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Abstract: Trefoil factor 3 (Tff3) protein is a small secretory protein expressed on various mucosal
surfaces and is involved in proper mucosal function and recovery via various mechanisms, including
immune response. However, Tff3 is also found in the bloodstream and in various other tissues,
including the liver. Its complete attenuation was observed as the most prominent event in the early
phase of diabetes in the polygenic Tally Ho mouse model of diabesity. Since then, its role in metabolic
processes has emerged. To elucidate the complex role of Tff3, we used a new Tff3-deficient mouse
model without additional metabolically relevant mutations (Tff3-/-/C57BL/6NCrl) and exposed
it to a high-fat diet (HFD) for a prolonged period (8 months). The effect was observed in male and
female mice compared to wild-type (WT) counter groups (n = 10 animals per group). We monitored
the animals’ general metabolic parameters, liver morphology, ultrastructure and molecular genes in
relevant lipid and inflammatory pathways. Tff3-deficient male mice had reduced body weight and
better glucose utilization after 17 weeks of HFD, but longer HFD exposure (32 weeks) resulted in no
such change. We found a strong reduction in lipid accumulation in male Tff3-/-/C57BL/6NCrl mice
and a less prominent reduction in female mice. This was associated with downregulated peroxisome
proliferator-activated receptor gamma (Pparγ) and upregulated interleukin-6 (Il-6) gene expression,
although protein level difference did not reach statistical significance due to higher individual
variations. Tff3-/-/C57Bl6N mice of both sex had reduced liver steatosis, without major fatty acid
content perturbations. Our research shows that Tff3 protein is clearly involved in complex metabolic
pathways. Tff3 deficiency in C57Bl6N genetic background caused reduced lipid accumulation in the
liver; further research is needed to elucidate its precise role in metabolism-related events.

Keywords: trefoil peptide 3; liver; high-fat diet; metabolic syndrome; lipid metabolism

1. Introduction

The liver is a central metabolic organ with a wide variety of roles, such as glucose
regulation and lipid metabolism, the proper functioning of which is essential to maintain
body homeostasis and overall health [1]. Several conditions can lead to imbalances of lipid
metabolism in the liver and abnormal accumulation of triglycerides in hepatocytes, known
as steatosis. Obesity-related steatosis or nonalcoholic fatty liver disease (NAFLD) is one of
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the most prominent hepatic manifestations of metabolic syndrome, closely associated with
type 2 diabetes (T2D) [2]. These are major global health problems that have, unfortunately,
reached epidemic proportions worldwide [3].

Trefoil factor 3 (Tff3) is a small (6 kDa) secreted protein member of the trefoil factor fam-
ily (Tff) of proteins, along with Tff1 and Tff2, which are characterized by at least one copy of
the trefoil motif, a 40-amino acid domain that contains three conserved disulphides [4]. Tff3
is secretory glycoprotein produced by goblet cells that drives wound healing throughout
the gastrointestinal (GI), respiratory, ocular and genitourinary mucosa [5,6]. Tff3 protects
injured epithelia by increasing mucus viscosity, facilitating cell migration, inhibiting apop-
tosis [7] and affecting immune response [8,9]. Less is known about Tff3 function at other
sites of expression, which include the brain, pancreas, lymphoid tissue, blood circulation
and liver [10].

Liver Tff3 has been identified as a novel peptide involved in complex metabolic inter-
actions [11–16]. The first association with metabolism emerged from a study of a polygenic
diabesity mouse model (Tally Ho) developed by scientists at the Jackson Laboratory, which
revealed Tff3 as the most significantly changed of all the analysed genes. It was tran-
scriptionally active in the livers of control C57BL/6J mice but virtually undetectable in
the diabesity model [12]. Downregulation of Tff3 gene expression in the liver has also
been reported in several genetic, as well as diet-induced, mouse models of obesity and dia-
betes [13–15], as well as hepatic steatosis [16]. Overexpression of Tff3 in the liver in the same
diabetic and obese mouse models improved the diabetic phenotype [13–15]. Moreover, Tff3
was shown to directly bind to the promoter region of peroxisome proliferator-activated
receptor alpha (Pparα) and upregulate its expression, which subsequently reduced hepatic
steatosis by increasing the fatty oxidation process in the liver [15]. In contrast, Tff3-deficient
(Tff3-/-) mice generated on a mixed genetic background (C57BL/6J/Sv129) showed im-
proved utilization of glucose and enhanced insulin sensitivity with increased formation
of small lipid vesicles in the liver compared with wild-type (WT) controls but without
obvious signs of hepatic steatosis [17]. The only study conducted on patients in the context
of diabetes research showed that type 1 diabetes (T1D) patients have decreased serum TFF3
levels compared to healthy controls, which increased after insulin treatment [18].

It is evident that Tff3 plays a role in relevant metabolic processes in the liver, although
its underlying mechanisms remain unresolved.

Most biomedical research is conducted on mice colloquially called “Black 6“ (C57Bl6),
but many genetic substrains have genetic specificities that contribute to the mouse pheno-
type [19]. The most common strains, C57BL/6N and C57BL/6J, are derived from the same
C57BL/6 parental strain, but they exhibit crucial differences. The C57BL/6 J mouse has a
multiexon deletion of the Nnt (nicotinamide nucleotide transhydrogenase) gene and shows
impaired insulin secretion and glucose homeostasis [20]. Nnt is an important mitochondrial
protein that is a major generator of mitochondrial NADPH, regulates cofactor balance and
coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid cycle
(TCA) [21].

NNT maintains mitochondrial antioxidant capacity through the generation of NADPH [22],
and loss of active NNT in 6J mice is associated with reduced ability to detoxify reactive
oxygen species (ROS) via the glutathione and thioredoxin pathways [23–25]. Because
redox regulation is involved in many cellular processes, the loss of Nnt strongly affects
various cellular processes and immunological response [26–28], resulting in multiple phe-
notypes [29–31].

Recently, it was demonstrated that the presence of Nnt and C57BL/6N background,
rather than loss of granzyme A expression, in Gzma-/- mice was responsible for the pheno-
type in the viral arthritis model [32], indicating the importance of the currently ignored
influence of mouse genetic background [32,33]. Given that humans express functional
NNT, these data suggest that the 6N substrain is a more representative model system for
studies designed to elucidate the mechanisms by which nutrient excess drives the metabolic
syndrome [34].
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To determine the impact of Tff3 protein in complex metabolic events, we developed a
novel congenic Tff3-/- mouse strain on a C57BL/6N genetic background with functional
Nnt protein, avoiding the possible contribution of additional mutations present in C57Bl6J
and mixed-background strains [35]. Newly generated Tff3-/- mice and appropriate WT
controls of both sexes were fed a high-fat diet (HFD) for 8 months to induce metabolic
syndrome conditions, including fatty liver phenotype.

Considering the observed differences in liver Tff3 expression in males and females [11]
and the growing awareness of the need to include both sexes in biomedical research on
various human diseases [36], we additionally analysed the contribution of sex to the effects
of Tff3 deficiency on the metabolic parameters. We monitored weight, glucose and insulin
tolerance during the experiment. General blood biochemical markers were determined,
and fatty acid content, morphology and the ultrastructure of livers were examined. We
monitored the expression of genes involved in liver steatosis pathology-related pathways
of fatty acid metabolism and inflammation.

2. Materials and Methods
2.1. Animals and Diet Treatment

A trefoil factor family 3 (Tff3)-deficient mouse strain on a C57BL/6NCrl (Charles
River) genetic background was developed from an existing mixed-background strain
(C57BL/6J/SV129) using a ‘speed congenics’ approach as described previously [13]. Tff3-
deficient mice (Tff3-/-/C57BL/6NCrl) and appropriate wild-type strain C57BL6/NCrl
controls were raised in the facility for laboratory animals of the Rud̄er Bošković Institute
under standard care conditions. Female and male mice of wild-type (C57BL/6NCrl) and
Tff3-deficient genotype (Tff3-/-/C57Bl/6NCrl) were monitored. Animals were fed an HFD
(Ssniff, E15742-34, 24.4% crude protein, 34.6% crude fat, 6.0% crude fiber, 5.5% crude ash,
0.1% starch and 9.4% sugar) from weaning until they were sacrificed 8 months later. Ten
animals per group (five of which were used for fixation by total body fixative perfusion and
five for fresh tissue collection) were weighed, and blood glucose levels were determined at
the ages of 21 and 36 weeks. All measurements were carried out after mice fasted for 16 h,
specifically from 6 p.m. to 10 a.m. In addition, animals that were used as controls in weight
measurement experiments were fed a standard diet (Mucedola, 4RF21). Mice were kept at
21 ◦C with 60% humidity and a 12 h light–dark cycle. Experimental animal manipulations
and procedures performed during the study under the Croatian Science Foundation grant
IP-06-2016-2717 were approved by the local ethical committee.

2.2. Glucose and Insulin Tolerance Test

Intraperitoneal glucose tolerance tests (IPGTTs) were performed on animals at 21
(17 weeks of HFD) and 36 weeks of age (32 weeks of HFD). The tests were performed
according to the International Mouse Phenotyping Resource of Standardised Screens pro-
tocol [37]. After a 16 h fasting period, 2 g/kg glucose in sterile 1xPBS was administered
intraperitoneally. The blood glucose level was measured at the beginning of experiment
and at 15, 30, 60 and 120 min after glucose injection from a tail vein. Water was available
ad libitum.

