PRIRODOSLOVNO-MATEMATIČKI FAKULTET SVEUČILIŠTA U ZAGREBU

Vlasta Mohaček Grošev

Vibracijska dinamika molekula s unutrašnjom rotacijom na niskim temperaturama

Disertacija

Zagreb, 1995.

Prirodoslovno-matematički fakultet

Sveučilište u Zagrebu

Vlasta Mohaček Grošev

Vibracijska dinamika molekula s unutrašnjom rotacijom na niskim temperaturama

Disertacija

Zagreb 1995.

Ovaj rad izrađen je u Laboratoriju za molekulsku fiziku Odjela fizika Instituta Ruđer Bošković u Zagrebu.

Za nesebično pruženu pomoć, savjete i poticaje u dosadašnjem radu te istraživanjima iznesenim u ovoj disertaciji najtoplije zahvaljujem voditelju Dr. Krešimiru Furiću.

Korištenje programa za račun dinamike rešetke molekulskih kristala omogućeno je ljubaznom pomoći Dr. Davora Kirina.

Izgledu disertacije uvelike su doprinijele slike (posebno one u boji) koje je izradio Vladimir Mohaček na čemu sam mu posebno zahvalna.

Svim članovima Laboratorija za molekulsku fiziku hvala na diskusijama koje su pomogle u razjašnjavanju nejasnih pitanja.

Uspješno dovršenje radnje ne bi bilo moguće bez Darkove podrške i razumijevanja.

Sadržaj

1	Uvo	d	2
2	Vib iom	racijska analiza slobodnih molekula s unutrašnjom rotaci-	3
	2.1	Vibracijska analiza:	10 14 23
3	Nal 3.1 3.2 3.3	aženje rješenja Mathieuove jednadžbe Red trigonometrijskih funkcija Varijacijska metoda Hüllera Granični slučajevi niske i visoke barijere	28 30 34 37
4	Mol	ekule s unutrašnjom rotacijom na niskim temperatu-	
	ram	a	40
	4.1	Niskotemperaturni Ramanovi spektri i dinamika rešetke	44
		4.1.1 Toluen	$\frac{40}{51}$
	4.2	Vezanje fononskih i rotorskih stanja	61
5	Talj 5.1 5.2	enje molekulskih kristala i pojava mezofaza Pople-Karasz model taljenja molekulskih kristala Pojava mezofaza u nitrometanu i toluenu	69 70 75
6	Zak	ljučak	81
7	Doc 7.1 7.2	laci Dinamika rešetke $C_6D_5CD_3$, $C_6H_5CD_3$ i $C_6D_5CH_3$ Dinamika rešetke CD_3NO_2	82 82 86
8	Saž	etak	88
9	Abs	stract	89
10) Živ	otopis	90
11	l Pop	ois radova	91

1

1 Uvod

Molekule s unutrašnjom rotacijom prisutnije su oko nas više nego smo toga svjesni. Često i molekule čiju strukturu opisujemo kao nepromjenljivu u vremenu imaju neku grupu atoma koja ima više od jednog položaja ravnoteže, odnosno čije se gibanje odvija u potencijalu s više minimuma. Većina bioloških molekula je toga tipa, spomenimo samo aminokiseline koje su gradbeni dio svih proteina ili šećere koje nalazimo u RNK, DNK, škrobu, celulozi itd. Unutrašnja rotacija odnosi se na svojstvo neke atomske grupe u molekuli da vrši pomake rotacijom oko npr. jednostruke C-C veze kojom je spojena s ostatkom molekule. Ovakvo gibanje ne odnosi se samo na terminalne tj. krajnje atomske grupe u nekoj molekuli, već i na CH₂ i slične grupe u polimernom lancu. Poznavanje potencijala koji određuje njihovo gibanje je od presudne važnosti za objašnjenje energijskih prijelaza opaženih raznim spektroskopskim metodama te za razumijevanje mnoštva termodinamičkih faza koje ovakvi spojevi pokazuju.

U ovom radu naglasak je na vibracijskoj dinamici molekula toluena i nitrometana kao prototipova čitave klase molekula. Njihovi vibracijski spektri bit će analizirani u plinskoj (toluen), tekućoj te kristalnim fazama. Kako određivanje nivoa unutrašnje rotacije zahtijeva rješavanje Mathieuove jednadžbe, tome je posvećeno jedno poglavlje radi potpunijeg razumijevanja konačnih rješenja.

Na dinamiku ovih molekula u kristalu presudno utiču sile između molekula. Toluen i nitrometan kao slobodne molekule imaju potencijal unutrašnje rotacije praktično jednak nuli, dok je u kristalu taj potencijal približno 3300 J/mol. Da bi objasnili opažene vrpce u niskotemperaturnim Ramanovim spektrima ovih molekula te doprinijeli razumijevanju međumolekulskih interakcija poduzet je račun dinamike rešetke kristala. Barijera unutrašnje rotacije procijenjena je na osnovu opaženog $0A \rightarrow 1A$ Ramanovog prijelaza, te su za nju određena nesmetana stanja rotorskog sistema numeričkim rješavanjem Mathieuove jednadžbe.

Kako bi se pokušala odrediti interakcija fononskog i rotorskog sistema proveden je račun smetnje između rotorskog sistema i libracije molekula oko osi unutrašnje rotacije (za ovu fononsku koordinatu je pretpostavljeno da je interakcija dominantna). Nesmetana vrijednost frekvencija ove libracije preuzeta je iz računa dinamike rešetke za krutu molekulu.

U petom odjeljku eksperimentom je pokazano postojanje mezofaza nitrometana i toluena u intervalu temperature ispod točke taljenja njihovih kristala.

2 Vibracijska analiza slobodnih molekula s unutrašnjom rotacijom

Po čemu se molekule s unutrašnjom rotacijom razlikuju od "normalnih" molekula? Pod "normalnim" molekulama podrazumijevamo one čijih N atoma raspolaže s 3N-6 vibracijskih stupnjeva slobode u svakom od kojih atomi izvode gibanja male amplitude. Malom amplitudom ovdje smatramo malom u odnosu na ravnotežne međuatomske udaljenosti u molekuli. Drugim riječima "normalne" molekule imaju dobro definiranu strukturu koju sačinjava vremenski malo promjenljiv geometrijski raspored atoma. Duljine veza i kutevi koje veze zatvaraju u molekuli malo odstupaju od svojih ravnotežnih vrijednosti u svakom od vibracijskih stanja.

Unutrašnja rotacija jedno je od niza gibanja velike amplitude koje se mogu pojaviti u organskim molekulama - uz npr. inverziju, nabiranje prstenova ili protonsko tuneliranje u vodikovom mostu. Ova gibanja nisu sva periodička s periodom 2π kao što je to unutrašnja rotacija, ali im je svima zajedničko to da potencijal u kojem se gibanje odvija ima više od jednog minimuma u pripadajućoj koordinati.

U slučaju unutrašnje rotacije različiti minimumi potencijala $V(\rho)$, gdje je ρ kut koji opisuje rotaciju određene atomske grupe u molekuli, odgovaraju različitim rotacijskim konformerima (ili rotamerima). Ilustrirajmo to primjerom molekule nitrometana kemijske formule CH₃NO₂. Slobodna, molekula nitrometana ima vrlo nisku barijeru unutrašnje rotacije - V₆ je svega 25 J/mol [1], a potencijal V(ρ) ima oblik:

$$V(\rho) = \frac{1}{2}V_6(1 + \cos(6\rho)). \tag{1}$$

Minimum energije molekula ima u konformaciji prikazanoj slikom 1. Oblik potencijala $V(\rho)$ za slobodnu molekulu toluena je identičan gore napisanom ali V₆ iznosi 57 J/mol [2].

