ferent colours denote different point patterns. a) Volumes are
scaled such that all of the distributions have zero mean and
standard deviation equal to 1. b) Volumes are scaled such that

all of the distributions have a mean equal to unity.

and adopt a fully smooth shape which shows that the obtained systems are
amorphous.

Further evidence of the amorphousness of the final systems can be found
by investigating their structure factors (Figure 2.10b)). Similarly, as in the
case of initial structures, the structure factors of final structures are smooth
and possess no Bragg peaks. Moreover, the structure factors of the final con-
figurations gain peaks at different wavenumbers from the Bragg peaks of the
BCC lattice, a conjectured global optimal structure. Therefore, the obtained
local minima have different spatial properties than the BCC lattice, which
suggests further evidence of the amorphousness of the systems.

Ultimately, proof of the final, as well as amorphousness of the initial struc-
ture, can also be found by analysing Minkowski structure metrics [78]. In
the reference [85], the distributions of Minkowski structure metrics are also
smooth with the absence of sharp peaks, which would indicate overexpres-
sion of specific structures such as ordered domains and crystalline patches in
the systems.

2.3.3 Universality of the final structure

Another remarkable property of a system gained under Lloyd’s iterations is
the universality of the final point configurations. As mentioned before, initial
configurations differ significantly regarding their structural properties, such
as long-range order and visual appearance. Opposite of that, the obtained
structures after application of Lloyd’s algorithm possess an astonishing level
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Point process Final Et
Binomial PP 0.07921215

PPP 0.07920569
Hyperfluctuating PP 0.07921685

DPP 0.07920274
LSPP 0.07920299
MRJ 0.07920828

Stealthy PP 0.07922498

TABLE 2.2: Mean of final total energies for each concerned
point process. Total energies are clearly greater than the total

energy of the BCC lattice (Et ≈ 0.078543).

of universality.

We find an overlap of the final configuration structure factors (Figures
2.10b and 2.11) as well as an overlap of their total energy (Figure 2.12b)) and
volume (Figure 2.13) distributions if starting from a fully amorphous state
of any type. That phenomenon suggests that the obtained optimal structures
correspond to one of the infinitely many valleys of the total energy landscape
with the same universal spatial properties such as long-range order and the
same distributions of single-cell energy and cell volume.

Further evidence of the later claims can be found by observing the total
energies Et of the final point configurations (Table 2.2). We find that the final
energies start to differ only at the fifth decimal position between the sam-
ples, which confirms the claim regarding the properties of the total energy
landscape.

2.3.4 Effect of Lloyd’s algorithm to structures with crystalline

patches

If we apply Lloyd’s algorithm to Lubachevsky-Stillinger sphere packing at
packing fraction φg = 0.661073 with crystalline patches in it, we observe
significantly different properties of the obtained configurations.

We observe that the final structure carries some commons and different
properties to the universal system described earlier. We find that the main re-
sult, suppression of long-wavelength density fluctuations, is attained when
the initial structures have crystalline domains. The obtained structure has
measure H = O(10−5) meaning it is also effectively hyperuniform. How-
ever, the final configuration’s structure differs significantly from those pro-
duced from the completely amorphous systems.
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FIGURE 2.14: Distributions of total cell energy (Introduction,
Equation 23)

and cell volume of LSPP systems with and without crystallines. Different
colours denote different LSPP systems. a) Total cell energy distributions

before the application of Lloyd’s algorithm. b) Total cell energy
distributions after the application of Lloyd’s algorithm. c) Volume

distributions before the application of Lloyd’s algorithm. b) Volume
distributions after the application of Lloyd’s algorithm.

First of all, there exists a substantial gap between the final total energies
of systems with and without initial crystalline patches. The total energy of
the final configuration of amorphous LSPP equals 0.07920299 while the total
energy of the final configuration of LSPP with crystalline patches achieves
a value of 0.07907405. This difference is of an order of magnitude. There-
fore the total energy obtained from the system with crystalline domains is
closer to the total energy of BCC, a conjectured global minimum. Therefore,
systems with crystalline domains are more ordered than systems without
crystallites in their structure after applying Lloyd’s algorithm.

Indeed, the former claim can be further confirmed by studying the prop-
erties of volumes and cell total energies of the systems. Figure 2.14 shows
total cell energy and volume distributions of the LSPP with and without crys-
talline domains before and after the application of Lloyd’s algorithm.

By observing Figures 2.14 a) and c), we can detect the presence of crys-
talline patches in the initial LSPP sample. The distribution of a single cell
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total energy (Figure 2.14a)) for the LSPP structure with crystalline patches ob-
tains two expressed peaks. In contrast, the LSPP without crystalline domains
possesses only one expressed peak. The peak of the LSPP with crystalline
patches around value Et ≈ 0.07881 is more expressed than the other peak
meaning the concerned total energy value is most probable in the system.
Furthermore, the probability density curve on the left side of that peak is very
steep, indicating only a few cells in the system with a lower total cell energy
value than Et ≈ 0.07881. Moreover, the whole total cell energy distribution
regarding LSPP with crystalline is shifted to the left, meaning total energies
in the system are lower. Therefore, the system is more ordered because of the
total energy properties discussed earlier. Similarly, the LSPP with crystalline
volume distribution (Figure 2.14c)) obtains a more expressed value around
V ≈ 0.9, which also indicates the existence of crystalline patches in the sys-
tem.

After applying Lloyd’s algorithm to LSPP with and without crystallines,
total cells energy and volume distributions share a common property. First
of all, the final distributions (Figure 2.14 b) and d)) related to LSPP with
crystallines differ from the distributions related to LSPP without ordered do-
mains. Thus, the configuration obtained from the LSPP with crystallines has
a significant structural difference to the universal structure obtained by ap-
plying Lloyd’s algorithm to various completely amorphous structures. Hence,
the amorphousness of the system plays a crucial role in determining which
local minimum will be achieved by the convergence of Lloyd’s algorithm.
Moreover, the final distributions related to LSPP with crystalline patches
have more expressed peaks, and they are also much narrower. Even though
the obtained structure is still disordered, the structural features such as total
cell energy and volume are more pronounced than in the universal structure
discussed earlier. Further evidence that the locally ordered domains induce
final structures that are more ordered can be found by analysing distributions
of the total cell energy. Even though the distribution of the final configuration
related to the structure with crystalline patches does not have two peaks like
the initial one, it is shifted to the left, indicating lower energies and, therefore,
more order in the system.
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2.4 Overview and discussion

We have seen that Lloyd’s algorithm introduces a connection between the
famous Quantizer problem and effective hyperuniformity in the systems.
Thus, it was shown that a local optimization process such as replacing gener-
ators of Voronoi cells with its mass centroids could introduce a global order
to the system in terms of suppressing the long-wavelength density fluctua-
tions. The particular results may be of interest for any systems where similar
local optimization events occur.

An important finding is that most of our results mentioned earlier are
also valid for planar tessellations [85]. Here Lloyd’s algorithm transforms
various amorphous planar point processes to an effectively hyperuniform
structure with a great degree of universality. However, in 2D, the obtained
systems contain small ordered domains where cells tend to be nearly regular
hexagons [85]. Interestingly, similar dependence on dimension can be found
in other optimization problems. For example, in Kelvin problem 2D the op-
timal foam is predisposed to forming optimal hexagonal structures while in
3D ordering is not found [48]. Similar to that, random packing of spheres
in 3D can reach random close packing limit [15], while in 2D monodisperse
systems do not achieve maximally random packing density.

The presented results are essential for understanding existing scientific
problems, but they also open many questions and possibly exciting research
topics. Accordingly, it would be of great importance for our results if an ana-
lytical relation between the centroidal Voronoi diagram and long-wavelength
density fluctuations would be provided. Another intriguing question is whether
different optimization protocols such as gradient descent produce the same
or similar structures to solve the Quantizer problem. Such studies would
broaden our knowledge about the landscape of the Quantizer total energy
and therefore provide properties that would be important for practical pur-
poses. Moreover, the study of the Quantizer problem solutions can be gener-
alised to systems with random and inhomogeneous density or to the systems
in higher dimensions. Addressing such questions would be fundamental for
data science and machine learning since most data is high dimensional and
follows a non-uniform distribution. Further exciting generalization of the
Quantizer problem is when the studied structure isn’t a point process but
rather an assembly of an object with non-trivial volume. In such a case, a
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minimal distance between an arbitrary point in the system and the closest
object to that point is observed. Such questions are fundamental for new
technologies such as self-driving cars and robotics and many living systems,
including cell tissues. Therefore, in the following chapters of this thesis, we
focus on the concerned generalization of the Quantizer problem.



43

Chapter 3

Geometric effects in random
assemblies of ellipses
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3.1 Introduction to random assemblies

The general objective of this thesis is to find non-trivial solutions to the Quan-
tizer problem. In a previous chapter, this was achieved using Lloyd’s algo-
rithm in structures generated by points. We realised that the amorphousness
of the initial state is essential to obtain a universal hyperuniform structure.
We would like to solve the Quantizer problem for assemblies of hard par-
ticles in the future. However, before attempting to do so, we first engage
in thoroughly characterising the geometric and topological properties of 2D
assemblies. We focus on ellipse assemblies because of their significant vari-
ability in the shape of constitutive particles.

The most suitable assemblies for investigating the effects of density and
particle shape on assembly structural properties are ones that are considered
random. By random, we mean that in such systems, the optimisation process
does not exist and that they are generated using a stochastic process [145].
Such assemblies exist in many systems such as living matter, liquids, glasses,
amorphous solids, and granular media [41, 7].

Random assemblies of various particles were studied extensively in the
past through experiments [135, 126, 49, 72] as well as with help of theoreti-
cal models and algorithms that were developed to generate them [98, 33, 36,
68, 161]. Thus, since assemblies of particles occur in many materials both
liquid tor solid, scientists have spent a lot of time to characterize important
states of particle assemblies such as maximally random jammed state [145,
169, 39, 38, 133], random close packing [50, 165] and random loose packing
[138, 165]. Moreover, properties of random assemblies such as correlations
between neighbouring particles [37, 129] and many others were studied ex-
tensively in the context of system’s dimension, assembly packing fraction
and particle shape or dispersivity [39, 50, 70, 106, 112, 163].

Random assemblies are often studied by calculating the Voronoi diagram
from the particles in assemblies and then investigating the nature of obtained
tessellations. We can perform such an analysis of systems by calculating
Minkowski tensors of Voronoi cells. Therefore, as we explained in the ref-
erence [JL2], "in the absence of long-range interactions between particles, it
was demonstrated that the so-called Minkowski functionals provide a useful
set of structure metrics to characterise the morphology, which are endowed
with some completeness with respect to additive properties [5]. Interestingly,
for a broad range of systems, a subset of measures consisting of selected
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Minkowski scalars (area, perimeter, mean curvature) and tensors (moments
of inertia) capture the bulk of the information about the assembly [134, 132].
This approach leads to the understanding that in assemblies of circles at high
packing fractions (where crystalline order is expected at zero temperature),
quenching yields glassy states with a number particles having five and seven
neighbours [89]. Latter, in hard-sphere systems, the number of contacts was
calculated as a function of packing fraction [129], and the maximally random
jammed packings were fully characterised [84]. Minkowski functionals were
furthermore applied for quantifying structural similarity of crystalline pat-
terns, and used in an accurate identification of the ordering transition and
the random close packing limit [78] the latter found to be higher than previ-
ously determined [16, 38]."

Since Minkowski functionals provide effective formulas to calculate vari-
ous morphological measures such as area, perimeter, and elongation of Voronoi
cells [134], probability distributions of such measures were subjects of many
studies. Interestingly, Gamma distribution appears to be the most common
probability model for various morphological measures. This phenomenon
can be explained by the fact that Gamma distribution adopts a broad range of
shapes when tuning its parameters and its positive domain, which perfectly
describes the non-negativity of morphological measures. Thus, the so-called
k-gamma distributions appear as a model for the distribution of Voronoi cell
volume in sphere packings when entropy in the system is maximised [6].
Moreover, cell volume, area, perimeter, and number of neighbours follow
gamma distributions when Voronoi cells are generated by various point pro-
cesses such as Poisson point process both in 2D and 3D [168, 65, 88].

Although the study of morphological measures provides insight into the
geometry of Voronoi cells generated by the assembly, it is not possible to
draw valid conclusions about the organisation and topology of systems [83,
81]. Thus, in the reference [JL2], we summarise: "Understanding the relation-
ship between the geometry and topology of the assembly actually requires
the analysis of correlations between various measures and the number of
neighbours [46, 45]. While second order correlations between the mean of
several morphological Voronoi cell measures and the number of neighbours
were discovered in tessellations generated from Poisson points [168], most
works so far focused on first order correlations. Perhaps the most famous
examples of the latter are the Lewis’ [92, 93, 26, 82] and the Desch’s [35, 123]
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laws, predicting a linear increase of the average area and the perimeter of
cells with a particular number of neighbours, respectively. Both of these rela-
tionships suggest that large cells have a tendency to have more neighbours,
compared to small cells. Furthermore, the fact that cells with fewer neigh-
bours tend to have neighbours with more sides is captured by the so-called
Aboav-Weaire’s law [2, 1, 156]. This law was found to change for the diffu-
sion limited colloidal aggregation to an inverse square-root dependence [64,
47]. However, the validity of the Lewis, Desch’s and Aboav-Weaire’s law
was confirmed in a number of systems including biological tissues [92, 108,
107, 118, 125, 82, 74], foam structures [158, 58, 152], grain distribution of 2D
polycrystalline films [52, 28], and even in the analysis of the polygonal net-
works on Mars surface [127]."

This chapter will study monodisperse random assemblies of ellipses con-
cerning a broad range of packing fractions and different ellipse shapes. In
that manner, we will cover structures that are very similar to point processes
and jammed states. We will focus on geometrical measures that illustrate the
size of the Voronoi cells and the ones that characterise cell shape. Further-
more, we will investigate centralisation in random assemblies governed by
the packing fraction and ellipse shape, which will help us separate optimi-
sation effects to system properties that are just consequences of the particle
being assembled. Finally, we will investigate topological aspects of ellipse
assemblies and relate them to the geometry of the system.

3.2 Methods

In this section, we will describe the phase space of ellipse shapes and packing
fractions that will be in focus in this chapter. Moreover, we will present the
algorithm that we used for the generation of ellipse assemblies and define
statistical methods that will be used to characterise various assembly mor-
phological and topological properties.

3.2.1 Phase space of assemblies and calculation of morpho-

logical measures

The shape of the ellipses that will be the subject of our study can be charac-
terised by its aspect ratio (or elongation) e, that is, the ratio between the major
and minor ellipse semi-axis. From its definition, we can see that the aspect



48 Chapter 3. Geometric effects in random assemblies of ellipses

ratio e > 1 adopts greater values if a concerned particle is more elongated.
Here, we study assemblies of monodisperse ellipses with e=3.33, 2, 1.25, 1
which covers ellipses from highly elongated ones (e = 3.33) to circles (e = 1).
The considered ellipses will be assembled at global packing fraction φg =

0.2, 0.35, 0.5, 0.65, 0.8, which covers a range of densities characteristic for liq-
uid states and states that are similar to a point processes to nearly jammed
states (φg = 0.8) [16]. Examples of studied assemblies can be found in Figure
3.1a,b and Appendix A, Figures A.1-A.5.

FIGURE 3.1: Random assemblies of ellipses. a) Ellipses with
the elongation e = 3.33 at a packing fraction of φg = 0.5 b)
Ellipses with e = 2 at φg = 0.8 c) Set Voronoi diagram built from
the shapes of the generating ellipses with aspect ratio e = 3.33
at packing fraction φg = 0.2, clearly demonstrating the non-
polygonal nature of of the tessellation. Image was taken from

reference[JL2].

In order to evaluate morphological measures that will identify properties
of particles in assembly, we calculate the so-called Set Voronoi tessellation
(SVT) from ellipses in the assembly [131, 160]. The calculation of SVT is anal-
ogous to the calculation of the standard Voronoi diagram, with the condi-
tion that the generating particles are objects with non-zero areas rather than
points. More formally, if Ei, i = 1, . . . , N, N ∈ N are ellipses, then Voronoi
cell Vi of particle Ei is defined with:

Vi = {x ∈ R2|dE(x, Ei) ≤ dE(x, Ej), ∀j 6= i, j ∈ {1, . . . , N}} (3.1)

where dE is the Euclidean metric.
We can see from the previous definition that SVD takes in count shape

of the particles and therefore obtained Voronoi cells are not convex like ones
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of standard Voronoi diagram. Moreover, edges of CVD can have arbitrary
curvatures that depend on the positions of two neighbouring particles(see
Fig. 3.1c).

After calculation of SVD, we calculate Minkowski tensors for each Voronoi
cell using the procedure described in reference [134]. From calculated Minkowski
tensors, we derive desired morphological measures such as area, perimeter,
elongation (ratio of principal moments of inertia), the distance between the
centre of ellipse and centre of mass of its Voronoi cell (CM distance) and
standard deviation of each Voronoi cell edge lengths (standard deviation of
contact length).