Intraperitoneal insulin tolerance tests (IPITTs) were performed on animals at 23
(19 weeks of HFD) and 38 weeks of age (34 weeks of HFD). The tests followed the Mouse
Metabolic Phenotyping Centers protocol [38]. Animals were fasted for 4 h with water
available ad libitum. Whole blood glucose level was measured from the tip of the tail
before intraperitoneal application of 0.75IU/kg of insulin and 15, 30, 45, 60 and 120 min
post injection.

2.3. Histological Analysis

Livers were fixed in 10% buffered formalin (Shandon Formal-Fixx 10% neutral buffered
formalin; Thermo Scientific GmbH, Vienna, Austria). After fixation, samples were dehy-
drated and embedded in paraffin blocks (Tissue-Tek® TEC™ 5 Tissue Embedding Console
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System, Sakura Finetek Europe B.V.; Alphen aan den Rijn, The Nederlands) according to
a standard procedure. Next, 5 µm histological sections were cut using a Leica SM 2000R
microtome (Leica Biosystems, Nussloch, Germany), stained with haematoxylin and eosin
(HE) and a Masson–Goldner kit (Merck SA, Darmstadt, Germany) and cover-slipped using
a Gemini AS automated slide stainer and a ClearVue cover slipper (Thermo Fisher Scientific,
Waltham, MA, USA). Oil Red O staining was performed to visualize lipid accumulation.
Formalin-fixed liver samples were frozen in liquid nitrogen, and 10 µm cryosections were
cut using a Leica CM 1800 cryostat (Leica Biosystems, Nussloch, Germany) at −17 ◦C,
mounted on Thermo Scientific™ Superfrost® Plus slides (Gerhard Menzel B.V. & Co. KG,
Braunschweig, Germany) and stored at −80 ◦C. The thawed and air-dried cryosections
of the liver samples were then rinsed with deionized water and stained with Oil Red O
(Merck SA, Darmstadt, Germany) staining solution (0.5% Oil Red O in isopropanol) for
10 min, and the cell nuclei were counterstained with haematoxylin. After rinsing with
tap water, sections were mounted with aqueous mounting medium (Aquatex®; Merck SA,
Darmstadt, Germany). A Nikon Microphot FXA microscope with a DS-Fi1 camera and NIS
Elements BR 4.6 imaging software (Nikon instruments Europe B.V., Badhoevedorp, The
Netherlands) was used for histological examination. Representative tissue sections were
presented using Adobe Creative Cloud.

2.4. Ultrastructural Analysis

Mice of both genotypes and sexes were perfused with 4% PFA. Tissues were immersion-
fixed in Ito’s fixative immediately after collection. Liver samples were postfixed in OsO4
and dehydrated in a graded ethanol series, and the tissues were embedded in Epon
resin. Tissue sections (1 µm thick) were cut with an ultramicrotome (Ultracut E; Reichert
Jung, Vienna, Austria) and stained with toluidine blue. Toluidine-blue-stained slides
were examined with a Biorevo BZ-9000 microscope (Keyence, Neu-Isenburg, Germany).
Ultrathin sections of the tissue were cut, stained with uranyl acetate and lead citrate and
inspected with a JEM-1400Plus transmission electron microscope (JEOL (Germany) GmbH,
Freising, Germany).

2.5. Q-PCR Analysis

Liver tissues were collected, snap-frozen in liquid nitrogen and stored at −80 ◦C for
further analysis. Total RNA was isolated from the livers of Tff3-/- and WT mice of both
sexes using a NucleoSpin RNA (MACHEREY-NAGEL, Düren, Germany) kit according to
the manufacturer’s protocol. RNA was transcribed into cDNA with a high-capacity cDNA
reverse transcription kit (Applied Biosystems, Dreieich, Germany). Quantitative poly-
merase chain reaction (qPCR) was performed using SYBR Green I (Invitrogen, Waltham,
MA, USA) detection chemistry and specific primers (Table S1) on a StepOnePlus™ qPCR
system (Applied Biosystems). The cycling conditions were as follows: three minutes of
polymerase activation at 95 ◦C and 40 cycles comprising 95 ◦C for 1min, annealing temper-
ature specific for each primer pair (Table S1) for 30 s and elongation at 72 ◦C for 30 s. A
single product amplification was confirmed by melting curve analysis and polyacrylamide
gel electrophoresis. Gene expression was normalized to stable housekeeping genes, β-actin
(Actβ) and β2-microglobulin (β2m). Changes were represented as fold change.

2.6. Western Blot

Total liver proteins were isolated from Tff3-/- and WT mice fed with an HFD for
8 months (n = 5 animals per group). RIPA buffer (50 mM TRIS HCL, pH8, 150 mM
NaCl, 1 mM EDTA, 1% NP40, 1% sodium deoxycholate, 0.1% SDS) supplemented with
phosphatase and protease inhibitors was used for isolation. Protein concentration was
determined by a BCA protein assay kit (Pierce, Thermo Fischer, Waltham, MA, USA), and
10 µg of proteins per lane was separated by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE). Proteins were transferred to a PVDF membrane overnight
at the constant 100 mA. I-Block™ protein-based blocking reagent (T2015) was used for
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blocking for 1h. Il-6 primary antibody (ab208113) and Pparγ primary antibody (sc7196)
were incubated overnight at 4 ◦C with dilutions of 1:1000. Goat anti-rabbit IgG-HRP
(#170-6515; Bio-rad) was used for detection. The chemiluminescence signals were detected
(Uvitec Alliance Q9 mini) and analysed with Image J (version 1.53s, National Institute of
Health, Bethesda, MD, USA). Bands were normalized by amido black stain.

2.7. Fatty Acid Analyses

Fatty acid composition of the liver was analyzed using gas chromatography. The
procedure can be briefly summarized as follows: 0.25 g of homogenised sample was
transmethylated in situ according to the method of Park and Goins [39] using 0.5 M NaOH
in methanol, followed by 14% BF3 in methanol. Fatty acid methyl esters (FAME) were
extracted using hexane. For FAME separation, an Agilent 6890 GC equipped with a DB-
Fatwax UI chromatographic column (30 m length; 0.25 mm i.d., 0.25 m film thickness;
Agilent Technologies, Santa Clara, CA, USA) and FID detector was used. The results are
expressed as weight percentage (g of individual FA per 100 g of total FA) or in g/kg of
sample (calculated using weight percentage of FAs and fat content in the sample).

2.8. Statistical Analyses

Body weight measurements and results from IPGTT and IPITT were analysed by two-
way ANOVA, followed by a Tukey post hoc test. Blood sera were analysed using two-way
ANOVA, followed by a Bonferroni post hoc test. Liver fat and fatty acid content were
analysed using general linear model (GLM) procedures of the SAS/STAT module (SAS
Institute Inc., Cary, NC, USA), with the differences determined by a Tukey–Kramer multiple
comparison test, taking into consideration the genotype as the main effect, separately for
male and female mice. Gene expression was analyzed by REST © software (∆∆Ct method)
and normalized to stable housekeeping genes, β-actin (Actβ) and β2-microglobulin (β2m).
Changes were represented as fold change. All graphs were generated using GraphPad
Prism version 8.0.0 (GraphPad Software, San Diego, CA, USA).

3. Results
3.1. General Metabolic Parameters (Weight Measurments and Glucose and Insulin Tolerance Test)

Body weight was determined in WT and Tff3-/- mice of both sexes fed an HFD
(Figure 1a) and in age-matched control mice fed a standard diet (SD) (Figure 1b). Mice at a
given age (21 and 36 weeks) were weighed after 16 h of fasting. As expected, female mice
(HFD- and SD-fed) weighed less than male mice at both time points (Figure 1a,b). HFD-fed
male Tff3-/- mice (21 weeks old; 17 weeks HFD) had significantly lower body weights than
WT male mice (Figure 1a). This difference was lost after prolonged exposure to an HFD
(36 weeks old; 32 weeks HFD), when the body weights of WT and male Tff3-/- mice were
similar (Figure 1a). There were no genotype-related differences in body weight in mice fed
standard diets (Figure 1b). This suggests that Tff3 deficiency does not cause a difference
in feeding habits or energy intake. Because we were interested in elucidating the effect of
Tff3 deficiency in the case of metabolic syndrome conditions and liver steatosis, we further
concentrated on the effects of HFD exposure in WT and Tff3-/- mice of both sexes.