Pitamo se koje svojstvene vibracijske energije imaju molekule poput ove, kako na njih utječe anharmonički potencijal $V(\rho)$, te koji su Ramanovi prijelazi dozvoljeni.

Raspis kinetičke energije

Bavit ćemo se slučajevima u kojima rotirajuća grupa atoma, tj. rotor ili zvrk, rotira oko osi z zajedničke i rotoru i ostatku molekule (engl.frame). Kinetička energija tada ima oblik:

$$2T = \sum_{i \in top} m_i (\frac{\vec{r}_i^t}{dt})^2 + \sum_{j \in frame} m_j (\frac{\vec{r}_j^j}{dt})^2.$$
(2)

Slika 1: Dvije različite konformacije molekule nitrometana. Crtkano je označena O-N-O ravnina. a) $\rho = 90^{\circ}$ minimum energije slobodne molekule; b) $\rho = 0^{\circ}$, minimum energije molekule u kristalu.

Oznaka "top" odnosi se na zvrk, a "frame" na kostur molekule prema kojem zvrk izvodi rotaciju. Koristit ćemo vezu koordinata atoma zvrka u sustavu kostura x_i^f i pripadnih koordinata u sustavu zvrka x_i^t :

$$\begin{aligned} x_i^f &= x_i^t cos \rho - y_i^t sin \rho \\ y_i^f &= x_i^t sin \rho + y_i^t cos \rho \\ z_i^f &= z_i^t. \end{aligned}$$
 (3)

Međusobni položaj osi prikazan je slikom 2

Slika 2: Definicija kuta unutrašnje rotacije kao kuta koji zatvaraju x os zvrka x^t i kostura molekule x^f .

Kinetička energija tada raspisana je

$$2T = \sum_{i \in top} m_i [(\dot{x}_i^t)^2 + (\dot{y}_i^t)^2 + (\dot{z}_i^t)^2] + \sum_{j \in frame} m_j [(\dot{x}_j^j)^2 + (\dot{y}_j^j)^2 + (\dot{z}_j^j)^2] \\ + (\omega_x)^2 \sum_{k \in mol} m_k [(y_k^f)^2 + (z_k^f)^2] \\ + (\omega_y)^2 \sum_{k \in mol} m_k [(x_k^f)^2 + (y_k^f)^2] \\ - 2\omega_x \omega_y \sum_{k \in mol} m_k x_k^f y_k^f \\ - 2\omega_y \omega_z \sum_{k \in mol} m_k y_k^f z_k^f \\ - 2\omega_y \omega_z \sum_{k \in mol} m_k (x_i^t \cos \rho - y_i^t \sin \rho) z_i^t \\ - 2\omega_y \dot{\rho} \sum_{i \in top} m_i (x_i^t \sin \rho + y_i^t \cos \rho) z_i^t \\ + (2\omega_z \dot{\rho} + (\dot{\rho})^2) \sum_{i \in top} m_i [(x_i^t \dot{z}_i^t - z_i^t \dot{y}_i^t) \sin \rho + (y_i^t \dot{z}_i^t - z_i^t \dot{y}_i^t) \cos \rho] \} \\ + 2\omega_x \{\sum_{i \in top} m_i [(y_i^t \dot{z}_i^t - z_j^f \dot{y}_j^f) \\ + 2\omega_y \{\sum_{i \in top} m_i [(y_i^t \dot{z}_i^t - z_j^f \dot{y}_j^f) \\ + 2\omega_y \{\sum_{i \in top} m_i [(y_i^t \dot{z}_i^t - z_j^f \dot{y}_j^f) \\ + 2\omega_y \{\sum_{i \in top} m_i (x_i^t \dot{y}_i^t - y_i^t \dot{x}_i^t) + \sum_{j \in frame} m_j (x_j^f \dot{y}_j^f - y_j x f \dot{x}_j^f) \} \\ + 2\dot{\rho} \sum_{i \in top} m_i (x_i^t \dot{y}_i^t - y_i^t \dot{x}_i^t).$$

Izbor sustava kostura i zvrka vršimo tako da što je više moguće pojednostavnimo izraz za T. Eckart [3] je postavio uvjete na izbor koordinatnog sustava vezanog uz molekulu da bi vezanje vibracijskih pomaka s kutnim brzinama ω bilo minimalno:

$$\sum_{j \in frame} m_j (x_j^f \dot{y}_j^f - y_j^f \dot{x}_j^f) = 0$$

$$\sum_{j \in frame} m_j (z_j^f \dot{x}_j^f - x_j^f \dot{z}_j^f) = 0$$

$$\sum_{j \in frame} m_j (x_j^f \dot{y}_j^f - y_j^f \dot{x}_j^f) = 0$$
(5)

Suma ne ide po svim atomima k iz molekule, jer \dot{x}_i^f i sl. nisu vibracijski pomaci pošto uključuju $\dot{\rho}$.

Sayvetz [4] je odredio uvjet koji minimizira vezanje \dot{x}_i^t , \dot{y}_i^t i \dot{z}_i^t s $\dot{\rho}$:

$$\sum_{i \in top} m_i (x_i^t \dot{y}_i^t - y_i^t \dot{x}_i^t) = 0.$$
(6)

U sustavu zvrka će vezanje vibracijskih pomaka \dot{x}_i^t atoma zvrka i $\dot{\rho}$ biti minimalno.

Izborom sistema kostura kao sistema glavnih osi molekule kinetička je

energija bez Coriolisovih članova:

$$2T = \sum_{i \in top} m_i [(\dot{x}_i^t)^2 + (\dot{y}_i^t)^2 + (\dot{z}_i^t)^2] + \sum_{j \in frame} m_j [(\dot{x}_j^j)^2 + (\dot{y}_j^j)^2 + (\dot{z}_j^j)^2] + (\dot{z}_j^j)^2 + (\dot{z}_$$

Ovdje smo uveli slijedeće oznake:

$$I_{zz}^{top} = \sum_{i \in top} m_i [(x_i^t)^2 + y_i^t)^2]$$

$$I_{xz}^{top} = \sum_{i \in top} m_i x_i^f z_i^f$$

$$I_{yz}^{top} = \sum_{i \in top} m_i y_i^f z_i^f.$$
(8)

Ako je zvrk simetričan, I_{xz}^{top} i I_{yz}^{top} iščezavaju, jer je $z_i^t = z_i^f$. Prva dva člana u zapisu (7)

$$\sum_{i \in top} m_i [(\dot{x}_i^t)^2 + (\dot{y}_i^t)^2 + (\dot{z}_i^t)^2] + \sum_{j \in frame} m_j [(\dot{x}_j^t)^2 + (\dot{y}_j^t)^2 + (\dot{z}_j^t)^2]$$
(9)

predstavljaju *čistu* vibracijsku energiju, neovisnu od ρ .¹ Naizgled je ovo idealno rješenje kojem se težilo. Međutim korištenje dva koordinatna sustava vrlo je nepogodno ako se vibracijski problem želi riješiti u internim, a ne u Kartezijevim koordinatama. Korištenje internih koordinata redovan je slučaj pošto je potencijalna energija prilično dobro opisana u harmoničkoj aproksimaciji preko kvadratnih članova deformacije internih koordinata.

