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Carića 4, 20000 Dubrovnik, Croatia
rina.strajn@unidu.hr

Abstract

We introduce the generalized Heisenberg algebra appropriate for realizations
of the gl(n) algebra. Linear realizations of the gl(n) algebra are presented and the
corresponding star product, coproduct of momenta and twist are constructed. The
dual realization and dual gl(n) algebra are considered. Finally, we present a general
realization of the gl(n) algebra, the corresponding coproduct of momenta and two
classes of twists. These results can be applied to physical theories on noncommu-
tative spaces of the gl(n) type.
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1 Introduction

Noncommutative (NC) geometry appeared in theoretical physics as one possible ap-
proach towards the description of spacetime at the Planck scale [1, 2, 3, 4, 5]. The key
assumption is noncommutativity between spacetime coordinates. The first model was
proposed by Snyder in [3]. There are various models of NC spaces of Lie algebra type.
Specially, an interesting model is the κ-Minkowski spacetime [4, 5, 6, 7, 8], where the
parameter κ is usually interpreted as the quantum gravity scale and the spacetime coor-
dinates close a Lie algebra. The κ-Poincaré quantum group [4, 5, 9, 10], as a possible
quantum symmetry of the κ-Minkowski spacetime, allows for the study of deformed
relativistic spacetime symmetries. Realizations of Lie algebras are important in the
formulation of physical theories on NC spaces and the corresponding deformed sym-
metries. Particularly, realizations of NC coordinates are based on formal power series
in the Heisenberg-Weyl algebra allowing one to simplify the methods of calculation on
the deformed spacetime. Some physical applications of Lie algebra type NC spaces
and the associated star products are presented in [11, 12, 13].

For certain Lie algebras, such as the orthogonal algebra so(n), the Lorentz alge-
bra so(1, n − 1) and the gl(n) algebra, the realizations are not well adapted due to the
structure of their commutation relations. This was the motivation for introducing the
generalized Heisenberg algebra and constructing an analogue of the Weyl realization
of so(n) and so(1, n− 1) by formal power series in a semicompletion of the Heisenberg
algebra [14]. This construction was applied to the extended Snyder model [15] and to
the unification of the κ-Minkowski and extended Snyder spaces [16, 17].

In this paper we introduce another generalization of the Heisenberg algebra appro-
priate for realizations of the gl(n) algebra. Specially, we consider linear realizations of
the gl(n) algebra and we use them to construct the corresponding star product, coprod-
uct of momenta and twist as applications to a noncommutative space of gl(n) type. Fur-
thermore, we consider the dual realization and dual gl(n) algebra, as well as a general
realization of the gl(n) algebra, coproduct of momenta and twists. These constructions
were performed using methods proposed in [18, 19, 20, 21] and in a Lie deformed
phase space from twists in the Hopf algebroid approach in [19, 22, 23, 24, 25].

The plan of paper is as follows. In section 2 we introduce the generalized Heisen-
berg algebra and present linear realizations of the gl(n) algebra. In section 3 the star
product, and in section 4 the coproduct of momenta and twist are constructed. In
section 5 the dual realization and dual gl(n) algebra are considered. In section 6 a gen-
eral realization of the gl(n) algebra, the corresponding coproduct of momenta and two
classes of twists are presented. These results can be applied to physical theories on
noncommutative spaces of the gl(n) type.

2 Linear realizations of the gl(n) algebra

We introduce the generalized Heisenberg algebra generated with n2 coordinates xµν and
momenta pµν, µ, ν = 1, ..., n, defined by

[xµν, xαβ] = 0, [pµν, pαβ] = 0, [pµν, xαβ] = −iδµαδνβ. (1)

1



Let us define the gl(n) algebra generated with x̂µν, µ, ν = 1, ..., n

[x̂µν, x̂λρ] = iu(δµρ x̂λν − δλν x̂µρ) = iuCµν,λρ,αβ x̂αβ, u ∈ R, (2)

where
Cµν,λρ,αβ = iu(δµρδλαδνβ − δλνδµαδρβ). (3)

are structure constants. Note that for u = 0, x̂µν commute among themselves.
One linear realization of x̂µν is

x̂µν = xµν + uxµαpνα, (4)

x̂µν = xαβϕαβ,µν, (5)

where
ϕαβ,µν = δαµδβν + uδαµpνβ. (6)

Summation over repeated indices is understood throughout the whole paper.
Another linear realization of the gl(n) algebra (2) is

x̂µν = xµν − uxανpαµ, (7)

x̂µν = xαβϕαβ,µν, (8)

where
ϕαβ,µν = δαµδβν − uδβνpαµ. (9)

This realization is related to the dual realization of the first realization (4) with u 7→ −u,
see section 5.