3.2.2 Packing algorithm and sampling procedure

We generate random assemblies of ellipses with a modified version of the al-
gorithm from reference [33]. In the reference [JL2], we provide details of the
algorithm (Flowchart in Figure 3.2): "Initially, a chosen number of ellipses
(200) are reduced to 20% of their final area of a constitutive ellipse (area of an
ellipse assembled on the desired packing fraction) and are randomly placed
into the simulation box. If there is overlap between ellipses, one ellipse is ran-
domly chosen (equal probability for each member of the set), and a random
translation and rotation is performed. The translation is defined by a vector
whose length is drawn from the uniform distribution on the interval [− b

2 , b
2 ]

where b is a semi-minor axis of the ellipses at full size. Translations in x and
y directions are executed independently. The value of the rotation angle is a
random variable, drawn from the uniform distribution on the interval [0, π].
The movement (2 translations + rotation) is accepted if the total overlap de-
creases or stays the same. The procedure is repeated until the total overlap
is 0 (minimal significant value in double floating precision arithmetic), when
all ellipses are simultaneously dilated by 0.5% of their final area of a con-
stitutive ellipse. If the total overlap caused by the growth is greater than 0,
then translations and rotations of ellipses are repeated until the overlap van-
ishes again. The procedure is terminated when the desired packing fraction
is reached and the total ellipse overlap area is zero in double precision.

All simulations were performed with periodic boundary conditions and
with the simulation box of the predefined resolution. This ensures that the
mean area of Voronoi cells is constant for all data and, hence, that morpho-
logical measures are all calculated with the same accuracy, irrespective of the
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FIGURE 3.2: Flowchart of the algorithm used to generate ellipse
assemblies. Green rectangles stand for input and output of the
algorithm, red rectangles for decisions and blue rectangles for
steps of the algorithm. Image was taken from reference [JL2].

choice of parameters e and φg."

For each ellipse assembly in the phase space of aspect ratios and packing
fractions, we have generated 25 assemblies of 200 ellipses, meaning the total
sample size is 5000. We investigated the appearance of cell area distributions
for different sample sizes. We found that there is no significant difference in
the distribution appearances even for sample sizes larger than 1000 (Figure
3.3a). Therefore, we conclude that our sample of 5000 is sufficiently large to
obtain convergence of any statistics calculated.

Moreover, one can question whether our sampling procedure is valid
since it is different from a random sampling procedure. If a sample is con-
sidered random, all of the observations have to be independent and drawn
from the same distribution. Clearly, in our samples, all distributions are not
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FIGURE 3.3: Validation of the sampling procedure. a) Conver-
gence of the cell area distributions shape is achieved for sample
size N > 1000. b) Distributions of cell area for packings gener-
ated with different ellipse growth rates do not statistically differ
(characteristic p-value between 0.39 and 0.96). c) Distributions
of data collected cumulatively (blue curve) using all cells from
25 samples of assemblies with 200 ellipses (total of 5000 cells)
data) and by sampling one random cell in from each of 5000
samples of assemblies of 200 ellipses (red curve). The compari-
son of the two approaches shows no statistically significant dif-
ference (Kolmogorov-Smirnov test p-value = 0.7). This image

was taken from reference [JL2].

independent because of the correlations between particles in each of the 25
assemblies. However, we find that there is no statistically significant differ-
ence between our sampling method (averaging) and random sampling (Fig-
ure 3.3b). Therefore, our samples are valid for calculating any statistics that
require a random sample.

Last but not least, we find that our assembly properties do not depend on
the parameters in the packing algorithm that could be potentially tuned, such
as the growth rate of the ellipses and parameters of the uniform distributions
that are used to sample ellipse translations and rotations (Figure 3.3c).

3.2.3 Statistical analysis

From any of the studied systems, and any measure X (area, elongation and
others), let x = {xi, i ∈ {1, . . . , N}, xi ∈ R}, be a random sample. We can
model distribution of X with the generalized gamma distribution that is de-
fined by its density function f (x|θ),

f (x|θ) = τ

λΓ(α)

(x− x0

λ

)ατ−1
e−(

x−x0
λ )τ

1[x0,+∞>(x), (3.2)

which is parametrized by θ = (α, τ, λ) ∈ R3
+ , and x0 ∈ R. Here, Γ(.)

denotes a Gamma function. From the Equation 3.2, by setting τ = 1 we can
recover the Gamma distribution, α = 1 provides the Weibull distribution
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density function, α = d f /2, τ = 1, λ = 2 deliver χ2 distribution with d f
degrees of freedom and α = τ = 1 define and exponential distribution with
parameter λ. Moreover, the number of neighbours n, which is a discrete ran-
dom variable,can be estimated with continuous distribution using identity
P(n = m) = P(Y ∈ 〈m − 0.5, m + 0.5]), m ∈ N, where random variable Y
has continuous density function.

We estimate parameters of the generalized gamma distribution (Equation
3.2) with the maximum likelihood estimator (MLE), defined with,

θ̂ = max
θ∈R3

+

L(θ), where L(θ) =
n

∏
i=1

f (xi|θ). (3.3)

MLE is one of the most famous estimators in the field of statistics. It predicts
desired parameters by maximising the probability of obtaining sample x over
the concerned parametric space.

After estimating the parameters of distributions with MLE, we test the
goodness of the fit with the Pearsons χ2-test. Pearsons χ2-test, uses the test
statistics

H =
k

∑
j=1

(Nj − nj)
2

nj
(3.4)

which is nothing more than a least square error between estimated frequen-
cies nj and observed frequencies Nj binned in k ∈ N bins. Further, we cal-
culate the p-value of the test using the χ2-test statistics H property that it
follows the χ2(d f ) distribution with degrees of freedom given with formula
d f = k− d− 1 where d is the number of estimated parameters.

We tested equality of two distributions with the Kolmogorov-Smirnov
(KS) test. KS test questions if distribution functions FX and FY of two random
variables X and Y. From the two samples x and y with sample sizes nm and
n, we can calculate their empirical distribution functions Fm and Fn. From
there, we can obtain the test statistics

Dmn =

√
mn

m + n
sup
x∈R
|Fm(x)− Fn(x)|. (3.5)

We calculate the p-value of the test from the fact that test statistic Dmn

follows the Kolmogorov-Smirnov distribution.
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FIGURE 3.4: a) Voronoi tessellation calculated from randomly
assembled ellipses. a) Ellipses with aspect ration e = 0.3 assem-
bled at packing fraction φg = 0.2 b) Ellipses with aspect ration
e = 1 assembled at packing fraction φg = 0.8 This figure was

taken from reference [JL2].

Finally, we estimate correlation between two random variables X and Y
represented by random samples x and y, by the Pearson correlation coeffi-
cient ρ,

ρ =

m
∑

i=1
(xi − x̄)(yi − ȳ)√

m
∑

i=1
(xi − x̄)2

√
m
∑

i=1
(yi − ȳ)2

(3.6)

where x̄ represents the mean of random sample x.

3.3 Results

3.3.1 Area and perimeter of Voronoi cells

First of all, we analyse distributions of Voronoi cell area for all studied ellipse
assemblies (Figure 3.5a). As we mentioned before, our simulations were set
so that all of the area distributions have mean at unity. However, we can
observe that with the increase of packing fraction φg, area distributions are
narrower. They do not depend on the aspect ratio of the assembles ellipses
except at the highest concerned packing fraction φg = 0.8. The previously
mentioned phenomenon can also be noted by investigating standard devi-
ations of cell area distributions (Figure 3.5b). Standard deviations, which
decrease with φg, have approximately the same values regarding different
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FIGURE 3.5: a) Distributions of Voronoi cell area calculated
from ellipse assemblies and binomial (Poisson) point process.
The average area is set to one in all systems. Packing fractions
and ellipses shapes are denoted by the curve’s colour and type,
respectively. b) Standard deviations (σA) of cell area distribu-
tions as a function of global packing fraction. Different symbols
denote different shapes. This figure was taken from reference

[JL2].

aspect ratios of ellipses at all packing fractions φg < 0.8.

After observing the basic properties such as mean value and standard
deviations of area distributions, we attempted to find the best probability
model for the area distributions. Hence, as we stated in the reference [JL2]:
"We find that generalised gamma distribution (Equation 3.2) fits Voronoi cell
area nicely with parameter τ ≈ 1 for most packings at packing fractions be-
low 0.8. Therefore, we set parameter τ = 1 in our fits and in agreement with
previous work on cell area distributions emerging from a Poisson process [65,
88, 91, 6], and ellipsoidal assemblies in 3D [130, 128], find gamma distribu-
tions in the bulk of the phase space (φg < 0.8 and all e). In this regime, the χ2

test typically gives p-values significantly larger than 0.1 and deviations be-
tween the fit and the sampled distributions have no structure (see Appendix
A, Figures A.6-A.10 for details). Importantly, this level of significance is ob-
tained only if all parameters of the gamma distribution fit (α,λ,x0) are left
free, allowing α not to adopt integer values suggested previously [6]."

As we noticed in the previous paragraph, gamma distribution fits cell
area distributions nicely in all systems except for disc (e = 1) assemblies at
packing fractions φg = 0.8. This can be explained by the fact that the packing
fraction of the system in question falls within the packing fractions where
the jamming transition occurs (φg = 0.82± 0.02 [16]). Thus, in those systems,
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locally ordered patches appear (blue arrow in Figure 3.4b), which potentially
cause irregularities in distributions that prevent us from finding an adequate
probability model that fits area distributions.

Opposite of the cell area distributions, we find that cell perimeter distri-
butions (Figure 3.6a) depend significantly on the aspect ratio of assembles
ellipses even at packing fraction φg > 0.2. Thus, we find that more elon-
gated ellipses have on average greater cell perimeter (Figure 3.6c). This phe-
nomenon becomes more evident as the packing fraction increases, meaning
that as the packing fraction is greater, the Voronoi cells start to adopt the
shape of the generating ellipse. Moreover, we find that with an increase
of packing fraction, the perimeter distributions get narrower, meaning the
Voronoi cells in systems have mutually more similar perimeter (Figure 3.6a,d,e).
However, we find that widths of distributions do not depend significantly
on the shape of assembled ellipses (Figure 3.6d,e). Furthermore, we also find
that gamma distribution fits the cell perimeter distributions with good preci-
sion (see Appendix A, Figures A.11-A.15 for details). This property of the cell
perimeter distribution follows the result that gamma distribution was found
a good fit for the distribution of Voronoi cell perimeters for the Poisson point
process [65, 88].

Besides the cell regular perimeter distributions, we studied the standard-
ised perimeter distributions. The latter was obtained by subtracting the mean
of the perimeter from each data point and dividing the result by the stan-
dard deviation of the same distribution. We found that such distributions
do not differ much for most of the assemblies (Figure 3.6b). However, as we
summarised in the reference [JL2]: "The exception is the significantly more
positively skewed distribution for assemblies at high packing fraction (e.g.
φg = 0.8). This suggests that a large number of cells associated with ellipse
assemblies at high packing fraction have perimeters smaller than the average
one, an effect that is most likely a result of counterbalancing the appearance
of a small number of structural defects (holes), in a vicinity of which a small
number of cells have areas larger than the average (brown arrow in Figure
3.4b)."

After studying Voronoi cell area and perimeter distributions, we investi-
gated correlations between those two measures. Hence, the dependence of
cell perimeter on cell area for individual cells is presented in Figure 3.7. We
can see that presented data in both sub-plots of the Figure 3.7 follow dashed
curves that denote dependence of hexagon perimeter on its area. Therefore,
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FIGURE 3.6: Characteristics of Voronoi cell perimeters distribu-
tions calculated from ellipse assemblies and binomial (Poisson)
point process. In the top row packing fractions and shapes are
denoted by the curve’s colour and type, respectively. In the
bottom row, different ellipse shapes are denoted by symbols.
a) Distributions of cell perimeters. Given that the average area
of Voronoi cells is set to one, the cell perimeter is equal to the
isoperimetric ratio of the cell. b) Standardised distributions of
the cell perimeter. c) Means (µP) of the Voronoi cell perime-
ter (isoperimetric ratio) distributions as a function of the global
packing fraction. d) Standard deviations (σP) of the cell perime-
ter (isoperimetric ratio) distributions as a function of the global
packing fraction. e) Coefficients of variation of cell perimeter
(isoperimetric ratio) distributions as a function of the global

packing fraction. This image was taken from reference [JL2].

FIGURE 3.7: Correlations between cell area and cell perimeter.
Each point represents one cell and displays cell perimeter as a
function of cell area. a) Packing fraction is fixed, φg = 0.8 b)
Ellipse aspect ratio is fixed, e = 2. The dashed curves represent
the dependence of the hexagon perimeter on the hexagon area,
Phex = (8

√
3Ahex)

1/2. The coloured solid lines represent the
isoperimetric ratios of respective ellipses building the assembly.

This image was taken from reference [JL2].
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the perimeters of cells in our assemblies also have square root dependence
on cell area, which is expectable. Moreover, we can note that both aspect
ratio and packing fraction influence the nature of the studied correlation. If
we keep packing fraction fixed and plot data for different aspect ratios (Fig-
ure 3.7a), we can see that with the increase of ellipse aspect ratio, the clouds
are representing data move away from the hexagonal curve. This distancing
from the hexagonal curve suggests what we perceived by studying perimeter
distributions, that more elongated ellipses have cells with a greater perime-
ter. Moreover, as the aspect ratio of assembled ellipses increases, the data
clouds are wider but not longer. This phenomenon indicates that more elon-
gated particles have a wider range of possible cell perimeters for a fixed area.
Furthermore, if we fix the shape of the cells and study correlations between
area and perimeter for different packing fractions (Figure 3.7b), we find that
data clusters are less dispersed with an increase of packing fraction but still
have the same centres. Because of that, at higher packing fractions, Voronoi
cells have less accessible shapes than at lower packing fractions.

In addition to the previous discussion, we find that area and perimeter
are strongly correlated for all studied assemblies simply because larger cells
tend to have greater cell perimeter. Nonetheless, as we outlined in the ref-
erence [JL2]: "the correlations between A and P decrease with increasing the
global packing fraction and the elongation of the particles. These results are
contrasted by the correlations between the cell area and the so-called rescaled
perimeters (square root of the isoperimetric ratio for each cell) (Fig. 3.9c). The
latter are dimensionless numbers calculated by dividing the original perime-
ter of the cell with the square root of its area. In such a representation, the
lower bound of the rescaled perimeter is 3.54, which is the rescaled perimeter
of a circular object, while a hexagonal object would have a rescaled perime-
ter of 3.72. Interestingly, in most of the parameter space, we find weak nega-
tive correlations between the rescaled perimeter and the cell area, suggesting
that larger cells are more hexagonal than smaller cells. This trend is clearly
violated for disks packed at high global packing fractions (top right corner
of the correlation matrix), where ordered domains, in which cells with high
local packing factions (cells smaller than average) adopt locally hexagonal
structures (blue arrow in Figure 3.4b), occur."
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FIGURE 3.8: a) Standardized distributions of local packing frac-
tions. Distributions overlap at global packing fractions φg =
0.5, 0.65 with p-values in range [0.02, 0.97]. Packing fractions
and shapes of ellipses are denoted by colour and type of the
curve, respectively. b) Standard deviations of local packing
fraction distributions as a function of global packing fraction.

This figure was taken from reference [JL2].

3.3.2 Local packing fraction

Another interesting attribute of the system that we study is how particles
occupy space locally. Measure that carries bulk of information about local
arrangement is local packing fraction φl, the latter defined as ratio of ellipse
area AE and corresponding Voronoi cell area AV [130], i.e.:

φl =
AE

AV
. (3.7)

The local packing fraction can be considered as a local density of particles
in the assembly.

In the reference [129], Schaller et al. report normality of the standardised
local packing fractions distributions for jammed but disordered ellipsoids at
global packing fractions φg ∈ [0.55, 0.72] in 3D. Moreover, those distributions
were found invariant to the shape of the packed particle and global packing
fraction. In our systems, we find such overlap of standardized local pack-
ing fraction distributions only at intermediate packing fraction φg = 0.5, 0.65
(Figure 3.8a). Moreover, we find that concerning distributions become neg-
atively skewed for assemblies of discs and oblate ellipses (e = 1.25) at high
packing fraction φg = 0.8. Unlike in low-density assemblies (Appendix A,
Figure A.1 and A.2), in dense systems, there are more cells with a value of lo-
cal packing fraction that is greater than the average. Those cells are a reper-
cussion of the local order in systems that yields higher local packing frac-
tion values (blue arrow in Figure 3.4b). Furthermore, at low packing fraction
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(φg = 0.2), we find that standardised local packing fraction distributions are
positively skewed (Figure 3.8a), meaning more cells have lower local pack-
ing fraction than average. Mentioned positive skewness can be explained
by the fact that when two particles are close to each other at low packing
fractions, their Voronoi cell area is greater than the average. Therefore, their
local packing fraction is lower than the average (blue arrow in Figure 3.4a).
Because of the previous findings regarding skewness of standardised local
packing fraction distributions, we can conclude that concerned distributions
deviate from normality.