Vibracijska kinetička energija izražena u internim koordinatama q u sustavu kostura ne podudara se sa čistom vibracijskom energijom izraženom preko gornja dva sumanda, jer ovisi o ρ . Postojat će članovi vezanja između $\dot{\rho}$ i ostalih \dot{q} u kinetičkoj energiji i oni će općenito ovisiti od ρ . standardna metoda vibracijskog računa - tzv. Wilsonova **GF** metoda - [5] je u potpunosti klasična. Ona se svodi na nalaženje Lagrangeovih jednadžbi gibanja za svaku deformaciju interne koordinate q_t , a Lagrangian je dan sa

$$L = T - V$$

$$= \frac{1}{2} \sum_{t,t'=1}^{3N-6} \dot{q}_t G_{tt'}^{-1} \dot{q}_{t'} - \frac{1}{2} \sum_{t,t'=1}^{3N-6} q_t F_{tt'} q_{t'}.$$
(10)

S N smo označili broj atoma u molekuli, a s ${\bf F}$ matricu potencijalne energije u internim koordinatama. Matrica ${\bf G}$ definirana je standardno sa

$$G_{tt'} = \sum_{i=1}^{3N} \frac{1}{m_i} B_{ti} B_{t'i}, t, t' = 1, 2, ..., 3N - 6.$$
(11)

¹Da smo koristili Kartezijeve koordinate svih atoma u sustavu kostura molekule, ne bismo zadovoljili Sayvetzov uvjet. Imali bismo značajno više koordinata koje nemaju jedan minimum u potencijalnoj energiji te vrše gibanje velike amplitude.

Obično matrica B definira transformacijska svojstva Kartezijevih pomaka u sustavu molekule u deformacije internih koordinata:

$$\begin{pmatrix} q_{1} \\ q_{2} \\ \vdots \\ q_{3N-6} \end{pmatrix} = \mathbf{B} \cdot \begin{pmatrix} \Delta x_{i}^{I} \\ \Delta y_{i}^{f} \\ \vdots \\ \Delta x_{j}^{f} \\ \Delta y_{j}^{f} \\ \vdots \end{pmatrix}, \qquad (12)$$

i ima dimenzije (3N-6,3N). Možemo je proširiti do kvadratne matrice definiranjem translacijskih i rotacijskih koordinata u sustavu molekule kako bi ju mogli kasnije invertirati. Time **B** a slijedom toga i **G** matrica postaju kvadratne, dimenzije (3N,3N). Simbolički tako proširen skup internih i eksternih 3N koordinata zovimo **q**, a jednadžbu transformacije zapišimo kao

$$\mathbf{q} = \mathbf{B} \cdot \mathbf{x}^{\mathbf{f}}.\tag{13}$$

Brzine su pak

$$\dot{\mathbf{q}} = \dot{\mathbf{B}} \cdot \mathbf{x}^{\mathbf{f}} + \mathbf{B} \cdot \dot{\mathbf{x}}^{\mathbf{f}}.$$
(14)

Kako je **B** matrica ovisna o ρ , kao i Δx_i^f atoma zvrka, njihove vremenske derivacije će uključivati i $\dot{\rho}$. Izvršimo transformaciju iz skupa Δx_k^f , k = i ili j, u skup vibracijskih koordinata Δx_i^t i Δx_j^f , kojeg ćemo pisati i u obliku jednostupčane matrice **x**. Veza između ta dva skupa je

$$\begin{pmatrix} \Delta x_i^f \\ \Delta y_i^f \\ \vdots \\ \Delta x_j^f \\ \Delta y_j^f \\ \vdots \end{pmatrix} = \mathbf{T} \cdot \begin{pmatrix} \Delta x_i^t \\ \Delta y_i^t \\ \vdots \\ \Delta x_j^f \\ \Delta y_j^f \\ \vdots \end{pmatrix}$$
(15)

Vibracijska kinetička energija (9) tako je

$$\frac{1}{2}\mathbf{x}^{\dagger}\mathbf{M}\mathbf{x} = \frac{1}{2}\dot{\mathbf{q}}^{\dagger}\mathbf{D}^{-1\dagger}\mathbf{D}^{-1}\dot{\mathbf{q}} + \frac{1}{2}\mathbf{x}^{\dagger}[\dot{\mathbf{D}}^{\dagger}\mathbf{D}^{-1\dagger}\mathbf{D}^{-1}\dot{\mathbf{D}}]\mathbf{x}.$$
 (16)

Ovdje je radi skraćivanja zapisa upotrijebljena oznaka $D=B \cdot T$, a članovi s $\dot{q} x$ ispušteni. Njih je potrebno uzeti u obzir prilikom Coriolisovih korekcija. S M označena je matrica masa dimenzija 3N s 3N.

Izraz (16) pokazuje koliku ćemo grešku unijeti u naš vibracijski račun koristeći skup $\mathbf{x}^{\mathbf{f}}$ koordinata umjesto \mathbf{x} koordinata. Razlika je dominantno u drugom sumandu izraza (16). U slučaju da postoji velika razlika u energijama između prvog prijelaza unutrašnje rotacije i najniže vibracije, odnosno klasično između $\dot{\rho}$ i ostalih internih \dot{q} , drugi član u izrazu (16) bit će malen u usporedbi s prvim i moći će se koristiti skup \mathbf{x}^{f} umjesto \mathbf{x} skupa za definiranje internih koordinata. Ovim proširenjem formalizma na 3N unutrašnjih i vanjskih koordinata mogu se također promatrati članovi vezanja između pojedinih koordinata u G matrici kada se sustav vezan uz molekulu ne podudara sa sustavom glavnih osi.

Razdvajanje unutrašnje rotacije od ostalih vibracija

Pretpostavljamo da Born-Oppenheimerova aproksimacija vrijedi i u molekulama s unutrašnjom rotacijom. Višedimenzionalna ekvipotencijalna ploha $E(X_n)$ koja slijedom aproksimacije određuje gibanje jezgri u tome slučaju ima više minimuma u varijabli ρ , ali u svakoj od preostalih vibracijskih koordinata R_n samo po jedan (X_n označava skup svih koordinata jezgara).

Kinetičku energiju jezgri možemo napisati kao zbroj translacijske, rotacijsko-unutrašnje rotacijske, te vibracijske kinetičke energije.

$$T_n = T_{transl} + T_{r/ur} + T_{vib}.$$
(17)

Prema Born-Oppenheimerovoj aproksimaciji

$$(T_n + E(X_n))\Psi(X_n) = (E + E_{transl})\Psi(X_n),$$
(18)

odnosno kada odvojimo translacijsko gibanje

$$(T_{r/ur} + T_{vib} + E(X_n))\Psi_n = E\Psi_n.$$
(19)

Ako je najniži vibracijski mod barem red veličine viši od prvog prijelaza unutrašnje rotacije, možemo valnu funkciju jezgri razdvojiti u produkt

$$\Psi_n = \Psi_{vib} \cdot \Phi_{r/ur} \tag{20}$$

čime problem razdvajamo na vibracijski dio

$$[T_{vib} + E(R_n, \rho)]\Psi_{vib} = E_{vib}\Psi_{vib}$$
⁽²¹⁾

i rotacijsko-unutrašnje rotacijski dio

$$[T_{r/ur} + E_{vib} + V^{e}(\rho)]\Phi_{r/ur} = E\Phi_{r/ur}.$$
(22)

Ovdje je proveden rastav $E(X_n)$ na dio koji ovisi o ρ i o vibracijskim koordinatama, $E(R_n, \rho)$, te na dio koji ovisi samo o ρ , $V^e(\rho)$:

$$E(X_n) = E(R_n, \rho) + V^e(\rho).$$
⁽²³⁾

S E (R_n, ρ) opisujemo vibracijsku potencijalnu energiju 3N-7 modova čije je polje sila općenito zavisno od ρ :

$$E(R_n,\rho) = V_{vib}(\rho) = \frac{1}{2} \sum_i k_i(\rho) (\Delta R_i)^2 + \sum_{i,j}' k_{ij}(\rho) \Delta R_i \Delta R_j$$
(24)

Član $V^{e}(\rho)$ određuje dubinu minimuma $E(X_n)$ u ρ a potječe od elektronske energije osnovnog stanja.