An intraperitoneal glucose tolerance test (GTT) was performed on 21-week-old
(17 weeks of HFD treatment) WT and Tff3-/- mice (male and female) (Figure 2A). Tff3-/-
male mice showed improved glucose tolerance compared to WT male mice at 15, 30 and
60 min after glucose administration (Figure 2(Aa)), whereas Tff3-/- female mice did not
show any statistically relevant differences compared to WT females (Figure 2(Ab)). WT
male mice had impaired glucose tolerance compared to WT female mice at almost every
time point (Figure 2(Ac)). Tff3-/- male mice showed impaired glucose tolerance compared
to Tff3-/- female mice at 30, 60 and 120 min post glucose administration (Figure 2(Ad)).
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Figure 1. Effect of long-term HFD treatment on body weight in WT and Tff3-deficient mice of both 
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week- (21 w) and 36-week (36 w)-old mice fed an SD; * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001. 
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Figure 1. Effect of long-term HFD treatment on body weight in WT and Tff3-deficient mice of both
sexes and age-matched controls fed a standard diet (n = 10 animals per group). (a) Body weight of
21-week- (21 w) and 36-week (36 w)-old mice fed an HFD from weaning; (b) body weight of 21-week-
(21 w) and 36-week (36 w)-old mice fed an SD; * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001.

To further assess glucose homeostasis, GTT was also performed at the end of experi-
ment (32 weeks of HFD treatment) on 36-week-old WT and Tff3-/- mice (male and female)
(Figure 2B). Tff3-/- male mice showed impaired glucose tolerance when compared to WT
male mice, but only at 60 min after glucose administration (Figure 2(Ba)). Differences were
also less obvious when comparing WT male to WT female mice (Figure 2(Bc)), but Tff3-/-
male mice clearly showed worsened glucose tolerance when compared to Tff3-/- female
mice (Figure 2(Bd)).

An intraperitoneal insulin tolerance test (ITT) was performed on 23-week-old (Figure 3A)
(19 weeks of HFD treatment) and 38-week-old (Figure 3B) (34 weeks of HFD treatment)
WT and Tff3-/- mice of both sexes. The only difference concerning genotype was that
Tff3-/- female mice had improved insulin tolerance 60 and 120 min after treatment when
compared to WT female mice (Figure 3(Ab)), but when ITT was performed on 38-week-
old-animals, this difference diminished (Figure 3(Bb)). WT and Tff3-/- male mice showed
significantly worsened insulin tolerance in both ITT tests when compared to female mice of
same genotype (Figure 3(Ac,Ad,Bc,Bd)).

Metabolic tests of GTT and ITT were also performed on comparable age/sex and
genotype of mice fed a standard diet, showing different dynamics of response and glucose
utilization (Figures S3 and S4).

3.2. Blood Serum Biochemistry

Biochemical serum analysis was performed at the end of the experiment (9-month-old
mice; 8 months on HFD) to assess general health status (Table 1). A significant sex × genotype
interaction was found only in the case of ALP, whereby WT male mice presented with signif-
icantly higher levels compared to Tff3-/- male mice (81.8 ± 5.86 vs. 51.0 ± 7.57; p = 0.031).
Levels of low-density lipoprotein (LDL), high-density lipoprotein, total cholesterol, triglyc-
erides, blood glucose (BG), aspartate aminotransferase (AST), alanine aminotransferase,
C-reactive protein (CRP), urea and total protein levels were not significantly changed in the
context of genotype × sex.
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Figure 2. Intraperitoneal glucose tolerance test (GTT) performed on 21- (A) and 36-week-old (B) (17 
and 32 weeks of HFD treatment) WT and Tff3-/- mice (male and female). Blood glucose levels were 
measured at time points 0, 15, 30, 60 and 120 min after glucose injection (2 mg/g body mass) and are 

Figure 2. Intraperitoneal glucose tolerance test (GTT) performed on 21- (A) and 36-week-old
(B) (17 and 32 weeks of HFD treatment) WT and Tff3-/- mice (male and female). Blood glucose
levels were measured at time points 0, 15, 30, 60 and 120 min after glucose injection (2 mg/g body
mass) and are presented as (a) WT male compared to Tff3-/- male, (b) WT female compared to Tff3-/-
female, (c) WT male compared to WT female and (d) Tff3-/- male compared to Tff3-/- female; two-way
ANOVA (Tukey post hoc test) was used for statistical analysis, and significant time points are marked
as * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001.
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(B) ITT on 38-week-old mice (34 weeks of HFD treatment) 

Figure 3. Intraperitoneal insulin tolerance test (ITT) performed on 23- and 38-week-old (19 and
34 weeks of HFD treatment) WT and Tff3 -/- mice (male and female). Blood glucose levels were
measured at time points 0, 15, 30, 45, 60 and 120 min after glucose injection (2 mg/g body mass) and
presented as (a) WT male compared to Tff3-/- male, (b) WT female compared to Tff3-/- female, (c) WT
male compared to WT female and (d) Tff3-/- male compared to Tff3-/- female; two-way ANOVA
(Tukey post hoc test) was used for statistical analysis, and significant time points are marked as
* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤0.0001.
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Table 1. Biochemical analysis of blood sera.

Parameter Unit
Group

WT ♂ Tff3-/- ♂ WT ♀ Tff3-/- ♀ Genotype × Sex

LDL mmol/L 3.19 ± 0.92 2.18 ± 0.49 1.54 ± 0.38 1.01 ± 0.27 0.304
HDL mmol/L 2.17 ± 0.18 1.91 ± 0.17 1.29 ± 0.15 1.30 ± 0.20 0.058

Total cholesterol mmol/L 5.74 ± 1.10 4.40 ± 0.69 3.18 ± 0.36 2.60 ± 0.43 0.178
Triglycerides mmol/L 0.86 ± 0.16 0.67 ± 0.12 0.77 ± 0.12 0.65 ± 0.15 0.519

BG mmol/L 14.7 ± 4.12 16.9 ± 3.88 14.5 ± 1.26 12.6 ± 3.69 0.135
AST U/L 366.9 ± 187.9 304.0 ± 148.2 524.7 ± 320.8 378.4 ± 212.7 0.611
ALT U/L 216.1 ± 115.1 83.2 ± 44.1 137.2 ± 114.6 61.6 ± 47.0 0.389
CRP mg/L 0.16 ± 0.02 0.13 ± 0.02 0.13 ± 0.03 0.13 ± 0.02 0.255
Urea mmol/L 9.17 ± 2.04 9.45 ± 1.32 8.07 ± 1.10 8.38 ± 1.09 0.978
ALP U/L 81.8 ± 29.4 51.0 ± 5.3 67.3 ± 4.6 67.7 ± 12.6 0.031 *

Total protein g/L 54.3 ± 17.8 54.2 ± 4.07 58.0 ± 6.1 50.9 ± 3.6 0.395

Data are presented as mean ± SD and were compared by two-way ANOVA, followed by Bonferroni post hoc
test; p ≤ 0.05 was considered statistically significant (p values for the effect of genotype × sex; statistically
significant values are marked in bold letters). Significant changes in sex × genotype interaction were determined
by appropriate post hoc tests and are marked as follows: * WT ♂vs. Tff3-/- ♂. Description: LDL—low-density
lipoprotein, HDL—high-density lipoprotein, BG—blood glucose, AST—aspartate aminotransferase, ALT—alanine
aminotransferase, CRP—C-reactive protein, ALP—alkaline phosphatase. ♂-male; ♀-female.

3.3. Liver Morphology and Ultrastructure

Histological assessment of liver sections by light microscopy revealed sex- and genotype-
related effects on liver histomorphology (Figure 4). Signs of hepatic steatosis in the peri-
central (zone 3) and midzone (zone 2) region of the liver lobule were most pronounced
in WT males. In haematoxylin and eosin (HE)-stained sections, numerous hepatocytes
with large single or smaller unstained vacuoles in the cytoplasm and nuclei located at the
periphery were visible, which is characteristic of macrovesicular steatosis. Accumulation
of neutral lipids in the liver was also confirmed by Oil Red O staining of liver cryosections
(Figure 4). In Tff3-/- mice, a marked reduction in hepatic steatosis was observed, especially
in Tff3-/- males. In female mice, the signs of steatosis were milder compared to those
in male mice. In WT female mice, hepatocytes with macrovesicular steatosis were also
present and were more numerous than in Tff3-/- female mice (Figure 5). Ultrastructural
analysis also confirmed that the size of lipid droplets in Tff3-/- male mice was smaller.
Tff3-/- female mice appeared to have an increased number of lipid droplets of the same
size (Figure 5). Severity of steatosis has been reported to be positively associated with
pericentral (zone 3) fibrosis and lobular inflammation [40]. Masson–Goldner trichrome
staining was used to visualize the extent of fibrogenesis but showed no obvious signs of
pericellular fibrosis (Figure S1), an observation that is also consistent with ultrastructural
analysis. Inflammatory cell infiltrations were noted in individual liver sections but were
not specific to individual groups of mice (Figure S1).

