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We investigate wide-angle photo- and electroproduction of pions within the handbag mechanism in
which the γð�ÞN → πN0 amplitudes factorize into hard partonic subprocess amplitudes, γð�Þq → πq0, and
form factors representing 1=x-moments of generalized parton distributions (GPDs). The subprocess is
calculated to twist-3 accuracy taking into account the 2- and 3-body Fock components of the pion. Both
components are required for achieving gauge invariance in QED and QCD. The twist-2 and twist-3
distribution amplitudes (DAs) of the pion as well as the form factors are taken from our study of π0

photoproduction. Extensive results on photoproduction of charged pions are presented and compared to
experiment. Predictions on electroproduction of pions as well as on spin effects are also given. As a
byproduct of our analysis we also obtain the complete twist-3 subprocess amplitudes contributing to deeply
virtual electroproduction of pions.
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I. INTRODUCTION

Hard exclusive processes have attracted much attention
in recent years. The main interest has been focused on the
deeply virtual processes for which the virtuality of the
photon provides the hard scale. Examples for such proc-
esses are deep-virtual Compton scattering or meson pro-
duction (DVMP). The basis of the theoretical treatment of
these processes is the representation of the amplitudes as a
convolution of a hard partonic subprocess and soft hadronic
matrix elements, parametrized as generalized parton dis-
tributions (GPDs) [1,2]. Besides the deeply virtual proc-
esses also wide-angle ones have been investigated for
which the hard scale is provided by a large momentum
transfer from the photon to the meson. Large momentum
transfer is equivalent to large Mandelstam variables s, −t
and −u. The first process of this type, studied within this
handbag mechanism, has been wide-angle Compton scat-
tering (WACS). There are reasonable arguments [3,4] that,
for this kinematical situation, the Compton amplitude
factorize into a product of perturbatively calculable par-
tonic subprocess amplitudes and form factors of the
nucleon representing 1=x-moments of zero-skewness
GPDs. Since the relevant GPDs in this case, H, E and

H̃ at zero-skewness for valence quarks are known from an
analysis of the nucleon’s electromagnetic form factors [5,6]
one can compute the Compton form factors and sub-
sequently the Compton cross section. The results agree
fairly well with experiment [7]. We stress that in this
calculation no free parameter is fitted to the WACS data.
The authors of Ref. [8] extended the approach advocated
for in [4] to photoproduction of uncharged pions and ρ
mesons. It however turned out that the calculated cross
sections are way below the experimental data. An attempt
[9] to improve this (twist-2) analysis by taking into account
twist-3 contributions in the Wandzura-Wilczek (WW)
approximation, i.e., with only the qq̄ Fock component of
the pion considered, failed too—the twist-3 contribution in
WW approximation is zero in wide-angle photoproduction
of pions. This is in sharp contrast to DVMP where the WW
approximation is nonzero [10,11] and plays an important
role in the interpretation of the data on deeply virtual pion
electroproduction [12–14]. With the arrival of the CLAS
data [15] on wide-angle photoproduction of π0 mesons the
handbag mechanism has again been taken up by us [16].
Now, as a further development of the previous study [9], the
full twist-3 contribution to the subprocess amplitude is
included in the analysis. Both its parts, the one from the qq̄
Fock component of the pion as well as that from its qq̄g
Fock component, are connected by the equations of motion
and both are required to accomplish gauge invariance. The
twist-3 contributions to the hard subprocess go along with
leading-twist transversity GPDs, HT , ĒT and H̃T and the
corresponding form factors. We stress that this twist-3
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effect, although being formally suppressed by μπ=
ffiffiffi
s

p
at the

amplitude level, is very strong due to the large mass
parameter, μπ . As shown in [16] the twist-3 contribution
dominates the twist-2 one analogously to the case of deeply
virtual π0 electroproduction [11,13,14]. The outcome of
[16] is that the CLAS photoproduction data [15] can be
fitted with reasonable pion distribution amplitudes (DAs)
and soft form factors. Twist-3 effects may also be generated
by twist-3 GPDs [17] for which no enhancement similar to
μπ parameter is known. These twist-3 effects are expected
to be small and are therefore neglected in [16] as well as in
the present work.
The present work is an extension of our previous analysis

of wide-angle π0 photoproduction [16]. We now apply the
handbag mechanism to twist-3 accuracy to wide-angle
photoproduction of charged pions and, in addition, we
also investigate wide-angle electroproduction of pions. The
latter process with its large variety of observables may
allow for a detailed study of the dynamics of this process
and to fix the pion DAs and form factors in detail. The large
−t behavior of the transversity form factors encodes the
large-t behavior of the transversity GPDs. The latter is
required for the understanding of the parton densities in the
transverse position plane. We think that the present study is
timely because of planned experiments at the Jefferson
laboratory.
The paper is organized as follows: In Sec. II we

recapitulate the handbag approach to photo- and electro-
production of pions to twist-3 accuracy. In the next section,
Sec. III, we present the results for the subprocess ampli-
tudes and discuss their properties as well as their photo-
production limit, Q2 → 0, and the DVMP limit, t̂ → 0, for
which the subprocess amplitudes also hold. The soft
physics input to the handbag mechanism, namely the pion
DAs and the form factors, are discussed in Sec. IV. In the
next section, Sec. V, our results for photoproduction of
charged pions are presented and compared to experiment.
In Sec. VI we show predictions for the partial cross sections
of pion electroproduction. Section VII is devoted to a
discussion of spin effects and in Sec. VIII remarks are made
concerning the uncertainties of our predictions. The paper
ends with the usual summary. In an Appendix we compile
the familiar evolution properties of the DAs.

II. THE HANDBAG MECHANISM

The arguments for factorization in the wide-angle region
of electroproduction are the same as for Compton scattering
[4] and photoproduction [8]. Thus, we can restrict ourselves
to the repetition of the most important arguments for
factorization and the phenomenological ingredients of
the handbag mechanism. Prerequisite for factorization of
the electroproduction amplitudes into hard subprocesses
and soft form factors, is that the Mandelstam variables s, −t
and −u are much larger than Λ2 where Λ is a typical

hadronic scale of order 1 GeV. The virtuality of the photon,
Q2, is not regarded as a hard scale. Thus,

Q2 < −t; −u: ð1Þ

The mass of the pion is neglected. Corrections due to the
nucleon mass, m, of order m2=s or higher are also
neglected. It is advantageous to work in a symmetrical
frame which is a center-of-mass frame (c.m.s.) rotated in
such a way that the momenta of the ingoing (p) and
outgoing (p0) nucleons have the same light-cone plus
components. In this frame the skewness, defined by

ξ ¼ ðp − p0Þþ
ðpþ p0Þþ ; ð2Þ

is zero. Starting from a c.m.s. in which the ingoing proton
moves along the 3-direction whereas the outgoing one is
scattered by an angle θ in the 1-3 plane, one needs a rotation
in that plane by an angle ϑ, defined by the condition

jpjð1þ cos ϑÞ ¼ jp0jð1þ cos ðϑ − θÞÞ þOðm2=sÞ; ð3Þ

in order to arrive at the symmetric frame (p and p0 are
the 3-momenta of the nucleons). The solution of the con-
dition (3) is

cosϑ ¼ −1
sþQ2

1

Q4 − 4st
½Q2ðQ4 þ sQ2 − 2stÞ

þ 4st
ffiffiffiffiffiffiffiffi
−us

p � þOðm2=sÞ: ð4Þ

In the photoproduction limit, Q2 → 0, this becomes

cosϑ →

ffiffiffiffiffiffi
−u
s

r
¼ cos θ=2þOðm2=sÞ: ð5Þ

In the new, rotated, c.m.s. the nucleon momenta read

p ¼
�
pþ;

ðsþQ2Þ2
8spþ sin2ϑ;−

sþQ2

2
ffiffiffi
s

p sinϑ; 0

�
;

p0 ¼
�
pþ;

s
8pþ sin2ðϑ − θÞ;−

ffiffiffi
s

p
2

sin ðϑ − θÞ; 0
�
; ð6Þ

where

pþ ¼ −
st

Q4 − 4st
ð ffiffiffi

s
p þ ffiffiffiffiffiffi

−u
p þQ2=ð2 ffiffiffi

s
p ÞÞ þOðm2=sÞ:

ð7Þ

The parametrization of the momenta of the virtual photon, q,
and of the meson, q0, is obvious. As for wide-angle Compton
scattering or photoproduction of mesons it is assumed that
the parton virtualities are restricted by k2i < Λ2 and that the
intrinsic transverse parton momenta, k⊥i, defined with
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respect to their parent hadron’s momentum, satisfy the
condition k2⊥i=xi < Λ2. Here, xi denotes the momentum
fraction that parton i carries. On these premises one can show
that the subprocess Mandelstam variables ŝ and û coincide
with those of the full process, meson electroproduction off
nucleons, up to corrections of order Λ2=s,

t̂ ¼ t; ŝ ¼ ðkj þ qÞ2 ≃ ðpþ qÞ2 ¼ s;

û ¼ ðk0j − qÞ2 ≃ ðp0 − qÞ2 ¼ u; ð8Þ

where kj and k0j ¼ kj þ q − q0 denote the momenta of the
active partons, i.e., the partons to which the photon couples.
Thus, the active partons are approximately on-shell, move
collinear with their parent hadrons and carry a momentum
fraction close to unity, xj; x0j ≃ 1. As in deeply virtual
exclusive scattering, the physical situation is that of a hard
parton-level subprocess, γ�qa → Pqb (P ¼ π�; π0), and a
soft emission and reabsorption of quarks from the nucleon.
Up to corrections of order Λ=

ffiffiffiffiffi
−t

p
the light-cone helicity

amplitudes for wide-angle electroproduction of pions,
MP

0ν0;μν, are then given by a product of subprocess ampli-
tudes, H, which will be discussed in Sec. III, and form
factors, Ri and Si, which parametrize the soft physics that
controls the emission fromand reabsorption of a quark by the
nucleon,1

MP
0þ;μþ ¼ e0

2

X
λ

�
HP

0λ;μλðRP
VðtÞ þ 2λRP

AðtÞÞ

− 2λ

ffiffiffiffiffi
−t

p
2m

HP
0−λ;μλS̄

P
TðtÞ

�
;

MP
0−;μþ ¼ e0

2

X
λ

� ffiffiffiffiffi
−t

p
2m

HP
0λ;μλR

P
TðtÞ

− 2λ
t

2m2
HP

0−λ;μλS
P
S ðtÞ

�
þ e0HP

0−;μþS
P
TðtÞ; ð9Þ

where μ denotes the helicity of the virtual photon and ν (ν0) is
the helicity of the ingoing (outgoing) nucleon. The helicity of
the active incoming quark is denoted by λ and e0 is the
positron charge. Note that, for the sake of legibility, helicities
are labeled by their signs only.
The soft form factors, RP

i and SPi , represent specific
flavor combinations of 1=x-moments of zero-skewness
GPDs. The form factors RP

V , R
P
A and RP

T are related to
the helicity nonflip GPDs H, H̃ and E, respectively. The S-
type form factors, SPT , S̄

P
T and SPS are related to the helicity-

flip or transversity GPDsHT , ĒT and H̃T , respectively. The
GPDs Ẽ and ẼT and their associated form factors decouple
at zero skewness.