Riješimo li vibracijski problem u harmoničkoj aproksimaciji za razne ρ naći ćemo vibracijske energije

$$E_n(\rho) = \sum_{i=1}^{3N-7} \hbar \omega_i(\rho) (v_i + \frac{1}{2}),$$
(25)

gdje je v_i kvantni broj pobuđenja vibracije i. Ovaj član pojavljuje se u Schrödingerovoj jednadžbi za unutrašnju rotaciju i rotaciju čitave molekule

$$[T_{r/ur} + \sum_{i=1}^{3N-7} \hbar \omega_i(\rho)(v_i + \frac{1}{2}) + V^e(\rho)]\Phi_{r/ur} = E\Phi_{r/ur}.$$
 (26)

Vidimo da suma članova

$$\sum_{i=1}^{3N-7} \hbar \omega_i(\rho) (v_i + \frac{1}{2}) + V^e(\rho)$$
(27)

određuje potencijal unutrašnje rotacije molekule u svakom vibracijskom stanju. Posebno je u osnovnom stanju potencijal unutrašnje rotacije jednak

$$V(\rho) = \frac{1}{2} \sum_{i=1}^{3N-7} \hbar \omega_i(\rho) + V^e(\rho)$$
(28)

i predstavlja efektivni potencijal koji se nastoji odrediti mikrovalnom spektroskopijom. U prvom pobuđenom stanju i-te vibracije ovaj je potencijal

$$\frac{1}{2}\sum_{j=1}^{3N-7}\hbar\omega_j(\rho) + \hbar\omega_i = V(\rho) + \hbar\omega_i$$
(29)

tj upravo je suma potencijala osnovnog stanja i $\hbar\omega_i(\rho)$. Vidimo da je vibracijski doprinos potencijalu unutrašnje rotacije u stanju $v_i = 1$ dan sa

$$\frac{1}{2}\sum_{j=1}^{3N-7}\hbar\omega_j(\rho) + \hbar\omega_i.$$
(30)

Ovim načinom možemo istovremeno odrediti potencijal unutrašnje rotacije u svakom od pobuđenih vibracijskih stanja - osnovnih i višestrukih pobuđ enja, te kombinacija.

U nastavku će biti pokazano kako je gornja procedura izvedena za slučaj toluena kemijske formule $C_6H_5CH_3$ i nitrometana CH_3NO_2 .

2.1 Vibracijska analiza:

Kako bi se odredilo polje sila kojim će se izračunati vibracijski doprinos potencijalu unutrašnje rotacije toluena te nitrometana, snimljeni su Ramanovi spektri tekućih faza ovih spojeva [6] i toluena u pari [7].

Uvjeti eksperimenta

Toluen $C_6H_5CH_3$ i nitrometan CH_3NO_2 prizvodnje Aldrich bili su čistoće 99.8 % (toluen) odnosno 99. % (nitrometan). Kemikalije su korištene bez dodatnog pročišćavanja.

Ramanovi spektri tekućina zabilježeni su DILOROVIM Z24 spektrometrom s trostrukim monokromatorom uobičajenom tehnikom raspršenja pod 90° sa volumena definiranog kapilarom. Korištene su pukotine širine 300 μm , a korak pri snimanju je iznosio 1 cm^{-1} . Kao pobuda je korišten argonski laser COHERENT model INNOVA 100 - 15 s uzbudnom linijom 514.5 nm. Snaga laserskog snopa na uzorku bila je manja od 200 mW. Točnost opaženih valnih brojeva bila je bolja od 1 cm^{-1} .

Spektri toluena u pari snimljeni su u Ludwig-Maximilians Universitätu u Münchenu, u suradnji s grupom profesora Heinza W. Schroettera. Preliminarna istraživanja iz [6] ponovljena su i detaljnije izložena u radu Th. Bicana [7]. Spektri toluena u pari snimljeni su koristeći ćeliju s Brewsterovim prozorima pri tlaku para toluena od približno 4 kPa. Ćelija je bila smještena u područje fokusa prstenastog argonskog lasera (baziranog na modelu 2030-18 Spectra Physics) CARS spektrometra [8]. Snaga laserskog snopa na uzorku varirala je u tim uvjetima od 120 do 180 W. Ramanski signal vođen je do Jarrell-Ash dvostrukog monokromatora putem optičkih vlakana [9]. Točnost opaženih valnih brojeva je bila $\approx 2 \ cm^{-1}$, uglavnom zbog velikih pukotina koje je trebalo koristiti.

Analiza normalnim koordinatama

U slučaju obje spomenute molekule zvrk koji rotira je metilna grupa (-CH₃) koja ima dva momenta inercije oko osi okomitih na os unutrašnje rotacije međusobno jednaka. Metilna grupa je drugim riječima simetrični zvrk za koji postoje simetrizirane koordinate kojima se G matrica čitave molekule može dovesti u oblik neovisan od ρ . Spomenute simetrizirane koordinate uveli su Fleming i Banwell [10], a za opis njihove simetrije korištena je permutacijsko-inverzijska grupa \mathbf{G}_{12} [11]. Ovdje ćemo samo kratko opisati koncept permutacijsko-inverzijskih grupa, konkretno \mathbf{G}_{12} .

Elementi G_{12} za CH_3NO_2 svrstani su u klase u tablici 1.

Tablica 1. Tablica karaktera i klasa elemenata grupe G_{12} za CH_3NO_2 .

	Е	(123)	(23) *	(45)	(123)(45)	(23)(45) *	komponente
\mathbf{G}_{12}		(132)	(12) *		(132)(45)	(12)(45) *	tenzora
			(13) *			(13)(45) *	polariza bilnosti
A'_1	1	1	1	1	1	1	$\alpha_{xx}, \alpha_{yy}, \alpha_{zz}$
A_2^{\prime}	1	1	-1	1	1	-1	$lpha_{xy}$
Ē	2	-1	0	2	-1	0	for a second second
A_1''	1	1	1	-1	-1	-1	$lpha_{xz}$
$A_2^{''}$	1	1	-1	-1	-1	1	$lpha_{yz}$
$E^{''}$	2	-1	0	-2	1.	0	Ч _с .

Pojedina operacija permutacije označena je s (ij). Ona zamjenjuje identične atome *i* i *j*. Permutacijsko-inverzijska operacija $(ij)^*$ osim permutiranja vrši i inverziju čitave molekule kroz njen centar mase. Slika 3 prikazuje efekt operacije (23) *na nitrometan CH₃NO₂. Crtkano su označene kemijske veze u pozadini. S 1,2 i 3 su numerirani vodikovi atomi, a s 4 i 5 kisikovi atomi. Kako smjer z^f osi pokazuje od N ka C atomu, vidimo da (23) * osim što mijenja položaj čitave molekule u prostoru u odnosu na laboratorijski sustav mijenja i kut ρ u - ρ .

Da bi opisao promjenu položaja čitave molekule u prostoru Bunker [11] je uveo pojam ekvivalentnih rotacija. Konkretno u gornjem slučaju operaciji (23) * odgovarala bi rotacija za π oko osi y^f.

Uz poznata transformacijska svojstva kuta ρ možemo odrediti i ireducibilne reprezentacije po kojima se transformiraju $sin(k\rho)$ i $cos(k\rho)$ funkcije. Rezultat je prikazan tablicom 2.

