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Abstract: A large and ever increasing quantity of high throughput sequencing (HTS) data is stored in
FASTQ files. Various methods for data compression are used to mitigate the storage and transmission
costs, from the still prevalent general purpose Gzip to state-of-the-art specialized methods. However,
all of the existing methods for FASTQ file compression require the decompression stage before the
HTS data can be used. This is particularly costly with the random access to specific records in FASTQ
files. We propose the sFASTQ format, a succinct representation of FASTQ files that can be used
without decompression (i.e., the records can be retrieved and listed online), and that supports random
access to individual records. The sFASTQ format can be searched on the disk, which eliminates
the need for any additional memory resources. The searchable sFASTQ archive is of comparable
size to the corresponding Gzip file. sFASTQ format outputs (interleaved) FASTQ records to the
STDOUT stream. We provide SFQ, a software for the construction and usage of the sFASTQ format
that supports variable length reads, pairing of records, and both lossless and lossy compression of
quality scores.

Keywords: bioinformatics; FASTQ data compression; random access

1. Introduction

As a result of the advances in DNA/RNA sequencing technology in recent decades,
a huge amount of data is generated daily, creating the immediate need for efficient storage.
The standard solution for the distribution and processing of raw (non-assembled) sequenc-
ing data are the FASTQ files [1], the uncompressed text files that store the fragments of
sequenced nucleotide chains, together with the accompanying header information and
associated quality scores. The need for compressing FASTQ files is obvious; various ap-
proaches to this task are listed in [2], while [3–5] describe important newer results. There
exists no single “best” compression method as there are different usage aspects to consider:
the compression ratio, speed of construction, speed of decompression, and memory re-
quirements for compression and decompression. While FQSqueezer [5] reaches the highest
compression factor for DNA streams, when considering the decompression time we regard
PgRC [4] as the most useful compressor for DNA streams only, and SPRING [3] as, cur-
rently, the best overall solution for whole FASTQ files. Some applications benefit from the
capability to retrieve the specific record, implying random access to records, combined with
an index [6]. For some purposes one can use the k-mer index to access only the relevant
reads and avoid mapping/aligning the whole dataset. There exists a large body of literature
on k-mer indexing, mainly for the collections of datasets [7]. It is straightforward to modify
the index to include record IDs. Currently, the random access functionality is implemented
only in the BEETL/BEETL-fastq [6,8], and to some extent in the SPRING software that
supports decompression of a specific block of records.

All of the existing methods require the decompression stage. In order to use the HTS
data, the original FASTQ file must be reconstructed, either as a separate operation on the
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disk or online in RAM. As for the random access, in the existing software it involves a
standard decompression, only on a smaller block of the compressed data. This imposes
overhead in retrieval time and in run-time RAM.

We propose a new paradigm for storing and accessing the vast amount of HTS data: a
succinct data structure sFASTQ that is a compressed representation of a FASTQ file, which
allows for fully random access to individual records, and can replace a flat (interleaved)
FASTQ file. This means that the sFASTQ format can be listed and searched on a disk
without decompression or loading into RAM. sFASTQ is stored as a directory with multiple
subdirectories. In order to use sFASTQ as a source, the downstream application must
accept STDIN stream as the input. Considering the lossless compression of full FASTQ data,
the sizes of sFASTQ directories are comparable to those of Gzip archives. The reconstruction
of the flat file is considerably slower than with the fastest of state-of-the-art methods.
However, we do not need to reconstruct the flat file since the records are decompressed
online and can be forwarded on to the downstream applications. While the slower reading
of the FASTQ records can still be acceptable in certain set-ups, the major benefit of sFASTQ
lies in the fast random access to specific records, with no memory overhead.

2. Methods—Implementation of sFASTQ Format
2.1. Overview

Each record in a FASTQ file consists of four lines: header, DNA sequence read, a single
plus sign, and quality values. The plus sign separates sequence and quality entries; it
is omitted from the compression process and simply added at the decompression stage.
The rest of the entries can be of variable length throughout the FASTQ file, with the
condition that the length of the sequence and quality entries in each record must be equal.
With paired end methods of sequencing, where the same DNA segment is sequenced from
two directions, the result is stored in two corresponding FASTQ files—forward and reverse.
The matching of the corresponding records in both files is achieved either via ordering of
records or through the headers. We assume the case where corresponding records are listed
in both files in the same order. Alternatively, forward and reverse records can be stored in a
single file in an interleaved manner.