The amplitudes for helicity configurations other than
appearing in (9) follow from parity invariance

MP
0−ν0;−μ−ν ¼ −ð−1Þμ−νþν0MP

0ν0;μν: ð10Þ

An analogous relation holds for the subprocess amplitudes
H. With the help of (10) the amplitudes for longitudinally
polarized photons simplify drastically

MP
0þ;0þ ¼ e0HP

0þ;0þR
P
AðtÞ;

MP
0−;0þ ¼ e0HP

0−;0þS
P
TðtÞ: ð11Þ

In contrast to the transverse amplitudes, twist-2 and twist-3
contributions are separated here: The nucleon helicity
nonflip amplitude, MP

0þ;0þ, is pure twist-2 while the flip
one is of twist-3 nature.2

The handbag mechanism can be interpreted as
Feynman’s end-point mechanism [5]. As we said above
the handbag mechanism is restricted to the kinematical
situation where all three Mandelstam variables are suffi-
ciently large compared to the hadronic scale Λ2. It is,
however, conceivable that in the asymptotic regime of very
large Mandelstam variables the hard perturbative mecha-
nism [18,19], for which all partons inside the nucleon
participate in the hard process, dominates. Since each
additional parton requires one more hard gluon to be
exchanged, the higher Fock components of the nucleon
are suppressed by inverse powers of s compared to the
valence Fock component. This is to be contrasted with the
handbag mechanism where there is only one active parton.
All other partons inside the nucleon are spectators and the
summation goes over all Fock components. Thus, it
appears to be plausible that the handbag mechanism
provides a larger contribution than the hard perturbative
mechanism at least at large but not asymptotically large
Mandelstam variables. Indeed the latter mechanism pro-
vides results for form factors and WACS which are way
below experiment if evaluated from plausible DAs. A
calculation of wide-angle photoproduction within that
approach has only attempted once [20]. The results are
at drastic variance with experiment [21] and need verifi-
cation since the applied integration method is questionable
and is known to fail for WACS [22,23].

III. THE SUBPROCESS AMPLITUDES

The calculation of the amplitudes for the subprocess
γ�qa → Pqb to twist-3 accuracy is a straightforward gen-
eralization of our calculation of the process γqa → π0qa
[16]. In the definitions of the soft pion and nucleon matrix

1tmin is neglected in the wide-angle region.

2In electroproduction of charged pions there is also a con-
tribution from the pion pole. Even though the pole is important in
the DVMP region it can be neglected in the wide-angle region
where the pole at t ¼ m2

π is very far away.
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elements we are using light-cone gauge: the plus compo-
nent of the gluon field is zero. All possible Wilson lines
become unity in that gauge. It is to be stressed that our
method for calculating the subprocess amplitudes is similar
to the light-cone collinear factorization approach advocated
for in [24,25] for the case of electroproduction of trans-
versely polarized vector mesons.

Typical lowest-order Feynman graphs for the process of
interest are depicted in Fig. 1. The four graphs of type (a)
are relevant for the 2-body contributions. With the help of
the projector of a massless qq̄ pair on an outgoing massless
pion [9,26] (P ¼ π�; π0, isospin invariance is assumed)

PPðabÞ
2;lm ¼ fπ

2
ffiffiffiffiffiffiffiffiffi
2NC

p CabP
δlmffiffiffiffiffiffiffi
NC

p
�
γ5ffiffiffi
2

p q0ϕπðτ; μFÞ þ μπðμFÞ
γ5ffiffiffi
2

p

×

�
ϕπpðτ; μFÞ−

i
6
σμν

q0μk0νj
q0 · k0j

ϕ0
πσðτ; μFÞ þ

i
6
σμνq0μϕπσðτ; μFÞ

∂
∂k⊥ν

��
k⊥→0

ð12Þ

the subprocess amplitudes for the twist-2 and the 2-body
twist-3 contributions can easily be calculated. The familiar
twist-2 DA is denoted by ϕπ whereas ϕπp and ϕπσ are the
two 2-body twist-3 DAs. The DA ϕ0

πσ is the derivative of
ϕπσ with respect to the momentum fraction, τ, the quark
entering the meson carries. Their definitions can be found
for instance in Appendix A of [16]. For convenience we
omit their scale dependence (see the Appendix) in the list of
variables in the following. Furthermore, fπ in (12) is the
usual decay constant of the pion (fπ ¼ 132 MeV); aðlÞ and

bðmÞ represent flavor (color) labels of the quark and
antiquark, respectively. NC is the number of colors. The
Dirac labels are omitted for convenience. The flavor weight
factors are

Cuu
π0

¼ −Cdd
π0

¼ 1ffiffiffi
2

p ; Cudπþ ¼ Cduπ− ¼ 1: ð13Þ

All other CabP are zero.
In (12), k⊥ denotes the intrinsic transverse momentum of

the quark entering the meson. It is defined with respect to
the meson’s momentum, q0. The quark and antiquark
momenta are thus given by

kq ¼ τq0 þ k⊥; kq̄ ¼ τ̄q0 − k⊥; ð14Þ

where τ̄ ¼ 1 − τ and q0 · k⊥ ¼ 0. After the derivative in
(12) is performed the collinear limit, k⊥ ¼ 0, is to be taken.
The mass parameter μπ is large since it is the pion mass,

mπ , enhanced by the chiral condensate

μπ ¼
m2

π

mu þmd
; ð15Þ

by means of the divergence of the axial-vector current.
Here, muðdÞ are the current-quark masses of the pion’s
constituents. Following [10,11] we take the value 2 GeV for
this parameter at the initial scale μ0 ¼ 2 GeV. Its uncer-
tainty is, however, large.3 The mass parameter evolves with
the scale; see the Appendix. For the factorization and
renormalization scale we choose

μ2R ¼ μ2F ¼ t̂ û
ŝ
; ð16Þ

(a)

(c) (d)

(b)

FIG. 1. Typical leading-order Feynman graphs for γ�q → Pq.
(a) For the 2-body twist-2 and twist-3 Fock components of the
meson. (b) and (c) Contributions from the qq̄g Fock component
with and without triple gluon coupling. (d) A soft contribution
which is to be considered as a part of the 2-body twist-3 DAs.

3Using, for instance, the values for the current-quark masses
quoted in [27], one obtains μπðμ0Þ ¼ 2.64þ0.11

−0.42 GeV for the case
of the π0. Values of 1.8 GeVand 1.9 GeVat μ0 are advocated for
in [28,29], respectively.
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which takes care of the requirement that both t and u should
be large. The strong coupling, αsðμRÞ, is evaluated in the
one-loop approximation from ΛQCD ¼ 0.22 GeV and four
flavors (nf ¼ 4).

A. The twist-2 subprocess amplitudes

As shown in [8] at leading-order (LO) of perturbative
QCD the twist-2 (light-cone) helicity amplitude for trans-
versely polarized photons reads

HP;tw2
0λ;μλ ¼ 1

2
κðabÞP fπ

ffiffiffiffiffi
−t̂

p

ŝþQ2

Z
1

0

dτϕπðτÞ

×

�
ð1þ 2λμÞ

�ðŝτ þQ2ÞðŝþQ2Þ − ûQ2τ̄

ŝ τ̄ðQ2τ̄ − t̂τÞ ea

þðŝτ −Q2ÞðŝþQ2Þ − ûQ2τ̄

ûτðQ2τ − t̂ τ̄Þ eb

�

−ð1 − 2λμÞ
�

ûea
ðQ2τ̄ − t̂τÞ þ

ŝ τ̄ eb
τðQ2τ − t̂ τ̄Þ

��
; ð17Þ

and for longitudinally polarized photons

HP;tw2
0λ;0λ ¼ 2

ffiffiffi
2

p
λκðabÞP fπ

Q
ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2

Z
1

0

dτϕπðτÞ

×

�
ûea

ŝðQ2τ̄ − t̂τÞ −
ðt̂þ τûÞeb

τûðQ2τ − t̂ τ̄Þ
�
; ð18Þ

where

κðabÞP ¼ 2
ffiffiffi
2

p
παsðμ2RÞCabP

CF

NC
: ð19Þ

As usual, CF ¼ ðN2
C − 1Þ=ð2NCÞ is a color factor and

eaðebÞ is the charge of the flavor-aðbÞ quark in units of the
positron charge. The summation over the same flavor labels
is understood. The twist-2 contribution only affects the
subprocess amplitudes for quark helicity nonflip, the quark
helicity-flip amplitudes are zero. Leaving aside the pion
DA the subprocess amplitudes are expressed in terms of the
Lorentz invariant Mandelstam variables. Thus, in any other
c.m.s. the expressions (17) and (18) hold too. In any case
we assume that in the symmetric frame the pion DA is the
usual one.
In the photoproduction limit, Q2 → 0, the longitudinal

amplitude vanishes ∝ Q (see Table I). For the transverse
amplitude, taking into account the τ → τ̄ symmetry prop-
erty of pion DA, we recover the result derived in [8] which
we explicitly quote for later use:

HP;tw2
0λ;μλ ⟶

Q2→0 1

2
κðabÞP fπ

1ffiffiffiffiffi
−t̂

p
Z

1

0

dτ
τ
ϕπðτÞ

× ðð1þ 2λμÞŝ − ð1 − 2λμÞûÞ
�
ea
ŝ
þ eb

û

�
: ð20Þ

B. The 2-body twist-3 contributions

Let us now turn to the 2-body twist-3 contribution to the
subprocess amplitudes. It is tightly connected to the 3-body
twist-3 contribution through the equations of motion
(EOMs). In fact, for light-cone gauge which we have
chosen for the vacuum-pion matrix element (more details
on that choice for the twist-3 calculation have been given in
[16]), the 2-body twist-3 DAs are related to the 3-body one,
ϕ3πðτa; τb; τgÞ, integrated upon the momentum fraction the
constituent gluon carries:

τϕπpðτÞ þ
τ

6
ϕ0
πσðτÞ −

1

3
ϕπσðτÞ ¼ ϕEOM

π2 ðτ̄Þ;

τ̄ϕπpðτÞ −
τ̄

6
ϕ0
πσðτÞ −

1

3
ϕπσðτÞ ¼ ϕEOM

π2 ðτÞ; ð21Þ

where

ϕEOM
π2 ðτÞ ¼ 2

f3π
fπμπ

Z
τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ: ð22Þ

As the 2-body DAs ϕ3π depends on the factorization scale,
see the Appendix. We also omit the scale dependence in its
list of variables. The parameter f3π plays a similar role as
the pion decay constant for the twist-2 DA. It also evolves
with the factorization scale.
With the help of the relation (21) for the 2-body twist-3

DAs we can express the corresponding helicity amplitudes
in terms of, say, ϕπp and ϕEOM

π2 :