Slika 3: Djelovanje operacije (23).*.

k	funkcija	tip simetrije
<u> </u>	$\cos k \rho$	A'_1
	$\sin k ho$	A'_2
$6p \pm 1$	$(\cos k ho, \sin k ho)$	E″
$6p \pm 2$	$(\cos k ho, \sin k ho)$	E'
$6p \pm 3$	$\cos k ho$	A_1''
	$\sin k ho$	A_2''

Tablica 2. Transformacijska svojstva $sin(k\rho)$ i $cos(k\rho)$ funkcija.

Sada ćemo ukratko opisati proceduru koja je primijenjena za račun normalnih koordinata toluena i nitrometana. Kinetička energija molekula sa simetričnim zvrkom (-CH₃) može se simetriziranim koordinatama prevesti u blok dijagonalni oblik

a elementi pojedinog bloka neće ovisiti o ρ . Za izotopne derivate ovih molekula sa zvrkom -CHD₂ ova shema ne vrijedi; **G** matrica ima elemente i izvan blokova i oni ovise o ρ .

Vibracijski potencijal V_{vib} općenito sadrži konstante sila koje su funkcije ρ . U analizi normalnih koordinata polazimo od pretpostavke o obliku V_{vib} . Kako ga konstruirati u ovom slučaju? Počet ćemo od molekula sa simetričnim zvrkom i za njih pretpostaviti da je i V_{vib} u blok dijagonalnom obliku. Iz iskustveno određenih simetriziranih konstanti sila naći ćemo valentno polje, koje ćemo moći primijeniti i za izotopne derivate s nesimetričnim zvrkom poput C₆D₅CHD₂ i CHD₂NO₂.

Uz ovakav pretpostavljeni oblik V_{vib} 38 vibracija toluena $C_6H_5CH_3$ može se klasificirati prema G_{12} kao

$$\Gamma = 13A_1' \oplus 3A_2' \oplus 13A_1'' \oplus 9A_2'' \tag{31}$$

dok četrna
est vibracija $\rm CH_3NO_2$ imaju simetrije prema

$$\Gamma = 5A_1' \oplus 5A_1'' \oplus 4A_2''. \tag{32}$$

Ovdje koordinata ρ (tipa A'_2) nije ubrojena u vibracijske koordinate. Sve vibracije su aktivne u Ramanovim i sve osim A'_2 u infracrvenim spektrima. Za molekule s nesimetričnim zvrkom nije moguće *a priori* odrediti broj vibracija određene simetrije i time broj aktivnih vibracija. Taj broj naime ovisi o polju sila. U srži problema jest nemogućnost formiranja linearnih kombinacija internih koordinata zvrka koje bi se projicirale na kostur molekule u skladu s operacijama simetrije. Permutacijsko-inverzijska grupa dolazi do punog izražaja uvijek kada se koriste Kartezijevi pomaci atoma, no prelaskom na interne koordinate kinetička energija nije više dijagonalna. Praktično sve molekule od biološkog značenja pripadaju klasi molekula u kojoj unutrašnju rotaciju izvode nesimetrične grupe.

2.1.1 Toluen

Asignacija vrpci toluena na bazi točkaste C_{2v} grupe provedena je u više navrata [12]-[16]. Često se postavlja pitanje položaja i degeneracije metilnih modova: nesimetričnog CH istezanja, deformacije CCH kuteva te njihajnih vibracija uslijed deformacije HCH kuteva. Različiti autori se ne slažu oko postojanja degeneracije nesimetričnih metilnih modova (u G_{12} se radi o A_1'' i A_2'' modovima). U infracrvenim spektrima pare toluena opažena su dva različita moda CH nesimetričnog istezanja [15]. Također je opažena jedna široka vrpca slabog intenziteta između 1480 i 1540 cm⁻¹, te jedna oštra vrpca na 1040 cm. To bi ukazivalo na razbijanje degeneracije u modovima nesimetričnog CH istezanja, dok bi preostala četiri nesimetrična moda deformacije kuteva θ i β (vidi sliku 4) bili najvjerojatnije degenerirani.

Slika 4: Definicija internih koordinata toluena.

$\Phi =$	$rac{1}{2} \left(\ \phi_1 \ ext{-} \ \phi_2 \ ight)$	unutarravninsko CH savijanje
$\mu =$		izvanravninsko CH savijanje
$\delta =$		CCCC torzija
μ ' =		izvanravninsko savijanje veze R
Φ ' =		unutarravninsko savijanje veze R

Snimanje Ramanovih spektara toluena u pari poduzeto je s namjerom da se odredi broj metilnih modova u spomenutim područjima. U preliminarnim istraživanjima intenzitet je bio prenizak za neposredno opažanje vrpci, dok je u kasnijem radu indirektno zaključeno o razbijanju degeneracije modova na $\approx 1480 \ cm^{-1}$ temeljem kombinacijskih vrpci [7].

Opišimo parametre korištene u računu vibracijskih modova. Geometrijski parametri preuzeti su iz reference [17]. U tablici 3. dane su konstante sile za fenilni dio molekule, dok je valentno polje za metilnu grupu računato iz simetriziranih konstanti sile iz tablice 4. Oblik ovako konstruiranog valentnog polja sila za metilnu grupu prikazan je u tablici 5, a njegova ovisnost o kutu ρ eksplicitno je raspisana u tablici 6.

KR	4.884	Hδ	0.245	$f^{o}_{\mu\mu}$	-0.068
K_T	5.900	f_T^o	0.425	$f_{\mu\mu}^{m}$	0.0013
K _s	5.068	f_T^m	-0.003	$f^p_{\mu\mu}$	-0.021
H_{Ω}	1.278	f_T^p	0.499	$f^{o}_{\mu'\delta}$	-0.100
H _Φ	1.500	$f^o_{T\Phi}$	-0.323	$f^{o}_{\mu\delta}$	-0.147
На	0.890	f ^o _{ΦΦ}	0.050	$f^m_{\mu\delta}$	0.039
H _u	0.707	$f^m_{\Phi\Phi}$	-0.030	$f^o_{\delta\delta}$	-0.051
$\ H_{\mu}^{\mu}$	0.380	$f^p_{\Phi\Phi}$	-0.031	$f_{R\theta}$	0.0

Tablica 3. Konstante sile za toluen (fenilni dio). $(N/cm, 10^{-8}N/rad, 10^{-16}N \text{ cm }/rad^2)$

Tablica 4.	Simetrizirane	konstante	sile	za to	oluen	(metilni	d_{10}	•
------------	---------------	-----------	------	-------	-------	----------	----------	---

	$S_r^{A_1'}$	$S^{A_1'}_{ hetaeta}$	$S_r^{A_1''}$	$S_{\theta}^{A_1''}$	$S_{\beta}^{A_{1}''}$	$S_r^{A_2''}$	$S_{\theta}^{A_{2}''}$	$S^{A_2''}_eta$
$S_r^{A_1'}$	$c_r^{A_1'}$	0			-			
$S^{A_1'}_{ hetaeta}$	0	$c^{A_1'}_{\theta\beta}$				-		
$S_r^{A_1''}$			$c_r^{A_1''}$	0	0			
$S^{A_1''}_{\theta}$			0	$c_{ heta}^{A_1''}$	$c^{A_1''}_{\theta\beta}$			
$S^{A_1''}_{\beta}$			0	$c^{A_1''}_{\theta\beta}$	$c^{A_1''}_{eta}$			
$S_r^{A_2''}$				1		$c_r^{A_2''}$	0	0
$S^{A_2''}_{A}$						0	$\mathrm{c}_{ heta}^{A_{2}^{\prime\prime}}$	$\mathrm{c}^{A_2''}_{ hetaeta}$
$S_{\beta}^{A_{2}^{\prime\prime}}$						0	$\mathrm{c}^{A_2''}_{ hetaeta}$	$c^{A_2'}_{\beta}$

Tablica 5. Valentno polje sila za koordinate metilne grupe izračunate iz simetriziranih konstanti iz tablice 4.

	r ₁	\mathbf{r}_2	r_3	$ heta_1$	θ_2	θ_3	$eta_{2,3}$	$\beta_{1,3}$	$eta_{1,2}$
r ₁	1	10	11						
\mathbf{r}_2		2	12						
r ₃			3						
θ_1			2.	4	13	14	19	20	21
θ_2					5	15	20	22	23
θ_3						6	21	23	24
Bazz	+						7	16	17
B1 3								8	18
$\beta_{1,2}$									9

Brojanje vodikovih atoma je suprotno od kazaljke na satu gledano od strane metilne grupe. U tablici 7 su predočeni razni skupovi metilnih simetriziranih konstanti sila o kojima će kasnije biti više riječi.