In addition, we stained liver sections from control animals fed an SD with H&E and
Oil-red O (Figure S5). Sex- and genotype-related effects on liver histomorphology were not
observed in liver sections stained with H&E (Figure S3). However, Oil-red O staining of
liver cryosections showed a smaller size of lipid droplets in the hepatocytes of Tff3-/- mice
compared with WT mice when fed an SD (Figure S5).
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Figure 4. Histologic evaluation of livers from male and female 40-week-old WT and Tff3-/- mice.
Representative liver sections were stained with H&E (upper and middle row panels) and Oil Red O
(bottom row panels). Scale bars = 500 µm (upper row panels) and 200 µm (middle and bottom row
panels). H&E—haematoxylin and eosin, cv—central vein; arrowhead—inflammatory cell infiltration
(marked in column d).
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3.4. Average Fatty Acid Content in Liver and Abdominal Fat

We determined specific content of main fatty acids (g/100 g of total fatty acids) in
the liver (Table 2) and abdominal fat (Table S2) of HFD-fed Tff3-/- and WT animals. Tff3-/-
mice (male and female) on an HFD had significantly reduced total liver fat content (almost
twofold) compared to WT mice (Table 2). We found no relevant genotype difference in
specific fatty acid content per 100 g of total fatty acids. Several fatty acids differed between
sexes of both WT and Tff3-/- animals. The content of main fatty acids in abdominal fat of
animals fed an HFD showed no significant genotype differences (Table S2).

Interestingly, Tff3-/- mice of both sexes had significantly reduced liver fat content,
even when fed an SD (Table S3). In contrast to the HFD group, we found some genotype
differences in several major fatty acids in the SD group (Table S3).

Table 2. Liver fat (average ± standard error) and fatty acid content (average) in mice on a high-fat diet.

Main Fatty Acids Group
(g of Fatty Acids/100 g of Total Fatty Acids) WT ♂ Tff3-/- ♂ WT ♀ Tff3-/- ♀

C 14:0 0.47 0.45 0.44 0.45
C 16:0 24.74 24.84 24.18 24.25
C 16:1 5.26 4.46 3.74 3.22
C 18:0 3.51 4.69 5.53 6.83
C 18:1 43.04 38.00 41.16 33.19

C 18:2, n-6 11.40 12.98 12.38 14.72
C 18:3, n-6 0.28 0.30 0.37 0.51
C 18:3, n-3 0.27 0.34 0.32 0.47
C 20:1, n-9 1.05 * 0.86 † 0.54 0.33
C 20:3, n-6 0.74 * 0.78 † 0.54 0.33
C 20:4, n-6 3.72 * 5.26 † 5.13 7.21
C 20:5, n-3 0.17 0.25 0.22 0.34
C 22:4, n-6 0.48 0.51 † 0.30 0.43
C 22:5, n-6 0.23 0.25 † 0.15 0.24
C 22:5, n-3 0.41 * 0.50 † 0.29 0.45
C 22:6, n-3 2.95 * 4.17 3.91 5.78

∑ SFA 1 29.28 30.63 30.58 32.07
∑ MUFA 2 49.75 43.68 45.70 37.00
∑ PUFA 3 20.49 25.18 23.43 30.51

n-6/n-3 PUFA 4 4.59:1 3.92:1 4.26:1 3.28:1

Fat content (g/100 g liver) 22.17 ± 1.18 ‡ 14.37 ± 1.67 17.21 ± 1.87 § 8.64 ± 1.25
1 Saturated fatty acids. 2 Monounsaturated fatty acids. 3 Polyunsaturated fatty acids. 4 Ratio of omega-6 to
omega-3 polyunsaturated fatty acids. Results are presented as mean and mean ± SD (for fat content) and were
analysed using general linear model (GLM) procedures of the SAS/STAT module (SAS Institute Inc., Cary, NC,
USA), with the differences determined by a Tukey–Kramer multiple comparison test, taking into consideration
the genotype as the main effect, separately for male and female mice. Statistical significance was considered at
p ≤ 0.05.—* WT ♂vs. WT ♀(sex-related diff.). †—Tff3-/-o ♂vs. Tff3-/- ♀(sex-related diff.). ‡—WT♂vs. Tff3-/- ♂
(gene-related diff.). §—WT ♀vs. Tff3-/- ♀(gene-related diff.).

3.5. Expression of Tff3, Fatty Acid Metabolism and Inflammation-Related Genes upon
HFD Exposure

We monitored various genes involved in fatty acid metabolism (Figure 6) and inflam-
mation (Figure 7). Regarding fatty acid metabolism (Figure 6a), genotype comparison
showed that Tff3-/- male mice had statistically relevantly downregulated expression of
peroxisome proliferator-activated receptor gamma (Pparγ) compared with male WT mice
fed an HFD for a period of 8 months. Moreover, Pparγ was reduced in Tff3-/- female mice
compared with WT female mice (Figure 6b). As for the differences in gene expression
between the sexes, both WT females and Tff3-/- females showed a significant increase in
insulin receptor substrate 2 (Irs2) compared with WT males and Tff3-/- males, respectively
(Figure 6c,d). Additionally, Tff3-/- males show statistically relevant downregulation of
cytochrome P450, family 21, subfamily a, polypeptide (Cyp21) gene expression (Figure 6d).
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Analyses of inflammatory markers showed that Tff3-/- male mice exhibited significant
upregulation of Il-6 compared with WT male mice (Figure 7a). In addition, Tff3-/- female
mice showed significant downregulation of C-X-C motif chemokine ligand 1 (Cxcl1) and
chemokine (C-C motif) receptor 2 (Ccr2) compared with WT female mice (Figure 7b).

When comparing the sex effect on specific inflammatory markers (Figure 7c,d), WT
female mice exhibited statistically significant upregulation of Il1α and Il-6 compared with
WT male mice, whereas Tff3-/- female mice exhibited significant upregulation of mouse
CD68 antigen (Cd68), tumour necrosis factor alpha (Tnfα), and tumour growth factor beta
(Tgfβ) compared with Tff3-/- male mice.

Furthermore, we were interested in testing whether there was a sex difference in liver
Tff3 gene expression and whether this expression changed with HFD treatment. Therefore,
we monitored gene expression of Tff3 in WT animals of both sexes in the HFD model and
compared the levels with age-matched WT controls on an SD (Figure S2). HFD exposure,
compared to SD, strongly reduced liver Tff3 expression in male but not in female mice
(Figure S2a,b). Female mice had considerably reduced Tff3 gene expression in the liver
compared with male mice under both SD and HFD (Figure S2c,d).

qPCR analyses did not show any differences in SD-fed animals regarding genes that
were significantly changed between WT and Tff3-/- animals fed an HFD (Figure S6).
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Figure 6. Effect of long-term treatment with HFD on the expression of markers of fatty acid metab-
olism in the livers of male and female WT and Tff3-/- mice. We performed qPCR for all animal 
groups (n = 5) using a SYBR green detection system. Ct values were analysed using REST © software, 
and results are expressed as fold change. Gene expression in Tff3-/- male (a) and Tff3-/- female (b) 
mice is presented relative to their WT counterparts. Gene expression in WT female (c) and Tff3-/- 
female (d) mice is presented relative to the corresponding male mice. * p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 
0.001. Pparγ—peroxisome proliferator-activated receptor gamma; Pparα—peroxisome proliferator-
activated receptor alpha; Cyp21—cytochrome P450, family 21, subfamily a, polypeptide 1; Pgc1α—
peroxisome proliferator-activated receptor-gamma coactivator 1 alpha; Cpt1α—carnitine palmito-
yltransferase I; Glyk—glycerol kinase; Hgmcs2—3-hydroxy-3-methylglutaryl-CoA synthase 2; 
Srebf1—sterol regulatory element-binding transcription factor 1; Chreb—carbohydrate response ele-
ment-binding protein; Dgat1—diacylglycerol O-acyltransferase 1; Fitm2—fat storage-inducing 
transmembrane protein 2; Fabp1—fatty acid-binding protein 1; Cgl58—alpha/beta-hydrolase do-
main containing 5; Irs1—insulin receptor substrate 1; Irs2—insulin receptor substrate 2. 

Figure 6. Effect of long-term treatment with HFD on the expression of markers of fatty acid
metabolism in the livers of male and female WT and Tff3-/- mice. We performed qPCR for all animal
groups (n = 5) using a SYBR green detection system. Ct values were analysed using REST © software,
and results are expressed as fold change. Gene expression in Tff3-/- male (a) and Tff3-/- female (b) mice
is presented relative to their WT counterparts. Gene expression in WT female (c) and Tff3-/- female
(d) mice is presented relative to the corresponding male mice. * p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001.
Pparγ—peroxisome proliferator-activated receptor gamma; Pparα—peroxisome proliferator-activated
receptor alpha; Cyp21—cytochrome P450, family 21, subfamily a, polypeptide 1; Pgc1α—peroxisome
proliferator-activated receptor-gamma coactivator 1 alpha; Cpt1α—carnitine palmitoyltransferase I;
Glyk—glycerol kinase; Hgmcs2—3-hydroxy-3-methylglutaryl-CoA synthase 2; Srebf1—sterol regula-
tory element-binding transcription factor 1; Chreb—carbohydrate response element-binding protein;
Dgat1—diacylglycerol O-acyltransferase 1; Fitm2—fat storage-inducing transmembrane protein 2;
Fabp1—fatty acid-binding protein 1; Cgl58—alpha/beta-hydrolase domain containing 5; Irs1—insulin
receptor substrate 1; Irs2—insulin receptor substrate 2.
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Figure 7. Effect of long-term treatment with HFD on the expression of markers of inflammation in 
the livers of male and female WT and Tff3-/- mice. We performed qPCR for all animal groups (n = 
5) using a SYBR Green detection system. Ct values were analysed using REST © software, and re-
sults are expressed as fold change. Gene expression in Tff3-/- male (a) and Tff3-/- female (b) mice is 
presented relative to their WT counterparts. Gene expression in WT female (c) and Tff3-/- female (d) 
mice is presented relative to the corresponding male mice. * p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001; Il-1α—
interleukin 1 alpha; Il-1β—interleukin 1 beta; Il-6—interleukin 6; Il-14—interleukin 14; Cd68—mouse 
CD68 antigen; Mcp1; Tnfα—tumour necrosis factor alpha, Tgfβ—tumour growth factor beta; Cxcl1— 
C-X-C motif chemokine ligand 1; Cxcr7—atypical chemokine receptor 3; Ccr2—chemokine (C-C mo-
tif) receptor 2. 