HP;tw3;qq̄ ¼ HP;ϕπp þHP;ϕEOM
π2 : ð23Þ

Here the τ → τ̄ symmetry property of ϕπp and ϕπσ was
used. Note that the 3-body DA possesses the symmetry
property

ϕ3πðτa; τb; τgÞ ¼ ϕ3πðτb; τa; τgÞ; ð24Þ

which we also use in the following in order to simplify the
expressions for the subprocess amplitudes. For transversely
polarized photons we find
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H
P;ϕπp

0−λ;μλ ¼ κðabÞP fπμπ

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2

Q2

t̂þQ2

Z
1

0

dτ
ϕπpðτÞ
Q2τ̄ − t̂τ

×

�
Q2ûð2λþ μÞ − ŝ t̂ ð2λ − μÞ

ŝ

×

��
t̂

Q2τ̄ − t̂τ
− 1

��
ea
ŝ
−
eb
û

�
þ ðt̂þQ2Þ eb

û2

�
þ4μt̂

�
ea
ŝ
−
eb
û

��
; ð25Þ

and

H
P;ϕEOM

π2
0−λ;μλ ¼ 1

2
κðabÞP fπμπ

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2

t̂
t̂þQ2

Z
1

0

dτϕEOM
π2 ðτÞ

�
Q2ûð2λþ μÞ − ŝ t̂ ð2λ − μÞ

ŝ

×

�
−
�
Q2 þ ðQ2τ̄ − t̂τÞ
τ̄ðQ2τ̄ − t̂τÞ2 þ t̂ − ðQ2τ − t̂ τ̄Þ

τðQ2τ − t̂ τ̄Þ2
��

ea
ŝ
−
eb
û

�
−
�

τ

τ̄2ðQ2τ̄ − t̂τÞ þ
1

τðQ2τ − t̂ τ̄Þ
�
t̂þQ2

û
eb
û

�

−2μ
�

2Q2

τ̄ðQ2τ̄ − t̂τÞ þ
t̂ −Q2

τðQ2τ − t̂ τ̄Þ
��

ea
ŝ
−
eb
û

��
: ð26Þ

For longitudinally polarized photons we obtain

H
P;ϕπp

0−λ;0λ ¼ −2
ffiffiffi
2

p
κðabÞP fπμπðμ2FÞ

Q
ffiffiffiffiffi
−t̂

p

ŝþQ2

Z
1

0

dτ
ϕπpðτÞ
Q2τ̄ − t̂τ

�
t̂ðQ2 þ ŝτÞ
Q2τ̄ − t̂τ

�
ea
ŝ
−
eb
û

�
−Q2

eb
û

�
; ð27Þ

and

H
P;ϕEOM

π2
0−λ;0λ ¼ −

ffiffiffi
2

p
κðabÞP fπμπ

Q
ffiffiffiffiffi
−t̂

p

ŝþQ2

Z
1

0

dτϕEOM
π2 ðτÞ

��
Q2û

ðQ2τ̄ − t̂τÞ2 þ
t̂ û

ðQ2τ − t̂ τ̄Þ2

−
t̂

τ̄ðQ2τ̄ − t̂τÞ þ
2Q2 t̂ −Q2ûþ ŝ t̂
2τQ2ðQ2τ − t̂ τ̄Þ

��
ea
ŝ
−
eb
û

�
þ
�

t̂τ
τ̄2ðQ2τ̄ − t̂τÞ þ

t̂
τðQ2τ − t̂ τ̄Þ

�
eb
û

�
: ð28Þ

Because of the derivative with respect to the quark transverse momentum involved in the projector (12) terms
proportional to the square of propagators are generated in the amplitudes (25)–(28). All these terms are unproblematic with
one exception4: the term ∝ Q2 t̂=ðτ̄Q2 − τt̂Þ2 in (25) leads to

lim
Q2→0

H
P;ϕπp

0−λ;μλðQ2Þ ¼ ð2λ − μÞκðabÞP fπμπ

ffiffiffiffiffiffiffi
−
û
ŝ

r �
ea
ŝ
−
eb
û

�
ϕπpð0Þ ð29Þ

in the photoproduction limit,Q2 → 0, provided the integration is performed before the limit is taken. Since the DA ϕπp does
not vanish at τ ¼ 0 the integral (29) is in conflict with our study of wide-angle pion photoproduction [16] where we found
that the ϕπp contribution to the subprocess amplitudes is zero. This latter result also implies that the WWapproximation is
zero in wide-angle photoproduction. We regard this apparent contradiction between photoproduction and the Q2 → 0 limit
of electroproduction as a relic of the k⊥-dependence of the projector (12). Although the term (29) is of minor numerical
importance we prefer to have a smooth transition from electro- to photoproduction which we achieve by allowing for a
mean-square quark transverse momentum, hk2⊥i, in the propagator τ̄Q2 − τt̂ of the relevant term

Z
1

0

dτϕπpðτÞ
Q2t̂

ðQ2τ̄ − t̂τÞ2 →
Z

1

0

dτϕπpðτÞ
Q2 t̂

ðQ2τ̄ − t̂τ þ hk2⊥iÞ2
: ð30Þ

With this regulator, being reminiscent to the k⊥ dependence of the propagator, we arrive at

lim
Q2→0

H
P;ϕπp;reg
0−λ;μλ ðQ2Þ ¼ 0 ð31Þ

4In this context it is important to realize that ΦEOM
π2 vanishes at the end points τ ¼ 0 and 1; see Eq. (59) below.
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and so obtain consistency with the photoproduction analy-
sis. Following [10] we adopt the value 0.5 GeV2 for hk2⊥i in
our numerical studies. It is straightforward to show that the

subprocess amplitude H
P;ϕπp

0−λ;0λ, Eq. (27), vanishes in the
photoproduction limit Q2 → 0.
In Table I we list the power behavior of various

contributions to the subprocess amplitudes for Q2 → 0.
The ϕEOM

π2 part for longitudinally polarized photons,
Eq. (28), is singular in the photoproduction limit

H
P;ϕEOM

π2
0−λ;0λ ⟶

Q2→0 1ffiffiffi
2

p κðabÞP fπμπ

ffiffiffiffiffi
−t̂

p

Q

Z
1

0

dτ
ττ̄

ϕEOM
π2 ðτÞ

�
ea
ŝ
−
eb
û

�
:

ð32Þ

As we will see in the following section, this singularity is
canceled in the full subprocess amplitude by a

corresponding singularity in the 3-body contribution.
Subtracting the singularity (32) the remaining contribution

to H
P;ϕEOM

π2
0−λ;0λ vanishes in the photoproduction limit; see

Table I. Hence, the only 2-body twist-3 contribution that

survives in the photoproduction limit is H
P;ϕEOM

2

0−λ;μλ as we
found in [16].

C. The 3-body twist-3 contributions

Typical lowest order Feynman graphs relevant for the 3-
body twist-3 contributions are shown in Fig. 1(b)–1(c). The
16 Feynman graphs (b) and (c) make up the 3-body
contribution. Graphs of type (d) for which the constituent
gluon of the pion couples to one of its quark constituents,
are soft contributions and are to be considered as parts of
the 2-body twist-3 meson DA. In light-cone gauge the
gluon field, AμðxÞ, appearing in perturbation theory, is
related to the gluon field strength tensor Gμν which
defines the 3-body DA, ϕ3π , [30] by (n being a lightlike
vector)

Ar
ρðzÞ ¼ lim

ϵ→0
nν

Z
∞

0

dσe−ϵσGr
ρνðzþ nσÞ: ð33Þ

In connection with the definition of the 3-body twist-3 DA
(see, for instance, [29,31]) this relation between Aμ andGμν

allows to derive the 3-body projector, qq̄g → π, to be
used in perturbative calculations involving the qq̄g
Fock component [16]. For an outgoing pion this projector
reads

PPðabÞρ;r
3;lm ¼ −i

g
f3πðμFÞ
2

ffiffiffiffiffiffiffiffiffi
2NC

p CabP
ðtrÞlm

CF
ffiffiffiffiffiffiffi
NC

p γ5ffiffiffi
2

p σμνq0μg
νρ
⊥
ϕ3πðτa; τb; τg; μFÞ

τg
: ð34Þ

The transverse metric tensor is defined as

gνρ⊥ ¼
�
gνρ −

k0j
νq0ρ þ q0νk0j

ρ

k0j · q
0

�
; ð35Þ

and tr ¼ λr=2 is the SU(3) color matrix for a gluon of color r while g denotes the QCD coupling.
For the sake of legibility we split the 3-body contribution into two parts:

HP;tw3;qq̄g ¼ HP;qq̄g;CG þHP;qq̄g;CF : ð36Þ

The first part is proportional to the color factor

CG ¼ CF −
1

2
CA; ð37Þ

which appears only in the 3-body twist-3 contributions. Here, as usual, CA ¼ NC. The second part, Htw3;qq̄g;CF , is
proportional to CF as is the case for the 2-body contributions. For transversely polarized photons the 3-body twist-3
contributions read

TABLE I. Power behavior of various twist-2 and twist-3
contributions for transverse and longitudinal photons for
Q2 → 0. The singularities (32) and (42) are already subtracted.
Note that, according to the prerequisite of the handbag mecha-
nism, −t̂ and −û are of the order of ŝ.

H Transverse Longitudinal

Twist-2 ∼ fπffiffî
s

p ∼ fπffiffî
s

p Qffiffî
s

p

Twist-3, 2-body, ϕπp ∼ fπμπ
ŝ

Q2

ŝ
∼ fπμπ

ŝ
Qffiffî
s

p

Twist-3, CF, ϕ3π ∼ f3π
ŝ ∼ f3π

ŝ
Qffiffî
s

p

Twist-3, 3-body, CG ∼ f3π
ŝ ∼ f3π

ŝ
Qffiffî
s

p
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HP;qq̄g;CG
0−λ;μλ ¼ κðabÞP f3π

CG

CF

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2
ðQ2ûð2λþ μÞ − ŝ t̂ ð2λ − μÞÞ

�
ea
ŝ2û

þ eb
ŝû2

�

×
Z

1

0

dτ
τ̄

Z
τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ
�

1

τ̄ − τg
−

t̂
ðQ2τ̄ − t̂τÞτg

�
; ð38Þ

and

HP;qq̄g;CF
0−λ;μλ ¼ κðabÞP f3π

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2

Z
1

0

dτ
Z

τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ
�
Q2ûð2λþ μÞ − ŝ t̂ ð2λ − μÞ