Tablica 6. Valentne konstante sila za metilne koordinate izračunate iz simetriziranih konstanti iz tablice 4. tol. als CA">CA

f=90'

Kon < Kon = Krz

Const. no.

 $\mathbf{K}_{r_1} = \frac{1}{2} (c_r^{A_1'} + c_r^{A_1''} + c_r^{A_2''}) + \frac{1}{2} (c_r^{A_1''} - c_r^{A_2''}) \cos 2\rho$ 5 $H_{\theta_2} = \frac{1}{6} c_{\theta\beta}^{A'_1} + \frac{1}{3} (c_{\theta}^{A''_1} + c_{\theta}^{A''_2}) - \frac{1}{\sqrt{12}} (c_{\theta}^{A''_1} - c_{\theta}^{A''_2}) (\frac{1}{\sqrt{3}} \cos 2\rho + \sin 2\rho)$ $\begin{array}{l} 6 \quad \mathrm{H}_{\theta_3} = \frac{1}{6} c_{\theta\beta}^{A_1'} + \frac{1}{3} (c_{\theta}^{A_1''} + c_{\theta}^{A_2''}) - \frac{1}{\sqrt{12}} (c_{\theta}^{A_1''} - c_{\theta}^{A_2''}) (\frac{1}{\sqrt{3}} \cos 2\rho - \sin 2\rho) \\ 7 \quad \mathrm{H}_{\beta_1} = \frac{1}{6} c_{\theta\beta}^{A_1'} + \frac{1}{3} (c_{\beta}^{A_1''} + c_{\beta}^{A_2''}) + \frac{1}{3} (c_{\beta}^{A_1''} - c_{\beta}^{A_2''}) \cos 2\rho \end{array}$ 8 $H_{\beta_2} = \frac{1}{6}c_{\theta\beta}^{A_1'} + \frac{1}{3}(c_{\beta}^{A_1''} + c_{\beta}^{A_2''}) - \frac{1}{\sqrt{12}}(c_{\beta}^{A_1''} - c_{\beta}^{A_2''})(\frac{1}{\sqrt{3}}\cos 2\rho + \sin 2\rho)$ 9 $H_{\beta_3} = \frac{1}{6}c_{\theta\beta}^{A'_1} + \frac{1}{3}(c_{\beta}^{A''_1} + c_{\beta}^{A''_2}) - \frac{1}{\sqrt{12}}(c_{\beta}^{A''_1} - c_{\beta}^{A''_2})(\frac{1}{\sqrt{3}}\cos 2\rho - \sin 2\rho)$ 10 $f_{r_1,r_2} = \frac{1}{6}(2c_r^{A'_1} - c_r^{A''_1} - c_r^{A''_2}) - \frac{1}{\sqrt{12}}(c_r^{A''_1} - c_r^{A''_2})(\frac{1}{\sqrt{3}}\cos 2\rho - \sin 2\rho)$ 11 $f_{r_1,r_3} = \frac{1}{6} (2c_r^{A_1'} - c_r^{A_1''} - c_r^{A_2''}) - \frac{1}{\sqrt{12}} (c_r^{A_1''} - c_r^{A_2''}) (\frac{1}{\sqrt{3}} \cos 2\rho + \sin 2\rho)$ 12 $f_{r_2,r_3} = \frac{1}{6} (2c_r^{A_1'} - c_r^{A_1''} - c_r^{A_2''}) + \frac{1}{3} (c_r^{A_1''} - c_r^{A_2''}) \cos 2\rho$ 13 $f_{\theta_1,\theta_2} = \frac{1}{6}c_{\theta\beta}^{A_1'} - \frac{1}{6}(c_{\theta}^{A_1''} + c_{\theta}^{A_2''}) - \frac{1}{\sqrt{12}}(c_{\theta}^{A_1''} - c_{\theta}^{A_2''})(\frac{1}{\sqrt{3}}\cos 2\rho - \sin 2\rho)$ $\begin{array}{ll}
14 & f_{\theta_1,\theta_3} = \frac{1}{6}c_{\theta\beta}^{A'_1} - \frac{1}{6}(c_{\theta}^{A''_1} + c_{\theta}^{A''_2}) - \frac{1}{\sqrt{12}}(c_{\theta}^{A''_1} - c_{\theta}^{A''_2})(\frac{1}{\sqrt{3}}\cos 2\rho + \sin 2\rho) \\
15 & f_{\theta_2,\theta_3} = \frac{1}{6}c_{\theta\beta}^{A'_1} - \frac{1}{6}(c_{\theta}^{A''_1} + c_{\theta}^{A''_2}) + \frac{1}{3}(c_{\theta}^{A''_1} - c_{\theta}^{A''_2})\cos 2\rho
\end{array}$ $16 \quad f_{\beta_{2,3},\beta_{1,3}} = \frac{1}{6}c_{\beta\beta}^{A_1'} - \frac{1}{6}(c_{\beta}^{A_1''} + c_{\beta}^{A_2''}) - \frac{1}{\sqrt{12}}(c_{\beta}^{A_1''} - c_{\beta}^{A_2''})(\frac{1}{\sqrt{3}}\cos 2\rho - \sin 2\rho)$ 22 $f_{\theta_2,\beta_{1,3}} = -\frac{1}{6}c_{\theta\beta}^{A_1'} + \frac{1}{3}(c_{\theta\beta}^{A_1''} + c_{\theta\beta}^{A_2''}) - \frac{1}{\sqrt{12}}(c_{\theta\beta}^{A_1''} - c_{\theta\beta}^{A_2''})(\frac{1}{\sqrt{3}}\cos 2\rho + \sin 2\rho)$ 23 $f_{\theta_{2},\beta_{1,2}} = -\frac{1}{6}c_{\theta\beta}^{A_{1}'} - \frac{1}{6}(c_{\theta\beta}^{A_{1}''} + c_{\theta\beta}^{A_{2}''}) + \frac{1}{3}(c_{\theta\beta}^{A_{1}''} - c_{\theta\beta}^{A_{2}''})\cos 2\rho$ 24 $f_{\theta_{3},\beta_{1,2}} = -\frac{1}{6}c_{\theta\beta}^{A_{1}'} + \frac{1}{3}(c_{\theta\beta}^{A_{1}''} + c_{\theta\beta}^{A_{2}''}) - \frac{1}{\sqrt{12}}(c_{\theta\beta}^{A_{1}''} - c_{\theta\beta}^{A_{2}''})(\frac{1}{\sqrt{3}}\cos 2\rho - \sin 2\rho)$