The core of our implementation of a succinct FASTQ format is the LZ trie, the state-
of-the-art method for automata compression [9] that is incorporated into our SFQ (https:
//github.com/lisp-rbi/sfq, accessed on 10 May 2022) software for the construction and
querying of sFASTQ. The drawbacks of employing automata are considerable memory
consumption and the time needed for construction. However, the construction of sFASTQ
format is an once-only process and does not require computing resources beyond those
that can be found in a professional bioinformatics facility. While the LZ trie engine is
implemented in C++, the interface and the functionalities of SFQ software are implemented
in Rust. The SFQ usage instructions are given in the Supplementary Material.

SFQ works both with single- and paired-end FASTQ files, and supports long reads
and records of variable lengths. The records in the sFASTQ are accessed through their ID;
with paired end sequencing two paired records are retrieved with a single ID. As an option,
sFASTQ can be loaded into RAM for (approximately) three times faster reading than on the
disk. SFQ implements four different methods of lossy compression that include binning
of qualities, removal of the headers, removal of duplicate sequences, and averaging of the
associated qualities.

We regard three different streams—headers, reads, and qualities—as the collections of
strings, and for each stream we build a compressed minimal acyclic deterministic finite
automaton (MADFA) [10] that stores (in the terminology of automata theory, the automaton
recognizes the language that is a collection of strings) the collection of all entries in the FASTQ
file. The streams are compressed separately, as there is more redundancy in the same type
of data than across the streams.

The MADFA has an important property that allows it to be queried with prefixes of
strings that are stored. We explore this feature by enumerating the records in a FASTQ file
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and prefixing each data entry with the ordinal number of the record that entry belongs
to. The purpose of this is twofold. Firstly, the enumeration enables fully random access,
i.e., direct access to any given record in the FASTQ file. The second reason for the enumera-
tion of the records is that the compression procedure requires sorting of the collection of
input strings. Since the three streams are compressed separately, the enumeration is used
to keep the original order of records across the compressed automata, while at the same
time imposing a sorted order on the entries. For paired end datasets, the enumeration is
complemented with forward/reverse annotation.

Compressed MADFA is a succinct data structure. Informally, a succinct data structure
is a compressed structure that has a size close to its theoretical minimum, but that still
supports various lookup operations. Our succinct data structure sFASTQ has a size compa-
rable to that of a Gzip file, and supports sequential listing of the FASTQ records, as well
as direct access to a specific record. A sFASTQ directory emulates a flat file in the sense
that it can be searched on the disk without additional memory requirements. Alternatively,
sFASTQ can be loaded into RAM for faster lookup. If the sFASTQ archive stores a paired
end dataset, then its output is in the interleaved format.

The sFASTQ format supports arbitrarily long reads, as well as the reads of variable
length, which is in line with the requirements of the emerging long-read sequencing
technologies. Besides lossles compression of the FASTQ files, we have implemented four
different methods of lossy compression.

2.2. sFASTQ Data Structures Implementation Details
2.2.1. LZ Trie Data Structure

The state-of-the-art in deterministic automata compression, regarding the compression
factor and the construction speed, is the LZ trie algorithm. The details on LZ trie can be
found in [9]; here we give a brief description. A trie is a digital tree that represents a set
of strings by storing the shared prefixes only once. LZ trie construction starts with a trie
that stores a collection of strings, and finds the repeated parts in the trie and replaces them
with pointers, which is a generic LZ compression method. Some further processing and the
optimized bit assignment result in the most compact representation of an MADFA for most
types of data. The advantage of this approach is based on an efficient discovery of within-
string redundancies across the whole dataset, while most other MADFA compression
methods focus only on the shared prefixes and suffixes, and the statistical coding.