ŝ

×

��
ea
ŝ
−
eb
û

��
τg

τ̄ðQ2τ̄ − t̂τÞðτ̄ − τgÞ
þ t̂
τðQ2τ − t̂ τ̄ÞðQ2ðτ þ τgÞ − t̂ðτ̄ − τgÞÞ

�

−
Q2τg − t̂ð1 − τgÞ

τ̄ðQ2τ̄ − t̂τÞðτ̄ − τgÞ
eb
û2

�
þ 1

τ

2μt̂
Q2τ − t̂ τ̄

�
ea
ŝ
−
eb
û

��
; ð39Þ

respectively. For longitudinally polarized photons they are given by

HP;qq̄g;CG
0−λ;0λ ¼ 2

ffiffiffi
2

p
κðabÞP f3π

CG

CF

Q
ffiffiffiffiffi
−t̂

p

ŝþQ2

�
ea
ŝ
þ eb

û

�Z
1

0

dτ
τ̄

Z
τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ
�

1

τ̄ − τg
−

t̂
ðQ2τ̄ − t̂τÞτg

�
; ð40Þ

and

HP;qq̄g;CF
0−λ;0λ ¼ 2

ffiffiffi
2

p
κðabÞP f3π

Q
ffiffiffiffiffi
−t̂

p

ŝþQ2

Z
1

0

dτ
Z

τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ
��

ea
ŝ
−
eb
û

��
ûτg

τ̄ðQ2τ̄ − t̂τÞðτ̄ − τgÞ

þ t̂ û
τðQ2τ − t̂ τ̄ÞðQ2ðτ þ τgÞ − t̂ðτ̄ − τgÞÞ

þ Q2ûþ ŝ t̂
2Q2τðQ2τ − t̂ τ̄Þ

�
þ t̂ − ðt̂þQ2Þτg
τ̄ðQ2τ̄ − τt̂Þðτ̄ − τgÞ

eb
û

�
: ð41Þ

Evidently, HP;qq̄g;CF
0−λ;0λ is singular in the photoproduction limit

HP;qq̄g;CF
0−λ;0λ ⟶

Q2→0
−

ffiffiffi
2

p
κðabÞP f3π

ffiffiffiffiffi
−t̂

p

Q

�
ea
ŝ
−
eb
û

�Z
1

0

dτ
ττ̄

Z
τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ: ð42Þ

The τg-integral in this relation is just fπμπϕEOM
π2 =ð2f3πÞ; see (22). Using this we notice that the singular part of HP;qq̄g;CF

0−λ;0λ

exactly cancels that of H
P;ϕEOM

π2
0−λ;0λ given in (32). Subtracting this singularity from HP;qq̄g;CF

0−λ;0λ this amplitude vanishes

proportional to Q in the photoproduction limit as HP;qq̄g;CG
0−λ;0λ does; see Table I.

D. Remarks concerning gauge invariance

Probing current conservation of the twist-3 amplitudes we find that the 2-body twist-3 contributions proportional to ϕπp
as well as the 3-body twist-3 contributions proportional to CG respect it while the other two don’t. Replacing the photon
polarization vector by the corresponding momentum in the ϕEOM

π2 contribution the term

H
P;ϕEOM

π2
elm ¼ κðabÞP ffiffiffi

2
p fπμπ

ffiffiffiffiffi
−t̂

p
ðt̂þQ2Þ

�
ea
ŝ
−
eb
û

�Z
1

0

dτ
τðτ̄ t̂−τQ2Þϕ

EOM
π2 ð43Þ

is left over. Expressing ΦEOM
π2 through the 3-body DA with the help of Eq. (22) one sees that (43) is canceled by a

corresponding term from the 3-body twist-3 contributions proportional to CF. Hence, the sum of HP;ϕEOM
2 and HP;qq̄g;CF

respects current conservation.
We also have proven that the 2- and 3-body twist-3 contributions are separately gauge invariant with respect to the choice

of the covariant gluon propagator

P. KROLL and K. PASSEK-KUMERIČKI PHYS. REV. D 104, 054040 (2021)

054040-8



gμν − ζc
kμgkνg
k2g

; ð44Þ

where kg is the momentum of the virtual gluon and ζg an
arbitrary gauge parameter. We also checked the invariance
of the subprocess amplitudes with respect to axial light-
cone gauges [32,33]

gμν −
nμkνg þ nνkμg

n · kg
; ð45Þ

where n is an arbitrary lightlike vector and n · kg ≠ 0. In
contrast to the covariant gauges the separate pieces,
HP;ϕEOM

π2 and HP;qq̄g;CF , are not invariant with respect to

axial gauges but their sum does not depend on n. Thus, we
can conclude that the twist-3 subprocess amplitudes are
QCD gauge invariant. The choice of gauge for the external
gluon was discussed in [16].

E. The complete twist-3 amplitude

In order to present finally a gauge invariant result we
have to add HP;ϕEOM

π2 [(26), (28)] and HP;qq̄g;CF [(39), (41)]

HP;CF;ϕ3π ¼ HP;ϕEOM
2 þHP;qq̄g;CF : ð46Þ

Since ϕEOM
π2 is an integral upon the 3-body DA ϕ3π , see

Eq. (22), the sum (46) can solely be expressed through ϕ3π

and simplifications occur.

For transversely polarized photons the sum (46) reads

HP;CF;ϕ3π
0−λ;μλ ¼ κðabÞP f3π

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

ŝþQ2

Z
1

0

dτ
Z

τ̄

0

dτgϕ3πðτ; τ̄ − τg; τgÞ
�
Q2ûð2λþ μÞ − ŝ t̂ ð2λ − μÞ

ŝ

��
ea
ŝ
−
eb
û

�

×

�
1

τ̄ðQ2τ̄ − t̂τÞðτ̄ − τgÞ
−

t̂ðt̂þQ2Þ
τðQ2τ − t̂ τ̄Þ2ðQ2ðτ þ τgÞ − t̂ðτ̄ − τgÞÞ

−
Q4t̂ðt̂ −Q2Þðτ̄ − τÞ

ðt̂þQ2Þττ̄ðQ2τ̄ − t̂τÞ2ðQ2τ − t̂ τ̄Þ2τg

�
−
�

Q2t̂ðτ̄ − τÞ
ττ̄ðQ2τ̄ − t̂τÞðQ2τ − t̂ τ̄Þτg

þ 1

τ̄2ðτ̄ − τgÞ
�
eb
û2

�

þ 2μ

�
ea
ŝ
−
eb
û

�
2Q4t̂ðτ̄ − τÞ

ðt̂þQ2Þττ̄ðQ2τ̄ − t̂τÞðQ2τ − t̂ τ̄Þτg

�
: ð47Þ

For longitudinally polarized photons we have

HP;CF;ϕ3π
0−λ;0λ ¼ 2

ffiffiffi
2

p
κðabÞP f3π

Q
ffiffiffiffiffi
−t̂

p

ŝþQ2

Z
1

0

dτ
Z

τ̄

0

dτgϕ3πðτ; τ̄ − τg; τgÞ
��

−
Q2û

ðQ2τ̄ − t̂τÞ2τg
−
t̂ðQ2τ − t̂ τ̄Þ −Q2ûτ
τðQ2τ − t̂ τ̄Þ2τg

þ t̂ðτ̄ − τgÞ þ ûτg
τ̄ðQ2τ̄ − t̂τÞτgðτ̄ − τgÞ

−
t̂ ûðt̂þQ2Þ

τðQ2τ − t̂ τ̄Þ2ðQ2ðτ þ τgÞ − t̂ðτ̄ − τgÞÞ
��

ea
ŝ
−
eb
û

�

−
�

Q2t̂ðτ̄ − τÞ
ττ̄ðQ2τ − t̂ τ̄ÞðQ2τ̄ − τt̂Þτg

þ 1

τ̄2ðτ̄ − τgÞ
�
eb
û

�
: ð48Þ

There is no singularity for Q2 → 0 in the amplitude for
longitudinally polarized photons, the singularities (32) and
(42) cancel as mentioned before. The amplitude HP;CF;ϕ3π

0−λ;0λ
vanishes proportional to Q for Q2 → 0.
The complete twist-3 subprocess amplitude is given by

HP;tw3 ¼ HP;ϕπp;reg þHP;qq̄g;CG þHP;CF;ϕ3π : ð49Þ

It meets all theoretical requirements concerning gauge
invariance. For longitudinally polarized photons the three
contributions in Eq. (49) vanish in the photoproduction
limit as well as in the DVMP limit, see Tables I and II.

TABLE II. Power behavior of various twist-2 and twist-3
contributions for transverse and longitudinal photons for t̂ → 0
in the generalized Bjorken regimewhere ŝ and −û are of the order
of Q2.

H Transverse Longitudinal

Twist-2 ∼ fπ
Q

ffiffiffiffi
−t̂

p
Q

∼ fπ
Q

Twist-3, 2-body, ϕπp ∼ fπμπ
Q2 ∼ fπμπ

Q2

ffiffiffiffi
−t̂

p
Q

Twist-3, CF, ϕ3π ∼ f3π
Q2 ∼ f3π

Q2

ffiffiffiffi
−t̂

p
Q

Twist-3, 3-body, CG ∼ f3π
Q2 ∼ f3π

Q2

ffiffiffiffi
−t̂

p
Q
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For nonzero t̂ and Q2 the propagator denominators
τQ2 − τ̄ t̂ and τ̄Q2 − τt̂ do not have a pole in the physical
region 0 ≤ τ ≤ 1; see Fig. 2. Consequently, all twist-3
contributions are free from singularities generated in the
end-point regions where either τ or τ̄ tends to zero. Possible
factors 1=τ or 1=τ̄ are canceled by the end-point zeros of
ϕ3π , i.e., ϕEOM

π2 . In the limits t̂ → 0 and Q2 → 0, however,
propagator poles occur which lead to singularities in the
ϕπp contribution since this DA does not vanish for τ → 0 or
1. For the photoproduction limit the singularity has already
been discussed by us; see Eq. (29) and the ensuing
paragraph. For the DVMP limit see Sec. III G.

F. The photoproduction limit, Q2 → 0

For later use we also quote the complete photoproduction
limit of the twist-3 subprocess amplitude

HP;tw3
0−λ;μλ⟶

Q2→0
κðabÞP f3πð2λ − μÞ

ffiffiffiffiffiffiffiffiffi
−û ŝ

p

×
Z

1

0

dτ
Z

τ̄

0

dτg
τg

ϕ3πðτ; τ̄ − τg; τgÞ

×

��
1

τ̄2
−

1

τ̄ðτ̄ − τgÞ
��

ea
ŝ2

þ eb
û2

�

þ −
CG

CF

2

ττg

t̂
ŝ û

�
ea
ŝ
þ eb

û

��
: ð50Þ

This amplitude is in agreement with the results presented in
[16]. It is free of end-point singularities. The Q2 → 0 limit
of the twist-2 subprocess amplitude is given in Eq. (20).
Properties of the photoproduction limit have been dis-

cussed above. The behavior of the various contributions to
the subprocess for Q2 → 0 are listed in Table I.