		Skup I	Skup II	Skup III	Skup IV	Skup V
A'_1	$c_r^{A_1'}$	4.85	4.85	4.85	4.85	4.85
P 2	$c^{A'_1}_{\theta\beta}$	0.38	0.48	0.38	0.38	0.38
A_1''	$c_r^{A_1^{\prime\prime}}$	4.66	4.66	4.75	4.66	4.66
	$c_{\theta}^{A_{1}^{\prime\prime}}$	0.94	0.94	1.00	0.94	0.94
	$c_{\beta}^{A_{1}^{\prime\prime}}$	0.29	0.29	0.29	0.29	0.29
	$c^{A_1'}_{\theta\beta}$	0.00	0.00	0.00	$0.025(1+\cos 6 ho)$	$0.025(1+\cos 6 ho)$
	A''			2		
A_2''	Cr ²	4.66	4.66	4.59	4.66	4.66
	$c_{\theta}^{A_{2}}$	0.94	0.94	0.94	0.94	0.94
	$c_{\beta}^{A_{2}}$	0.29	0.29	0.24	0.24	0.29
	$c^{A''}_{\theta\beta}$	$0.025(1+\cos 6\rho)$	$0.025(1+\cos 6 ho)$	$0.025(1+\cos 6\rho)$	$0.025(1+\cos 6 ho)$	$0.025(1+\cos6 ho)$
konstanta interakcije	$\mathbf{f}_{R heta}$	0.0	0.35	0.0	0.35	0.0

Tablica 7. Različiti skupovi simetriziranih konstanti korišteni za račun vibracija toluena.

 $(N/cm, 10^{-8}N/rad, 10^{-16}N cm /rad^2)$

Opažene i izračunate vibracije toluena dane su tablicom 8. Numerički program za izračunavanje vibracija opisan je u ref [18]. Jedina razlika u asignaciji u usporedbi s onom Varsányia [19] tiče se asignacije Ramanove vrpce na 990 cm^{-1} kao izvanravninskog CH savijanja tipa A'₂. Fuson i dr. [13] ovom su gibanju pridružili vrijednost od 960 cm^{-1} , mada citiraju Ramanovu opaženu vrijednost Wilmshursta i Bernsteina [12] od 994 cm^{-1} . Vibracija na 2952 cm^{-1} CH nesimetričnog istezanja opažena u infracrvenim spektrima [13] nije vidljiva u Ramanovom spektru tekućine, ali se opaža u Ramanovom spektru stakla.

T		Raman para	Raman tekućina,	izračunate	Raspodjela potencijalne energije
	ref [6]	ref [7]			
11	3070	3073	3065	3058	0.99 Ks
A_1	3061	3063	3055	3056	0.99 Ks
	5001	0000	3003	3054	0.99 Ks
	2930	2932	2920	2908	$0.32 \text{ K}_{r_1} + 0.32 \text{ K}_{r_2} + 0.32 \text{ K}_{r_3}$
		1	1606	1592	$0.49 \text{ K}_T + 0.24 \text{ K}_R + 0.16 \text{ H}_{\Phi}$
			1495	1488	$0.62 H_{\Phi} + 0.38 K_T$
		C.	1379	1386	$0.20 \text{ K}_T + 0.19 \text{ K}_R + 0.17 \text{ H}_{\Phi} + 0.13 \text{ H}_{\theta_1} + 0.13 \text{ H}_{\theta_1}$
					$0.13 H_{\theta_2} + 0.13 H_{\theta_3}$
	1212	1212	1210	1196	$0.94 H_{\Phi}$
			1180	1182	$0.19 \text{ K}_T + 0.13 \text{ K}_R + 0.12 \text{ H}_{\theta_1} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_1} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_1} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_1} + 0.12 \text{ H}_{\theta_2} + 0.12 \text{ H}_{\theta_1} + 0.12 \text{ H}_{\theta_2} + $
					$0.12 H_{\theta_3}$
	1032	1034	1030	1021	$0.45 \text{ K}_T + 0.41 \text{ H}_\Omega$
	1005	1005	1004	984	$0.58 \text{ K}_T + 0.20 \text{ H}_\Omega$
	785	786	787	765	$0.35 \Pi_{\Omega} + 0.35 \Lambda_{T} + 0.45 \Lambda_{R}$
	518	516	521	486	$0.34 H_{\Omega} + 0.31 H_{\Omega} + 0.13 H_{R} + 0.12 H_{I}$
1	51 ^m .e.,		990	942	$1.25 H_{\mu}$
A2			844	843	$1.14 H_{\mu}$
			408	373	$1.63 H_{\delta} + 0.59 H_{\mu}$
					0.00 W
A_1''	3070		3065	3056	0.99 Ks
	3047		3034	3053	0.99 Ks
			2982	2961	$0.50 \text{ K}_{r_2} + 0.50 \text{ K}_{r_3}$
			1586	1603	$0.50 \text{ K}_T + 0.03 \text{ H}_2 + 0.03 \text{ H}_3 + 0.00 \text{ H}_1$
	1		-	1455	$0.53 \text{ H}_{\bullet} \pm 0.26 \text{ K}_{T} \pm 0.07 \text{ H}_{\bullet} \pm 0.07 \text{ H}_{\bullet}$
	1.5	1440 ^a	1441	1410	$0.66 \text{ K}_{T} + 0.07 \text{ H}_{0.} + 0.07 \text{ H}_$
			1332	1521	$0.07 H_{e}$
1			1208	1310	$0.65 H_{\Phi} + 0.42 K_T$
		an a _{lan} ' i an ar	1156	1142	$1.20 \text{ H}_{\Phi} + 0.17 \text{ K}_T$
1			1082	1105	$0.28 \text{ K}_T + 0.17 \text{ H}_{\beta_2} + 0.17 \text{ H}_{\beta_3} + 0.12 \text{ H}_{\Phi}$
			-	1044	$0.38 \text{ K}_T + 0.14 \text{ H}_{\beta_2} + 0.14 \text{ H}_{\beta_3}$
	615		623	603	$0.83 H_{\Omega}$
	010		347	336	0.86 $H_{\Phi'}$
					0.07K + 0.17 K + 0.17 K
A_2''	2		-	2960	$0.0(K_{r_1} + 0.1)(K_{r_2} + 0.1)(K_{r_3})$
1		1445 ^a	1441	1439	$0.40 \Pi_{\theta_1} + 0.10 \Pi_{\theta_2} + 0.10 \Pi_{\theta_3} + 0.00 \Pi_{\beta_1}$
			-	1101	$0.48 \Pi_{\beta_1} + 0.12 \Pi_{\beta_2} + 0.12 \Pi_{\beta_3}$
			974	972	0.91 Πμ 1 16 Ψ
			897	884	1.00 H_{μ} 1.08 H $_{c}$ + 0.71 H $_{c}$ + 0.70 H $_{c}$
			731	600	$1.57 H_{}$
	1		100	477	$1.82 H_{\delta} + 0.92 H_{\mu}$
			400	206	$0.77 H_{\delta} + 0.27 H_{\mu} + 0.17 H_{\mu'}$
	1		217	200	0 110 1 0.2. 11µ 1 0.2µ

Tablica 8. Opažene i izračunate (koristeći skup I) osnovne vibracije toluena $C_6H_5CH_3$ u cm^{-1} ($\rho = 90^0$).

.^a Do ovih vrijednosti došlo se analizom kombinacijskih vrpci u Ramanovim spektrima pare u području 2880 cm^{-1} .

Slika 5: Računati VDPUR (vidi tekst) za $C_6H_5CH_3$. Skupovi I-III (\Box); IV i V (•). Puna linija je ukupni potencijal V(ρ).