The drawback of the LZ trie method is the large size of the initial trie and the cor-
respondingly large auxiliary structures. Our implementation has the worst case RAM
requirement of 55 bytes per input symbol. This roughly translates to the worst case mem-
ory footprint of 25 times the size of the processed FASTQ input. The time complexity of
LZ trie construction is quasilinear. In this case, this means that large files can be processed
within realistic time bounds.

Alternatively, in order to produce a succinct FASTQ representation, it would be
possible to use some other approach to compress of a set of strings, with different trade-offs
in construction parameters. Some of the competing methods are listed in [11]. Still, we
believe that LZ trie is the most useful compromise—especially so if the input strings are
long, as in a FASTQ record.

2.2.2. On LZ Trie Implementation

The distinctive feature of the SFQ tool is its ability to list and query the compressed FASTQ
data directly from the disk, without the overhead of either decompressing the data or loading it
into RAM. This feature is implemented by persisting the LZ trie data structure in a format that
mirrors its representation in RAM. The LZ trie structure is represented as an array that holds
the nodes of the trie [9]. This array is encapsulated as an abstract TNodeArray type, which
enabled us to transparently switch to disk storage by implementing the on-disk array with
the same interface. Specifically, the trie array is composed of several sub-arrays containing
distinct node-level information. These sub-arrays are optimized bit arrays that use a char
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array as a backing structure. The switch to on-disk storage is implemented by switching to an
on-disk char array implemented using random file access. Crucially, the high-level trie array
uses an in-memory node-level cache based on an FIFO structure (the oldest cached element
is removed first). The caching enables the access time of the on-disk array to be of the same
order of magnitude as that of the in-memory array. For more details, we refer the reader to the
implementation, documentation, and usage of the CompactArray, BitSequenceArray, and the
DiskArrayChar classes (https://github.com/lisp-rbi/sfq/tree/main/fqlzt/src/aux/lzt_core,
accessed on 10 May 2022). These classes encapsulate the space-optimized array of trie nodes,
the sub-arrays with node information, and the backing on-disk array structure, respectively.

2.3. Construction of sFASTQ Format
2.3.1. Organization of Streams into Tries and Subdirectories

We separately extract each stream from a FASTQ file and produce three temporary
files. The entries in temporary files are prefixed with the ordinal number of the record
they are extracted from. The temporary files are used as the input for the LZ trie construc-
tion. We therefore construct separate succinct structures for each stream, and store them in
the respective subdirectories of the top-level sFASTQ directory. If not specified otherwise,
the top-level directory that stores the sFASTQ format for an input FASTQ file fname.fastq
is named fname.sfastq. The subdirectories that hold compressed representations of the
header, sequence, and quality streams are named fname.head.sfastq, fname.seq.sfastq,
and fname.qual.sfastq, respectively. Once the sFASTQ directory structure is constructed,
the names of the directories and files should not be changed. At the end of the LZ trie con-
struction for a given stream, the corresponding temporary file is erased. The temporary files
are essentially data streams with added prefixes and are cumulatively larger than the input
FASTQ dataset. The finished compressed representation of the first processed stream is stored
on the disk, while all of the temporary files are still present. Although the original FASTQ
file is not required once the temporary files are constructed, our software does not delete it.
As a result, the additional disk space necessary for sFASTQ construction, on top of the space
occupied by the FASTQ file, is approximately one and a half times the size of the input file.

2.3.2. Paired End Files

When the input consists of two paired end FASTQ files, the temporary files are
constructed in an interleaved manner. The corresponding records from both input files are
stored consecutively, with reverse sequences complemented, and prefixed with the same
ordinal number. However, in order to differentiate between the forward and reverse input,
a different character is appended to the prefix number. The added characters are “F” for
forward and “R” for reverse input. When reading the paired end dataset from sFASTQ,
the output is in the interleaved format. The complementing of reverse sequences leads to
more repeated sequence parts, and is a standard trick used to improve the FASTQ data
compression. If not specified otherwise, the top-level sFASTQ directory that stores paired
end FASTQ files fname1.fastq and fname2.fastq is named fname1.FR.sfastq. The infix
FR. is also added to the names of all subdirectories.