Additionally, we studied fluctuations of the local packing fractions in our
assemblies. Hence, as hypothesized in reference [JL2]: "The standard devia-
tion of the distribution of local packing fractions σ(φl), due to homogeneity
of standard deviation (σ(cK) = |c|σ(K), ∀c ∈ R) and the fact that our system
is monodisperse becomes

σ(φl) = σ
( AE

AV

)
= AEσ

( 1
AV

)
. (3.8)

At small φg, the assembly adopts a structure similar to that generated by a
Poisson point process for which AE = 0. Hence, as φg → 0, σ(φl) → 0. On
the other hand, at high φg, as the maximum packing fraction is approached
where σ

( 1
AV

)
→ 0, σ(φl) decays nearly linearly (Fig. 3.8b). A maximum

in the standard deviation of local packing fraction appears at φg ' 0.35, at
the crossover between trends associated with these two limits. This non-
monotonous behaviour is contrasted by previously reported continuous lin-
ear decay of σ(φl) as a function of φg for assemblies of 3D oblate ellipsoids
[129], although that study considered only mechanically jammed ellipsoid
configurations, with a much smaller range of packing fractions."

3.3.3 Morphological measures of anisotropy

Morphological measures that we addressed earlier in this chapter, such as
area and perimeter, are closely related to the size of the Voronoi cell. There-
fore, if we want to investigate anisotropy, i.e. shape of the cells, we have to
introduce additional measures. Therefore, as we pointed out in the reference
[JL2]: "the most natural measure of anisotropy is the cell elongation, which is
a ratio of the two principal moments of inertia calculated under the assump-
tion of the uniform distribution of mass over the area. Furthermore, the anal-
ysis of the tessellations in epithelial tissues identified the standard deviation
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FIGURE 3.9: Elongation statistics and its correlations other mor-
phological measures of shape. a) Mean elongations for all of
the considered ellipse assemblies. b) Relation between mean
and standard deviation of elongation for all of the considered
ellipse assemblies. Packing fractions are associated with a par-
ticular colour, while different symbols denote the shapes of el-
lipses. c) Correlations between the area and rescaled versions of
morphological measures of shape. This image was taken from

reference [JL2].

of contact lengths (SCL) as a measure that reflects the anisotropy of the tes-
sellation [74]. Namely, because the contact length is a section of the perimeter
shared by two neighbouring cells, and because the mean number of neigh-
bours is approximately constant across the whole range of packing fractions,
more elongated Voronoi cells have both short and long edges, which yields
the greater standard deviation of contact lengths."

We can observe further evidence that concerned measures are referencing
the shape of the cells from the fact that they are mutually positively corre-
lated and by analysing their correlations with cell area. Hence, Figure 3.9c
presents correlations of cell area to rescaled standard deviation of contact
length, rescaled perimeter and elongation. We find that all three measures
have similar correlations with cell area. Moreover, the nature of these corre-
lations changes in the same manner across phase space of ellipse elongations
and packing fractions. Thus, we find positive correlations for round particles



3.3. Results 61

at high packing fraction (φg = 0.8). In contrast, we find negative correlations
in the opposite side of phase space for highly elongated ellipses at low pack-
ing fractions.

FIGURE 3.10: Regular and standardised distributions of cell
anisotropy morphological measures. Colours indicate differ-
ent packing fractions, while curve types denote different elon-
gations of ellipses. a) Distributions of cell elongation. Insert
shows coefficients of variation of cell elongation distributions.
b) Standardised cell elongation distributions. c) Distributions
of the standard deviation of contact length. Insert shows coef-
ficients of variation of the standard deviation of contact length
distributions. d) Standardised distributions of the standard de-
viation of contact length. This image was taken from reference

[JL2].

Dependence of the mean shape of Voronoi cells on the global packing
fraction was found in a study of 3D ellipsoid packings [130]. As we have for-
mulated in reference [JL2]: "Our results in 2D show similar trends (Fig.3.9a).
As the maximum packing fractions is approached for disks, the Voronoi cells
adopt more isotropic hexagonal shapes resulting in a continuous decrease of
mean elongation. The opposite trend is found for highly elliptical objects,
suggesting that at higher densities, the shape of the cell and the generating
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body become more alike. Actually, as φg → 0, mean cell elongations ap-
proach value for Poisson point process (≈ 1.71 in 2D), and as φg → 1, mean
cell elongation of Voronoi cells approaches the aspect ratio e of packed parti-
cles (Fig.3.9a)."

Furthermore, we investigated the relation between the mean and stan-
dard deviation of elongations because their linear relationship was reported
in epithelial tissues [8]. However, just as we report in reference [JL2]: "it was
not clear if this dependence is a result of an active regulation or merely a
consequence of assembly of cell nuclei in a plane. In our random assemblies,
we find that the standard deviation of elongation systematically decreases
with the global packing fraction (at the constant shape of the packed objects,
Figure 3.9b). As the shapes approach e ' 1.71 from above, the standard de-
viation decreases with the mean elongation. However, once more circular
shapes are used to generate assemblies (e < 1.71), the standard deviation in-
creases as a function of mean elongation (assemblies are more Poisson like),
and a linear dependence is recovered, as a property of the average shape of
the packed objects."

Atia et al.(2018) also suggest gamma density function as a probability
model for cell elongation distributions [8]. We find that gamma distribution
fits the elongation data well only at a low packing fraction φg = 0.2 irrespec-
tive of the particle shape. At packing fractions φg > 0.35, we find that gamma
distribution does not provide good fits to elongation data. However, suppose
we fit a generalised gamma distribution with one additional parameter. In
that case, we can recover negative skewness of elongation distributions for
systems containing highly elongated ellipses at high packing fractions (for
details, see Appendix A, Figure A.16).

Moreover, we studied the appearance of true and standardised distribu-
tions of morphological measures of anisotropy (Fig 3.10). We find that the
true distributions (Figure 3.10a,c) become narrower as the packing fraction
increases, which can also be concluded by inspecting a decreasing trend of
their coefficients of variation (inserts in Figure 3.10a,c). Moreover, we ob-
serve that as the packing fraction increases, the effects of the ellipse aspect
ratio become more and more pronounced. Hence, as the assembled parti-
cles are more elongated, their distributions of anisotropy are shifted more
to the right, indicating that belonging Voronoi cells are also more elongated.
Finally, we find that the standardised distributions of anisotropy measures
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(Figure 3.10b,d) have the same behaviour as the standardised perimeter dis-
tributions (Figure 3.6b), which further points out the relation between these
measures.

3.3.4 Geometric effects in the vicinity of jamming transition

Jamming of the hard elliptical particles in 2D has been characterised exten-
sively in the past. It was found that systems with packing fraction φg > 0.82
are jammed independent of the shape of the particles. However, critical den-
sity was found to be higher for ellipses than circles [33, 39]. Recently, it was
found that order parameters for the jamming are related to the shape of the
Voronoi cells generated from the packings. This finding allows the study of
jamming in particle systems by investigating measures that characterise the
anisotropy of the Voronoi cells.

In that manner, the interplay between the geometry of the system and
jamming was explored in the context of the vertex model, which minimises
deviations of cell area and cell isoperimetric ratio in the systems from a target
shape [17]. It was found that the isoperimetric ratio is an order parameter for
jamming. Moreover, jammed structures have values below 3.81 which is the
approximately isoperimetric ratio of a regular pentagon.

We have to point out that all of our data is strictly below the jamming
transition limit, but as we reported in the reference [JL2]: "by focusing on
assemblies with φg = 0.8 which are approaching jamming one can explore
the geometric effects in the vicinity of the jamming transition. Notably, we
find that Voronoi tessellations emerging from assemblies of discs and nearly-
isotropic ellipses at this packing fraction have an average isoperimetric ra-
tio below 3.81 (Figure 3.6c), and indeed, the hexagons are the most common
shapes. This points to an interesting geometric correspondence between jam-
ming in isotropic particulate systems and the standard vertex model, also
noted before [17]. A more detailed analysis of particulate assemblies built
from anisotropic particles shows, on the other hand, that the characteristic
Voronoi cell of that assembly adopts shapes with the mean isoperimetric ra-
tio approaching the isoperimetric ratio of the constitutive bodies, as the as-
sembly comes close to the jamming transition. This is an indication that for
packings of hard objects, there is no universal isoperimetric ratio of Voronoi
cells that marks the jamming transition. On the other hand, if the underlying
anisotropy of the packing is known, the mean isoperimetric ratio (Fig. 3.6c)
as well as the mean elongation (Fig. 3.9a) of cells in the Voronoi tessellation,
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FIGURE 3.11: Distance between the centre of the ellipse and
the centre of mass of its Voronoi cell (CMD) calculated for all
assemblies and binomial (Poisson) point process a) Distribu-
tions of CMD as a function of the packing fraction (denoted by
colours), and elongation of ellipses (denoted by the curve type).
Insert shows CMD coefficients of variation as a function of the
global packing fraction (different symbols denote ellipse aspect
ratios). b) Correlations between CMD and cell area, perimeter

and elongation. This image was taken from reference [JL2].

become good candidates for simple geometric parameters of jamming. Like
the parameters suggested earlier [109], both capture the anisotropy of the
constitutive particle, and their standard deviation drops significantly (Fig-
ures 3.6d and 3.9b), pointing to a broader class of measures that should have
a tendency to saturate at jamming."

3.3.5 Centre of mass distance

Another important morphological measure that we examine is the distance
between the centre of the ellipse and the centre of mass of its Voronoi cell
(CMD). As we have commented in previous chapters of this thesis, CMD
carries essential information about the order in the system. Thus, if points
of a point process are distributed randomly, this will result in wide distri-
butions of CMD (purple curve in Figure 3.11a). On the other side, if con-
cerned systems are orders, such as crystal structures, the centres of particles
and Voronoi cells coincide, resulting in distribution with only one delta peak.

In our systems of random assemblies, we find that CMD distributions
depend primarily on the global packing fraction (Figure 3.11a). Thus, as
the global packing fraction increased, the distributions became narrower and
shifted closer towards zero. On the other hand, we find that CMD is posi-
tively correlated with the area and perimeter, meaning that larger cells have,
on average greater CMD value (Fig. 3.11b). Moreover, we notice that CMD
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and elongation are not correlated significantly except for disk assemblies at
high packing fraction (φg = 0.8), which the defects in regular hexagonal as-
sembly can explain (brown arrow in Figure 3.4b).

3.3.6 Neighbourhood statistics and the relation between ge-

ometry and topology in ellipse assemblies

The last morphological measure that we examine is the number of neigh-
bours of the Voronoi cell. Unlike the previously studied ones, the number of
neighbours is a topological measure that captures only the geometrical prop-
erties of systems. By observing distributions of the number of neighbours
(Figure 3.12a), we find that distributions become narrower, just like the dis-
tributions of other morphological measures. Moreover, we systematically
find more cells with 5 neighbours than with 7 neighbours in our assemblies.
This property that implies positive skewness of distributions allows us to fit
discrete version of gamma distribution with great statistical accuracy for all
assemblies except at packing fraction φg = 0.8 where cells with 6 neighbours
dominate in the appearance of distributions.

Furthermore, we explore relation between geometry and topology in ran-
dom assemblies of ellipses by reproducing two famous laws. The first of
them is the Lewis’ law [92, 93, 26, 80] which predicts a linear dependence of
the mean area of cells with n neighbours µA(n) on the number of neighbours
n following the formula:

µA(n) = µA [1 + a(n− 6)] . (3.9)

where a is a free parameter.
Similarly, Desch’s law [35, 123] suggests linear relationship between the

mean perimeter of cells with n neighbours µP(n) and number of neighbours
n in manner:

µP(n) = µP [1 + b(n− 6)] , (3.10)

where b is a free parameter. These laws suggest a positive correlation be-
tween area and perimeter to the number of neighbours meaning that the cells
with more neighbours are larger on average.

Moreover, as we mention in reference [JL2]:" In assemblies of ellipses, we
observe that Lewis’ and Desch’s laws (Fig. 3.12b,c) have the same range of
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FIGURE 3.12: Number of neighbours as a morphological mea-
sure and its correlations. a) Histograms of number of neigh-
bours for ellipses of aspect ratio e = 1.25. Different colours and
symbols represent different global packing fractions. b) Repre-
sentation of Lewis’ law in different parts of the studied space
of ellipse aspect ratios and packing fractions. Symbols denote
data points while red and yellow lines are linear fits to data us-
ing Equation 3.9. Brown and blue curves are guidance for the
eye. c) Representation of Desch’s law in different parts of the
studied ellipse aspect ratios and packing fractions. Symbols de-
note data points while red and yellow lines are linear fits to data
using Equation 3.10. Brown and blue curves are guidance for
the eye. d) Aboav-Weaire’s law for ellipses with e = 3.33 (top
graph) and e = 1.25 (bottom graph). Different symbols denote
different packing fractions, while the grey line represents a fit

using Equation 3.11.

validity. This is, of course, promoted by the strong positive correlations be-
tween the cell area and cell perimeter. Specifically, at low packing fractions
and independent of particle shape, strong linear dependence (e.g. e = 1 and
φg = 0.2 in Fig. 3.12b) can be confirmed in agreement with previous reports
[92, 93]. Indeed, it is possible to observe in those assemblies that cells with
more neighbours have, on average greater cell area and perimeter (Appendix
A, Figure A.1b,c). However, deviations from the Lewis’ and Desch’s laws
is confirmed at intermediate packing fractions (φg = 0.5, 0.65), where the
data are more consistent with a quadratic, rather than a linear relation (Fig.
3.12b,c). This second order dependence was also predicted by calculating the
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probabilities of establishing a certain size and the certain number of neigh-
bours [80]. Interestingly, however, the average area and the perimeter of
the cell become, by and large, independent of the neighbourhood for highly
elongated particles at high packing fractions (e.g. e = 3.33 and φg = 0.8 in
Fig. 3.12b,c). Consequently, Lewis’ and Desch’s laws are recovered but with
no statistically significant slope. This effect is exemplified in Appendix A,
Figure A.5a showing an assembly containing a cell with 8 and 4 neighbours,
both having nearly equal areas and perimeters. It is important to notice that
this result is a consequence of the set Voronoi tessellation. Actually, liner
dependence with a strong slope is recovered for the centre-of-mass based
tessellation performed on the same data set (Appendix A, Figure A.17), as
suggested previously [92, 80]."

Last but not least, we study the Aboav-Weaire’s law [2, 1, 156] which
implies that cells with a fewer number of neighbours have neighbours with
more neighbouring cells than the average, and vice-versa. Aboav-Weaire’s
law is given by the formula:

µm(n) = 6− γ + (6γ + σ2
n)/n. (3.11)

where µm(n) is the average number of neighbors of cells adjacent to ones that
have n neighbors, σ2

n is the variance of number of neighbours distribution
and γ is a constant that can decrease as σ2

n increases [21, 153] or be indepen-
dent of µm(n) [127].

As we point out in reference [JL2]: "Current analysis shows a relatively
large range of validity of the Aboav-Weaire’s law, with γ being independent
of σ2

n (which decreases with φg), but sensitive to the elongation of the packed
ellipses (Figure 3.12d). Deviations from Aboav-Weaire’s law become more
important for strongly elongated packed objects at high packing fractions
(circular symbols in the top panel of Figure 3.12d). Furthermore, for dis-
coid shapes, strong departures from linearity are observed for n > 8 (bottom
panel of Figure 3.12d)."

3.4 Conclusion

This chapter provides a systematic overview of geometrical and topological
properties of random ellipse assemblies by investigating selected morpho-
logical measures such as area, perimeter, elongation, the standard deviation
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of contact lengths, CM distance and number of neighbours. We studied their
distributions and found that the packing fraction highly influences ellipse as-
semblies in the way that at higher densities, variability of possible Voronoi
cell geometries decreases. Moreover, we studied correlations between mor-
phological measures and found that some measures can be classified so that
they provide the same information about the anisotropy of structures. By ob-
serving those measures in the context of previous work [17], we conjectured
that measures of shape are good candidates for order parameters of jamming
transition in hard particle systems.

We believe that our study motivates further possible research questions.
Thus, it would be of great interest to investigate the effects of ellipse as-
pect ratios on assemblies’ geometry more closely. Such a study can be done
by studying polydisperse ellipse assemblies where shapes of the assembled
particles follow a more complex distribution. Furthermore, we believe that
study presented in this chapter could be a valuable guideline for the investi-
gation of systems composed of particles with even more complex shapes than
ellipses. Moreover, as we discussed in the reference [JL2]: "We hope, further-
more, that our work will provide a framework for the analysis of assemblies
with more complex interactions, which are now starting to be investigated.
Notably, by comparison with data generated with a variety of methods and
in experimental systems of different origin [8, 33, 92, 6, 130], several key ob-
servations are recovered in the matching parameter space, which suggests
that the average quantities associated with the tilling are not extremely sen-
sitive to the means of production. As such, the results presented herein could
be relevant not only to assemblies of soft objects but also active particles [136,
162, 102, 103, 32]. In the latter case, it is very important to delineate the ge-
ometric effects of density and shape, which have been meticulously studied
herein, from the effects of the activity."