3 Star product

Action ⊲ is defined by

xµν ⊲ f (x) = xµν f (x), (10)

pµν ⊲ f (x) = −i
∂ f (x)
∂xµν

. (11)

Using ⊲, it follows

x̂µν ⊲ 1 = xµν, (12)

pµν ⊲ eiqx
= qµνe

iqx, where qx = qαβxαβ, (13)

eikαβ x̂αβ ⊲ eiqγδxγδ = eiJαβ(k,q,u)xαβ , (14)

for some Jαβ(k, q, u). If kαβ = 0, Jµν(0, q, u) = qµν. If qµν = 0, Jµν(k, 0, u) = Kµν(k, u).
If u = 0, Jµν(k, q, 0) = kµν + qµν.

From Jµν(k, q, u), we can obtain the star product [18, 19]

eikx ∗ eiqx
= eiD(k,q,u)x, (15)
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where

Dµν(k, q, u) = Jµν(K
−1(k), q, u), (16)

K−1
µν (K(k)) = Kµν(K

−1(k)) = kµν. (17)

Jµν(tk, q, u) is the unique solution of the partial differential equation [18, 20, 21]

∂Jµν(tk, q, u)

∂t
= kαβϕµν,αβ(J(tk, q, u)), (18)

with boundary condition Jµν(0, q, 0) = qµν. In our case,

∂Jµν(tk, q, u)

∂t
= kαβ(δαµδβν + uδαµJβν(tk, q, u)) = kµβ(δβν + uJβν(tk, q, u)). (19)

The differential equation in matrix form is

∂J(tk, q, u)
∂t

= k(I + uJ(tk, q, u)). (20)

The solution in matrix form is

J(tk, q, u) =
1
u

(eutk − I) + eutkq, (21)

or, in terms of the components,

Jµν(tk, q, u) =
(

eutk
)

µα
qαν +

1
u

(

−I + eutk
)

µν
. (22)

For t = 0

Jµν(0, q, u) = qµν, (23)

Kµν(k, u) =
1
u

(

euk − I
)

µν
, (24)

K−1
µν (k, u) =

1
u

(ln(I + uk))µν. (25)

Hence
Dµν(tk, q, u) = kµν + qµν + ukµαqαν. (26)

The star product is associative

( f ∗ g) ∗ h = f ∗ (g ∗ h). (27)

4 Coproduct of momenta and twist

The coproduct of momenta is

∆pµν = Dµν(p ⊗ 1, 1 ⊗ p) = pµν ⊗ 1 + 1 ⊗ pµν + upµα ⊗ pαν. (28)
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This coproduct is coassociative (∆ ⊗ 1)∆ = (1 ⊗ ∆)∆.
In the Hopf algebroid approach [22, 23, 24, 25] we can write the twist [19]

F −1
= : exp(i(1 ⊗ xαβ)(∆ − ∆0)pαβ) : (29)

= exp(−ipαβ ⊗ xαβ) exp(iK−1(p)γδ ⊗ x̂γδ), (30)

where : : denotes normal ordering, with the xs left from the ps. Using the expres-
sion (28) for the coproduct ∆p, we have

F −1
1 =: exp(iupµν ⊗ xµαpνα) : (31)

and applying [21], Theorem 1 we get

F −1
1 = exp(i(ln(I + up))µν ⊗ xµαpνα). (32)

Note that

K−1
µν (p, u) =

1
u

(ln(I + up))µν. (33)

Here we introduce
Zµν = (I + up)µν, (34)

and
Lµν = xµαpνα. (35)

Lµν generate the gl(n) algebra, with properties

[Zµν, x̂λρ] = −iuδµλZρν, (36)

∆Zµν = Zµα ⊗ Zαν, (37)

∆(ln Z)µν = (ln Z)µν ⊗ 1 + 1 ⊗ (ln Z)µν, (38)

[Lµν, Lλρ] = i(δµρLλν − δλνLµρ), (39)

∆0Lµν = Lµν ⊗ 1 + 1 ⊗ Lµν, (40)

∆0 pµν = pµν ⊗ 1 + 1 ⊗ pµν. (41)

Hence, the twist can be written as

F −1
1 = exp(i(ln Z)µν ⊗ Lµν). (42)

It is easy to check that

x̂µν = mF −1(⊲ ⊗ 1)(xµν ⊗ 1) = xµν + uxµαpνα, (43)

where m is the multiplication map m : A ⊗ B→ AB, and

∆pµν = F∆0 pµνF
−1
= ∆0 pµν + upµα ⊗ pαν, (44)

where
∆0 pµν = pµν ⊗ 1 + 1 ⊗ pµν.
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Twist F1 satisfies the Drinfeld cocycle condition

(1 ⊗ F )(1 ⊗ ∆0)F = (F ⊗ 1)(∆0 ⊗ 1)F . (45)

The proof follows using the factorization property. Using ∆0Lµν (40), we get

(1 ⊗ ∆0)F = F12F13 = F13F12, (46)

(1 ⊗ F )(1 ⊗ ∆0)F = F23F12F13 = F23F13F12. (47)

Using ∆(ln Z)µν = (ln Z)µν ⊗ 1 + 1 ⊗ (ln Z)µν, we get

(F∆0 ⊗ 1)F = F13F23F12 = F23F13F12. (48)

Hence, the left and right side of (45) become F23F13F12.
We note that the coproduct (28) may be related to a limiting case of the commu-

tation relations for the braided Weyl algebra [26, 27] of a modified reflection equation
algebra arising in the study of integrable systems.