Our software expects paired end files to be paired through the order of the records, i.e.,
the paired forward and reverse records must be at the same position in both files. If they
are not properly paired before starting the sFASTQ construction, they should be ordered
using a tool like fastq-pair [12]. If the numbers of records in forward and reverse files are
not equal, SFQ ignores the missing lines in temporary files. This means that there will be a
series of a single direction records at the end of the sFASTQ interleaved output.

2.3.3. Multiple Subtries

With the worst case memory requirement of 55 bytes per input symbol, the available
RAM becomes a limiting factor in construction of LZ tries. We solve this problem by
splitting the input temporary files into smaller blocks of data. The amount of available
RAM is automatically determined, or the user can define the limit on memory usage. In this
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way, the largest possible size of the input is calculated. The lines are read from temporary
files until this limit is reached and a trie is constructed for the subset of the input. After the
first LZ trie is produced, the reading from temporary file continues, up to the defined
size limit, and the next part is processed. Multiple LZ subtries for a stream are stored in
separate subdirectories with the corresponding numbers added to the subdirectory names.
An example of sFASTQ top-level and subdirectories structure and naming, for the paired
end input files fname1.fastq and fname2.fastq, is:

fname1.FR.sfastq/
/fname1.FR.head.sfastq.1/
/fname1.FR.head.sfastq.2/
/fname1.FR.qual.sfastq.1/
/fname1.FR.qual.sfastq.2/
/fname1.FR.qual.sfastq.3/
/fname1.FR.seq.sfastq.1/
/fname1.FR.seq.sfastq.2/
/fname1.FR.seq.sfastq.3/

In this example, DNA and quality streams, which are always equal in size, are both
processed in three installments. Headers are usually much shorter and more entries can
fit into available RAM. As a result, headers produce smaller numbers of subtries. In the
reading stage, all subtries for one stream are seamlessly treated as a single structure.

To some extent, the quality and the speed of compression depend on the amount of
available RAM. The LZ trie is a global method of compression and, as a rule, the compres-
sion is better when a larger part of the input is processed in one installment. On the other
hand, the time complexity of the compression procedure is quasilinear, which means that it
takes somewhat more time to process the same amount of data in one large installment than
in multiple smaller parts. Therefore, with less RAM the compression is worse but faster.
However, due to the variations within the data, these dependencies are not monotone.
An example is presented in Figure 1. The dataset used in the experiment was the largest
prefix of the H.sapiens2 dataset (details on datasets are given in the Results section) that
still produced a single trie with our available RAM. The number of subtries in Figure 1
relates to the DNA and quality streams. The compression factor noticeably worsens when
one LZ trie is split into two to six subtries, but after that oscillates around the same value.
On the other hand, the time needed for processing is steadily reduced with the increase
in number of subtries. Nevertheless, we would always recommend using the maximal
available amount of RAM, as this will, in most cases, lead to the best compression.

2.4. Random Access to Records

The enumeration of the records allows for direct access to any record in a sFASTQ
format. Reading is performed by querying the LZ trie with a prefix, which is by design the
ID of the record. Output consists of all entries with the same ID, across all streams. If the
sFASTQ directory stores paired end files, two full records are retrieved with a single index.
When using the sFASTQ directory that holds N records as a flat file, the numbers from 1 to
N are silently generated and fed to the LZ trie core.

Our software supports fully random access to the specified records via an auxiliary file
that stores the list of record indices. The list is an ASCII file that in each line stores a single
index, or a range of indices. The list file can hold any combination of the two. An example
of a legitimate input to the random access search in sFASTQ is:

123
200–300
88
40–50
33
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220–230

If a value in the list is out of range, the query is ignored. On the implementation level,
the IDs are encoded in the quaternary alphabet [A,C,G,T]. This leads to a slightly improved
compression of the DNA stream.

Figure 1. The compression efficiency and processing time as the functions of the number of subtries.
The dataset is a 16.1 GB large excerpt from a paired end H.sapiens2 dataset. Processing in multiple
subtries was obtained by imposing the appropriate memory restraints using the -F option in the
command line.