Following the previous paragraph, the results presented in this chapter
helped us understand the nature of the random ellipse assemblies that will
be used as an initial configuration for studying solutions of the Quantizer
problem via Lloyd’s algorithm. Thus, the effects of the Quantizer minimisa-
tion will be easier to distinguish in the following pages of this thesis.
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Chapter 4

Quantization of the ellipse
assemblies

4.1 Introduction

As we presented in Chapter 1 of this thesis, one of the most exciting assets
of the Quantizer problem is the hyperuniformity of its optimal states. This
hyperuniformity of Quantizer minima is governed by the centralization pro-
cedure of Lloyd’s algorithm. In the past, hyperuniformity was found in sys-
tems of non-trivial particles that are in some sense optimal[40, 95, 87]. There-
fore, it is essential to understand what processes are responsible for the hy-
peruniformity of such non-trivial systems. Because of that, we aim to modify
the Quantizer problem so that it generalizes to systems of non-trivial parti-
cles (volume greater than 0) and study long-range density fluctuations in the
context of solutions of the newly modified Quantizer problem. Since Lloyd’s
algorithm solves the Quantizer problem for point processes, we will focus on
modifying it in a way that applies to systems of non-trivial particles. We have
decided to study ellipse assemblies among two-dimensional particle systems
that could be interesting to investigate in the mentioned context, motivated
by Chapter 3 of this thesis. Ellipses possess a desirable property of cover-
ing a broad range of shapes only by tuning one parameter (aspect ratio) that
makes the effects of the particle shape on the process of quantization simple
to address.

4.1.1 Modified Quantizer problem

As we pointed out in the Introduction chapter, solving the Quantizer prob-
lem in the case of point generators is equivalent to minimizing the Quantizer
energy EQ or the total energy of the system, Et. Therefore, to generalize the
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problem of quantization to ellipse assemblies, we will modify the total en-
ergy Et accordingly.

In the introduction of this thesis, we defined the total energy Et as a
normalized sum of the integrals over Voronoi cells, where the sub-integral
function is the squared distance between an arbitrary point and Voronoi
cell generator. Therefore, a central role in minimizing total energy Et is
taken by the distance between arbitrary points inside the Voronoi cell and
the generator object. In case of point generators in 2-dimensional space, that
distance function used is the standard Euclidean distance, i.e. ‖x − y‖ =√
(x1 − y1)2 + (x2 − y2)2. Therefore, to modify the total energy Et to the case

of non-trivial area generators (in our case, ellipses), we have to specify a func-
tion that provides a distance between a point in space and an arbitrary ob-
ject with a non-zero area. Intuitively, a natural candidate for distance to an
arbitrary object in space is the shortest distance to any part of that object.
Precisely, if O is subset of a space, then the distance between a point x and
O is given by ‖x −O‖ = inf

y∈O
‖x − y‖ where inf is infimum of a set. In the

literature, distance function ‖x−O‖ is also referred to as the Euclidean dis-
tance function because it is equal to standard Euclidean distance when O is
a point. It is worth mentioning that in the definition of Euclidean distance
‖x − O‖ infimum of standard Euclidean distances is preferred to the min-
imum of standard Euclidean distances in order to allow set O to be both
opened and closed. If the maximum function was used instead of infimum,
then ‖x−O‖ would not be well defined if O is an open set. The previously
mentioned claim is true because the maximum of a continuous function on
an arbitrary set O is guaranteed to exist only if O is compact and, following
that, a closed set.

Now, when we understand the concept of a distance between point and
set, we can modify the total energy of a system Et in a way that it addresses
assemblies of arbitrary particles P = {Pi, i = 1, . . . , n} contained in Ω ⊂ Rd,
with volume V(Ω) and mass density ρ(x) = 1, ∀x ∈ Rd. Thus, the modified
dimensionless rescaled total energy of such system is given with:

ET(V , P) =
n

2
d

dV(Ω)1+ 2
d

n

∑
i=1

∫
Vi

‖x− Pi‖2dx (4.1)

where V = {Vi, i = 1, . . . , n} are Voronoi cells generated by P.



4.1. Introduction 71

Motivated by the previous definition, we can define the modified Quan-
tizer problem as an optimization of the modified total energy ET. This way,
we aim to minimize the total distance between points inside Voronoi cells
and non-trivial generator particles, which expands the idea of solving the
classical Quantizer problem. Although the intuition behind the definition of
the modified Quantizer problem is evident, due to the complexity of sub-
integral function |x− P‖ when P has an arbitrary shape, it is vague how the-
oretical result as in case of classical Quantizer problem can be derived [56,
43].

Nonetheless, the special case when we consider P to be a sphere of radius
r positioned at x0 can help us to understand the modified total energy ET

more in detail. Then, for an arbitrary position x ∈ Rd we can simply derive
that

‖x− P‖ = ‖x− x0‖ − r. (4.2)

Because of that, a sub-integral function in Equation 4.1 (function from Equan-
tion 4.2 squared) becomes

‖x− P‖2 = ‖x− x0‖2 − 2r‖x− x0‖+ r2. (4.3)

Further, we can evaluate the modified total energy ET in the following way:

ET(VP, P) =
1

dV(VP)
1+ 2

d

∫
VP

‖x− P‖2dx (4.4)

=
1

dV(VP)
1+ 2

d

∫
VP

(
‖x− x0‖2 − 2r‖x− x0‖+ r2

)
dx (4.5)

=
1

dV(VP)
1+ 2

d

∫
VP

‖x− x0‖2dx− 2r

dV(VP)
1+ 2

d

∫
VP

‖x− x0‖dx (4.6)

+
r2

dV(VP)
1+ 2

d

∫
VP

dx

= Et(VP, x0)−
2r

dV(VP)
1+ 2

d

∫
VP

‖x− x0‖dx +
r2

dV(VP)
2
d

(4.7)

In the previous set of equations, Equation 4.4 follows from Equation 4.1
and Equation 4.5 is consequence of Equation 4.3. Moreover, Equation 4.6 is
valid because integral is a linear operator and Equation 4.7 follows from the
definition of total energy Et and the fact that V(VP) =

∫
VP

dx.
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Equation 4.7 shows a relation between the modified total energy ET and
classical total energy Et. If we set r = 0 i.e. if P is a point with coordinates
x0, then ET = Et which means that ET can be considered as a generalization
Et. We can also see that the modified total energy ET depends on sphere ra-
dius r, implying that ET depends on the size of the circle and consequently
on the packing fraction of the assembly. Moreover, it is difficult to derive
more complex analysis of ET from the previous equations because of the un-
clear interplay between terms Et(VP, x0) and

∫
VP

‖x− x0‖dx. It is important to

emphasize that previous analysis is done only for the case when the system
consists of only one circle P. Thus, further study of ET for more complex
systems has to be done numerically.

4.1.2 Calculation of the modified total energy

Calculation of total energy for point systems is an exact and straightforward
task due to the nice representation of the integral in the total energy formula
with Minkowski tensors[134] (Introduction, Equation 1.19). However, such
or similar representation of the integral from the Equation 4.1 is challenging
to obtain because of the more complicated form of a sub-integral distance
function. Hence, in the following lines, we will describe how we calculated
numerically integral from the Equation 4.1 in 2-dimensional space when el-
lipses are considered particles.

In that sense, to calculate concerned integral, we have to calculate squared

distance between ellipse P = {y = (y1, y2) ∈ R2 : y2
1

a2 +
y2

2
b2 ≤ 1} and arbi-

trary point x = (x1, x2) that is not part of the ellipse E (otherwise trivially
‖x− P‖2 = 0 ). Without loss of generality, we can assume that the ellipse is
positioned at the origin of the coordinate system with major and minor axis
collinear with the coordinate axis. Indeed, such configuration can always be
achieved by rotating and translating point and ellipse while preserving all of
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the distances in the system. Taking into count previous assumption we have:

‖x− P‖2 = ( inf
y∈P
‖x− y‖)2 (4.8)

= inf
y∈P

(‖x− y‖)2 (4.9)

= inf
(y1,y2)∈P

(x1 − y1)
2 + (x2 − y2)

2 (4.10)

= min
(y1,y2)∈P

(x1 − y1)
2 + (x2 − y2)

2 (4.11)

= min
t∈[0,2π]

(x1 − a cos t)2 + (x2 − b sin t)2 (4.12)

Here, equality 4.9 stands because f (x) = x2, x ∈ R is a monotonic func-
tion for positive x, and equality 4.11 is valid because ellipse is a compact set.
Therefore a continuous function achieves minimum on it. Equality 4.12 is
a consequence of the fact that from an arbitrary point, the closest point of
the ellipse has to be on the edge of an ellipse, which is parametrized with
{(a cos t, b sin t), t ∈ [0, 2π]}.

Further, Fermat’s Theorem provides necessary condition for minimum of
a function:

d((x1 − a cos t)2 + (x2 − b sin t)2)

dt
= 0. (4.13)

After applying derivative to the previous equation, we obtain a trigono-
metric equation:

ax1 sin t− bx2 cos t + (b2 − a2) sin t cos t = 0. (4.14)

The obtained trigonometric equation can be solved using trigonometric
identity cos t =

√
1− sin2 t which gives:

ax1 sin t− bx2

√
1− sin2 t + (b2 − a2) sin t

√
1− sin2 t = 0. (4.15)

After squaring and transforming the previous equation, we obtain the
following trigonometric polynomial equation:

(b2 − a2)2 sin4 t− 2(b2 − a2)bx2 sin3 t + (a2x2
1 + b2x2

2 − (b2 − a2)2) sin2 t

+ 2(b2 − a2)bx2 sin t− b2x2
2 = 0. (4.16)

Real solutions of the former equation give us candidates for a minimum
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of a distance function. After that, we calculate values of the distance function
for each of that real solution, and the lowest of those values is our desired
minimum of a distance function.

Previous procedures give us an efficient way to evaluate sub-integral func-
tion in the Equation 4.1 at any desired point. In order to evaluate integral in
the total energy equation, we construct a mesh over the Voronoi cell and cal-
culate the value of the distance function at every point of the mesh. Values of
the distance function of the mesh points inside the ellipse are set to 0. After
that, we calculate the integral in the total energy equation using the trape-
zoidal integral formula.

4.1.3 Modified Lloyd’s algorithm

In order to study solutions of the modified Quantizer problem on elliptical
particles, it is crucial to find an acceptable method that will generate struc-
tures with desired properties. Since effective quantization of point processes,
as it was described earlier, can be achieved by Lloyd’s algorithm, it would be
ideal for applying the same method to ellipse assemblies. Since ellipses are
bodies with the non-trivial area while translating ellipses to centres of mass
of its Voronoi cells, Lloyd’s algorithm would yield overlap between particles.
For that reason, we propose a modification to Lloyd’s algorithm that solves
the issue with the overlap of the ellipses.

After the step of Lloyd’s algorithm, when we move ellipses to centres of
mass of their Voronoi cells, in order to remove overlaps between ellipses in
the system, we "shake" the whole system. We shake the system by moving
and rotating ellipses in the assembly. Due to computational simplicity, we
randomly sample the translations and rotations of ellipses and accept them
only if the total overlapping condition is being optimized, i.e. if the total
overlap area of ellipses does not increase. We perform the shaking step as
specified in the packing algorithm introduced in Chapter 3 of this thesis.

Therefore, the obtained algorithm can be formalized through the follow-
ing steps:

1. Input of the algorithm is an assembly of ellipses {Pi, i = 1, . . . , n} con-
tained in a square simulation box B with periodic boundary conditions.

2. The set Voronoi diagram V (definition in Chapter 3) is calculated with
assembled ellipses Pi as the generators of Voronoi cells.
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3. For each Voronoi cell Vi a centre of mass zi is calculated.

4. Each centre of ellipse Pi is replaced by the centre of mass zi of its Voronoi
cell Vi.

5. If any two ellipses overlap, an ellipse is randomly selected from a sys-
tem. The selection is performed so that all ellipses have the same prob-
ability of being chosen, no matter if they overlap. After that, the chosen
ellipse is moved and rotated randomly. The movement is sampled in-
dependently in x and y direction, both from the uniform distribution
on the interval [− b

2 , b
2 ] where b is semi-minor axis of the ellipse. The

rotation angle is sampled from the uniform distribution on the interval
[0, π]. The movement and rotation for selected ellipses are accepted if
the total overlap is not increased. The procedure of selecting, moving
and rotating an ellipse is repeated until there are no intersecting ellipses
in the assembly (total overlap equals 0 in double precision).

6. If the desired number of iterations is not reached, then steps beginning
with step 2 are iteratively repeated. Else, the algorithm is terminated,
and the current assembly is given as an output.

Given that the proposed algorithm differs from classical Lloyd’s algo-
rithm, it will be referred to as the modified Lloyd’s algorithm due to its mo-
tivation and considerable similarities to the original algorithm.

The proposed algorithm should be effective in annulling overlaps. After
a certain number of ellipse translations and rotations, all the overlaps will
be removed from the system due to constant optimization of the total over-
lap area. However, the modified Lloyd’s algorithm for ellipses has a few
limitations to address. The first and most fundamental question is whether
modified Lloyd’s algorithm solves the modified Quantizer problem for el-
lipses. It is not clear if it introduces any novelties when applied to ellipse
assembly because there is a possibility that "shaking" from step 5 of modified
Lloyd’s algorithm cancels out centralizing step of the algorithm and therefore
introduces no change to the initial structure.

A further question is the robustness of the obtained results to the val-
ues of hyperparameters (parameters whose values we set before execution
of the algorithm). An especially interesting hyperparameter is the length of
ellipse movement towards Voronoi centres of mass. It is worth exploring if
the movement for a certain fraction of a distance rather than for total distance
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in modified Lloyd’s iteration would yield the same structural properties of
obtained systems.

4.2 Simulations

We apply modified Lloyd’s algorithm to random assemblies of ellipses pre-
sented in Chapter 3 of this thesis. Those systems cover a broad range of
differently shaped ellipses assembled at various packing fractions. The num-
ber of assembled ellipses varies between assemblies due to the speed lim-
itations of our simulator. Thus, our simulator takes more time to produce
output if the ellipses are more elongated and the packing fraction is higher.
Therefore, at low packing fractions (φg = 0.2, . . . , 0.5) our assemblies contain
1000 ellipses, when packing fraction φg = 0.65 assemblies have 400 or 500
ellipses and at highest packing fraction φg = 0.8 we assemble 200 ellipses.
We choose a number of runs so that for every assembly in the phase space,
we have 10000 data points (10000 ellipses together).

We execute modified Lloyd’s algorithm until it reaches a convergence
which typically takes place in less than 1000 iterations.

4.3 Convergence of the modified Lloyd’s algorithm

4.3.1 Modified total energy

In order to address the convergence of modified Lloyd’s algorithm, we can
visualize ellipse assemblies before and after application of 1000 modified
Lloyd’s iterations (Figure 4.1). Figures 4.1a and 4.1b present the appearance
of ellipse assemblies under modified Lloyd’s iterations at low packing frac-
tion. Before application of any iterations (Figure 4.1a), the ellipses are ran-
domly assembled without regularity. On the other side, after the application
of 1000 iterations, the assembly is highly ordered, with ellipses being well or-
ganized in terms of their positions in the system. Such ordered structure al-
ready appears after around 100 Lloyd’s iterations and does not change for the
remainder of the simulation. On the other side, Figures 4.1c and 4.1d present
system at higher packing fraction where ellipse assemblies do not change
their appearances significantly under modified Lloyd’s iterations. Same as
within random assembly of ellipses (Figure 4.1c), after 1000 modified Lloyd’s
iterations (Figure 4.1d), ellipses in the system are randomly positioned with
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FIGURE 4.1: Assemblies of ellipses before and after application
of 1000 modified Lloyd’s iterations. Ellipses with aspect ratio
e = 2 assembled at packing fraction φg = 0.2 before

(
a)
)

and
after

(
b)
)

application of modified Lloyd’s algorithm. Ellipses
with aspect ratio e = 1 assembled at packing fraction φg =
0.65 before

(
c)
)

and after
(
d)
)

application of modified Lloyd’s
algorithm.

no signs of the organization such as it was presented in Figure 4.1b.

In pursuance of further investigation of convergence of modified Lloyd’s
algorithm for ellipses and, more fundamentally, determining if the proposed
algorithm introduces any structural change into the system, we studied be-
haviours of the modified total energy ET during modified Lloyd’s iteration.
The first notable phenomenon that we observe are two distinct regimes that
total energy exhibits during iterations of modified Lloyd’s algorithm (Figure
4.2).