3.6. Protein Accumulation of Il-6 and Pparγ in Liver of Tff3-/- and WT Male Mice Fed an HFD 
for 8 Months 

Protein expression of IL-6 and Pparγ in liver tissue of WT and Tff3-/- male mice fed 
an HFD for 36 weeks was detected by Western blot. The results show the same trend that 
we observed at the level of gene expression but without statistical significance. Il-6 was 
upregulated and Pparγ was downregulated in male Tff3-/- mice compared with WT male 
mice (Figure 8).  

Figure 7. Effect of long-term treatment with HFD on the expression of markers of inflammation in
the livers of male and female WT and Tff3-/- mice. We performed qPCR for all animal groups (n = 5)
using a SYBR Green detection system. Ct values were analysed using REST © software, and results are
expressed as fold change. Gene expression in Tff3-/- male (a) and Tff3-/- female (b) mice is presented
relative to their WT counterparts. Gene expression in WT female (c) and Tff3-/- female (d) mice is
presented relative to the corresponding male mice. * p ≤ 0.05, ** p ≤ 0.01; *** p ≤ 0.001; Il-1α—interleukin
1 alpha; Il-1β—interleukin 1 beta; Il-6—interleukin 6; Il-14—interleukin 14; Cd68—mouse CD68 antigen;
Mcp1; Tnfα—tumour necrosis factor alpha, Tgfβ—tumour growth factor beta; Cxcl1— C-X-C motif
chemokine ligand 1; Cxcr7—atypical chemokine receptor 3; Ccr2—chemokine (C-C motif) receptor 2.

3.6. Protein Accumulation of Il-6 and Pparγ in Liver of Tff3-/- and WT Male Mice Fed an HFD for
8 Months

Protein expression of IL-6 and Pparγ in liver tissue of WT and Tff3-/- male mice fed an
HFD for 36 weeks was detected by Western blot. The results show the same trend that we
observed at the level of gene expression but without statistical significance. Il-6 was upregulated
and Pparγ was downregulated in male Tff3-/- mice compared with WT male mice (Figure 8).
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Figure 8. Effect of long-term treatment with HFD on Il-6 and Pparγ protein expression in liver tissue 
of male WT and Tff3-/- mice. (a) SDS-PAGE analysis of liver tissue of wild-type male C57BL/6N mice 
and male Tff3-/- mice fed an HFD for 36 weeks, immunoblotted with antibodies for Il-6 and Pparγ; 
amido black staining is shown as a loading control. (b) ImageJ was used for densitometry analysis, 
and quantification is presented as relative amounts of the protein of interest normalized against 
amido black signal. Excel’s T test was used for statistical analysis. 
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and female congenic Tff3-/- mice and corresponding WT controls (C57Bl6N). We chose 
chronic exposure to mimic the lifelong dietary pattern in humans and to analyse the ef-
fects of Tff3 deficiency on metabolic parameters, focusing on liver health and mechanisms 
underlying NAFLD, such as inflammation and fatty acid metabolism. [41,42]. To account 
for any metabolic effects of Tff3 deficiency itself, we also fed a group of age- and sex-
matched mice a standard diet. WT and Tff3-/- mice of both sexes fed an SD showed no 
statistical differences in body weight at any given age (21 and 36 weeks) (Figure 1b). In-
terestingly, Tff3-/- mice on mixed genetic background, as we have previously reported, 
had significantly lower body weight than WT mice after 5 months of SD [43]. This dis-
crepancy could be explained by the impact of a mixed background with unknown genetic 
inputs, whereas we used a new congenic Tff3-/- strain on a clean C57BL/6N genetic back-
ground without additional metabolically relevant mutations. 

In contrast to the results observed in SD mice, male Tff3-/- mice had a statistically 
significant lower body weight than male WT mice after 17 weeks of HFD (at 21 weeks of 
age) (Figure 1a). At 36 weeks of age and after 32 weeks of HFD exposure, male Tff3-/- mice 
still weighed less than male WT mice, but this trend appeared to attenuate with treatment 
duration (Figure 1a). Thus, it appears that the weight differences between male Tff3-/- and 
WT mice were less pronounced after longer HFD exposure (32 weeks). This was also the 
case when we analysed overall glucose homeostasis and insulin sensitivity. We performed 
glucose and insulin tolerance tests at the same time points (21 and 36 weeks of age), wait-
ing two weeks between experiments to allow the mice the necessary recovery time (Figure 
2). Tff3-/- male mice showed better glucose utilization compared to WT mice at 15, 30 and 
60 min after glucose administration, but this was only the case when we performed the 
test at 21 weeks of age (Figure 2a). The difference diminished when we examined the same 
animals later, at 32 weeks of age (Figure 2(Ba)). Standard-diet-fed male mice of the same 
age showed no difference at 21 weeks of age, but at 36 weeks, Tff3-deficient males were 
more efficiently removing glucose from circulation (Figure S3(Ba)). Our previous obser-
vations on Tff3-/- mice (21 weeks old) on a mixed background fed an SD showed better 
glucose utilization at 15 and 30 min after administration [17]. In contrast, overexpression 
of Tff3 improved glucose tolerance in B6D2F1 mice fed an HFD for 6 weeks [12], in male 
Lepr db/Leprdb (db/db) mice and Leprob/Leprob (ob/ob) and in the diet-induced obesity 

Figure 8. Effect of long-term treatment with HFD on Il-6 and Pparγ protein expression in liver tissue
of male WT and Tff3-/- mice. (a) SDS-PAGE analysis of liver tissue of wild-type male C57BL/6N
mice and male Tff3-/- mice fed an HFD for 36 weeks, immunoblotted with antibodies for Il-6 and
Pparγ; amido black staining is shown as a loading control. (b) ImageJ was used for densitometry
analysis, and quantification is presented as relative amounts of the protein of interest normalized
against amido black signal. Excel’s T test was used for statistical analysis.
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4. Discussion

The aim of the present study was to investigate, for the first time, the effects of Tff3
deficiency in a C57Bl6N genetic background on the general metabolic status of animals,
focusing on the phenotype of the liver in a model of prolonged fat overload. Therefore,
8 months (35 weeks) of HFD treatment was used to induce the metabolic syndrome in
male and female congenic Tff3-/- mice and corresponding WT controls (C57Bl6N). We
chose chronic exposure to mimic the lifelong dietary pattern in humans and to analyse the
effects of Tff3 deficiency on metabolic parameters, focusing on liver health and mechanisms
underlying NAFLD, such as inflammation and fatty acid metabolism. [41,42]. To account for
any metabolic effects of Tff3 deficiency itself, we also fed a group of age- and sex-matched
mice a standard diet. WT and Tff3-/- mice of both sexes fed an SD showed no statistical
differences in body weight at any given age (21 and 36 weeks) (Figure 1b). Interestingly,
Tff3-/- mice on mixed genetic background, as we have previously reported, had significantly
lower body weight than WT mice after 5 months of SD [43]. This discrepancy could be
explained by the impact of a mixed background with unknown genetic inputs, whereas
we used a new congenic Tff3-/- strain on a clean C57BL/6N genetic background without
additional metabolically relevant mutations.

In contrast to the results observed in SD mice, male Tff3-/- mice had a statistically
significant lower body weight than male WT mice after 17 weeks of HFD (at 21 weeks of
age) (Figure 1a). At 36 weeks of age and after 32 weeks of HFD exposure, male Tff3-/- mice
still weighed less than male WT mice, but this trend appeared to attenuate with treatment
duration (Figure 1a). Thus, it appears that the weight differences between male Tff3-/- and
WT mice were less pronounced after longer HFD exposure (32 weeks). This was also the
case when we analysed overall glucose homeostasis and insulin sensitivity. We performed
glucose and insulin tolerance tests at the same time points (21 and 36 weeks of age), waiting
two weeks between experiments to allow the mice the necessary recovery time (Figure 2).
Tff3-/- male mice showed better glucose utilization compared to WT mice at 15, 30 and
60 min after glucose administration, but this was only the case when we performed the
test at 21 weeks of age (Figure 2a). The difference diminished when we examined the same
animals later, at 32 weeks of age (Figure 2(Ba)). Standard-diet-fed male mice of the same age
showed no difference at 21 weeks of age, but at 36 weeks, Tff3-deficient males were more
efficiently removing glucose from circulation (Figure S3(Ba)). Our previous observations
on Tff3-/- mice (21 weeks old) on a mixed background fed an SD showed better glucose
utilization at 15 and 30 min after administration [17]. In contrast, overexpression of Tff3
improved glucose tolerance in B6D2F1 mice fed an HFD for 6 weeks [12], in male Lepr
db/Leprdb (db/db) mice and Leprob/Leprob (ob/ob) and in the diet-induced obesity
mouse model (8-week-old C57BL/6 mice fed an HFD for more than 8 weeks) [13]. It is
difficult to compare results between studies because there are many parameters that can
affect the test outcome, e.g., fasting time before glucose administration, different mouse
strains, different compositions and duration of the high-fat diet and different time points.
Additionally, considering the difference in genetic environment of these mouse models,
these differences are not surprising.