2.5. Lossy Compression of Streams

A lot of information in a FASTQ file is redundant and may not be necessary for
different applications. As a result, various methods for lossy compression of FASTQ files
were advocated for and implemented, in particular regarding the quality values stream [13].
We have implemented four different methods that we denote with L1 to L4. The actions
that were performed to obtain the lossy formats are:

• L1: The quality values are binned according to the Illumina 8-level standard [14].
• L2: L1 and the headers are removed.
• L3: Headers are removed, repeated sequences are stored only once, and the corre-

sponding quality values are reduced to the average value for each position over all
repeated records. The number of repeated sequences is stored and later reported in an
artificially generated header at the time of reading.

• L4: L3 and the averaged qualities are binned according to the Illumina 8-level standard.

The methods L1 and L2 are two variants of a standard approach based on the ob-
servations from [13], and L3 and L4 combine this with the approach used in ARSDA
software [15], which is particularly effective for FASTQ files with many repeated identical
sequences. An example of this is transcriptomic data files. The number of repetitions in
the original file is included in the L3 and L4 formats. The initial order of the records is
preserved in L1 and L2, and lost in L3 and L4. While the naming of SFQ output folders
can be arbitrary, the names of folders for lossy compression will include infix Lx., where x
stands for a number from 1 to 4, depending on the method used.

Compared to the traditional approach to FASTQ files compression, sFASTQ format
allows the listing of the content without additional resources. The advantage of the sFASTQ
format is the random access and the smaller size than that of a flat FASTQ file. The drawback
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is considerably slower access to the records than in a flat file. However, the random access
is at least twice as fast as with BEETL.

3. Results

We have performed experiments with our SFQ software for the construction and usage
of sFASTQ format on the publicly available paired end files used in [3,4]. Three datasets
from the two papers overlap. They are denoted as ERP001775, ERR532393, and SRR554369
in [4], and as H.sapiens1, Metagenomics, and P.aeruginosa in [3], respectively. For these
datasets we have used the naming from the earlier paper. The H.sapiens2 is the raw version
that is described in the supplementary material of [3]. This means that the records are
not trimmed to the uniform length. For details on how to access the files please see the
Supplement. The experiments were performed on a 3.6 GHz Xeon Gold 5122 processor
with 384 GB RAM running Ubuntu 18.04.5 LTS. We did not process the largest file from [3],
826 GB large H.sapiens3, as that would take an unrealistically long time with the current
implementation and available hardware resources.

The main results are presented in Table 1, together with the reference compressed sizes
obtained by Gzip (with -9 option). In all cases the sFASTQ directory sizes are comparable
with those of Gzip files. The difference in the size factor between sFASTQ and Gzip varies
from 0.827 to 1.336, with the sFASTQ directory being, on average, 7.7% larger than the Gzip
file. With more available RAM the numbers will be more in favor of sFASTQ, sometimes
significantly. We base this assumption on the performed partial experiments with H.sapiens2
on a 6 TB RAM machine, which indicate that the single trie implementation would be
approximately 20% smaller than the obtained version with 13 subtries.

Table 1. Main compression results for paired end datasets from [3] in the first part of the Table,
and [4] in the second part of the Table. Three overlapping datasets are omitted from the second part.
Sizes of datasets and RAM usage are expressed in gigabytes (109 bytes). Construction time is given in
minutes. RAM usage is reported only for datasets that fit in RAM in a single process.

Dataset Original
Size

sFASTQ
Size

Construction
Time

Number
of

Subtries

RAM
Usage Gzip Size

P.aeruginosa 0.768 0.288 21 1 17.2 0.279
Metagenomic 19.284 7.327 710 2 / 6.911
H.sapiens1 227.246 83.178 9857 15 / 74.158
H.sapiens2 210.315 36.974 14,465 13 / 38.919

ERR194146 438.967 149.312 15,166 27 / 111.801
ERR174310 107.738 41.879 4546 7 / 34.172
SRR065390 17.639 5.291 698 2 / 4.985
SRR689233 7.739 2.509 323 1 140 2.612
SRR635193 7.754 2.711 323 1 150 2.263

MiSeq 3.916 1.228 164 1 90 1.485

Processing times vary depending on the type of the dataset and the achieved com-
pression factor. As an example, H.sapiens2 and ERR194146 datasets require comparable
time for processing, although the latter is about twice the size of the former, but H.sapiens2
compresses better. The average time needed for processing one GB of input is about 40 min.