In the first of those two regimes, the modified total energy follows a curve
that decreases rapidly in roughly the first 100 iterations. It then oscillates
around reached value in remaining modified Lloyd’s iterations (Figure 4.2a).
Those oscillations are small with a high correlation between values of the
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FIGURE 4.2: Visualization of the two regimes of the modified
total energy. a) Regime one: Modified total energy quickly de-
creases and then fluctuates around reached value. Assembly of
ellipses with e = 2 at packing fraction φg = 0.2. (Figure 4.1a,b)
b) Regime two: Modified total energy fluctuates throughout all
iterations and stays approximately the same. Assembly of el-
lipses with e = 1 at packing fraction φg = 0.65. (Figure 4.1c,d).
c) Autocorrelation function of time series presented in a) part
of this Figure. Blue dashed lines present significance threshold
value for autocorrelation function. d) Autocorrelation function
of time series presented in b) part of this Figure. e) Evolution of
the structure factor under modified Lloyd’s algorithm. Assem-

bly of ellipses with e = 2 at packing fraction φg = 0.2.

modified total energy-related to different modified Lloyd’s iterations (Figure
4.2c). Therefore, this regime’s modified total energy time series adopts a rel-
atively smooth shape. Furthermore, we can see that the structure factor of
the ellipse assembly changes significantly only in the first 100 iterations of
the modified Lloyd’s algorithm (Figure 4.2e). Even though structure factors
of assemblies at iterations 100 and 500 are very similar, we can see a slight
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difference between them around their peek values. Finally, there is no visi-
ble difference between structure factors of the iterations 500 and 1000 (Figure
4.2e).

Opposite of the previous regime, in the second one, values of the modi-
fied total energy oscillate around a single value with the absence of any trend
(Figure 4.2b). Those oscillations are much more expressed than in the first
regime and completely uncorrelated (Figure 4.2d), giving the noise-like ap-
pearance to the modified total energy time series.

FIGURE 4.3: a) Visualization of modified total energy Et for first
10000 iterations of modified Lloyd’s algorithm. Colours rep-
resent different runs of modified Lloyd’s algorithm from dis-
tinct initial configurations of disc (e = 1) assemblies at pack-
ing fraction φg = 0.35. Both coordinate axis are logarithmic.
b) Structure factors of ellipse assemblies that represent differ-
ent iterations of the modified Lloyd’s algorithm. Red colour
represents iteration where the modified total energy ET adopts
lower value in its oscillations and blue colour represents itera-
tion where the modified total energy ET adopts higher value in

its oscillations.

Even though both regimes of the modified total energy are different, they
carry the same information about the convergence of modified Lloyd’s algo-
rithm. As we pointed out earlier, in the first regime, after the initial decrease,
the modified total energy starts to oscillate around a particular value. As we
can see from Figure 4.3a, those oscillations start around the hundredth iter-
ation, meaning that performed 1000 iterations are enough to converge mod-
ified Lloyd’s algorithm fully. Figure 4.3b visualizes structure factors of the
ellipse assemblies with higher and lower values of the modified total energy
during the previously mentioned oscillations. It is vital to specify that the
assembly structure remains the same under those oscillations meaning that
the reached state can have a relatively wide range of values of the modified
total energy ET. Moreover, Figure 4.2e provides us with a conclusion that the
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structure of the ellipse assembly also converges after 1000 modified Lloyd’s
iterations.

Similarly, in the second regime, the modified total energy oscillates around
a particular value from the first iteration meaning that, on average, it does not
change. Therefore, 1000 iterations are certainly enough to converge modified
Lloyd’s algorithm in this case too.

FIGURE 4.4: Visualization of total energy regimes throughout
phase space of different ellipse aspect ratios and packing frac-
tions. REG 1 denotes first total energy regime and REG 2 stands

for second total energy regime.

Another even more important phenomenon regarding modified Lloyd’s
algorithm arises from the properties of the modified total energy. Hence, we
can relate the two observed regimes of the modified total energy to whether
any significant structural changes happened under the application of mod-
ified Lloyd’s algorithm. Thereby, the first regime where modified total en-
ergy decreases indicates a difference in ellipse organization after applying
modified Lloyd’s iterations. Such reorganization can be detected even by ob-
serving visualizations of ellipse assemblies (Figure 4.1a, b). Such structural
difference is not evident in the second regime where the value of modified
total energy stays roughly the same (Figure 4.1c, d).

Due to the previously described phenomenon, it is natural to investigate
the modified total energy regimes across the studied phase space of ellipse
aspect ratios and packing fractions. Thereby, a visualization of the modified
total energy regimes is presented in Figure 4.4). We can detect a relatively
clear border between areas of the phase space where modified total energy
follows different regimes. Hence, for all ellipse assemblies at lower packing
fractions (φg = 0.2, 0.35) except for highly elongated ellipses (e = 3.33) as-
sembled at packing fraction φg = 0.35, we witness that the modified total en-
ergy embraces behaviour of first, decreasing and smooth regime. Therefore,



4.3. Convergence of the modified Lloyd’s algorithm 81

in that part of phase space dominated by the low packing fraction, modified
Lloyd’s algorithm introduces effects to the ellipse assemblies similar to ones
presented in the Figure 4.1b. On the other hand, for the part of phase space
where intermediate and high packing fractions dominate, the modified total
energy values follow a noisy regime which implies that modified Lloyd’s it-
erations do not introduce any significant visual changes to concerned ellipse
assemblies.

4.3.2 Relation to the modified Quantizer problem

FIGURE 4.5: a) Modified total energy values for 1000 Lloyd’s
iterations of assemblies at packing fraction φg = 0.35. Different
colours denote different aspect ratios of assembled ellipses. b)
Modified total energy values for 1000 Lloyd’s iterations of circle
assemblies (e = 1). Different colours denote different assembly

packing fractions.

In the introduction of this chapter, we motivated the definition of mod-
ified Lloyd’s algorithm with solving the modified Quantizer problem. It
remains unclear how modified Lloyd’s algorithm and modified Quantizer
problem are connected. We concluded in the previous subsection that mod-
ified Lloyd’s algorithm has a significant effect on ellipse assemblies only in
one part of the phase space (Figure 4.4). In that case, Lloyd’s algorithm de-
creases the value of the modified total energy (Figure 4.2a) and therefore
produces a more optimal state of the system in the context of the modi-
fied Quantizer problem. Additionally, we saw that the modified total en-
ergy fluctuates around a specific value if we perform more modified Lloyd’s
iterations. Nonetheless, those fluctuations are tiny compared to the initial de-
crease. This phenomenon provides us with evidence that modified Lloyd’s
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algorithm produces modified Quantizer optimal states even though the rig-
orous proof of this claim remains beyond the reach of this thesis.

As we know from the Introduction of this Thesis, the Quantizer problem
and Lloyd’s algorithm are related to minimizing elongation of the Voronoi
cells in the system. By observing values of the modified total energy related
to different aspect ratios of the assembled ellipses, we can draw a similar con-
clusion to the modified Lloyd’s algorithm and modified Quantizer problem.

Figure 4.5a displays modified total energies related to ellipse assemblies
with different aspect ratios at packing fraction φg = 0.35. We can observe
that assemblies of more elongated ellipses have greater values of the mod-
ified total energy throughout the modified Lloyd’s algorithm applications.
Since assemblies of more elongated ellipses have, on average, a greater mean
of Voronoi cell elongation (Chapter 3), we can conclude that greater values
of the modified total energy are also related to the greater mean elongation
of the Voronoi cells in studied assemblies. The latter positive correlation is
present throughout the phase space of our simulations, i.e. the same trend
is observable for all packing fractions. Accordingly, since lower values of
the modified total energy indicate less elongated Voronoi cells, the modified
Quantizer problem prefers tessellations with less elongated Voronoi cells, as
was the case with point generators.

In addition to the aspect ratios of assembled ellipses, packing fractions
also reveal an interesting aspect of the modified total energy of the system.
Figure 4.5b presents modified total energies of the circle assemblies (e = 1)
along the whole scale of studied packing fractions. Before applying modified
Lloyd’s algorithm (Iteration 0), assemblies at higher packing fractions have,
on average greater value of the modified total energy. However, during the
algorithm itself, that relation changes due to different regimes of the modi-
fied total energy discussed earlier. The trend in the modified total energies
values related to random assemblies of ellipses (Iteration 0) is explainable
by the definition of the modified total energy. In the Equation 4.1, the sub-
integral function trivially adopts value 0 for the points contained in the el-
lipse that generates the concerned Voronoi cell. At a higher packing fraction,
ellipses occupy a greater fraction of its Voronoi cells meaning that the value
of the sub-integral function is 0 on the greater proportion of the Voronoi cell
resulting in lower values of the integrals in the modified total energy def-
inition and, accordingly, a lower value of the modified total energy of the
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system.

4.4 Structural properties of ellipse assemblies un-

der modified Lloyd’s algorithm

After we got convinced that modified Lloyd’s algorithm fully converges and
produces meaningful results, we would like to investigate the organization
of the ellipses under the application of the algorithm more thoroughly. To
address this question, as in Chapter 2 of this thesis, we calculate and analyse
the structure factor of ellipse assemblies before and after applying modified
Lloyd’s algorithm. Hence, Figures 4.6 and 4.7 present the critical result of
this chapter, as well as another link between modified and classical Lloyd’s
algorithm.

In the left column of Figures 4.6 and 4.7 structure factors of the random
assemblies of ellipses are plotted. Each graph presents ellipse assemblies
at one specific packing fraction starting from top with lowest in Figure 4.6
(φg = 0.2) and ending at the bottom of Figure 4.7 with the highest (φg = 0.8).
The first notable phenomenon related to densities of ellipse assemblies is de-
pendence of the structure factors on elongation of the assembled ellipses. Ac-
cordingly, at the lowest packing fraction (φg = 0.2, Figure 4.6a), the observed
structure factors do not depend much on the shape of assembled ellipses
and, therefore, nearly coincide with a curve with no notable sharp peaks.
They adopt values close to 1 for large wavenumbers while they halve when
wavenumber vanishes. Most of the mentioned properties are also common
for a structure factor of binomial point process that has constant structure fac-
tor (S(k) = 1, ∀k). Therefore, ellipse assemblies at the lowest studied pack-
ing fraction (φg = 0.2) share common structural properties with binomial
point processes, namely disorder and relatively uniform spatial distribution
of particles.

The dependence of the structure factors on the shape of the assembled
particles becomes more evident as the packing fraction increases. While
structure factors of assemblies consisting of highly elongated ellipses remain
flat, peaks become more pronounced as the assembled ellipses are more circle-
like. Moreover, structure factors obtain lower values for small wavenumbers
as the packing fraction increases. At the highest packing fraction (φg = 0.8,
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FIGURE 4.6: We calculated structure factors of assemblies by
taking in count centres of assembled particles. Left column
contains structure factors of random assemblies before appli-
cation of modified Lloyd’s algorithm and right column con-
tains structure factors of ellipse assemblies after application of
1000 modified Lloyd’s iterations. Every row in the figure repre-
sents particular packing fraction. Differently coloured symbols
represent distinct aspect ratios of assembled ellipses. Structure
factors were observed only for wavenumbers |k| ≥ 4× |kmin|
for assemblies at packing fraction φg ≤ 0.5 where |kmin| is the
shortest possible wavenumber. a) Iteration 0, φg = 0.2 b) Iter-
ation 1000, φg = 0.2 c) Iteration 0, φg = 0.35 d) Iteration 1000,

φg = 0.35 e) Iteration 0, φg = 0.5 f) Iteration 1000, φg = 0.5

Figure 4.7c), the dependence of the systems spatial characteristics on the el-
lipse elongation in terms of previously described properties of structure fac-
tors is most obvious. While the structure factors of circle-like particle assem-
blies have pronounced peaks, structure factors of highly elongated ellipse
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assemblies remain flat.

FIGURE 4.7: Structure factors of ellipse assemblies. Left column
contains structure factors of random assemblies before applica-
tion of modified Lloyd’s algorithm and right column contains
structure factors of ellipse assemblies after application of 1000
modified Lloyd’s iterations. Every row in the figure represents
particular packing fraction. Differently coloured symbols rep-
resent distinct aspect ratios of assembled ellipses. Structure fac-
tors were observed only for wavenumbers |k| ≥ 2× |kmin| for
assemblies at packing fraction φg ≥ 0.65 where |kmin| is the
shortest possible wavenumber. a) Iteration 0, φg = 0.65 b) Iter-
ation 1000, φg = 0.65 c) Iteration 0, φg = 0.8 d) Iteration 1000,

φg = 0.8

The previous discussion concludes that elongation of the ellipses intro-
duces variability and disorder in the ellipse assemblies. At the same time,
its absence generates systems that are structured more regularly. Similarly,
packing fraction plays the same role, with systems at higher packing fraction
being more ordered. Interestingly, the earlier analysis extends the results in
Chapter 3 of this thesis and provides the same conclusions about the role of
particle shape and packing fraction in geometrical properties of the ellipse
assemblies.



86 Chapter 4. Quantization of the ellipse assemblies

Right column of the figures 4.6 and 4.7 present structure factors after
application of modified Lloyd’s algorithm. The first evident information
from the considered figures is that at intermediate and high packing frac-
tions (Figures 4.6f and 4.7b,d) impact of Lloyd’s algorithm is little significant
and barely observable from the figures. In those systems, Lloyd’s algorithm
does not introduce any structural change but rather reorganize positions of
particles in the way that their structural properties stay roughly the same
(Figure 4.1d).

Opposite of that, a significant reorganization of particles occurs under
modified Lloyd’s algorithm in the systems at low packing fractions (Fig-
ure 4.6b and d), which have more similar geometric properties to point pro-
cesses. In such systems, structure factor changes significantly under modi-
fied Lloyd’s iterations. Before modified Lloyd’s iterations, as mentioned ear-
lier, the shape of the structure factor was flat with the absence of expressed
peaks which would indicate regularities in the ellipse organization. How-
ever, the final configuration structure factors at low densities adopt shapes
that imply higher order in the systems. They possess clear and expressed
peaks for certain wavenumbers as well as obtain very small values for short
wave vectors (S(k) < 10−2). Nonetheless, despite having clear peaks, the
structure factors do not obtain Bragg peaks, which indicates that the final
configurations remain amorphous although they are highly ordered and struc-
tured. Mentioned characteristics of structure factors that demonstrate a higher
degree of order in systems are more pronounced if particles in the assemblies
are rounder, i.e. more circle-like. The fact that supports the previous claim is
that the only system at lower densities that does not have such properties of
the structure factor is the assembly of highly elongated ellipses (e = 3.33) at
packing fraction ρ = 0.35.

Mentioned strong decay of structure factor for small wavenumbers in-
dicates suppression of long-wavelength density fluctuations in the systems.
To investigate long-range density properties of the systems even further, we
have calculated H measure (Introduction) for structure factors of observed
systems that are presented in Figure 4.8. We find that hyperuniformity mea-
sure H in the systems at low packing fractions where modified Lloyd’s al-
gorithm introduces structural change falls strictly below 10−3 and therefore,
by definition, those systems can be considered effectively hyperuniform or
hyperuniform for all practical purposes. Moreover, an assembly of circles at
packing fraction ρ = 0.8 is also effectively hyperuniform with H = O(10−3).
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FIGURE 4.8: Visualisation of an effective hyperuniformity in
studied phase space of ellipse aspect ratios and packing frac-
tions after application of modified Lloyd’s algorithm. Each row
represents one aspect ratio of assembled ellipses and each col-
umn represents one packing fraction of assembly. EH denotes if
system is effective hyperuniform and X denotes if system is not
effective hyperuniform. Effective hyperuniformity of the sys-
tems was inspected by the criteria that hyperuniformity mea-

sure H ≤ 10−3.

However, there is a difference between the origin of effective hyperuni-
formity in systems at low packing fraction and in the assembly of discs at
packing fraction φg = 0.8. The effective hyperuniformity in systems at low
packing fractions is driven by the out-turn of modified Lloyd’s iterations
and not by the density and particle characteristics. The fact that supports
the previous claim is that random assemblies of ellipses before application
of algorithm are not even close to being effectively hyperuniform with their
structure factors in the vicinity of 0 being for at least 2 orders of magnitude
greater than structure factors of final configurations.

On the other hand, effective hyperuniformity of disc assemblies at pack-
ing fraction ρ = 0.8 after applying modified Lloyd’s algorithm is the outcome
of systems geometrical properties guided by packing fraction and shape of
the particles. This second source of effective hyperuniformity can be justified
by the phenomenon that structure factors of the system before and after mod-
ified Lloyd’s iterations roughly obtain the same values with their H measure
being of the same order of magnitude.

Figure 4.8 presents another interesting result regarding effective hyper-
uniformity of the modified Lloyd’s algorithm final configurations. We can
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observe that question of whether modified Lloyd’s algorithm introduces hy-
peruniformity to the system depends on the shape of assembled ellipses at
all studied packing fractions. As the packing fraction gets higher, the aspect
ratio of the assembled ellipses has to be lower for the algorithm to introduce
effective hyperuniformity to the system. That law introduces an oblique line
in observed phase space that separates two different regimes of Lloyd’s algo-
rithm. The first one introduces effective hyperuniformity into systems, and
the other that does not significantly affect ellipse assemblies.