5 Dual realization and dual gl(n) algebra

Let us define the dual realization

ŷµν = mF̃ −1
1 (⊲ ⊗ 1)(xµν ⊗ 1) (49)

= xµν + uxανpαµ (50)

= xαβϕ̃αβ,µν, (51)

where
ϕ̃αβ,µν = δαµδβν − uδβνpαµ, (52)

and F̃ denotes interchange of the left and right sides in the ⊗ product, a ⊗ b → b ⊗ a.
ŷµν generate the dual gl(n) algebra (2), with u 7→ −u.

[ŷµν, ŷλρ] = −iu(δµρŷλν − δλνŷµρ), (53)

[Zµν, ŷλρ] = −iuδρνZµλ, (54)

and
[x̂µν, ŷλρ] = 0. (55)

The star product induced with the dual realization ŷµν is constructed as in section 3.
The partial differential equation for J̃µν(tk, q, u) is

∂J̃µν(tk, q, u)

∂t
= kαβϕ̃µν,αβ(J̃(tk, q, u)) (56)

= kµν + uJ̃µα(tk, q, u)kαν. (57)

The differential equation in matrix form is

∂J̃(tk, q, u)
∂t

= (I + uJ̃(tk, q, u))k. (58)
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The solution in matrix form is

J̃(tk, q, u) =

(

eutk − I

u

)

+ qeutk, (59)

and

J̃µν(tk, q, u) = qµα
(

eutk
)

αν
+

(

eutk − I

u

)

µν

. (60)

For t = 0,

J̃µν(0, q, u) = qµν, (61)

K̃µν(k, u) =
1
u

(

euk − I
)

µν
= Kµν(k, u), (62)

K̃−1
µν (k, u) =

1
u

(ln(I + uk))µν = K−1
µν (k, u). (63)

Hence,
D̃µν(k, q, u) = kµν + qµν + ukανqµα. (64)

The star product is associative.
The coproduct of pµν is

∆̃pµν = pµν ⊗ 1 + 1 ⊗ pµν + upαν ⊗ pµα, (65)

where ∆̃ denotes the interchange of the left and right side in the tensor product with
respect to ∆, a ⊗ b→ b ⊗ a. The coproduct is coassociative.

The corresponding twist F2 in the Hopf algebroid approach [19] (sec.4) and the
coproduct ∆̃pµν (65) lead to

F −1
2 = : exp

(

iupνα ⊗ xµαpµν
)

: (66)

= exp
(

i(ln(I + up))µν ⊗ xανpαµ
)

. (67)

Note that

K̃−1
µν (p, u) =

1
u

(ln(I + up))µν =
1
u

(ln Z)µν . (68)

We define
L̃µν = xανpαµ. (69)

L̃µν generate the gl(n) algebra

[L̃µν, L̃λρ] = −i(δµρL̃λν − δλνL̃µρ), (70)

∆0L̃µν = L̃µν ⊗ 1 + 1 ⊗ L̃µν. (71)

Hence, the twist can be written as

F −1
2 = exp

(

i(ln Z)µν ⊗ L̃µν
)

. (72)
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It is easy to check that

ŷµν = mF −1
2 (⊲ ⊗ 1)(xµν ⊗ 1) (73)

= xµν + uxανpαµ, (74)

and

∆̃pµν = F2∆0 pµνF
−1
2 (75)

= ∆0 pµν + upαν ⊗ pµα. (76)

Twist F2 satisfies the Drinfeld cocycle condition. From the duality property, it follows

x̂µν = mF̃ −1
2 (⊲ ⊗ 1)(xµν ⊗ 1) (77)

= xµν + uxµαpνα, (78)

and
∆pµν = F̃2∆0 pµνF̃

−1
2 . (79)

It is important to note that twists F1 and F̃2 are different, but lead to the same x̂µν and
the same coproduct ∆. Analogously, twists F̃1 and F2 are different, but they lead to
the same ŷµν and coproduct ∆̃. Also, ŷµν(−u) gives another linear realization of the
gl(n) algebra (2), different from x̂µν (4). The dual realization with respect to ŷµν(−u) is
x̂µν(−u), generating gl(n), with u 7→ −u.