The maximum RAM usage is given as an illustration that the memory footprint of
our process is an important factor. As calculated, in the worst case the RAM space needed
for sFASTQ construction is approximately 25 times the size of the input dataset. In cases
when that exceeded 384 GB, multiple subtries were constructed. The number of subtries in
Table 1 is given for DNA and quality streams. Header strings are shorter than reads and
more headers fit in one trie; therefore, the number of subtries is smaller than for the DNA
and quality streams.
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The results for lossy compression are presented in Table 2. We have included results
for SPRING lossy compression recommended in [3] that consist of Illumina binning of
quality, removal of headers, and not preserving the initial order of records. We have also
included the results for the single end transcriptomic dataset SRR1536586. That dataset
was used in [15] to demonstrate the efficiency of the ARSDA approach. The size of this
file, when the repeated sequences are represented with only one, and the related qualities
are averaged, as reported in [15], is 0.120 GB, which is reduced to 0.035 GB with Gzip.
Therefore, for this transcriptomic dataset, the L4 lossy version of sFASTQ has the best
compression factor among the tested methods. The time needed for construction of the L4
version of sFASTQ for the SRR1536586 dataset was under four minutes.

Table 2. Results for four different types of lossy compression of selected datasets. The datasets in the
first two parts of the Table are the same as in Table 1, and the dataset in the third part contains single
end sequenced transcriptomic data from [15]. Sizes of datasets are expressed in gigabytes (109 bytes).
SPRING r.l.s. means SPRING recommended lossy size.

Dataset/Size Original sFASTQ L1 L2 L3 L4 SPRING r.l.s.

P.aeruginosa 0.768 0.288 0.218 0.170 0.238 0.168 0.062
Metagenomic 19.284 7.327 5.233 4.199 4.871 4.194 1.736
H.sapiens1 227.246 83.178 64.483 50.510 68.346 49.649 13.460
H.sapiens2 210.315 36.974 36.970 32.243 30.068 30.028 6.193

ERR194146 438.967 149.312 108.868 80.004 136.643 98.041 59.369
ERR174310 107.738 41.879 30.749 23.763 34.274 24.645 7.506
SRR065390 17.639 5.291 4.069 2.856 4.027 2.909 0.814
SRR689233 7.739 2.509 1.824 1.271 1.825 1.258 0.532
SRR635193 7.754 2.711 2.217 1.407 1.789 1.371 0.495

MiSeq 3.916 1.228 0.828 0.722 1.085 0.714 0.332

SRR1536586 1.630 0.254 0.193 0.095 0.037 0.027 0.030

Table 3 presents typical results for the speed of access to the records in the number
of single end records (i.e., four lines of data) per second that are reconstructed from the
sFASTQ archive. The difference in reading speed between HDD and SSD is marginal,
and reading from RAM is about three times faster. The results for RAM exclude the
time needed to load sFASTQ into memory. The differences across datasets are due to the
different read lengths. On average, 420 KB per second are reconstructed from the disk.
The datasets in Table 3 are all from the paired end sequencing. Reading from a single
end sFASTQ is slightly faster since it does not involve reversing and complementing the
paired sequences. Reconstruction of records in lossy variants is faster because the headers
are omitted, and because binning of the qualities leads to more regularity in the strings;
therefore, the decompression procedure is simpler.

Table 3. Access speed measured in single end records per second. The two results for random access
are for (random contiguous blocks)/(random individual records).