G. The DVMP limit, t̂ → 0

The subprocess amplitudes discussed in this section hold
in any c.m.s. as well as in the limitsQ2 → 0 and t̂ → 0. The
latter limit is the region of DVMPwhere factorization of the
leading-twist contribution has been shown to hold for large
Q2 [2], for instance in Ji’s frame [34]. In this frame in which
skewness is nonzero, ŝ and û are related to Q2 by

ŝ ¼ x − ξ

2ξ
Q2; û ¼ −

xþ ξ

2ξ
Q2; ð51Þ

i.e., ŝ and û are of order of Q2. The behavior of the various
contributions to the subprocess amplitudes for t̂ → 0 are
compiled in Table II. One sees from that table that the
asymptotically dominant contribution comes from longi-
tudinally polarized photons at the twist-2 level. In fact, the
t̂ → 0 limit of (18) is the familiar LO, leading-twist result
[2]. On the other hand, the transverse leading-twist ampli-
tude vanishes proportional to

ffiffiffiffiffi
−t̂

p
and, compared to the

longitudinal amplitude, is suppressed by 1=Q. Table II also
reveals that all twist-3 contributions for longitudinally
polarized photons vanish ∼

ffiffiffiffiffi
−t̂

p
as a consequence of

angular momentum conservation. The twist-3 contributions
for transversely polarized photons remain finite for t̂ ¼ 0
but are suppressed by μπ=Q or f3π=Q compared to the
dominant twist-2 contribution for longitudinally polarized
photons.
It is also informative to see the twist-3 subprocess

amplitudes in the DVMP limit:

H
P;ϕπp

0−λ;μλ⟶
t̂→0 ð2λþ μÞκðabÞP fπμπ

ffiffiffiffiffiffiffi
−
û
ŝ

r �
ea
ŝ
þ ŝ
û
eb
û

� Z
1

0

dτ
τ̄
ϕπpðτÞ;

HP;qq̄g;CG
0−λ;μλ ⟶

t̂→0 ð2λþ μÞκðabÞP f3π

�
1 −

1

2

CA

CF

�
Q2ffiffiffiffiffiffiffiffiffi
−ŝ û

p
�
ea
ŝ
þ eb

û

�Z
1

0

dτ
τ̄

Z
τ̄

0

dτg
τgðτ̄ − τgÞ

ϕ3πðτ; τ̄ − τg; τgÞ;

HP;CF;ϕ3π
0−λ;μλ ⟶

t̂→0
− ð2λþ μÞκðabÞP f3π

ffiffiffiffiffiffiffi
−
û
ŝ

r �
ea
ŝ
þ ŝ
û
eb
û

�Z
1

0

dτ
τ̄2

Z
τ̄

0

dτg
τgðτ̄ − τgÞ

ϕ3πðτ; τ̄ − τg; τgÞ: ð52Þ

FIG. 2. The function τ ¼ Q2=t̂
1þQ2=t̂. For −Q2=t̂ > 1 a logarithmic

scale is used.
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In the DVMP limit only the helicity nonflip amplitude
HP;tw3

0−;þþ is left over while HP;tw3
0−;−þ vanishes ∝ t̂ as a

consequence of angular momentum conservation. Thus,
a full twist-3 DVMP analysis modifies the WW approxi-
mation employed in [10,11] by a change of the DA ϕπp

generated through the 3-body DA via the equation of
motion (21) and by the additional 3-body contributions.
From the properties of the 3-body DA, ϕ3π [see Eq. (55)],
it is clear that the 3-body contributions5given in (52) do not
have end-point singularities. On the other hand, the ϕπp

contribution possesses an end-point singularity since this
DA does not vanish at the end points as we already
remarked. This singularity has been regularized in
[10,11] by keeping the quark transverse momentum in
the propagators. More details on the twist-3 contribution in
the DVMP limit will be given in a forthcoming paper [35].

IV. DAs, FORM FACTORS AND PARAMETERS

For the soft physics input to our calculation of pion
electroproduction we use the same DAs and form factors as
for π0 photoproduction [16]. Thus, for the twist-2 pion DA
we use the truncated Gegenbauer expansion

ϕπðτÞ ¼ 6ττ̄½1þ a2C
3=2
2 ð2τ − 1Þ�; ð53Þ

with the recent lattice QCD result on the second
Gegenbauer coefficient [36]

a2ðμ0Þ ¼ 0.1364� 0.0213 ð54Þ

at the initial scale μ0 ¼ 2 GeV. The coefficient a2 as all
other expansion coefficients depend on the factorization
scale, μF, which is defined by (16). The corresponding
anomalous dimensions are quoted in the Appendix.
For the 3-body twist-3 DA we follow [31] and use the

truncated conformal expansion

ϕ3πðτa; τb; τgÞ ¼ 360τaτbτ
2
g

�
1þ ω1;0

1

2
ð7τg − 3Þ

þ ω2;0ð2 − 4τaτb − 8τg þ 8τ2gÞ

þ ω1;1ð3τaτb − 2τg þ 3τ2gÞ
�
; ð55Þ

with

ω10ðμ0Þ ¼ −2.55; ω20ðμ0Þ ¼ 8.0; ω11ðμ0Þ ¼ 0.0:

ð56Þ

The coefficients ω20 and ω11 mix under evolution; see the
Appendix. The 3-body DA is normalized as

Z
1

0

dτ
Z

τ̄

0

dτgϕ3πðτ; τ̄ − τg; τgÞ ¼ 1: ð57Þ

For the parameter f3π we take

f3πðμ0Þ ¼ 0.004 GeV2: ð58Þ

This parameter as well as the expansion coefficientω10 have
beenderived fromQCDsumrules [29].According to [29] the
uncertainties of these parameters are large of the order of
30%. The expansion coefficient ω20 has been adjusted by us
[16] to the CLAS data on π0 photoproduction [15].
Using (55), we obtain the function ϕEOM

π2 from the
integral (22)

ϕEOM
π2 ðτÞ¼ 120

f3π
fπμπ

τð1− τÞ3
�
1þ1

4
ω1;0ð1−7τÞ

þ2

5
ω2;0ð1−7τþ11τ2Þ− 1

10
ω1;1ð1−7τþ6τ2Þ

�
:

ð59Þ

The equations of motion (21) can be suitably combined
and solved for ϕπp and ϕπσ [16]:

ϕπσðτÞ ¼ 6ττ̄

�Z
dτ

τ̄ϕEOM
π2 ðτ̄Þ − τϕEOM

π2 ðτÞ
2τ2τ̄2

þ C

�
;

ϕπpðτÞ ¼
1

6ττ̄
ϕπσðτÞ þ

1

2τ
ϕEOM
π2 ðτ̄Þ þ 1

2τ̄
ϕEOM
π2 ðτÞ: ð60Þ

The constant of integration, C, is fixed from the constraint

Z
1

0

dτϕπpðτÞ ¼ 1: ð61Þ

Thus, for a given 3-body DA, ϕ3π , the 2-body twist-3 DAs
are uniquely fixed. Since we started from a truncated
expansion of ϕ3π we arrive at truncated Gegenbauer
expansions of the 2-body twist-3 DAs [16] (the Cm

n denote
the Gegenbauer polynomials):

ϕπpðτÞ ¼ 1þ 1

7

f3π
fπμπ

ð7ω1;0 − 2ω2;0 − ω1;1Þ

× ð10C1=2
2 ð2τ − 1Þ − 3C1=2

4 ð2τ − 1ÞÞ: ð62Þ

The DA ϕπσ is not needed by us in this work explicitly.
Thus, we refrain from quoting it here. It can be found in
[16]. If ϕ3π ¼ 0 Eq. (60) reduces to the well-known WW
approximation of the DAs

ϕWW
πp ¼ 1; ϕWW

πσ ¼ 6ττ̄: ð63Þ

Let us now turn to the discussion of the form factors,
FP
i ðtÞð¼ RP

i ðtÞ; SPi ðtÞÞ which encode the soft physics con-
tent of the nucleon matrix element. The form factors are

5Note that the 2-body twist-3 contribution proportional to
ϕEOM
π2 and contributing to HP;CF;ϕ3π vanishes for t̂ → 0.
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given by process specific combinations of the correspond-
ing flavor form factors, Fa

i , which are defined as 1=x-
moments of zero-skewness GPDs, Ka

i ,

Fa
i ðtÞ ¼

Z
1

0

dx
x
Ka

i ðx; tÞ: ð64Þ

Here, x ¼ ðkj þ k0jÞþ=ðpþ p0Þþ is the average momentum
fraction the two active quarks carry and a is a valence
quark. The restriction to valence quarks is an assumption
for charged pions which will be justified at the end of this
section. For π0-production this restriction is a consequence
of charge-conjugation parity.
The usual GPDs, Ki, parametrize the soft proton-proton

matrix elements. However, for electroproduction of charged
pions proton-neutron transitionmatrix elements appear.With
the help of SU(3) flavor symmetry these transitionGPDsand,
hence, the corresponding form factors, can be related to the
diagonal proton-proton ones [37]:

γ�p → πþn∶ Fπþ
i ðtÞ ¼ Fip→nðtÞ ¼ Fu

i ðtÞ − Fd
i ðtÞ;

γ�n → π−p∶ Fπ−
i ðtÞ ¼ Fin→pðtÞ ¼ Fu

i ðtÞ − Fd
i ðtÞ: ð65Þ

For π0 production there are two subprocesses γ�u → π0u and
γ�d → π0d. In both cases ea ¼ eb. It is therefore convenient
to pull out the charges from the subprocess amplitudes for
this process and to absorb them into the form factors together
with the corresponding flavor weight factors (13). Thus, the
form factors specific to π0 production read

Fπ0
i ðtÞ ¼ 1ffiffiffi

2
p ½euFu

i ðtÞ − edFd
i ðtÞ�: ð66Þ

Consequently, the subprocess amplitudes do not depend
anymore on the flavors in the case of π0 production.
In [6] the GPDs H and E for valence quarks have been

extracted from the data on the magnetic and electric form
factors of the nucleon exploiting the sum rules for the form
factors with the help of a parametrization of the zero
skewness GPDs

Ka
i ¼ kai ðxÞ exp ½tfai ðxÞ�: ð67Þ

In [5,6] it is advocated for the following parametrization of
the profile function6

fai ðxÞ ¼ ðBa
i − α0i

a ln xÞð1 − xÞ3 þ Aa
i xð1 − xÞ2; ð68Þ

with the parameters Ai, Bi and αi fitted to the data of the
nucleon’s electromagnetic form factors. The forward limit
of the GPD Ha is given by the flavor-a parton density,

qaðxÞ which is taken from [40]. Since the forward limit of
Ea is not accessible in deep-inelastic scattering it is,
therefore, to be determined in the form factor analysis,
too. The most prominent feature of the GPDs, parametrized
as in (67) and (68), is the strong x − t correlation [5,6]: The
GPDs at small x control the behavior of their associated
flavor form factors at small −t whereas large x determine
their large −t behavior. The flavor form factors Ra

V and Ra
T

are evaluated from the GPDs (67), (68). These flavor form
factors have also been used in wide-angle Compton
scattering [6].
For the form factor, RA, being related to the GPD H̃, we

use example #1 discussed in [41]. This example is extracted
from the data on the axial form factor of the nucleon and on
the helicity correlations, ALL and KLL, measured in wide-
angle Compton scattering [42,43].
For the transversity GPDs HT and ĒT the parametriza-

tion (67), (68) is also employed and the parameters, Ba
i and

α0i
a, fixed from the low −t data on deeply virtual pion

electroproduction [10,11]. The values of these parameters
can be found in [16]. For wide-angle photo- and electro-
production the large −t behavior, i.e., the second term in the
profile function, is also required. As in [16] we use for the
relevant parameter Aa

i the value 0.5 GeV2 for all trans-
versity GPDs. With this choice a good fit to the CLAS data
[15] on π0 photoproduction has been obtained. At present
there is no information available on the GPD H̃T and its
associated from factor SS. In order to have an at least rough
estimate of its importance we assume, with regard to the
definition of the GPD ĒT