As for insulin tolerance tests in the HFD model, (Figure 3), there was no major dif-
ference in insulin sensitivity due to Tff3 deficiency alone, with the exception of Tff3-/-
females, which showed higher sensitivity compared to WT females at the end of the test
(60 and 120 min) (Figure 3(Ab)). This difference diminished in the test performed on
animals at 38 weeks of age (Figure 3(Bb)). Consistent with existing data, our results with
respect to glucose and insulin tolerance tests and weight measurements suggest that WT
female mice are partially protected from HFD treatment compared to WT males (Figure 1a,
Figure 2(Ac,Bc) and Figure 3(Ac,Bc)) [44]. Clearly, HFD affects the phenotype in a sexually
dimorphic manner, but the exact reasons remain unknown [45–48]. This phenomenon of
a stronger male effect in response to HFD treatment also applied to the Tff3-/- animals.
HFD-fed Tff3-deficient males had worsened glucose and insulin tolerance at almost all time
points compared with the Tff3-/- female mice (Figure 2(Ad,Bd) and Figure 3(Ad,Bd)). We
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could not find any publications addressing the role of sex variables regarding Tff3 and HFD,
so to the best of our knowledge, this is the first study to report such results. Interestingly,
sex-related differences in Tff3 gene expression in the livers of adult C57BL/6J mice on an SD
were reported. Specifically, Tff3 expression in male livers was higher than Tff3 expression
in female livers [11]. We observed the same phenomenon in our WT (C57BL/6N) mouse
models in both SD-fed mice (Figure S2c) and HFD-fed mice (Figure S2d). In addition, we
analysed the effects of HFD on Tff3 expression in the liver of male and female C57BL6N
mice compared with the SD expression level (Figure S2a,b). A high-fat diet resulted in
decreased expression of the Tff3 gene in male mice (Figure S2a), confirming the results of
previous studies [12–15]. Interestingly, female C57B76N mice had the same level of Tff3
gene expression in the liver in the SD and HFD models (Figure S2b). Functional assays
(GTT and ITT) in SD-fed mice (Figures S3 and S4) at the same age as the HFD groups show
that Tff3 deficiency does not affect male response to glucose overload until 36 weeks of
age (Figure S3) and to insulin overload until 21 weeks of age (Figure S4). Female mice
deficient in Tff3 exhibited better glucose utilization at one time point (30 min) at 21 weeks
of age. These data reflect the different dynamics of glucose utilization with aging on a
standard diet.

Lipid homeostasis in the liver illustrates the complexity of metabolic regulation, and
its imbalance can lead to a variety of metabolic syndrome disorders, including insulin
resistance, T2D and NAFLD. A major pathological feature of these complex manifestations
of metabolic syndrome is the aberrant accumulation of lipid droplets in hepatocytes, or
hepatic steatosis [2]. A role of Tff3 in the metabolism of fatty acids in the liver was
previously described [15,17]; therefore, we examined the effects of long-term HFD on our
Tff3-/-C57Bl6/NCrl mouse strain.

Histological analyses revealed that Tff3-/- C57Bl6N mice exhibit a decrease in the size
of lipid droplets compared with WT mice (Figure 4). Interestingly, data from the SD-fed
control group showed the same trend in lipid droplet size, although on a much smaller
scale (Figure S5), which indicates that Tff3 is somehow involved in lipid metabolism in the
liver. Hepatic sexual dimorphism is present in health and disease [49–55], so the difference
between sexes in not surprising. Males of both genotypes have larger lipid droplets on both
feeding treatments (Figure 4 and Figure S5). The size of lipid droplets, as confirmed by
ultrastructrural analysis, also appeared to be smaller in Tff3-/- mice on an HFD compared to
WT mice (Figure 5). In females, the size of droplets was not altered, but the number of lipid
droplets appeared to be increased in Tff3-/- females compared to WT females (Figure 5).

Lipid droplets were previously thought to be inert lipid reservoirs, but we now
know that they are dynamic organelles that play a central role in many cellular functions,
including a role in providing high-energy substrates used for fatty acid β-oxidation within
mitochondria [56]. To analyse this further, we examined the liver fatty acid profile of Tff3-/-
and WT animals (Table 2 and Table S3). Again, Tff3-/- mice of both sexes exposed to an
HFD had significantly lower liver fat content when compared to WT mice (Table 2). The
same was shown for control SD-fed mice (Table S3). Although not statistically significant,
it is worth mentioning that HFD-treated females of both genotypes had lower liver lipid
content compared to their male counterparts (Table 2). However, data from SD-fed mice
show higher total liver fat content in females vs. males (Table S3), reinforcing the notion
that females are more protected from liver fat accumulation upon HFD exposure [49,57,58].
The explanation for this dimorphism may lie in the oestrogen receptor α and its opposite
regulation of lipid metabolism in male and female livers under dietary stress [49]. In
addition, we analysed the fatty acid composition in the abdominal fat (Table S2) but could
not detect any differences between the genotypes, suggesting that the liver could be the
main site of impaired fatty acid metabolism regarding Tff3 role.

Biochemical serum analyses revealed no significant differences, except for a signif-
icantly lower level of ALP in male Tff3-/- mice compared with WT male mice (Table 1).
The lower level of ALP in Tff3-/- male animals demonstrates that Tff3 deficiency could be
beneficial to liver function during prolonged HFD. Although without statistical significance,
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levels of serum total cholesterol and LDL were lower in Tff3-/- animals compared to WT
mice (Table 1).

In summary, histology, electron microscopy, fatty acid and blood serum analyses
demonstrate a possible protective phenotype in Tff3-/- animals compared to WT mice on
long-term HFD treatment. Moreover, Tff3-/- male mice gained less weight and showed
better glucose utilization in glucose tolerance tests, especially at 21 weeks of age. When we
compared Tff3-/- females with WT females, the differences became less obvious. No changes
were observed in blood serum parameters (Table 1), weight gain (Figure 1) or glucose
tolerance tests (Figures 2b and 3b). However, Tff3-/- female mice also had ameliorated lipid
accumulation in the liver (Figure 4d), and total fat content was reduced compared to WT
female mice (Table 2).

A previously published study on C57Bl/6J mice fed an HFD for 16 weeks showed
that Tff3 gene expression was downregulated in the liver of male mice and that restoration
of Tff3 expression (adenovirus mediated overexpression) alleviated the fatty liver phe-
notype [15]. This observation was confirmed in two obesity and diabetes mouse models
(Leprdb/Leprdb (db/db) and Leprob/Leprob (ob/ob) [13]. Moreover, the alleviation of
the fatty liver phenotype was due to direct binding of Tff3 to Pparα and activation of fatty
acid oxidation. Our data on the Tff3-/-/C57Bl6NCrl strain in the prolonged HFD model
show opposite effects. Tff3-/- mice weigh less (Figure 1) and show better glucose utilization
(Figure 2a) and lower lipid accumulation in the liver, as demonstrated by various methods
(Figures 4 and 5, Table 2), compared with WT mice when fed an HFD. Several factors
could contribute to this contrary effect. Studies in which Tff3 was found to be a factor
associated with improved diabetic phenotype [13–15] did not use a whole-body knockout
but instead focused on liver Tff3 and restoration of Tff3, specifically in the liver. It appears
that Tff3 deficiency in the whole organism (in the SD and HFD models) has protective
effects with respect to metabolic health of the organism and reduces hepatic steatosis.
We cannot exclude possible effects of Tff3 in organs other than the liver. Histological
analyses performed on intestinal and perigonadal tissues from the same animals revealed
no significant differences (data not shown). Another reason for this discrepancy is the
contribution of additional genetic mutations present in a C57BL/6J substrain involved in
metabolic regulation and affecting the metabolic phenotype [34,59]. In particular, loss of
mitochondrial NAD (P)-transhydrogenase (Nnt) markedly exacerbates HFD-induced fatty
liver disease in mice. HFD would increase mitochondrial dependence on NNT as a source
of NADPH for antioxidant systems that counteract the development of NAFLD. Given the
numerous genetic variances in the 6J strain, including loss of NNT function, these findings
suggest that the 6N substrain is the most logical and representative genetic background
model for metabolic studies [40].

Therefore, we intentionally generated a new Tff3-/- strain on a C57BL6/N genetic
background. The inconsistencies in the current state of knowledge only confirm the
complexity of this issue and highlight the need to continue systematic research to elucidate
the role of Tff3 in complex metabolic processes in the liver.