Dataset Sequential Sequential L2 Sequential L4

SSD HDD RAM SSD HDD RAM SSD HDD RAM
Metagenomic 1506 1480 4520 2302 2256 6520 2422 2424 6630

SRR635193 3227 3126 9314 4798 4735 12984 6178 6062 14495
MiSeq 1184 1159 3478 1720 1668 4506 1876 1842 4819

Dataset Random Access Random Access L2 Random Access L4

SSD HDD RAM SSD HDD RAM SSD HDD RAM
Metagenomic 1440/1282 1446/1315 3767/3521 2222/2081 1897/1773 6163/5814 2293/1969 2685/2315 6552/5747

SRR635193 3035/2412 3042/2420 7627/6090 4534/3687 4509/3703 10895/9074 5726/3571 5754/3556 11627/8605
MiSeq 1082/1010 1090/1023 3012/2885 1611/1515 1609/1518 4201/4065 1744/1494 1777/1504 4282/3894
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Sequential access speed was measured by listing all the records in a dataset. Random
access speed was measured for two cases: the random blocks of consecutive records
and random individual records. The queries are supplied to SFQ software via the external
lists. In the first case the list comprised five randomly placed blocks of 50,000 records,
and in the second case the list consisted of 25,000 random record IDs.

The reading speed is somewhat influenced by the number of subtries. Interestingly,
for the same dataset the reading speed increases with the number of subtries. In the
example from Figure 1, the reading speed on HDD varies from 2200 records per second for
one subtrie, to 2580 records per second for 24 subtries.

An important feature of SFQ is the low memory footprint of the records retrieval stage.
For the random access, the amount of used RAM is less than 20 MB, when reading from the
disk.

Comparison with BEETL

BEETL-fastq [6], together with BEETL [8], the only existing software that supports
random access to FASTQ records (SPRING only supports the extraction of a single block
of records), does not enable random access through the interface. The main functionality
of BEETL-fastq is k-mer indexing and record retrieval. The random access to the records
that contain a given k-mer is silently integrated in the system. In order to compare the
times needed for the retrieval of a random FASTQ record we have used the following
procedure. With trial and error we have determined the k-mers that are, for a given FASTQ
file, present in up to approximately 3 × 105 records (higher values caused BEETL to crash).
Then, the command:

beetl search -i prefix -k <k-mer>

would produce the searchedKmers_positions file. We have timed the BEETL command
that retrieves the sequence part of the records defined in that file:

time beetl extend -i searchedKmers_positions -b prefix --propagate-sequence
-o extend.out

The extend.out file contains the IDs of the retrieved records and we have transformed
that file into a list of records required by SFQ. Finally, we have measured the time needed
to retrieve these records from the sFASTQ archive with the -f s option (retrieving only the
sequence stream of the FASTQ record). Even though BEETL employs some parallelization
for this task, the random access with SFQ (reading from the disk) was, on average, slightly
more than twice as fast. That increases to approximately seven times faster when sFASTQ
was loaded into RAM. This is in accordance with our previous findings. In [11] we have
compared the response times of automata and BWT-based structures and automata were
several times faster, albeit in a different retrieval task.

Although BEETL software does not provide the interface for random access, that
functionality is implied and we expect it could be implemented without too much of a
programming effort. Compared to sFASTQ, BEETL archives have the advantage of a shorter
construction time and a smaller size. The construction of BEETL archives is performed
on multiple cores and, in our experiments, was from 5 to 20 times faster than the single
core sFASTQ construction. While the sizes of sFASTQ and BEETL archives are comparable,
the BEETL archive includes the complete k-mer index as well. The main advantages of SFQ
are the functional interface, faster random access, and negligible memory footprint of the
reading stage. In addition, SFQ implements lossy compression of quality scores which is
particularly useful with transcriptomics data.

4. Additional Considerations
4.1. On Paralellization

In our experimental setup, the available RAM was the critical resource in producing
the sFASTQ directory. For this reason, the current version of our SFQ software works



Electronics 2022, 11, 1783 10 of 12

exclusively in a single thread mode. With enough RAM resources, two parallelization
schemes can be applied. A straightforward method would be to process three streams
separately on three cores, if there is enough RAM to hold all three processes simultaneously
in a single trie each, i.e., if the available RAM is at least 55 times larger than the size of the
input FASTQ file. Another possibility is to use a cluster of processing nodes and divide
the processing of the subtries among them according to the available RAM at each node.
Therefore, with the appropriate hardware resources, the production of the sFASTQ format
could be performed in an acceptable time even for the largest files.