ĒT ¼ 2H̃T þ ET; ð69Þ

that SaS ¼ S̄aT=2. This assumption is equivalent to the
neglect of ET .
Last, but not least, we want to discuss a property of the

GPDs (67), (68) which is of particular significance for
exclusive wide-angle processes. With the help of the saddle
point method [5] one can show that moments of these
GPDs, fall as a power of t at large −t:

Fa
i ∼ 1=ð−tÞdai ; ð70Þ

where

dai ¼ ð1þ βai Þ=2; ð71Þ

and βai is the power of 1 − xwith which the forward limit of
the GPD Ka

i vanishes for x → 1. Equation (70) is a
generalization of the famous Drell-Yan relation [44]. The
phenomenological values of the powers dai are listed in
Table III. Note the differences between the powers of u and
d-quarks. This implies that at very large −t only u-quark
flavor form factors contribute. In case of the helicity nonflip
GPDs the powers βui are slightly larger than expected

6This ansatz is now supported by light-front holographic QCD
[38]. A similar parametrization has been proposed in [39].
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according to perturbative QCD arguments [45,46]. We
however stress that, in practice, the powers, βai , are fixed in
a region of x less than about 0.8 for the helicity nonflip
GPDs, and even a smaller x-region for the transversity
ones. For larger x there is no experimental information on
the forward limits available at present. Therefore, the
powers βai are to be considered as effective powers which
are likely subject to changes as soon as data at larger x
become available. These powers affect the energy depend-
ence of the cross sections. For photoproduction the energy
dependence of the cross section at fixed cos θ can readily be
read off from (9) and the subprocess amplitudes discussed
in Sec. III. One finds the familiar 1=s7 scaling behavior of
the cross section at fixed cos θ for the twist-2 contribution
and 1=s8 for the twist-3 one provided the form factors,
including the prefactors of

ffiffiffiffiffi
−t

p
and t appearing in (9), drop

as 1=t2. Deviations from that behavior change the scaling
behavior as do the logs from αs and the evolution of the DA
parameters. As can be seen from Table III our form factors
increase the power of swith which the cross section falls. In
the energy range we explore the effective scaling is 1=s9.
As is well-known the sea-quark densities fall faster to

zero for x → 1, typically as ∼ð1 − xÞ7 than the valence
quark densities; see for instance [40]. This is also expected
from perturbative QCD arguments [45]. The forward
limits of the other GPDs may fall even more rapidly than

that of Hsea. According to (70) the sea-quark form factor
falls as

Rsea
V ðtÞ ∼ 1=ð−tÞ4: ð72Þ

The other sea-quark form factors decrease like Rsea
V or even

faster. Thus, we conclude that sea-quark contributions to
wide-angle electroproduction are strongly suppressed and
therefore neglected by us.

V. PHOTOPRODUCTION

The photoproduction cross section

dσP

dt
¼ 1

32πðs −m2Þ2
X
ν0μ

jMP
0ν0;μþj2 ð73Þ

is evaluated from (9) using the subprocess amplitudes (20)
and (50) as well as the DAs and form factors described in
Sec. IV. The resulting cross sections for the various pion
channels, scaled by s7 in order to take away most of the
energy dependence, are displayed in Figs. 3 and 4 as solid
lines and compared to experiment [15,21,47]. Of course,
there is agreement with the CLAS data [15] since
the expansion coefficient ω20 is fitted to these data. On
the other hand, there is substantial disagreement with the
SLAC data [21]. In particular the SLAC π0 data are about an
order of magnitude larger than the new CLAS data in the
vicinity of 90 degrees. With regard to the prerequisite of the
handbag approach that the Mandelstam variables should be
much larger than the hadronic scale,Λ2, we only show results
for −t and −u larger than 2.5 GeV2. This is a compromise
between the requirement of the handbag approach, on theone
side, and having available a not too small range of cos θ for
the experimentally accessible values of s on the other side.

TABLE III. The powers di for the form factors contributing to
the wide-angle photo- and electroproduction of pions. The table is
taken from ref. [16].

Ra
V Ra

A Ra
T SaT S̄aT

u 2.25 2.22 2.83 2.5 2.5
d 3.0 2.61 3.12 3.5 3.0

FIG. 3. Left: The cross section for π0 photoproduction versus the cosine of the c.m.s. scattering angle, θ, at s ¼ 11.06 GeV2. The solid
(dotted) curve represents the full (twist 2) result using the same parameters as in [16]. The red dashed curve is obtained with the same
parameters as in [16] but with the amplitudes taken at the fixed scale μR ¼ μF ¼ 1 GeV, while for the blue dashed curve we additionally
change ω20 ¼ 10.3. Data taken from [21] (full circles) at s ¼ 10.3 GeV2 and from CLAS [15] (open circles) at s ¼ 11.06 GeV2. The
cross sections are scaled by s7 and the theoretical results are only shown for −t and −u larger than 2.5 GeV2. Right: Results for the π−

photoproduction cross section at s ¼ 11.3 GeV2. Data, shown as open triangles, are from [47]. For other notations it is referred to the
figure on the left hand side.
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The corresponding results for the π� cross sections are
shown in Figs. 3 and 4 and compared to the SLAC [21] and
Jefferson Lab Hall A data [47]. For positive values of cos θ
theory and experiment are close to each other but near
90 degrees and in the backward hemisphere our results are
well below the data [21,47] (by a factor of 2 to 3). In
contrast to π0 photoproduction the twist-2 contribution to
the π� cross section is substantial in the forward hemi-
sphere; see Figs. 3 and 4. This can be understood from
properties of the subprocess amplitude (20):

Hπ�

Hπ0
∼
eaûþ ebŝ
ŝþ û

: ð74Þ

This ratio is large for small −t̂ ¼ −ŝ − û. With rising −t,
i.e., decreasing cos θ, the twist-3 contribution quickly takes
the lead. The twist-2—twist-3 interference is however
noticeable in the entire wide-angle region even for π0

photoproduction. At cos θ ≃ −0.4 the interference term still
amounts to about 10%, positive for πþ production and
negative for the case of π−. With increasing s the twist-2
contribution becomes more important (see Fig. 4) since, as
is evident from Table I, the twist-3 subprocess amplitude is
suppressed by an extra factor 1=

ffiffiffî
s

p
.

The π− photoproduction cross section is larger than the
πþ one by a factor 2 − 3. The reason for this fact are the
quark-charge factors in (20) and (50) which favor the π−

channel [n ¼ 1, 2, see (50)]

Hπ−

Hπþ ∼
edûn þ euŝn

euûn þ edŝn
: ð75Þ

The absolute value of this ratio is larger than 1.
The discrepancy between theory and experiment is larger

at s ¼ 15 GeV2 than at 10.3 GeV2. It seems that the
predicted energy dependence is too strong. It also seems
that the ratio of the π− and πþ cross sections at 90° is too
large as compared to the Hall A data [47]. Some fine tuning

of the soft-physics input is perhaps necessary. We however
hesitate to do so since the SLAC data are very old and a
remeasurement of wide-angle π� photoproduction seems to
be advisable.
At the end of Sec. IV we already discussed the energy

dependence of the handbag approach. As we mentioned in
Sec. IV, in the range of s we are interested in, our cross
section effectively behaves ∝ s−9 in the region of twist-3
dominance. This is perhaps somewhat too strong. Since our
form factors represent 1=x-moments of GPDs they evolve
with the scale in principle. Because of the strong x − t
correlation the form factors at large −t are under control of
a narrow region of large x. With increasing −t the affected
region approaches 1 and becomes narrower. Therefore, our
form factors approximately become equal to the scale-
independent lowest moments of the GPDs concerned.
Thus, as it is argued in [5], the 1=x-factors in the form
factors can be viewed as a phenomenological estimate of
effects beyond the strict Λ=

ffiffiffiffiffi
−t

p
expansion (see Sec. II).

One may likewise argue that the disregard of the scale-
dependence of the form factors also requires the neglect of
the evolution of the DAs for consistency. Thus, as already
discussed in [16], we also evaluate the photoproduction
cross sections at the fixed scale of μR ¼ μF ¼ 1 GeV as an
alternative and fit the coefficient ω20 to the CLAS and
SLAC data. This procedure hardly alters the size and shape
of the cross sections but reduces their effective energy
dependence to about s−8 in regions of twist-3 dominance.
The results we obtain with the fixed scale are shown as
dashed lines in Fig. 3: red for the usual parameters taken
form [16] and blue for ω20 ¼ 10.3. They agree fairly well
with the data and one notes that freezing the scale has
bigger effect than changing ω20.

VI. ELECTROPRODUCTION

As is well known, for pion electroproduction there are
four partial cross sections in contrast to just Eq. (73) for
photoproduction. For the ease of access we repeat the

FIG. 4. Results for the πþ photoproduction cross sections vs cos θ, at s ¼ 10.3 GeV2 (left) and 15 GeV2 (right). The full circles are the
data from [21] at s ¼ 10.3 and 15 GeV2; the open triangles are from [47] at s ¼ 11.3 GeV2. At s ¼ 15 GeV2 results are shown for −t
and −u larger than 4 GeV2. For other notations it is referred to Fig. 3.
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definitions of the partial cross sections in terms of helicity
amplitudes

dσL
dt

¼2ϱps½jM0þ;0þj2þjM0−;0þj2�;
dσT
dt

¼ϱps
X
μ

½jM0þ;μþj2þjM0−;μþj2�;

dσLT
dt

¼−
ffiffiffi
2

p
ϱpsRe

X
μ

μ½M�
0−;0þM0−;μþþM�

0þ;0þM0þ;μþ�;

dσTT
dt

¼−2ϱpsRe½M�
0−;þþM0−;−þþM�

0þ;þþM0þ;−þ�;
ð76Þ

where the phase space factor is given by

ϱps ¼
h
32πðs −m2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛMðs;−Q2; m2Þ

q i
−1
; ð77Þ

where ΛM is the Mandelstam function.7

The partial cross sections sum up to the unpolarized
ep → eπN cross section:

d4σ
dsdQ2dtdφ

¼ αemðs−m2Þ
16π2E2

Lm
2Q2ð1−εÞ

�
dσT
dt

þε
dσL
dt

þεcosð2φÞdσTT
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2εð1þεÞ

p
cosφ

dσLT
dt

�
:

ð78Þ

Here, φ is the azimuthal angle between the lepton and the
hadron plane and EL is the energy of the lepton beam. The
ratio of the longitudinal and transversal photon flux is
denoted by ε.