To further evaluate the effect of Tff3 deficiency on Ppars signalling pathways and sub-
sequent fatty acid oxidation processes, we analysed the gene expression of relevant markers
in the liver. Although Pparα gene expression, previously associated with Tff3 [15], did not
change between groups, peroxisome proliferator-activated receptor gamma (Pparγ) was
downregulated in both male and female Tff3-/- animals compared with WT (Figure 7a,b).
We did not observe the same change in SD controls (Figure S6). In addition, we deter-
mined the amount of Pparγ protein in the liver tissues of male HFD mice and found the
same trend of reduced Pparγ accumulation in male Tff3-/- mice but without statistical
significance (Figure 8). PPARγ is a ligand-inducible transcription factor and belongs to the
nuclear receptor superfamily, along with PPARα and PPARδ/β [60]. The Ppars family is
known to modulate the expression of various genes that play key roles in lipid and glucose
metabolism, making these proteins an important target for the treatment of diet-induced
obesity and metabolic syndrome in general [61,62]. Under normal physiological conditions,
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PPARγ is predominantly expressed in adipose tissue. However, numerous studies have
reported that HFD treatment led to an increase in PPARγ expression in liver tissue [63].
This upregulation in the liver activates downstream target genes involved in enhancing
fatty acid uptake and synthesis, as well as lipid droplet formation. In other words, Pparγ
has been shown to promote hepatic steatosis under the pathophysiological conditions of
diet-induced obesity [64]. Our results show a reduced expression level of Pparγ in the
absence of Tff3 protein, suggesting that reduced Ppary signalling contributes to reduced
lipid accumulation in the liver. In addition, PPARγ is known to modulate the expression of
genes involved in immune response [62].

Metabolic syndrome, including its hepatic manifestation (NAFLD), is marked by
systemic low-grade inflammation triggered by nutrient overload. Progression of NAFLD
to more severe forms due to chronic dietary exposure, e.g., nonalcoholic steatohepatitis
(NASH), is characterized by an increased inflammatory state in the liver [65,66] The role of
Tff3 in the immune response has been studied mainly in the context of gastrointestinal in-
flammatory pathologies, where it has been shown to elicit both pro- and anti-inflammatory
activities [4]. Given the relevance of inflammation in the pathophysiology of fatty liver
disease, as well as the involvement of Tff3 protein in immune signalling, we analysed
the gene expressions of the relevant inflammatory markers in the livers of the studied
animals (Figure 7a). The only significant change was an increased level of Il-6 in Tff3-/-
male mice compared to WT male mice. Western blot analysis showed upregulation of IL-6
in livers of Tff3-/- male mice compared to WT controls but without statistical evidence
(Figure 8). Il-6 is a cytokine with a broad spectrum of physiological functions, includ-
ing a role in pathophysiology of obesity and its associated states, although its exact role
remains unknown [67]. Il-6-/- mice develop obesity, insulin resistance, hepatic steatosis
and inflammation [68]. Even when fed an HFD, Il-6-/- mice showed a significantly worse
fatty liver disease phenotype and insulin resistance compared with control animals. These
results suggest that Il-6 may be a relevant protective cytokine for diet-induced metabolic
disorders. Interactions of Tff3 and IL-6 have been reported previously [69–71]. In response
to bile duct injury, IL-6 secretion is increased by activation of signal transducer activator
of transcription 3 (STAT3) [70]. IL-6/STAT3 signalling initiates the expression of Tff3 in
biliary epithelial cells (BEC) to promote proliferation and migration and facilitate wound
healing. In the present study, the significant upregulation of Il-6 in the liver of Tff3-/- male
mice may explain the observed partial protection and reduced fatty liver phenotype in the
absence of Tff3. Il-6 was also upregulated in the livers of female WT mice compared with
male WT mice (Figure 7c), which fits the hypothesis that upregulation of Il-6 in the liver is
a protective factor in response to HFD-induced metabolic syndrome. Interestingly, Tff3-/-
female mice showed a different inflammatory gene expression profile compared with Tff3-/-
male mice (Figure 7d). Il-6 did not change, but Cd68, Tnfα and Tgfβ were upregulated.
Moreover, Tff3-/- female mice showed significant downregulation of Cxcl1 and Ccr2 when
compared to WT female mice (Figure 7b).

It is important to emphasize that in each experiment we performed, the sex of the
animals (both in WT and Tff3-/- mice) was an important variable leading to different results,
which speaks to the relevance of including both sexes in biomedical research and the need to
clearly indicate which strain and sex of animal models are being used. In molecular analyses
of the liver tissue described above, we focused on Tff3-/- male mice to a greater extent
because these animals showed more prominent changes in overall metabolic status and
histological liver examinations. Nevertheless, Tff3-/- female mice clearly exhibit different
responses to HFD treatment compared to WT females, and the underlying mechanisms are
not the same as those in males with Tff3 deficiency. These results raise new questions that
should be investigated in future research.

In conclusion, when Tff3-/- mice and WT mice of both sexes were fed an HFD for
8 months, Tff3-/- male mice, upon 21 weeks of HFD exposure, had lower body weights
and better glucose utilization. Prolonged exposure (32 weeks) to an HFD resulted in
no differences in body weight nor functional metabolic tests. Tff3-deficient mice had
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ameliorated fatty liver phenotype, as evidenced by significantly reduced lipid droplet
content in hepatocytes, as well as decreased total liver fat content compared to male WT
mice. In addition, at the molecular level, we detected significantly changed expression
of the Pparγ (downregulation) and Il-6 (upregulation) genes, both of which are involved
in the regulation of lipid metabolism and the pathogenesis of hepatic steatosis. Protein
levels showed the same trend but without statistical significance due to higher individual
variance. Our study showed, for the first time, differential effects of Tff3 deficiency in male
and female mice and specific dynamics of the effects. The difference in the phenotype
of Tff3 -/-/C57Bl6N compared with other polygenic diabesity mouse models points to
the often-underappreciated impact of additional gene defects (such as the Nnt mutation
present in C57BL6J) and interactions in animal models of complex diseases.

Overall, the involvement of Tff3 in regulation of lipid metabolism identified it as a
possible candidate for treatment of hepatic manifestations of metabolic syndrome. Our
results provide new insights and a basis for future research directions into a possible
mechanistic explanation for the observed phenotype; therefore, our newly generated
congenic Tff3-/-/C57Bl6N mouse strain represents a valuable tool in this scientific pursuit.
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Abbreviations

Actβ actin beta
ALT alanin–aminotransferase
ALP alkaline phoshatase
AST aspartate aminotransferase
β2m beta-2-microglobulin
BG blood glucose
Ccr2 chemokine (C-C motif) receptor 2
Cd68 mouse CD68 antigen
Cgl58 abhydrolase domain containing 5
Chreb carbohydrate response element binding protein
Cpt1a carnitine palmitoyltransferase I
CRP C-reactive protein
Cxcl1 C-X-C motif chemokine ligand 1
Cxcr7 atypical chemokine receptor 3
Cyp21 cytochrome P450, family 21, subfamily a, polypeptide 1
Dgat1 diacylglycerol O-acyltransferase 1
Fabp1 fatty acid binding protein 1
Fitm2 fat storage-inducing transmembrane protein 2
GI gastrointestinal
GlyK glycerol kinase
HDL high-density lipoprotein
HE hematoxylin and eosin
HFD high-fat diet
Hmgcs2 hydroxymethylglutaryl-CoA synthase
Il-1α interleukin 1 alpha
Il-1β interleukin 1 beta
Il-6 interleukin 6
Il-14 interleukin 14
Irs1 insulin receptor substrate 1
Irs2 insulin receptor substrate 2
IPGTT intraperitoneal glucose tolerance tests
IPITT intraperitoneal insulin tolerance tests
Mcp1 monocyte chemoattractant protein-1
MUFA monounsaturated fatty acids
NAFLD nonalcoholic fatty liver disease
Pgc1α Pparγ coactivator
Ppar α peroxisome proliferator activated receptor alpha
Ppar γ peroxisome proliferator activated receptor gamma
PUFA polyunsaturated fatty acids
qPCR quantitative polymerase chain reaction
SD standard diet
SFA saturated fatty acids
Srebf1 sterol regulatory element binding transcription factor 1
Stat3 signal transducer activator of transcription 3
T1D type 1 diabetes
T2D type 2 diabetes
Tffs trefoil factor family proteins
Tff3 trefoil factor family 3
Tgfβ tumor growth factor beta
Tnfα tumor necrosis factor alpha
WT Wild type
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Effect of Tff3 Deficiency and ER Stress in the Liver. Int. J. Mol. Sci. 2019, 20, 84389. [CrossRef]

36. Flanagan, K.L. Sexual dimorphism in biomedical research: A call to analyse by sex. Trans. R. Soc. Trop. Med. Hyg.
2014, 108, 385–387. [CrossRef]

37. Intraperitoneal Glucose Tolerance Test (IPGTT) Protocol—IMPReSS. Available online: https://www.mousephenotype.org/
impress/ProcedureInfo?action=list&procID=531 (accessed on 2 August 2022).

38. Haj, F.G. Intraperitoneal Insulin Tolerance Test. Mouse Metab. Phenotyping Cent. 2012, 5–6. Available online: https://www.mmpc.
org/shared/document.aspx?id=84&docType=Protocol (accessed on 10 August 2022).