Large files could be processed in a realistic time on large clusters with parallelization
and adequate resources, or slowly on a single core. Although possible, the latter is not
economical, unless an important application emerges that requires random access. We
expect that the main target field for the current implementation of SFQ/sFASTQ are
FASTQ datasets of intermediate sizes that can be constructed overnight and stored in the
cloud-based archives. They could later be used for remote random access, or on personal
computers with limited disk and RAM resources. Within this framework, one can envision
the workflow where only a set of integers would be transferred between the users.

An sFASTQ archive can be used as a flat file since it can be accessed on the disk
without memory overhead. If we are prepared to forego this possibility, the parallelization
could be applied to the reading stage, too. Multiple cores could be assigned the task of
decompressing successive blocks of records, with scheduled access to STDOUT. However,
this could lead to a meaningful speed-up only if the sFASTQ folder is loaded into RAM.

4.2. On K-Mer Indexing

The full potential of random access capability can be exploited with an external k-
mer index. There exists a substantial body of literature on the construction and usage of
the k-mer index. The (non-exhaustive) list of relevant papers includes [16–22]. Ref. [7]
presents a survey of the methods, and a more technical overview of the employed data
structures is given in [23]. Most of the works consider k-mers in the context of indexing
collections of sequences. Of the listed papers, only [7,22] explicitly mention indexing raw
reads. However, the inclusion of the read ID data in the index is straightforward.

4.3. On FASTQ Sampling Functionality

An immediate application of SFQ random access capability is the extraction of a
subsample of records from a FASTQ file. Random sampling is regularly used in machine
learning and statistical analysis, e.g., for bootstraping–repeated sampling of small data
subsets. Machine learning procedures rely on division of data into training, validation,
and test sets. This process also relies on sampling and is sometimes performed multiple
times. The staple of deep learning, a prevalent machine learning technique with promis-
ing applications in biology, is the stochastic gradient descent algorithm that depends on
repeated sampling of small data subsets.

So far, sampling of FASTQ records has been employed in RNA sequencing appli-
cations [24,25] and is included as a functionality in FASTQ processing software tools
(e.g., [26]). The existing software tools that offer subsampling functionality work on de-
compressed FASTQ data and employ a random selection of a fraction of streamed records.
In contrast, the unique characteristics of SFQ make it possible to perform sampling through
random direct access to FASTQ records on the disk. This means that random subsamples
can be obtained quickly, without the need for decompressing the entire FASTQ file (or large
chunks of it), and without any memory overhead. The speed and low memory overhead
are particularly important when the FASTQ subsampling is used as part of a potential
high-resource processing pipeline.

5. Conclusions

We have described sFASTQ, a new method for compressing FASTQ files, and im-
plemented it in SFQ software for the construction and usage of an sFASTQ format that
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supports variable length reads, pairing of records, and both lossless and lossy compression
of quality scores. As the usage of the sFASTQ format has a low memory footprint and
does not require additional disk space, parallel downstream processes can be immediately
started on multiple cores. This may in fact save time compared to the work-flow that
first requires the decompression of multiple files. However, a downstream application
should be able to read input from STDIN, i.e., support the standard method of chaining
command-line tools on Unix-like systems. The future development of SFQ will include
investigation of possible improvement of the compression factor by pairing the automata
minimization with other compression methods for streams, and the use of paralellization
to reduce the construction time and increase the reading speed.

As an example of a practical application, besides subsampling, random access is
important in various scenarios where the privacy of an individual is of concern. We
envision the application where, as a part of the medical treatment, a patient is in possession
of their raw genomic sequences, and a physician can access and perform the alignment of
only the records relevant to the medical case.

6. Code Availability

The SFQ software and documentation can be accessed at https://github.com/lisp-rbi/sfq
(accessed on 10 May 2022).

Supplementary Materials: The following supporting information can be downloaded at: https:
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