The twist-2 and twist-3 subprocess amplitudes for pion
electroproduction are presented in Sec. III. From these
subprocess amplitudes in combination with the form
factors described in Sec. IV, we evaluate the amplitudes
(9), (11) and subsequently the partial cross sections (76). In
the light of the discussion in the preceding section we will
mostly show ratios of cross sections for pion electro-
production. Most of the energy dependence and of the
normalization uncertainties cancel in the ratios. Therefore,
we only show results evaluated from the same DAs and
flavor form factors as in [16].
First, we compare the partial cross sections for, say, πþ

production for different photon virtualities. In order to have
at disposal a rather large range of Q2 we need large −t and
−u because of the requirement (1) and consequently large
s. Therefore, we choose the not unrealistically large value
of 15 GeV2 for s and show the partial cross sections only
for Q2 ¼ 1, 2 and 3 GeV2 and −t;−u ≥ 4 GeV2. In Fig. 5
we present the ratio of the longitudinal and the transverse
cross section as well as the ratio of the transverse and the
photoproduction cross section for Q2 ¼ 1, 2 and 3 GeV2.
The interference cross sections, divided by the transverse
one, are displayed in Fig. 6. The ratios reveal a mild cos θ
and Q2 -dependence. The latter one is getting only some-
what stronger in the backward hemisphere.
In Fig. 7 we show the separate longitudinal and trans-

verse cross sections versusQ2 at cos θ ¼ 0. Starting at zero
in the photoproduction limit the longitudinal cross section
increases with rising Q2 up to a maximum at about
1.0 GeV2 while the transverse cross sections for charge
pions are continuously decreasing. The π0 cross section has
a mild minimum at aboutQ2 ¼ 0.7 GeV2. The magnitudes
of the longitudinal cross sections differ markedly. The πþ
cross section is very small compared to the other ones. As
for photoproduction, see Eq. (75), the quark charges favor
the π− production over the πþ one.

FIG. 5. Left: Predictions for the ratio of the longitudinal and transverse cross sections for πþ electroproduction versus the cosine of the
c.m.s. scattering angle at s ¼ 15 GeV2 for a set ofQ2 values. Parameters as in [16]. The predictions are only shown for −t̂ and −û larger
than 4 GeV2. Right: As the figure on the left hand side but for the ratio of the transverse and the photoproduction cross sections.

7In DVMP s is usually denoted by W2.

WIDE-ANGLE PHOTO- AND ELECTROPRODUCTION OF PIONS … PHYS. REV. D 104, 054040 (2021)

054040-15



In Figs. 8 and 9 the partial cross sections for the three
pion channels are shown at s ¼ 10.3 GeV2 and at a fixed
Q2 of 2 GeV2. As in Figs. 5 and 6 the partial cross sections
are divided by the transverse one except of the transverse

cross section itself which is divided by the corresponding
photoproduction cross section. The cross sections for the
various pions differ markedly from each other. Particularly
noteworthy are the maxima in the partial cross sections

FIG. 6. Predictions for the longitudinal-transverse (left) and transverse-transverse (right) interference cross sections of πþ

electroproduction divided by the transverse one versus the cosine of the c.m.s. scattering angle at s ¼ 15 GeV2 for a set of photon
virtualities.

FIG. 7. Predictions for the longitudinal (left) and the transverse (right) cross sections of πþ (solid), π− (dashed) and π0 (dotted line)
electroproduction versus Q2 at s ¼ 15 GeV2 and cos θ ¼ 0. Parameters as in [16].

FIG. 8. Predictions for the ratio of the longitudinal and transverse cross sections (left) and the transverse cross sections divided by the
photoproduction one (right) of pion electroproduction vs cos θ at s ¼ 10.3 GeV2 and Q2 ¼ 2.0 GeV2. Parameters as in [16]. The
predictions are only shown for −t̂ and −û larger than 2.5 GeV2.
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occurring near 90 degrees for π− and at about 115 degrees
for π0 production. The sharp peak of the ratio of dσL and
dσT , especially for the case of π0 production, is generated
by a conspiracy of minima at slightly different positions
and dissimilar depths of these cross sections. Comparison
of the πþ-curves in Figs. 8 and 9 with the Q2 ¼ 2 GeV2

curves in Figs. 5 and 6 gives an impression of the energy
dependence of pion electroproduction.
Data on the partial cross section of pion electroproduc-

tion will allow for an extraction of detailed information on
the large −t-behavior of the transversity GPDs. Thus, as is
evident from (11), the longitudinal cross section is only
dependent upon the form factors ðRP

AÞ2 and ðSPTÞ2; there is
no interference between the twist-2 and twist-3 contribu-
tions. As a little calculation reveals, the longitudinal-
transverse interference cross section has the same structure:

dσPLT
dt

¼ −
ffiffiffi
2

p
e20ϱps½HP

0þ;0þðHP
0þ;þþ −HP

0þ;−þÞðRP
AÞ2

þHP
0−;0þðHP

0−;þþ −HP
0−;−þÞðSPTÞ2�: ð79Þ

Given that the axial form factor, RP
A, is not unknown at large

−t, from data on the longitudinal and the longitudinal-
transverse cross sections we may extract information on SPT
and thus on HT from data on the longitudinal and the
longitudinal-transverse interference cross sections. The
transverse as well as the transverse-transverse interference
cross sections depend on all six form factors and, hence, on
the form factor SPS too. This form factor represents the 1=x-
moment of the completely unknown transversity GPD H̃T .
In DVMP this GPD is strongly suppressed since it comes
together with the factor t=ð4m2Þ. Numerical examination
laid open that dσPTT is very sensitive to SPS in the regions of
twist-3 dominance. Thus, it seems that a measurement of
dσPTT may provide information on H̃T at least at large −t.

VII. SPIN EFFECTS

The derivation of the photo- and electroproduction
amplitudes within the handbag approach naturally requires
the use of the light-cone helicity basis. However, for
comparison with experimental results on spin-dependent
observables, the use of ordinary photon-nucleon c.m.s.
helicity amplitudes is more convenient. The ordinary
helicity amplitudes, Φ0ν0;μν, are obtained from the light-
cone ones (9), by the transform (see [48–50])

ΦP
0ν0;μν ¼ MP

0ν0;μν

þ ð−1Þ1=2þν0κ0MP
0−ν0;μν

þ ð−1Þ1=2þνκMP
0ν0;μ−ν þOðm2=sÞ;

Φ0ν0;0ν ¼ MP
0ν0;0ν þ ð−1Þ1=2þν0 ðκ0 þ κÞMP

0−ν0;0ν

þOðm2=sÞ; ð80Þ

where

κ ¼ m
sþQ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþQ2=2

q
sin ϑ

1þ cos ϑ
;

κ0 ¼ −κ
�
1 −

Q2

4s
−
Q2

s
cos ϑ

1 − cos ϑ

�
: ð81Þ

For convenience the notation of the helicities is kept and the
angle ϑ is defined in (4). In the photoproduction limit κ0
becomes −κ and

κ !Q
2→0 mffiffiffi

s
p

ffiffiffiffiffi
−t

p
ffiffiffi
s

p þ ffiffiffiffiffiffi
−u

p : ð82Þ

FIG. 9. Predictions for the longitudinal-transverse (left) and transverse-transverse (right) interference cross sections of pion
electroproduction vs cos θ at at s ¼ 10.3 GeV2 and Q2 ¼ 2.0 GeV2. The interference cross sections are divided by the corresponding
transverse cross section.
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Obviously,

X
ν0;μ

jΦP
0ν0;μþj2 ¼

X
ν0;μ

jMP
0ν0;μþj2;

X
ν0
jΦP

0ν0;0þj2 ¼
X
ν0
jMP

0ν0;0þj2: ð83Þ

A. Helicity correlations in photoproduction

As for wide-angle Compton scattering the most interest-
ing spin-dependent observables of pion photoproduction
are the correlations of the helicities of the incoming photon
and that of either the incoming or the outgoing nucleon,
ALL, or KLL, respectively. In terms of helicity amplitudes
these observables are defined by

AP
LL ¼ jΦP

0þ;þþj2 − jΦP
0þ;−þj2 þ jΦP

0−;þþj2 − jΦP
0−;−þj2P

ν0;μjΦP
0ν0;μþj2

;

KP
LL ¼ jΦP

0þ;þþj2 − jΦP
0þ;−þj2 − jΦP

0−;þþj2 þ jΦP
0−;−þj2P

ν0;μjΦP
0ν0;μþj2

:

ð84Þ

One can easily check that for the twist-3 contribution one
has

AP;tw3
LL ¼ −KP;tw3

LL ; ð85Þ

while for twist 2

AP;tw2
LL ¼ KP;tw2

LL ð86Þ

holds as is the case for wide-angle Compton scattering
[41,50]. Thus, the experimental observation of an approxi-
mate mirror symmetry between AP

LL and KP
LL signals the

dominance of twist-3 contributions to pion photoproduc-
tion. With regard on that feature AP

LL andK
P
LL play a similar

important role for the discrimination between twist 2

and twist 3 in photoproduction of pions as the longitudinal
and transverse cross sections in DVMP. In Fig. 10 we
show the helicity correlations for π� photoproduction at
s ¼ 10.3 GeV2. They are very similar for these cases. In
the backward hemisphere AP

LL and KP
LL are mirror sym-

metric which reflects the twist-3 dominance there. On the
other hand, in the forward hemisphere where the twist-2
contribution becomes increasingly more significant ALL
and KLL approach each other. The energy dependence of
the helicity correlation parameters is very weak. π0 photo-
production has been discussed by us in [16] in great detail.
The helicity correlations for this channel reveal the
approximate mirror symmetry in the forward hemisphere
too since the twist-2 contribution is also tiny in that region;
see Fig. 3.
As one sees from Eq. (50) there is only one independent

nonvanishing twist-3 subprocess amplitude, namelyHP;tw3
0−;−þ

(¼ −HP;tw3
0þ;þ− by parity conservation). This amplitude there-

fore cancels in (84) and, to twist-3 accuracy, the helicity
correlations are solely expressed by the transversity form
factors. In particular the numerator reads up to corrections of
order κ

AP;tw3
LL ¼ −KP;tw3

LL ∝ −SPT

�
SPT −

t
2m2

SPS

�
: ð87Þ

Another spin-dependent observable is the correlation
between the helicity of the incoming photon and the
sideways polarization (i.e., the polarization perpendicular
to the nucleon momentum but in the scattering plane) of the
incoming (AP

LS) or outgoing (KP
LS) nucleon

AP
LS ¼ 2

Re½ΦP�
0þ;þþΦP

0−;−þ −ΦP�
0þ;−þΦP

0−;þþ�P
ν0;μjΦP

0ν0;μþj2
;

KP
LS ¼ 2

Re½ΦP�
0þ;þþΦP

0−;þþ −ΦP�
0þ;−þΦP

0−;−þ�P
ν0;μjΦP

0ν0;μþj2
: ð88Þ

Predictions for these observables are displayed in Fig. 10 as
well. Both twist 2 and twist 3 contribute substantially to

FIG. 10. Results for the helicity correlation parameters ALL; KLL (left) and ALS; KLS (right) for πþ and π− photoproduction vs cos θ at
s ¼ 10.3 GeV2. Parameters as in [16].
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these observables. The order m=
ffiffiffi
s

p
mass corrections (82)

are also rather large for the LS correlations. In addition ALS
and KLS are subject to strong cancellations among the
contributions from various helicity amplitudes. In contrast
to the helicity correlations, ALL and KLL, the mirror
symmetry is therefore not to be seen for the LS correlations.