39. Park, P.W.; Goins, R.E. In Situ Preparation of Fatty Acid Methyl Esters for Analysis of Fatty Acid Composition in Foods. J. Food
Sci. 1994, 59, 1262–1266. [CrossRef]

40. Takahashi, Y.; Fukusato, T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J. Gastroenterol.
2014, 20, 15539–15548. [CrossRef]

41. Velázquez, K.T.; Enos, R.T.; Bader, J.E.; Sougiannis, A.T.; Carson, M.S.; Chatzistamou, I.; Carson, J.A.; Nagarkatti, P.S.; Nagarkatti,
M.; Murphy, E.A. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice.
World J. Hepatol. 2019, 11, 619–637. [CrossRef]

42. Brunt, E.M.; Wong, V.W.-S.; Nobili, V.; Day, C.P.; Sookoian, S.; Maher, J.J.; Bugianesi, E.; Sirlin, C.B.; Neuschwander-Tetri, B.A.;
Rinella, M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Prim. 2015, 1, 15080. [CrossRef]

43. Shah, A.A.; Leidinger, P.; Keller, A.; Wendschlag, A.; Backes, C.; Baus-Loncar, M.; Meese, E.; Blin, N. The intestinal factor Tff3 and
a miRNA network regulate murine caloric metabolism. RNA Biol. 2011, 8, 77–81. [CrossRef]

44. Ingvorsen, C.; Karp, N.A.; Lelliott, C.J. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N
mice. Nutr. Diabetes 2017, 7, e261. [CrossRef]

45. Hwang, L.-L.; Wang, C.-H.; Li, T.-L.; Chang, S.-D.; Lin, L.-C.; Chen, C.-P.; Chen, C.-T.; Liang, K.-C.; Ho, I.-K.; Yang, W.-S.; et al.
Sex Differences in High-fat Diet-induced Obesity, Metabolic Alterations and Learning, and Synaptic Plasticity Deficits in Mice.
Obesity 2010, 18, 463–469. [CrossRef]

46. Pettersson, U.S.; Waldén, T.B.; Carlsson, P.-O.; Jansson, L.; Phillipson, M. Female Mice are Protected against High-Fat Diet Induced
Metabolic Syndrome and Increase the Regulatory T Cell Population in Adipose Tissue. PLoS ONE 2012, 7, e46057. [CrossRef]

47. El Akoum, S.; Lamontagne, V.; Cloutier, I.; Tanguay, J.-F. Nature of fatty acids in high fat diets differentially delineates obesity-
linked metabolic syndrome components in male and female C57BL/6J mice. Diabetol. Metab. Syndr. 2011, 3, 34. [CrossRef]

48. Grove, K.L.; Fried, S.K.; Greenberg, A.S.; Xiao, X.Q.; Clegg, D.J. A microarray analysis of sexual dimorphism of adipose tissues in
high-fat-diet-induced obese mice. Int. J. Obes. 2010, 34, 989–1000. [CrossRef]

49. Meda, C.; Barone, M.; Mitro, N.; Lolli, F.; Pedretti, S.; Caruso, D.; Maggi, A.; Della Torre, S. Hepatic ERα accounts for sex
differences in the ability to cope with an excess of dietary lipids. Mol. Metab. 2020, 32, 97–108. [CrossRef]

50. Khristi, V.; Ratri, A.; Ghosh, S.; Pathak, D.; Borosha, S.; Dai, E.; Roy, R.; Chakravarthi, V.P.; Wolfe, M.W.; Rumi, M.K. Disruption of
ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol. Cell. Endocrinol.
2019, 490, 47–56. [CrossRef]

51. Zheng, D.; Wang, X.; Antonson, P.; Gustafsson, J.Å.; Li, Z. Genomics of sex hormone receptor signaling in hepatic sexual
dimorphism. Mol. Cell. Endocrinol. 2018, 471, 33–41. [CrossRef]

52. Shi, H.-S.; Zhu, W.-L.; Liu, J.F.; Luo, Y.-X.; Si, J.-J.; Wang, S.-J.; Xue, Y.-X.; Ding, Z.-B.; Shi, J.; Lu, L. PI3K/Akt Signaling
Pathway in the Basolateral Amygdala Mediates the Rapid Antidepressant-like Effects of Trefoil Factor 3. Neuropsychopharmacology
2012, 37, 2671–2683. [CrossRef]

http://doi.org/10.1016/j.cotox.2017.11.002
http://doi.org/10.1016/j.redox.2020.101759
http://doi.org/10.1016/j.brainres.2016.09.013
http://doi.org/10.1042/BCJ20190543
http://doi.org/10.1016/j.stemcr.2018.06.011
http://www.ncbi.nlm.nih.gov/pubmed/30017822
http://doi.org/10.7554/eLife.70207
http://www.ncbi.nlm.nih.gov/pubmed/35119362
http://doi.org/10.2337/db15-0982
http://www.ncbi.nlm.nih.gov/pubmed/26696638
http://doi.org/10.2337/db16-0291
http://doi.org/10.3390/ijms20184389
http://doi.org/10.1093/trstmh/tru079
https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=531
https://www.mousephenotype.org/impress/ProcedureInfo?action=list&procID=531
https://www.mmpc.org/shared/document.aspx?id=84&docType=Protocol
https://www.mmpc.org/shared/document.aspx?id=84&docType=Protocol
http://doi.org/10.1111/j.1365-2621.1994.tb14691.x
http://doi.org/10.3748/wjg.v20.i42.15539
http://doi.org/10.4254/wjh.v11.i8.619
http://doi.org/10.1038/nrdp.2015.80
http://doi.org/10.4161/rna.8.1.13687
http://doi.org/10.1038/nutd.2017.6
http://doi.org/10.1038/oby.2009.273
http://doi.org/10.1371/journal.pone.0046057
http://doi.org/10.1186/1758-5996-3-34
http://doi.org/10.1038/ijo.2010.12
http://doi.org/10.1016/j.molmet.2019.12.009
http://doi.org/10.1016/j.mce.2019.04.005
http://doi.org/10.1016/j.mce.2017.05.025
http://doi.org/10.1038/npp.2012.131


Life 2022, 12, 1288 22 of 22

53. Justo, R.; Boada, J.; Frontera, M.; Oliver, J.; Bermudez, J.; Gianotti, M. Gender dimorphism in rat liver mitochondrial oxidative
metabolism and biogenesis. Am. J. Physiol. Physiol. 2005, 289, C372–C378. [CrossRef]

54. Lefebvre, P.; Staels, B. Hepatic sexual dimorphism—Implications for non-alcoholic fatty liver disease. Nat. Rev. Endocrinol.
2021, 17, 662–670. [CrossRef]

55. Soares, A.F.; Paz-Montoya, J.; Lei, H.; Moniatte, M.; Gruetter, R. Sexual dimorphism in hepatic lipids is associated with the
evolution of metabolic status in mice. NMR Biomed. 2017, 30, e3761. [CrossRef] [PubMed]

56. Natarajan, S.K.; Rasineni, K.; Ganesan, M.; Feng, D.; McVicker, B.L.; McNiven, M.A.; Osna, N.A.; Mott, J.L.; Casey, C.A.;
Kharbanda, K.K. Structure, Function and Metabolism of Hepatic and Adipose Tissue Lipid Droplets: Implications in Alcoholic
Liver Disease. Curr. Mol. Pharmacol. 2017, 10, 237–248. [CrossRef] [PubMed]

57. Schiffrin, M.; Winkler, C.; Quignodon, L.; Naldi, A.; Trötzmüller, M.; Köfeler, H.; Henry, H.; Parini, P.; Desvergne, B.; Gilardi, F.
Sex Dimorphism of Nonalcoholic Fatty Liver Disease (NAFLD) in Pparg-Null Mice. Int. J. Mol. Sci. 2021, 22, 89969. [CrossRef]
[PubMed]

58. Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease:
Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent
Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [CrossRef] [PubMed]

59. Navarro, C.D.C.; Figueira, T.R.; Francisco, A.; Dal’Bó, G.A.; Ronchi, J.A.; Rovani, J.C.; Escanhoela, C.A.; Oliveira, H.C.;
Castilho, R.F.; Vercesi, A.E. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggra-
vates high fat diet-induced fatty liver disease in mice. Free Radic. Biol. Med. 2017, 113, 190–202. [CrossRef]

60. Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, G.; Wahli, W. Control of the peroxisomal β-oxidation pathway by a novel
family of nuclear hormone receptors. Cell 1992, 68, 879–887. [CrossRef]

61. Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The
good, the bad and the future. Nat. Med. 2013, 19, 557–566. [CrossRef]

62. Wang, Y.-X. PPARs: Diverse regulators in energy metabolism and metabolic diseases. Cell Res. 2010, 20, 124–137. [CrossRef]
63. Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific

PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 62061. [CrossRef]
64. Lee, Y.K.; Park, J.E.; Lee, M.; Hardwick, J.P. Hepatic lipid homeostasis by peroxisome proliferator-activated receptor gamma 2.

Liver Res. 2018, 2, 209–215. [CrossRef]
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