6 General realization of the gl(n) algebra, coproduct of

momenta and two classes of twists

A general realization of the generators x̂µν and ŷµν generating the gl(n) algebra (2) and
the gl(n) algebra (53), respectively, can be obtained using a similarity transformation
on the coordinates xµν and momenta pµν. Let us define new coordinates and momenta
as

x′µν = exαβS αβ(p,u)+T (p,u) xµνe
−(xαβS αβ(p,u)+T (p,u)), (80)

p′µν = exαβS αβ(p,u)+T (p,u) pµνe
−(xαβS αβ(p,u)+T (p,u))

= Λµν(p, u). (81)

Hence, using the inverse relations, we obtain

x̂µν = x′αβϕ
′
αβ,µν(p′, u) + χ′µν(p′, u), (82)

ŷµν = x′αβϕ̃
′
αβ,µν(p′, u) + χ̃′µν(p′, u), (83)

where ϕ′αβ,µν, ϕ̃
′
αβ,µν, χ

′
µν and χ̃′µν depend on S (p, u) and T (p, u). Note that, after in-

serting the realizations of x̂µν (82) and ŷµν (83), relations [x̂µν, ŷλρ] = 0 are satisfied.
Furthermore ∆p′µν is obtained from

∆p′µν = ∆(Λµν(p, u)) = Λµν(∆p, u)|p=Λ−1(p′ ,u), (84)

i.e. expressing p as Λ−1(p′, u). A similar statement holds for ∆̃p′µν.
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From ∆p′µν and ∆̃p′µν we easily obtain D′µν(k, q, u) and D̃′µν(k, q, u) that define the
corresponding star products. Namely,

∆p′µν = D
′
µν(p′ ⊗ 1, 1 ⊗ p′), (85)

∆̃p′µν = D̃
′
µν(p′ ⊗ 1, 1 ⊗ p′), (86)

eikx′ ∗1 eiqx′
= eiD′(k,q,u)x′ (87)

eikx′ ∗2 eiqx′
= eD̃

′(k,q,u)x′ , (88)

∆p′µν(⊲ ⊗ ⊲)(e
ikx′ ⊗ eiqx′ ) = D′µν(k, q, u)

(

eikx′ ⊗ eiqx′
)

, (89)

∆̃p′µν(⊲ ⊗ ⊲)(e
ikx′ ⊗ eiqx′ ) = D̃′µν(k, q, u)

(

eikx′ ⊗ eiqx′
)

, (90)

∆0 p′µν = p′µν ⊗ 1 + 1 ⊗ p′µν. (91)

Generally, f ∗1 g = g ∗2 f , for arbitrary f (x′) and g(x′). A consistency check is the
relation between x̂µν and ∆p′αβ

x̂µν = x′µν + ix′αβm(∆ − ∆0)p′αβ(⊲ ⊗ 1)(x′µν ⊗ 1) + χ′µν(p′, u), (92)

and similarly for ŷµν.
The family of twists F1(s) in the Hopf algebroid approach corresponding to the

general realization of x̂µν (82), for χ′µν(p′, u) = 0, T (p, u) = 0 is

F −1
1 (s) =: exp

(

i((1 − s)(1 ⊗ x′αβ) + sx′αβ ⊗ 1)(∆ − ∆0)p′αβ

)

:, (93)

where ∆p′µν = p′µν ⊗ 1 + 1 ⊗ p′µν, and s ∈ R. We point out that although these twists are
different for different s, they define the same star product for all s. Namely,

eikx′ ∗1 eiqx′
= mF −1

1 (s)(⊲ ⊗ ⊲)(eikx′ ⊗ eiqx′ )

= m exp
(

i((1 − s)1 ⊗ x′αβ + s1 ⊗ x′αβ)(∆ − ∆0)p′αβ)(D
′
αβ(k, q, u) − kαβ − qαβ)

) (

eikx′ ⊗ eiqx′
)

= eixαβD
′
αβ

(k,q,u) (94)

does not depend on s due to (89), the definition of normal ordering and the multi-
plication map m. Since ∆p′µν = D

′(p′ ⊗ 1, 1 ⊗ p′), (85), the coproduct ∆p′µν =

F1(s)∆0 p′µνF
−1
1 (s) does not depend on the parameter s. Similarly, x̂µν = mF −1

1 (s)(⊲ ⊗
1)(x′µν⊗1) does not depend on s. Analogously, we can define the family of twists F2(s)
corresponding to the general realization of ŷµν (83) with χ′µν(p′, u) = 0 and T (p, u) = 0

F −1
2 (s) =: exp

(

i(1 − s)(1 ⊗ x′αβ + sx′αβ ⊗ 1)(∆ − ∆0)p′αβ

)

: . (95)

Note that F1(s) = F̃2(1 − s).
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