4.5 Robustness of the results to the hyperparame-

ters of the modified Lloyd’s algorithm

Earlier in this chapter, when defining modified Lloyd’s algorithm, we pointed
out that to fully understand the newly proposed algorithm, we have to inves-
tigate the effects of hyperparameters that can be tuned. First of those param-
eters, denoted by η, controls ellipse freedom of movement when they are
rearranging in order to annul the overlaps caused by the centralization step
in the modified Lloyd’s algorithm. More precisely, η is a value that deter-
mines the interval from which the movement of the ellipse will be randomly
sampled. As mentioned before, movements are performed independently in
both coordinate axis directions for a distance sampled uniformly from inter-
val [−η, η]. As a default value, the parameter η = b

2 where b is length of
minor semi-axis of ellipse.

FIGURE 4.9: Structure factors of disc assemblies at packing frac-
tion φg = 0.4 in respect to different values of parameter η in the
modified Lloyd’s algorithm. Different coloured symobols de-
note different values of parameter η. a) Structure factors on

standard scale. b) Structure factors on log scale.
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We are interested in what will happen to the final structures of the mod-
ified Lloyd’s algorithm if we decrease the value of η and constrain the free-
dom of movement for ellipses even further. Hence, we will disable ellipses
to reorganize more than necessary when they are removing overlaps from
the system. In such a way, we will disallow them to cancel out the effects of
centralization.

Figure 4.9 presents optimisation of the circle assemblies at packing frac-
tion φg = 0.4 with different values of the parameter η. The parameter alpha
was chosen over three orders of magnitude. We can see that structure factors
of the final assemblies are invariant on the choice of η and that the struc-
ture factor overlap is almost perfect. Therefore, the structures produced by
the modified Lloyd’s algorithm are robust to different values of parameter η.
Same as here, we can recall that parameter η did not influence the geometry
of random assemblies of ellipses either (Chapter 3). All of this means that
the original choice of parameter η = b

2 is small enough not to cancel out op-
timization effects in our procedures.

Another parameter of our interest, κ, is a fraction of the distance between
the Voronoi centre of mass and the ellipse centre for which ellipses will be
moved in the modified Lloyd’s algorithm. Thus, this parameter can be re-
garded as a controlling parameter for the centralization speed in the algo-
rithm.

FIGURE 4.10: Modified total energy ET for first 10000 itera-
tions of modified Lloyd’s algorithm. Colours represent differ-
ent parameter κ values in modified Lloyd’s algorithm runs. Ob-
served systems are disc (e = 1) assemblies at packing fraction

φg = 0.35. Both coordinate axis are logarithmic.
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The first important question that we addressed regarding parameter κ is
how it affects the convergence of modified Lloyd’s algorithm in terms of the
modified total energy ET. Therefore, Figure 4.10 presents the behaviour of
the modified total energy when it follows the first of previously mentioned
regimes in the case when we decrease κ for an order of magnitude. We
find from Figure 4.10 that a decrease of κ does not introduce any significant
changes in convergence speed in terms of the modified total energy. Indeed,
we can observe that after approximately 100 iterations, the total energy starts
to vary around the reached values independent on the choice of parameter κ

in Lloyd’s algorithm.

FIGURE 4.11: Structure factors of ellipse assemblies after ap-
plication of modified Lloyd’s algorithm in respect to different
values of parameter κ. Different coloured symbols denote dif-
ferent values of parameter κ. a) Assembly of discs (e = 1) at
packing fraction φg = 0.2 b) Assembly of ellipses with aspect

ratio e = 2 at packing fraction φg = 0.5.

Furthermore, we have investigated how Lloyd’s algorithm with differ-
ent parameter κ values affect the structural properties of ellipse assemblies.
First of all, we observed systems that are some part away from the line that
separates two different regimes of the modified Lloyd’s algorithm, as we pre-
senter earlier in Figure 4.8. Thus, Figure 4.11 presents structure factors after
application of modified Lloyd’s algorithm due to different choice of param-
eter κ for systems that follow both first (Figure 4.11a) and second (Figure
4.11b) regime of the modified Lloyd’s algorithm. We find that structure fac-
tors concerning different values of κ coincide with great precision in both
regimes of the modified Lloyd’s algorithm. Because of the previous fact, de-
creasing parameter κ for two orders of magnitude does not introduce any
significant structural changes to the obtained ellipse assemblies. However,
it remains unclear if reduction of both parameters η and κ even further in
case of the ellipse assemblies that follow the second regime of the modified
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Lloyd’s algorithm would introduce a significant change to the system. This
way, we would centralize systems slowly and move the particles as little as
possible to remove ellipse overlaps from the systems.

More exciting results appear for the ellipse systems in the vicinity of the
border between two different Lloyd’s algorithm regimes (Figure 4.12). Hence,
we obtain different spatial properties of final configurations by reducing the
value of parameter κ for an order of magnitude (κ = 0.1) when applying
modified Lloyd’s algorithm. As we can see from Figure 4.12, structure fac-
tor after application of modified Lloyd’s algorithm with κ = 0.1 adopts
lower values for small wavenumbers. Accordingly, the concerned system
is effectively hyperuniform while the system obtained by applying modified
Lloyd’s algorithm with κ = 1 is not effectively hyperuniform. By further in-
vestigation of reducing parameter κ for an order of magnitude, we find that
the border in the phase space that separates different regimes of modified
Lloyd’s algorithm (Figure 4.8) shifts for approximately 0.1 towards higher
packing fractions. Therefore, by reducing parameter κ for an order of magni-
tude, effective hyperuniformity will be achieved at a slightly higher packing
fraction than in the case of the default value of parameter κ = 1. This result
points out that parameter κ controls the speed of centralization and that by
decreasing it, the need for random shaking of the systems to annul overlaps is
reduced. Then, the randomness introduced to the systems by shaking does
not cancel out the optimization done by the movement of ellipses towards
centres of mass.

Another interesting phenomenon regarding parameter κ occurs when it
is reduced for another order of magnitude (Figure 4.12). From Figure 4.12
we can see that reducing parameter κ even further does not have any new
effect but even cancels out the first reduction of parameter κ. As we can
see, when we set parameter κ = 0.1, the structure factor will obtain lower
values for small wavenumbers as well as more expressed peaks meaning
that systems with κ = 0.1 have lower hyperuniformity H measure values
than systems with κ = 1 or κ = 0.01. This result points out that if the speed
of centralization is too low, the randomness of the algorithm will also have a
greater influence which will yield less ordered systems. So to maximize the
effect of centralization, for the ellipse assemblies in the vicinity of the border
between two different regimes of modified Lloyd’s algorithm, the parameter
κ has to be selected carefully with values around 0.1.
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FIGURE 4.12: Structure factors of disc assemblies at packing
fraction φg = 0.5 after application of 5000 modified Lloyd’s it-
erations in respect to different values of parameter κ. Different

coloured symbols denote different values of parameter κ.

4.6 Conclusion of Chapter 4

In this chapter, we generalized the Quantizer problem to systems of particles
with non-zero areas by modifying the total energy defined in the introduc-
tion of this thesis. The newly modified total energy differs from the standard
total energy in the sub-integral function that provides the distance between
an arbitrary position in the space and the considered particle. We showed
that the modified total energy ET is equal to the standard total energy Et

when it is calculated for point patterns. Additionally, we modified Lloyd’s
algorithm so that it becomes applicable to systems of particles by introducing
an additional step to the procedure that annuls appearing overlaps between
ellipses. We proved that the proposed algorithm converges by investigating
the evolution of the modified total energy and the structure factors of ellipse
assemblies throughout different iterations. Moreover, we presented numeri-
cal evidence that newly modified Lloyd’s algorithm can be used to solve the
modified Quantizer problem.

By studying modified total energies, we anticipated two different regimes
of modified Lloyd’s algorithm that depend on the aspect ratios and packing
fractions of concerned ellipse assemblies. In the first regime that is domi-
nant at lower packing fractions, modified Quantizer solutions obtained by
the modified Lloyd’s algorithm are effectively hyperuniform with hyperuni-
formity measure H ≤ 10−4. On the other hand, at higher packing fraction
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modified Lloyd’s algorithm does not introduce significant systems changes.
Moreover, we show that effective hyperuniformity of final configurations of
the modified Lloyd’s algorithm also occurs at intermediate packing fractions
for systems composed of particles that are either circles or very similar to
circles. These phenomena show that effective hyperuniformity can occur in
assemblies of ellipses under the procedure that actively positions particles
towards centres of mass of their Voronoi region. Therefore, the results pre-
sented in this chapter contribute to a deeper understanding of the origins of
hyperuniformity in particle systems.

Presented property that modified Lloyd’s algorithm introduces effective
hyperuniformity to ellipse assemblies is interesting because it extends results
from Chapter 2 of this thesis. In the case of non-trivial particles, effective hy-
peruniformity under modified Lloyd’s algorithm occurs only at low packing
fractions. Therefore, it would be interesting to adapt Lloyd’s algorithm to
significantly reorganize systems of particles at higher packing fractions as
well. Previously mentioned reorganization can be done by additional con-
trol of particle orientations in the iterations of the algorithm. This way, we
would try to introduce a nematic order to systems and possibly produce ef-
fective hyperuniformity at higher packing fractions. Furthermore, it would
be interesting to address the modified Quantizer problem for other types of
particles besides ellipses both in 2D and in higher dimensions.
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Chapter 5

Theoretical model for epithelial
tissues

5.1 Introduction to epithelial tissue

In previous chapters, we have investigated geometric optimization of spatial
structures consisting of trivial particles (points) or more complex particles
with both area and arbitrary shape (ellipses). We found that Lloyd’s algo-
rithm, in those systems, affects local properties such as centrality and long-
range density fluctuations. Such complexity of Lloyd’s optimization implies
its great applicability to a broad range of problems both in science in indus-
try. This chapter will study how Lloyd’s algorithm comes into play when
modelling epithelial tissue.

Epithelial tissue is beside muscle, connective and nervous, one of four
tissue types. It is considered the first tissue that emerged during phyloge-
netic, 600 million years ago. Nowadays, over 150 types of epithelial cells
have many functionalities in our bodies. Thus, epithelial tissue separates our
body from its surroundings or lies between different tissue types and has es-
sential roles in digestive, respiratory, reproductive, sensory, vascular, neural
and hormonal systems. In those systems, epithelium takes over functions
of secretion, selective absorption, protection, sensing and transcellular trans-
port[124]. Epithelium also has a pivotal role in processes such as tumour
progression and wound healing[74, 154, 101, 170].

In order to perform all its functions in the organism, epithelial tissue
has to adopt structures with various distinct appearances[154, 29, 101, 60].
Hence, epithelial cells have all kinds of different shapes and forms, both indi-
vidually and collectively. We differentiate cuboidal, squamous and columnar
epithelial cells that can be arranged in one (simple) or more layers (stratified).
Visualizations of such epithelial tissue appearances are presented in Figure
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FIGURE 5.1: Appearances of epithelial cell tissue. Image was
taken from https://microbenotes.com/epithelial-tissue.

5.1.

Epithelial tissue has been a subject of studies in-vivo as well as in-vitro.
Those models have some important advantages that make them favourable
for specific studies. Thus, in-vivo studies provide a more realistic approach.
In contrast, in - vitro studies are performed in a familiar environment where
parameters of the model are easy to control [75].

One of the most popular in-vitro models for studying epithelial tissues
is Madin-Darby Canine Kidney (MDCK) cell culture. MDCK cells, origi-
nally derived by S.H. Madina and N.B. Darby in 1958, originate from an
adult Cocker Spaniel[66]. Because of the variability of the original MDCK
cell culture, many different cell lines were derived from it. Nowadays, those
cell lines are used to study various phenomena related to epithelial tissues.
Hence, MDCK cells are suitable models to study development of tumours[140,
116] and also used as substrates for research of influenza virus[66, 99] and
production of vaccines. Moreover, MDCK cell lines were used to investigate
regimes of epithelial tissue growth[77], collective cell motion[119, 150], mor-
phological properties[74, 166] as well as cell proliferation[141].

A fascinating study of MDCK tissue’s structuring is presented in refer-
ence [76]. In this paper, the authors investigate epithelial tissues grown on
substrates of different stiffness. They find that epithelial tissues, depending
on the stiffness of the substrate, possess different morphological properties
and different cell densities but the same topology in the homeostatic state of
the tissue (Figure5.2). These results provide a deeper understanding of the
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FIGURE 5.2: Geometric and topological properties of epithe-
lium in the homeostatic state grown on substrates with differ-
ent stiffness. a) Appearance of the cell membranes in a steady
state. b) Distributions of the rescaled cell area (cell area divided
by its mean). Inset shows distributions of the non-rescaled cell
areas c) Distributions of the cell elongation. d) Distribution of
the number of neighbours. e) Aboav-Weaire’s law (Chapter 3).

This figure was taken from the reference [76].

mechanosensitive properties of cells to the macroscopic structuring of the tis-
sue.

On the other hand, the organization of the epithelial tissue during mat-
uration remains unfamiliar. During the growth and maturation, while den-
sifying, epithelial tissue must actively maintain its structure and optimize
to perform its functions. Structural characterization of the epithelium was
a topic of studies in the past [24], and interestingly, hyperuniform density
fluctuations were found in the context of the vertex model for the epithelial
tissue [137].

In order to address the question of epithelial structuring under the pro-
cess of maturation, we will study experimental data taken from Sara Kali-
man PhD thesis[75]. Considered experimental data comes from the MDCK
II strain, the most used strain developed from the parental MDCK cell line.
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Studied tissues were grown on 2D glass and hard gels. In such environments,
MDCK cells can form circular monolayers that grow with time up to a few
millimetres in diameter. Moreover, it is possible to distinguish the bulk of
such epithelial clusters from their edge. The bulk of the cluster is positioned
in the centre of the cluster where cells reach steady-state density while to-
wards the outer parts of cluster density decreases and reaches its minimum
at very edge[77, 75, 76]. An example of such a cluster is shown in Figure 5.3.

FIGURE 5.3: MDCK II cell cluster grown on glass substrate.
This image was taken from reference [75].

This chapter will aim to model the epithelium and show how specific
features of the epithelial tissue can be described efficiently by simple math-
ematical concepts such as an ellipse or Voronoi tessellation. We will char-
acterize the structure of epithelial tissue by calculating structure factors of
experimentally obtained tissue data. Moreover, we will study the effects of
centrality in the epithelial tissues by observing simple and intuitive morpho-
logical measures defined in Chapter 3 of this thesis. The behaviour of those
morphological measures will be a great motivation to investigate the modi-
fied Lloyd’s optimization in the context of epithelial tissues.

As we mentioned before, parts of this chapter were done by Sara Kaliman
(PhD thesis[75]) or in collaboration with her [97]. The rest of this chapter
will clearly state which results are paraphrased from either of the previous
references.
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5.2 Structural properties of epithelial tissue

5.2.1 Structure factor of tissue

In order to further understand the structuring of epithelial tissues, we have
investigated the structure factors of the tissue clusters. Figure 5.4a presents
point process that is generated by the centres of mass of cell nuclei in the
tissue cluster. We calculated structure factors of such point processes to in-
vestigate the structuring of the tissue. We examined tissue clusters at two
different timestamps after their seeding, which yielded two different mean
cell densities of tissue. Each dataset consists of around 50000 epithelial cells.

Figure 5.4c reveals very interesting facts about epithelial structuring. We
find that structure factors at both timestamps possess clear peaks. However,
concerned peaks are much more pronounced, as expected, in the case of tis-
sue clusters at day 4 due to the higher cell density. Besides the appearance
of peaks, we can see that both structure factors decrease rapidly towards
smaller wavenumbers and adopt relatively flat shapes around their minimal
value. The flat regions of the structure factors correspond to the neighbour-
hood of 2 and 4 cells at low and high density, respectively. We find the min-
imal values of the structure factor S(k) = 0.12 for k corresponding to wave-
lengths of 42µm for clusters at the day 2 and S(k) = 0.04 for k corresponding
to wave-lengths of 27µm at the day 4. After reaching their minimal values,
both structure factors increase towards 0. The increase follows a line on a
logarithmic graph with linear coefficients approximately −1 for low-density
and −1.2 for high-density tissues (Figure 5.4d). This suggests that structure
factor achieves a finite value for |k| = 0.

Previously mentioned decrease and levelling of structure factors in the
case of both timestamps indicate the existence of locally ordered domains in
tissue with the absence of strong variability in density. Such domains can
be seen as darker and lighter patches on Figure 5.4a. Point configurations
in such ordered domains are plotted in Figure 5.4b. An increase in structure
factor values when |k| approach 0 points out more significant fluctuations
in cell density on greater length scales which is also appearing on the Figure
5.4a. These fluctuations imply more irregular patterning on greater length
scales.
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FIGURE 5.4: Structuring of the epithelial tissue a) Image of a
point process generated by the tissue cluster 2 days after its
seeding. Each point represents a centre of mass of cell nuclei
in a tissue cluster. b) Examples of points from a) part of the
figure at length-scale of 42µm that corresponds to the ordered
domains in tissue. c) Structure factors of the epithelial tissue.
Cold colours represent two tissue samples 2 days after seeding,
while warm colours represent two tissue samples 4 days after
seeding. Data is scaled so that the mean cell area is equal to
unity. Coordinate axes are linear. d)Structure factors where the
coordinate axes are logarithmic. Lines represent fits to the tail

towards 0 of the structure factors.