B. Helicity correlations in electroproduction

The helicity correlation ALL can also be measured in pion
electroproduction. In fact, the CLAS collaboration has
measured it in the deeply virtual region [51]. In electro-
production there are two modulations of ALL. Its cos ð0φÞ
modulation, divided by

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
, is defined as in (84)

except that the denominator is to be supplemented
by the contribution from longitudinally polarized photons

εðjΦ0þ;0þj2 þ jΦ0−;0þj2Þ. The Q2 → 0 limit of Acos ð0φÞ
LL =ffiffiffiffiffiffiffiffiffiffiffiffi

1 − ε2
p

is the ALL parameter we discussed in the previous
subsection. The second modulation of ALL is related to the
amplitudes by

AP;cosφ
LLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1 − εÞp σP0 ¼ −Re½ðΦP

0þ;þþ þΦP
0þ;−þÞΦP�

0þ;0þ

þ ðΦP
0−;þþ þΦP

0−;−þÞΦP�
0−;0þ�; ð89Þ

where

σP0 ¼
X
ν0;μ

jΦP
0ν0;μþj2 þ ε

X
ν0
jΦP

0ν0;0þj2 ð90Þ

is the unseparated cross section without the phase space
factor. We stress that for both the modulations of ALL the
longitudinal target polarization is defined relative to the
direction of the virtual photon. In experiments the target
polarization is usually defined relative to lepton beam
direction. The transform from one definition to the other
one is investigated in great detail in the work by Diehl and
Sapeta [52]. According to that work, the following relation:

AP;l
LL ¼ cos θγAP

LL − sin θγAP
LTðϕS ¼ 0Þ ð91Þ

holds for both the modulations. The angle ϕS denotes the
orientation of the transversal target spinvectorwith respect to
the lepton plane. The label l stands for the target polarization
defined with respect to the lepton beam. The angle θγ
describes the rotation in the lepton plane from the direction
of the incoming lepton to that of the virtual photon. It is
given by

cos θγ ¼
1þ yγ2=2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ γ2
p ; ð92Þ

where γ ¼ 2xBm=Q and y ¼ ðsþQ2 −m2Þ=ð2mELab þ
m2Þ (xB is Bjorken-x and ELab the beam energy in the Lab
frame). Since this rotation requires information on the actual
experiment which is not at our disposal, we refrain from

quoting AP;l
LL. The correlations AP;cos ð0φÞ

LL =
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
and

AP;cosφ
LL =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1 − εÞp

still depend on ε through σP0 . In order
to make predictions we have tentatively chosen ε ¼ 0.6.
The two modulations of ALL are shown in Fig. 11
for πþ electroproduction at Q2 ¼ 1 and 2 GeV2 and
s ¼ 10.3 GeV2. In order to facilitate the use of the possible
transform (91) from the direction of the virtual photon to that
of the lepton beam we also show in Fig. 11 the correlations
between the lepton helicity and transversal target polarization
defined by

AP;cosð0φÞ
LT ðϕs¼0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εð1−εÞp ¼−
Re½ΦP�

0þ;þþΦP
0−;0þ−ΦP�

0−;þþΦP
0þ;0þ�

σP0
;

AP;cosφ
LT ðϕs¼0Þffiffiffiffiffiffiffiffiffiffiffi

1−ε2
p ¼−

Re½ΦP�
0þ;þþΦP

0−;−þ−ΦP�
0−;þþΦP

0þ;−þ�
σP0

;

ð93Þ

which also appear in (91).
A large variety of other spin-dependent observables exist

for electroproduction of pions. Their study goes beyond the

FIG. 11. Results for the modulations of the helicity correlation ALL (left) and the observable ALT (right) for πþ electroproduction vs
cos θ at Q2 ¼ 1 (solid) and 2 GeV2 (dashed lines) at s ¼ 10.3 GeV2.
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scope of the present work. Notice that the single-spin
asymmetries frequently require phase differences. They are
all zero for our LO study of the handbag mechanism, the
LO amplitudes (9) and (11) are real.

VIII. REMARKS ON UNCERTAINTIES

There are two types of uncertainties. On the one hand,
there are those resulting from the use of kinematics for
which the prerequisite of the handbag approach namely that
the Mandelstam variables should be much larger than a
typical hadronic scale of order 1 GeV2 is not sufficiently
well respected. The analysis of the available photoproduc-
tion data as well as the photo- and electroproduction data to
be expected in the near future force us to work in a
kinematical situation in which the requirement of large
Mandelstam variables is only marginally respected. On the
other hand, there are the typical parametric uncertainties
due to error-burdened parameters of the DAs and the form
factors.
For Mandelstam variables which are not much larger

than Λ2 the problem arises how to match s, t and u for the
hadronic process with the ones for the partonic subprocess,
ŝ; t̂ and û. There are several possibilities to match the
kinematics. They lead to different numerical results which
may be regarded as different nucleon-mass corrections [53]
of order m2=s. Thus, one possibility is to identify the two
sets of variables as in (8). Alternatively, one may use

t̂ ¼ t; ŝ ¼ s −m2; û ¼ u −m2; ð94Þ

which choice guarantees the mass-shell condition for the
subprocess, ŝþ ûþ t̂ ¼ 0. There are other possibilities [53].
For the kinematics of interest in this work the mass
corrections due to the different matching recipes are large,
in particular for j cos θj → 1. They amount to about 50% for
photo- and electroproduction. However, for ratios of cross
sectionswhichwemainlypresent for electroproduction these
mass corrections are smaller. Thus, for dσTðQ2Þ=dσTð0Þ and
dσTTðQ2Þ=dσTðQ2Þ they only amount to about 20% for not
to large values of Q2. For the helicity correlations, ALL and
KLL, which likewise represent ratios of cross sections, the
mass corrections are less than 20%.
The parametric uncertainty of the twist-3 contribution is

very large. As mentioned in Sec. IV the parameters of the 3-
body twist-3 DA have errors of about 30%. Together with
the uncertainties of the large −t behavior of the transversity
form factors the parametric uncertainties of the cross
sections amount to about 70% in the regions of twist-3
dominance. Evidently, for ratios of cross sections and for
the helicity correlations the parametric uncertainties are
much smaller since most of the uncertainties of the twist-3
DA cancel. The parametric uncertainty of the twist-2

contribution is insignificant compared to the other sources
of errors.

IX. SUMMARY

We have calculated wide-angle photo- and electropro-
duction of pions within the handbag factorization scheme
to twist-3 accuracy and LO of perturbative QCD. In this
mechanism the amplitudes factorize into hard partonic
subprocess amplitudes and soft form factors representing
1=x-moments of zero-skewness GPDs. The twist-3 con-
tributions to the subprocess amplitudes include the 2-body,
qq̄, as well as the 3-body, qq̄g, Fock components of the
pion. In light-cone gauge we are using for the vacuum-
meson matrix elements, the equation of motion, which is
formally an inhomogeneous linear first-order differential
equation, fixes the 2-body twist-3 DAs, ϕπp and ϕπσ , for a
given 3-body DA. Thus, only two independent pion DAs
remain as soft physics input to the handbag mechanism in
addition to the form factors, the usual ones, being related to
the helicity nonflip GPDs, as well as the transversity form
factors. Taking the DAs and the form factors from our
previous work [16], we evaluated the photoproduction
cross sections within the handbag mechanism and com-
pared the results with experimental data. It seems that the
energy dependence of the handbag contribution is some-
what too strong. Including evolution and the t-dependence
of the form factors it is approximately s−9 at fixed cos θ.
Therefore, as an alternative we also presented results
evaluated at the fixed scale of 1 GeV which agree fairly
well with experiment. A better determination of the large
−t behavior of the form factors is required before a final
answer can be given what the energy dependence of
handbag predictions is. We also give detailed predictions
for pion electroproduction and discuss spin effects, espe-
cially helicity correlations. The gross features of wide-
angle electroproduction bear similarities to DVMP: the π0

channel is dominated by the twist-3 contributions, for the
π� channels twist-2 contributions matter in the forward
hemisphere. Data on pion electroproduction would allow to
extract detailed information on the large −t-behavior of the
form factors and the transversity GPDs at zero skewness.
This knowledge bears implications of our understanding of
the parton densities in the transverse position plane [54,55].
It may also be of help in understanding some of the spin
density matrix elements of deeply virtual vector-meson
production [56,57]. In the present work, we restricted
ourselves to the case of the pion. However, the generali-
zation to other pseudoscalar mesons is straightforward.
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APPENDIX: THE EVOLUTION
OF THE PION DAs

In this Appendix we compile the anomalous dimensions
needed to evolve the DAs used in the previous sections. The
anomalous dimensions can be found in [29,31]. The
evolution goes with the quantity

L ¼ αSðμRÞ
αSðμOÞ

¼ ln ðμ20=Λ2
QCDÞ

ln ðμ2R=Λ2
QCDÞ

: ðA1Þ

The second Gegenbauer coefficient of the twist-2 pion DA
evolves as

a2ðμRÞ ¼ a2ðμ0ÞLγ2=β0 ; ðA2Þ

with γ2 ¼ 50=9 and β0 ¼ ð11NC − 2nfÞ=3. The mass
parameter, μπ evolves as

μπðμRÞ ¼ L−4=β0μπðμ0Þ: ðA3Þ

The parameters of the 3-body DA evolve as

f3πðμFÞ ¼ Lð16=3CF−1Þ=β0f3πðμ0Þ;
ω1;0ðμRÞ ¼ Lð−25=6CFþ11=3CAÞ=β0ω1;0ðμ0Þ;

ω11ðμRÞ ¼
1

γþ − γ−
½ðγ− − γ11ÞAþðμ0ÞLðγþ−16=3CFþ1Þ=β0

þðγþ − γ11ÞA−ðμ0ÞLðγ−−16=3CFþ1Þ=β0 �;

ω20ðμRÞ ¼
1

4

γ21
γ− − γþ

½Aþðμ0ÞLðγþ−16=3CFþ1Þ=β0

þA−ðμ0ÞLðγ−−16=3CFþ1Þ=β0 �; ðA4Þ

where

Aþðμ0Þ ¼ −ω11ðμ0Þ − 4
γþ − γ11

γ21
ω20ðμ0Þ;

A−ðμ0Þ ¼ ω11ðμ0Þ þ 4
γ− − γ11

γ21
ω20ðμ0Þ: ðA5Þ

The anomalous dimensions are

γ11 ¼
122

9
; γ22 ¼

511

45
; γ12 ¼

5

3
; γ21 ¼

21

5
;

ðA6Þ

with the eigenvalues

γ� ¼ 1

2

h
γ11 þ γ22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ11 − γ22Þ2 þ 4γ12γ21

q i
: ðA7Þ
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