5.2.2 Set Voronoi tessellation based epithelial tissue model

The studied epithelial tissue forms monolayer sheets. Each cell occupies
a fraction of the substrate on which tissue grows. Hence, when looking
from above, cells tile the substrate plane where each cell corresponds to one
tile. Edges of tiles represent cell membranes, and vertices of tiles repre-
sent junctions where at least three cells meet. Cells adopt various shapes
due to curvature of the membranes and different topological properties of
cells in tissue(Figure 5.5). However, the curvature of the edges is not too
expressed, which motivated many studies to approximate cells with simple
polygons[170, 51, 17, 110].
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FIGURE 5.5: MDCK II epithelial cells form monolayer mean-
ing that the cell membranes define a tessellation of plane. This

image was taken from reference [75].

Voronoi tessellation has a pivotal role in our model of epithelial tissue.
Modelling epithelial cells with Voronoi tessellation has been a well-known
approach for years, and many studies of cell morphology were performed
with Voronoi cells representing epithelial cells [170, 166, 141, 121]. These
studies have in common that the Voronoi tessellation was constructed from
a single point, namely, being the centre of mass of cell nuclei. With this per-
spective, cells are polygons which makes in-silico studies easy to perform
both algorithmically and computationally. Despite this approach being sim-
ple and very effective, it has its limitations. Hence, Kaliman et al. [74] per-
formed an extensive study of Voronoi tessellation built from the centre of
mass of cell nuclei (CMVT) by comparing various morphological measures of
CMVT and actual tissue. Experimental data is extracted from tissue images
via image analysis tools. They find that many morphological measures of
tissue are approximated well by the CMVT with error varying between 10%
and 15% (Figure 5.6 a). However, they observe significant errors when CMVT
reproduces some morphological measures such as perimeter, elongation and
number of neighbours due to the polygonal nature of CMVT. Therefore, de-
spite CMVT being widely used and a relatively good approximation for mor-
phological properties of cells, an upgrade to the CMVT model is needed to
capture some properties of epithelial cells, such as shape and topology.

A natural extension to the CMVT model is a set Voronoi tessellation model
(SVT) that would generate Voronoi tessellation from the shape of the cell nu-
clei. Thus Kaliman, in her PhD thesis[75] continues the study of Voronoi
tessellations as an approximation for cell membrane by calculating SVT from
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FIGURE 5.6: Visualization of Voronoi tessellations compared to
the cell membrane (blue). The cell membrane was segmented
from the images of tissue with advanced image analysis tools
described in reference [75]. a) CMVT (yellow) approximates
the membranes relatively well with some significant mistakes
where it splits across cell nuclei (white objects). b) SVT (red)
follows the membrane curves with great precision, placing each
nucleus inside its cell. These images were taken from reference

[75].

the cell nuclei and comparing obtained morphological measure data to ac-
tual experimental data. She finds that SVT coincides with cell membrane
even better and that it outperforms CMVT with the error being below 10%
(Figure 5.6 b). Moreover, all of the morphological measures were calculated
more precisely, especially ones where CMVT made the most significant er-
rors, such as cell elongation.

The result that SVT calculated from the cell nuclei represents cell mem-
branes with excellent accuracy provides us with a new insight into tissue
organization. It motivates a novel approach to tissue modelling. Positions of
the cell membranes are strongly correlated to the positions and orientations
of the cell nuclei. This correlation means that tissue can be considered an
assembly of its nuclei, implicating that the structure of nuclei assembly dic-
tates the morphological properties of studied epithelial tissue. Therefore if
we want to reproduce morphological properties of epithelial tissue, we have
to generate an assembly of cell nuclei that provides the best approximation
of the cell tissue.

Since our goal is to assemble cell nuclei, we have to track their shape.
Tracking of the cell nuclei can be very challenging computationally since cell
nuclei adopt various shapes (Figure 5.6), and we would have to remember
somehow the exact shapes of the edge of the cell nuclei. Because of the round
shape of the cell nuclei (Figure 5.6), Kaliman, in her PhD thesis[75] approx-
imates cell nuclei with ellipses. Fitting an ellipse to the cell nucleus is done
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with the principal component analysis (PCA). When applied to the cell nu-
cleus, PCA provides an optimal fit of the ellipse to the cell nucleus. After
fitting an ellipse, the cell nucleus is characterized by only five parameters
(ellipse axis, position in coordinate system and orientation). By approximat-
ing cell nuclei with ellipses, we can simplify the nuclei data very effectively,
which makes our model computationally much more feasible.

5.2.3 Morphology of cell nuclei

Since cell nuclei are the objects used to calculate the positions of membranes,
it is clear that they have a central role in our tissue model. Because of that,
it is vital to have an insight into cell nuclei morphology to understand what
our model predicts.

FIGURE 5.7: Distributions of area and elongation of the cell nu-
clei. Different coloured lines denote different cell densities. a)

Area distributions. b)Elongation distributions.

To achieve that goal, we investigate distributions of nuclei area and elon-
gation at various cell densities in tissue. Calculation of the nuclei statistics is
done by calculating the area and elongation of ellipses that were fitted to cell
nuclei (data is taken from Kaliman PhD thesis [75]). Figure 5.7a presents dis-
tributions of cell nuclei area at different cell densities. The first notable fact
is that distributions of nuclei area are shifted towards the left as cell density
increases meaning that as the cell density is higher, cell nuclei are smaller on
average. Moreover, cell density influences variability of the distributions be-
cause nuclei area distributions are narrower as cell density is higher, meaning
also fewer fluctuations in the size of the nuclei.

On the other side, distributions of cell nuclei elongation reveal different
nature of the nuclei shape regarding different cell densities (Figure 5.7 b). We
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find that cell density does not dictate the shape of the nuclei as much as it
influences the nuclei area. Even though there is a statistically significant dif-
ference between nuclei elongation distributions, all distributions have simi-
lar positively skewed shapes and a mean of around 1.4. Moreover, the width
of all nuclei elongation distributions is approximately equal, which indicates
that cell density does not affect the shapes of the nuclei as much as it affects
the size of the nuclei.

5.2.4 Randomness in cell tissue

Now that we described the appearance of cell nuclei, we can continue build-
ing the epithelial tissue model. Since SVT reconstructs membranes from cell
nuclei, our goal is to assemble somehow ellipses fitted to cell nuclei to repro-
duce the tissue’s morphology.

In order to do so, firstly, we decided to compare tissue to the random as-
sembly of concerned ellipses. A random assembly of ellipses as a model for
epithelial tissue structure has both advantages and disadvantages. Thus, it is
the most simple model and very easy to implement. Furthermore, by under-
standing the effects of randomness in the assembly of ellipses, we can easily
distinguish which other active process governs the properties of epithelial
tissue. Hence, since we are already familiar with the properties of random
assemblies of ellipses (Chapter 3), we can easily recognize the nature of these
different processes that form the morphology of epithelium which will help
us implement them into our model efficiently. On the other side, random as-
sembly is an improbable model for epithelial structure since the morphology
of tissue, as a living system, is highly influenced by many biological, chemi-
cal and physical processes that are certainly not random. Thus, by comparing
tissue to a random model, many of these processes could be misinterpreted
by randomness in the assembly. Another disadvantage is that at the begin-
ning, we know that our model will probably misjudge some properties of
epithelial morphology. For example, in the random assembly of ellipses, two
ellipses can be arbitrary close to each other. Opposite of that, this is certainly
not the case in epithelial tissue because we always need to have some space
for cell membranes between two cell nuclei.

As part of our previous work, we compared random assemblies of el-
lipses fitted to cell nuclei with experimental cell tissue morphological mea-
sures. We found that random assembly of ellipses recovers distributions of
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FIGURE 5.8: Comparison of the cell tissue to the random as-
sembly of ellipses fitted to cell nuclei. Blue colour denotes ex-
perimental data, and red colour denotes random assemblies. a)
Distributions of the cell area at cell density of approximately
7365 Cells/mm2. b)Distributions of the cell elongation at cell
density of approximately 7365 Cells/mm2. c) Means of the CM
distance plotted versus various cell densities. d) Means of the

cell elongation plotted versus various cell densities.

morphological measures of tissue well at all cell densities. However, the dif-
ference between compared distributions is statistically significant (example
in Figure 5.8a,b). The details of this work were published in references [75,
97].

The actual deviations of tissue from the random assembly of ellipses are
apparent when observing the cell nuclei positions inside the cells and the
shape of the cells. Thus, Figure 5.8c presents the distance between the centre
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of the mass of the Voronoi cell to the centre of mass of cell nuclei (CM dis-
tance) plotted for experimental data and a random assembly of ellipses. We
find that in tissue, cell nuclei tend to be closer to the centre of mass of the cell
than in a random model. This difference in the CM distance is systematic for
all cell densities but more pronounced at low cell densities. The cell nucleus
has more spatial freedom to actively position itself at the low density than
on high cell densities. Another phenomenon regarding CM distance is that
both in cell tissues and random assemblies, the CM distance points follow a
decreasing line when plotted versus cell density. This phenomenon can be
explained by the fact that ellipses or nuclei have less space to adopt arbitrary
positions at high cell density because they occupy more space inside cells.

As we mentioned before, another morphological measure that points out
the difference between random model and actual tissue is cell elongation, a
measure that describes the cell shape. Figure 5.8d presents the mean elonga-
tion of cells for random assembly and actual cell tissue at given cell densities.
Similar to the case of CM distance, we find that at the same cell density, tissue
cells are generally less elongated, and therefore rounder, than Voronoi cells of
randomly assembled ellipses. The difference in elongation between the two
systems is also more pronounced at low cell densities than at high cell den-
sities. However, opposite the case with CM distance, the mean elongation
both in cell tissue and random model has a different trend when studying its
dependence on cell density. Firstly, mean elongations drop when cell density
increases to around 3000 and remain approximately constant for the follow-
ing densities. We believe this is since as cell density increases, the Voronoi
cells tend to adopt the shape of its generating ellipses, as was shown in Chap-
ter 3. Further evidence of this claim can be found in the fact that the mean
elongations adopt similar values to the elongation values of cell nuclei pre-
sented in Figure 5.7b.

5.3 Lloyd’s iterations as a model for tissue

Results presented earlier in this chapter suggest an active mechanism that
keeps tissue in a steady state. One of the main properties of this mechanism
is pushing cell nuclei towards the centres of mass of its cells. While doing
that, tissue tends to keep cell elongation approximately constant for different
densities (Figure 5.8d) with values that are lower than in the random model.
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Moreover, as discussed in the previous section, patterns in tissue with a rel-
atively uniform density point out other properties of such an active mecha-
nism. Previously mentioned facts that tissue actively regulates its structure
are basic properties related to Lloyd’s algorithm in previous chapters of this
thesis. Therefore, these results motivate us to introduce modified Lloyd’s
iterations as an upgrade to a model based on the random assembly of cell
nuclei.

Because random assemblies of ellipses are a good approximation for ep-
ithelial tissue morphology, it is natural to use them as a starting point for
modified Lloyd’s optimization. We hope that after modified Lloyd’s algo-
rithm converges, the obtained structures will be a better approximation for
epithelial tissue than the random assembly of ellipses. We performed mod-
ified Lloyd’s optimization of random assemblies of ellipses fitted to nuclei
with the same algorithm that we defined in Chapter 4 of this thesis. In the
simulations, we set parameter η, which is responsible for controlling the
movement freedom of the ellipses when annulling overlaps caused by the
centralization, to the mean value of minor semi-axis of ellipses fitted to cell
nuclei. It is important to recall that the final structures of Lloyd’s algorithm
do not depend on values of parameter η, as was shown in Chapter 4. We
applied 1000 iterations of Lloyd’s algorithm to ellipse assemblies since it is
enough to converge the structure fully (Chapter 4).

Since we found locally ordered domains with an absence of significant
density fluctuations in tissue clusters, we decided to use such tissue patches
as targets for our model. Thus, because of Lloyd’s algorithm suppression of
density fluctuations, such tissue parts seem like datasets that might be repro-
ducible by our simulations. Those tissue patches consist of a few hundred
cells. For each studied cell density in the following lines, we have simulated
a few such datasets and then combined them to achieve larger samples.

5.3.1 Structure factors after applying the modified Lloyd’s it-

erations

Figure 5.9 presents structure factors of experimental tissue data, random as-
semblies of ellipses fitted to cell nuclei and systems after application of 1 and
1000 Lloyd’s iterations. Depending on the system, structure factors were also
calculated for point patterns defined by centres of mass of nuclei or ellipses.
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FIGURE 5.9: Structure factors of experimental tissue (dark
blue), random assemblies of ellipses fitted to cell nuclei (red)
and modified Lloyd’s iterations of those assemblies (light blue
for iteration 1 and yellow for iteration 1000). Insets in the fig-
ures denote cell densities and packing fractions of the systems.
All wavelengths λ are in micrometers (|k| = 1

2πλ ). a) Cell
density 2618 Cells/mm2 b) Cell density 4824 Cells/mm2 c) Cell

density 7365 Cells/mm2 d) Cell density 13348 Cells/mm2

We considered wavenumbers |k| that are greater than 4× |kmin|where |kmin|
is the shortest possible wavenumber that corresponds to the size of the sys-
tem.

The first notable phenomenon from Figure 5.9 is that, similar as it was
the case with morphological measures, structure factors of the experimental
epithelial tissue data and random assemblies coincide very well. The over-
lap of structure factors between tissue data and random assemblies is most
pronounced at higher cell densities (Figure 5.9c and 5.9d). At lower cell den-
sities (Figure 5.9a and 5.9b), structure factors also agree very well, but with
some deviations for small wavenumbers. On the other side, structure factors
of assemblies after application of 1000 modified Lloyd’s iterations reveal en-
tirely different behaviours and trends. At low cell densities (Figure 5.9a and
5.9b), structure factors possess clear and expressed peaks, unlike the struc-
ture factors of random ellipse assemblies and tissue. Moreover, structure fac-
tors adopt very small values for small wavenumbers with H measure below
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10−2 meaning the obtained systems are effectively hyperuniform. On the
other hand, at higher cell densities (Figure 5.9c and 5.9d), structure factors
of assemblies after application of Lloyd’s iterations overlap with structure
factors of the other two systems with great precision. Furthermore, we find
that structure factors of ellipse assemblies after just 1 iteration of modified
Lloyd’s algorithm have approximately the same appearance as structure fac-
tors of random assemblies of tissue (Figure 5.9a and 5.9b). Such appearance
can be explained by the fact that significant reorganization does not occur
only after 1 iteration of modified Lloyd’s algorithm.

After applying modified Lloyd’s algorithm, previously presented results
concerning the system’s structural properties are not surprising consider-
ing the results discussed in Chapter 4 of this thesis. Let us remember that
modified Lloyd’s optimization introduced effective hyperuniformity at small
packing fractions into monodisperse assemblies. At higher packing fractions,
it did not change the ellipse organization significantly. Hence, previous re-
sults are mostly the consequence of the effects of modified Lloyd’s iterations
on systems due to different densities. Our findings become even more ob-
vious if we observe packing fractions φg that correspond to considered cell
densities and place the systems according to the packing fraction and the
mean nuclei elongation into the phase space presented in Chapter 4. We find
that the tissue with the lowest studied cell density (2618 Cells/mm2) where
final configurations are effectively hyperuniform falls to the part of the phase
space where such effects are expected. Similarly, tissues with cell densi-
ties 7365 Cells/mm2 and 13348 Cells/mm2 belong to the part of phase space
where the modified Lloyd’s algorithm is expected not to have any signifi-
cant effect on structural characteristics of the assembly. The only exception
is a tissue with cell density of 4824 Cells/mm2. According to the mentioned
phase space diagram (Chapter 4), Lloyd’s algorithm should not introduce ef-
fective hyperuniformity to this system (since packing fraction φg = 0.455 and
mean nuclei elongation e ≈ 1.4), which is opposite of our previous finding.
This deviation can be explained by the fact that considered visualization of
the phase space examines monodisperse assemblies, and our system is poly-
disperse, meaning all cell nuclei have a different shape (Figure 5.7). Since
the mentioned system is very close to the border that separates two differ-
ent regimes of the modified Lloyd’s algorithm, the fact that our system is
polydisperse could explain different behaviour of the system under modi-
fied Lloyd’s iterations than predicted by the phase space diagram.
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5.3.2 Morphological measures after applying the modified Lloyd’s

iterations

FIGURE 5.10: Properties of CM distance morphological mea-
sure distributions. Dark blue colour represents real experimen-
tal tissue data, red colour denotes random assembly of ellipses
fitted to cell nuclei, light blue colour represents ellipse assembly
after only 1 iteration of modified Lloyd’s algorithm and yellow
colour denotes ellipse assembly after 1000 modified Lloyd’s it-
erations. a) Means of the CM distance plotted versus various
cell densities. b) CM distance distributions at cell density of
2618± 150Cells/mm2 c) CM distance distributions at cell den-
sity of 4824± 217Cells/mm2 d) CM distance distributions at cell
density of 7365± 105Cells/mm2 e) CM distance distributions at

cell density of 13348± 234Cells/mm2
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In order to further investigate the outcome of modified Lloyd’s iterations
in tissue modelling, we studied properties of distributions of various mor-
phological measures defined in Chapter 3 calculated for systems that are an
outcome of Lloyd’s algorithm. First of all, we investigated distributions of
CM distance morphological measure and presented the most exciting results
in Figure 5.10. We find that at low cell densities, the mean CM distance falls
close to 0 after application of Lloyd’s algorithm, proving that those systems
are nearly fully centralized (Figure 5.10a). Thus, Lloyd’s algorithm decreases
the mean CM distance much more than cell tissue from the random assem-
blies point of view, meaning random assembly approximates CM distance
of tissue much better than fully converged modified Lloyd’s optimization.
However, we find that the first iteration of modified Lloyd’s algorithm re-
produces the mean CM distance better than the fully converged modified
Lloyd’s algorithm. At higher cell densities, the mean CM distance after ap-
plying modified Lloyd’s algorithm is almost equal to the mean CM distance
of the random assemblies.

We can draw similar conclusions based on the appearance of CM Dis-
tance empirical probability density functions (Figures 5.10b-e). We find that
independent of cell density, CM distance distributions in tissue are much
narrower than random nuclei assembly distributions with a shift to the left
at lower cell densities. Moreover, after fully applying modified Lloyd’s al-
gorithm, the CM distance distributions become even narrower with an ad-
ditional shift to the left at low densities. In contrast, they remain similar to
the CM distance distributions of random assemblies at higher densities. This
phenomenon is a sign of centralization that occurs under Lloyd’s algorithm
at lower densities of the system. Similar to the case of the mean CM distance
(Figure 5.10a), distributions after only 1 iteration of modified Lloyd’s algo-
rithm approximate tissue data much better than the fully converged modi-
fied Lloyd’s algorithm.

Similar conclusions can be derived by observing distributions of cell elon-
gation after application of modified Lloyd’s algorithm (Figure 5.11). We find
that at lower cell densities, modified Lloyd’s algorithm decreases mean elon-
gation in the systems significantly, resulting in that the random assemblies
approximate morphology of tissue much better than 1000th iteration of mod-
ified Lloyd’s optimization (Figure 5.11a). However, similarly to the CM dis-
tance measure, iteration 1 of modified Lloyd’s algorithm approximates tissue
data better than the fully converged algorithm. At higher cell densities, the
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FIGURE 5.11: Properties of cell elongation morphological mea-
sure distributions. Dark blue colour represents real experimen-
tal tissue data, red colour denotes random assembly of ellipses
fitted to cell nuclei, light blue colour represents ellipse assembly
after only 1 iteration of modified Lloyd’s algorithm and yellow
colour denotes ellipse assembly after 1000 modified Lloyd’s it-
erations. a) Means of thecell elongation plotted versus vari-
ous cell densities. b) Cell elongation distributions at cell den-
sity of 2618± 150Cells/mm2 c) Cell elongation distributions at
cell density of 4824± 217Cells/mm2 d) Cell elongation distribu-
tions at cell density of 7365± 105Cells/mm2 e) Cell elongation

distributions at cell density of 13348± 234Cells/mm2

mean cell elongation of random assemblies and assemblies after application
of modified Lloyd’s iterations is nearly equal, further proving that modified
Lloyd’s algorithm does not introduce any novelty to systems at high cell den-
sities.
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Moreover, by investigating true distributions of cell elongation after ap-
plication of modified Lloyd’s iterations (Figure 5.11b-e), we find, as in the
case of CM distance, narrowing of distributions at low cell densities. This
result points out a decrease in cell elongation variability in systems after
applying modified Lloyd’s iterations, which indicates that we obtain more
ordered configurations. Similar to the case of CM distance distributions, at
higher cell densities, elongation distributions remain unchanged after appli-
cation of modified Lloyd’s algorithm.

FIGURE 5.12: Cell area distributions. Dark blue colour rep-
resents real experimental tissue data, red colour denotes ran-
dom assembly of ellipses fitted to cell nuclei, light blue colour
represents ellipse assembly after only 1 iteration of modified
Lloyd’s algorithm and yellow colour denotes ellipse assem-
bly after 1000 modified Lloyd’s iterations. a) Cell density of
2618± 150Cells/mm2 b) CCell density of 4824± 217Cells/mm2

c) Cell density of 7365 ± 105Cells/mm2 d) Cell density of
13348± 234Cells/mm2

Another morphological measure that we have investigated is cell area. As
we pointed out earlier and as it can be concluded based on the Figure 5.12,
random assembly of ellipses reproduces cell area distributions very well at
all concerned cell densities. We find, in agreement with previously observed
morphological measures, that modified Lloyd’s algorithm narrows down cell
area distributions at low packing fractions. In contrast, cell area distributions
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remain practically unchanged at high packing fractions. Furthermore, the
first iteration of modified Lloyd’s algorithm, despite not being as good as the
random model, is more similar to cell tissue than the 1000th iteration of mod-
ified Lloyd’s algorithm.

FIGURE 5.13: Number of neighbours distributions. Dark blue
colour represents real experimental tissue data, red colour de-
notes random assembly of ellipses fitted to cell nuclei, light blue
colour represents ellipse assembly after only 1 iteration of mod-
ified Lloyd’s algorithm and yellow colour denotes ellipse as-
sembly after 1000 modified Lloyd’s iterations. a) Cell density of
2618± 150Cells/mm2 b) Cell density of 4824± 217Cells/mm2 c)
Cell density of 7365± 105Cells/mm2 d) Cell density of 13348±

234Cells/mm2

Finally, we have investigated the number of neighbours of cells, a mor-
phological measure that reveals information about the topological organiza-
tion of cells in observed systems (Figure 5.13). Similarly to the case of pre-
viously studied morphological measures, we find that at lower cell densities
modified Lloyd’s algorithm narrows significantly the number of neighbours
distributions resulting in a notable change in systems topology. As we can
see from Figures 5.13a and 5.13b, around 80% of cells are hexagonal after
application of Lloyd’s algorithm, which is near twice as much as in actual
tissue or random model. This phenomenon indicates a significant reorgani-
zation of cell neighbourhood under Lloyd’s iterations. On the other hand, at
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higher cell densities (Figure 5.13c and 5.13d), distributions of the number of
neighbours remain practically unchanged. In agreement with the other mor-
phological measures, we find that the first iteration approximates cell tissue
much better than the 1000th iteration. However, it does not introduce any
improvement to the random model.

5.4 Discussion and outlook

In the previous sections of this chapter, we have built our model for epithelial
tissue structure from cell nuclei and described how an assembly of cell nuclei
determines morphological properties of tissue. It was found earlier[75, 97]
that random assembly of ellipses that represent cell nuclei can approximate
tissue structure with great precision. Furthermore, we found interesting dif-
ferences between random assembly as a model and actual tissue that point
out an optimization mechanism in tissue that is similar to Lloyd’s optimiza-
tion.

However, when applying modified Lloyd’s algorithm to random assem-
blies of ellipses fitted to cell nuclei, we saw that such optimization does not
introduce any upgrade to our model. Hence, we found that random assem-
bly is a much better model for tissue morphology at lower cell densities be-
cause modified Lloyd’s optimization introduces a high degree of order to
systems. On the other hand, modified Lloyd’s optimization does not intro-
duce any significant structural change to random assemblies of ellipses fitted
to cell nuclei at higher cell densities. Both of these findings are in agreement
with results presented and discussed earlier in Chapter 4.

However, it is interesting to notice that at lower cell densities, iteration
1 of modified Lloyd’s algorithm approximates morphology of tissue with
greater precision than fully converged modified Lloyd’s algorithm. Even
though the first iteration does not introduce any upgrade to the random
model, it can motivate further study of the structuring of the epithelial tis-
sue. Since data related to cell tissue, at low densities, lay somewhere between
the random assembly of ellipses and converged modified Lloyd’s algorithm,
we can ask a question if only a partial movement of cell nuclei towards cen-
tres of mass of its cells would explain the morphology and structuring of the
epithelium. As we see in Chapter 4, this partial movement can be achieved
by tuning the parameter κ in modified Lloyd’s algorithm. Since κ controls



116 Chapter 5. Theoretical model for epithelial tissues

the speed of centralization in modified Lloyd’s algorithm by moving parti-
cles towards the centre of mass only by a fraction, a careful choice of κ could
provide a better approximation of cell tissue at low cell densities.
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Chapter 6

General conclusion

This thesis provided an extensive study of the Quantizer problem, an op-
timization question that is important for both scientific and practical pur-
poses. The quantization problem can be solved by minimizing the total en-
ergy that calculates the total distance from arbitrary positions in space to the
concerning points. The most effective and elegant way to solve the Quantizer
problem is with Lloyd’s algorithm, an iterative method that pushes genera-
tor point towards centres of mass of its Voronoi cells.

In the first chapter of this thesis, we studied the Quantizer problem’s so-
lutions in three-dimensional space obtained by Lloyd’s minimization. As ini-
tial configurations for Lloyd’s algorithm, we have used several amorphous
point configurations with different spatial properties. Even though all ini-
tial configurations were random, they included both very disordered and
highly ordered structures. After applying Lloyd’s algorithm to those point
processes, we found that the obtained solutions of the Quantizer problem
have a universal structure. This structure is just like initial configurations
amorphous, but it possesses a remarkable property of suppressed long-range
density fluctuations, better known as effective hyperuniformity. This result
provides new insight into the emergence of hyperuniformity in systems and
links it to widely used concepts such as quantization and Lloyd’s algorithm.

Moreover, we applied Lloyd’s algorithm to point patterns that possess
local crystalline patches and found that the corresponding Quantizer solu-
tions have lower values of the total energy than the previously mentioned
universal structure. Moreover, we found that those systems, despite the
initial crystalline patches, are globally amorphous and effectively hyperuni-
form. This result contributes to the understanding of the complex total en-
ergy landscape, which has many local minima that correspond to locally op-
timal Quantizer solutions.



118 Chapter 6. General conclusion

Motivated by the finding of effective hyperuniformity in the context of
Quantizer solutions, we were curious how such long-range property appears
in the systems composed of particles. Therefore, we decided to expand the
Quantizer problem to assemblies of ellipses. First of all, in Chapter 3, we pre-
sented an in-depth study of assemblies of monodispersed ellipses that cover
a broad range of shapes at different packing fractions. By studying distri-
butions and correlations of various morphological measures, we were able
to characterize how geometrical and topological properties of the assemblies
are governed by the shape of the ellipses and different packing fractions.
Besides that, we could reproduce and generalise many previously known re-
sults relevant to the study of particle assemblies and packings.

After understanding the fundamental properties of ellipse assemblies, we
modified the Quantizer problem to generalize to the systems of non-trivial
particles. Moreover, we modified Lloyd’s algorithm by introducing an ad-
ditional step that annuls particle overlaps into the procedure. By studying
the modified total energy throughout modified Lloyd’s iterations, we could
relate the algorithm and newly modified Quantizer problem and provide nu-
merical proof that the algorithm can be used to solve the problem. Similar to
the case of the point generators, we have shown that modified Lloyd’s algo-
rithm can introduce effective hyperuniformity to systems of particles. Effec-
tive hyperuniformity was found for systems at lower packing fractions and
assemblies at intermediate packing fractions that are consisted of circle-like
particles. This exciting phenomenon shows that effective hyperuniformity
can occur in assemblies of ellipses under the procedure that actively posi-
tions particles towards centres of mass of their Voronoi region. Therefore,
the results presented in this chapter contribute to a deeper understanding of
the origins of hyperuniformity in systems consisting of non-trivial particles.

Finally, as an example of a system that actively maintains its structure,
we studied epithelial tissue. Because set Voronoi tessellation calculated from
the tissue nuclei approximates cell membranes with very good accuracy, we
studied the assemblies of cell nuclei to learn about the structure of the epithe-
lium. We found that random assembly of ellipses fitted to cell nuclei is a good
approximation for the epithelial geometry. However, by carefully studying
chosen morphological measures, we found the fundamental difference be-
tween tissue and random assembly that motivated us to implement modi-
fied Lloyd’s algorithm as a method to approximate the epithelium structure.
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We find that fully converged modified Lloyd’s algorithm, as concluded from
the results presented in Chapter 4 of this thesis, produces structures that are
much more ordered than the epithelium. However, we find that the first it-
eration of the modified Lloyd’s algorithm explains some geometrical aspects
of the epithelium well.

This thesis provided a link between two fundamental concepts, the Quan-
tizer problem, and hyperuniformity of the system. Moreover, we generalized
the Quantizer problem to systems of particles and showed that solving it in-
troduces effective hyperuniformity to systems of particles. Therefore, we be-
lieve that our work provides a solid foundation for investigating properties
such as hyperuniformity in systems consisting of particles.
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Appendix A

Geometric effects in random
assemblies of ellipses
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FIGURE A.1: Voronoi tessellation of randomly assembled el-
lipses at packing fraction φg = 0.2. a) e = 3.33 b) e = 2, c)
e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.2: Voronoi tessellation of randomly assembled el-
lipses at packing fraction φg = 0.35. a) e = 3.33 b) e = 2, c)
e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.3: Voronoi tessellation of randomly assembled el-
lipses at packing fraction φg = 0.5. a) e = 3.33 b) e = 2, c)
e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.4: Voronoi tessellation of randomly assembled el-
lipses at packing fraction φg = 0.65. a) e = 3.33 b) e = 2, c)
e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.5: Voronoi tessellation of randomly assembled el-
lipses at packing fraction φg = 0.8. a) e = 3.33 b) e = 2, c)
e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.6: Fits of gamma distribution to the cell area measure
at packing fraction φg = 0.2. Left figure shows fit together with
p-value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated(fitted) frequencies
and observed frequencies for each bin in χ2 test. a) e = 3.33 b)

e = 2, c) e = 1.25, d) e = 1
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FIGURE A.7: Fits of gamma distribution to the cell area at pack-
ing fraction φg = 0.35. Left figure shows fit together with p-
value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.8: Fits of gamma distribution to the cell area at pack-
ing fraction φg = 0.5. Left figure shows fit together with p-
value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.9: Fits of gamma distribution to the cell area at pack-
ing fraction φg = 0.65. Left figure shows fit together with p-
value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.10: Fits of gamma distribution to the cell area at
packing fraction φg = 0.8. Left figure shows fit together with
p-value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.11: Fits of gamma distribution to the cell perimeter
at packing fraction φg = 0.2. Left figure shows fit together with
p-value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.12: Fits of gamma distribution to the cell perimeter
at packing fraction φg = 0.35. Left figure shows fit together
with p-value of χ2 test and parameters of fitted distribution.
Right figure shows difference between estimated frequencies
and observed frequencies for each bin in χ2 test. a) e = 3.33
b) e = 2, c) e = 1.25, d) e = 1. This image was taken from

reference [JL2].
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FIGURE A.13: Fits of gamma distribution to the cell perimeter
at packing fraction φg = 0.5. Left figure shows fit together with
p-value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.14: Fits of gamma distribution to the cell perimeter
at packing fraction φg = 0.65. Left figure shows fit together
with p-value of χ2 test and parameters of fitted distribution.
Right figure shows difference between estimated frequencies
and observed frequencies for each bin in χ2 test. a) e = 3.33
b) e = 2, c) e = 1.25, d) e = 1. This image was taken from

reference [JL2].
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FIGURE A.15: Fits of gamma distribution to the cell perimeter
at packing fraction φg = 0.8. Left figure shows fit together with
p-value of χ2 test and parameters of fitted distribution. Right
figure shows difference between estimated frequencies and ob-
served frequencies for each bin in χ2 test. a) e = 3.33 b) e = 2,
c) e = 1.25, d) e = 1. This image was taken from reference [JL2].
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FIGURE A.16: Details of gamma distribution fits to the cell
elongation data. a) Table shows where gamma distributed was
successfully fitted across whole phase space of studied assem-
blies. b) Example of a good fit of gamma distribution to cell
elongation measure. c) Example of a bad fit of gamma distribu-
tion to cell elongation measure. d) Example of a good fit of gen-
eralized gamma distribution to cell elongation measure. This

image was taken from reference [JL2].
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FIGURE A.17: Comparison between set Voronoi tessellation
and standard Voronoi tessellations. Difference between two tes-
sellations clearly emerge when Lewis’ law is calculated. This

image was taken from reference [JL2].
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ćirvoLvokaJ

Faculty:
Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg

Thesis title:
Structural properties of Quantizer problem solutions

Statutory declaration:
I hereby solemnly declare that I am the author of the enclosed thesis and

that I have not used materials and sources without corresponding declara-
tion or citation in the text. All thoughts or quotations which were inferred
from the sources are marked as such. I formally declare that this thesis was
not submitted to any other authority to achieve an academic degree.

Date and signiture:

Erlangen, 1 December 2021.
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