Vibracijski doprinos potencijalu unutrašnje rotacije toluena

Ranije smo definirali vibracijski doprinos potencijalu unutrašnje rotacije (VDPUR) kao izraz (30). Temeljem njega te koristeći više modifikacija jednostavnog polja sila izvedenog iz skupova konstanti danih u tablici 7 izračunat je VDPUR toluena. Slika 5 prikazuje VDPUR toluena C₆H₅CH₃ izračunat skupovima I - V metilnih simetriziranih koordinata iz tablice 7. Skupovi I - III reproduciraju eksperimentalnu barijeru [20] (danu punom linijom) prilično dobro, dok skupovi IV i V daju dvostruko višu barijeru. U svim je skupovima pretpostavljena konstanta interakcije između θ i β simetriziranih koordinata u A["]₂ bloku, dok je u skupovima IV i V njoj pridodana interakcija iste vrste u A["]₁ bloku. Kako G matrica ne ovisi o ρ kada se koriste simetrizirane koordinate, promjena izračunatih frekvencija potječe iz F matrice.

Ovisnost **F** matrice o ρ izvedena je iz različitosti dijagonalnih A_1'' i A_2'' simetriziranih konstanti, te kroz interakcijske konstante $c_{\theta}^{A_1''}$ and $c_{\theta}^{A_2''}$. Slaganje VDPUR za skupove I, II i III je prividno, jer osim VDPUR stvarnom $V(\rho)$ doprinosi i član $V^e(\rho)$ u izrazu 29. Slika 6 prikazuje VDPUR toluena

Slika 7: Vibracija CH savijanja za $C_6D_5CHD_2$. Skup I (- -); skup II (-); skup III (-).

 $C_6D_5CHD_2$ izračunat konstantama iz skupova I, II i IV. Konstanta interakcije $f_{R\theta}$ između C_{metila} - $C_{prstena}$ i tri metilne koordinate savijanja kuteva θ jednaka je 0.35 $\cdot 10^{-8} \frac{N}{rad}$ u skupovima II i IV, dok je 0 u svim ostalima (tablica 7). Kako vidimo na slici 6, za skupove I i II VDPUR je jednak, mada su promjene u vibraciji CH savijanja za istu molekulu jasno uočljive (vidi sliku 7). Kako možemo odrediti doprinos kinetičke energije u VD-PUR ? To se može usporedimo li VDPUR izračunat s poljem sila neovisnim od ρ . Iz tablice 6 vidimo da je potrebno kako bi to postigli staviti

$$c_r^{A_1''} = c_r^{A_2''} \tag{33}$$

$$c_{\theta}^{A_1''} = c_{\theta}^{A_2''} \tag{34}$$

$$c_{\beta}^{A_1} = c_{\beta}^{A_2} \tag{35}$$

$$c_{\theta\beta}^{A_1} = const \tag{36}$$

$$c_{\theta\beta}^{A_2^{\prime}} = const. \tag{37}$$

Skup konstanti I iz tablice 7 zadovoljavat će ove uvjete ako stavimo $c_{\theta\beta}^{A_2'}$ jednaku konstanti, npr = 0.

Slika 8: Doprinos kinetičke energije u VDPUR za $C_6D_5CHD_2$ sa skupom I uz $c_{\theta\beta}^{A_2''}=0.$

Slika 9: Njihajna A"₂ vibracija metila u toluenu-d_o.. Skupovi I, II i V (---), skupovi III i IV (---).

Slika 8 prikazuje VDPUR za dva izotopa toluena uz skup I i $c_{\theta\beta}^{A_2''} = 0$. Za toluen -d_o dobija se da on iščezava, jer nema promjene s ρ u G matrici. Efekt dijagonaliziranih simetriziranih konstanti sila poput $c_{\beta}^{A_2''}$ očituje se na slici 9. Skup IV i skup V razlikuju se u vrijednosti ove konstante, što direktno utječe na frekvenciju njihajne metilne A"₂ vibracije u toluenud_o. Slično ponašanje opaža se i za A"₁ vibraciju metilnog savijanja, no ona prolazi kroz maksimalnu vrijednost (1491 cm⁻¹, 10) kada njihajna A"₂ vibracija prolazi kroz minimum (slika 9). Vrijednost vibracije savijanja mijenja se $\approx \pm 25$ cm⁻¹, dajući širinu od 50 cm⁻¹, što je 10 cm⁻¹ više od poluširine vrpce opažene u tekućem toluenu-d_o.

Promjena potencijala unutrašnje rotacije u v = 1 pobuđenom stanju CH istezanja u C₆D₅CHD₂ izučavana je u objavljenoj studiji [21]. Nađen je oblik potencijala

$$V_2 \cos 2\rho + V_4 \cos 4\rho + \frac{1}{2} V_6 (1 + \cos 6\rho), \qquad (38)$$

gdje je $V_2 = 21.0 \ cm^{-1}$, $V_4 = 6.0 \ cm^{-1}$ i $V_6 = 4.9 \ cm^{-1}$. Kako je ovaj rezultat dobiven za toluen u pari gdje je opaženo cijepanje degeneracije modova nesimetričnog CH istezanja [15], možemo ga usporediti s našim skupom III

Slika 10: Metilna A"₂ vibracija u toluenu-d_o. Skupovi I, II i V (---), skupovi III i IV (--).

Slika 11: VDPUR za C₆D₅CHD₂ (**S**) za CH istezanje. $\omega_{CH}(\rho)$ (\Box); Puna lilnija je ukupni potencijal [20].

konstanti koji uključuje različite $c_r^{A_1''}$ i $c_r^{A_2''}$. Slika 11 uspoređuje promjenu frekvencije CH istezanja u C₆D₅CHD₂ s vibracijskim doprinosom potencijalu unutrašnje rotacije (VDPUR) računatim sa skupom III. Ovisnost same frekvencije o ρ je oblika

$$\Delta\omega\cos 2\rho + \omega_0 \tag{39}$$

uz $\Delta \omega = 18.4 \ cm^{-1} \ i \ \omega_0 = 2947.0 \ cm^{-1}$.

Slika 12: Interne koordinate nitrometana.

2.1.2 Nitrometan

Interne koordinate koje opisuju molekulu nitrometana definirane su na slici 12. Ravnotežne duljine kemijskih veza i kuteva koje veze zatvaraju preuzete su iz rada [22]. Valentno polje sila nitrometana konstruirano je iz valentnih konstanti sila za NO₂ grupu iz tablice 9, dok su valentne konstante sila za metilnu grupu izračunate iz simetriziranih konstanti na način kako je to učinjeno za toluen.

Table 9. Konstante sila nitrometana (CNO₂ grupa). $(N/cm, 10^{-8}N/rad, 10^{-16}N \text{ cm }/rad^2)$

K _R	4.600	f_{R,r_4}	0.450
K_{r4}	8.575	$f_{r,r_{\alpha}}$	0.100
H_{α}	2.900	$f_{R,\theta}$	0.350
H_{λ}	0.400	f_{r_4,r_5}	0.875
$ $ H $_{\tau}$	0.000	f_{α_4,α_5}	1.700

Interakcija metilne i NO_2 grupe također je opisana kroz simetrizirane konstante sila - vidi tablice 10 i 11.

Tablica 10. Skup simetriziranih konstanti korištenih u računu nitrometanskih vibracija. $(N/cm, 10^{-8}N/rad, 10^{-16}N cm /rad^2)$

			and the second
$c_r^{A_1'}$	5.05	$c_{NO,\theta}^{A_1''}$	-0.38
$c_{NO}^{A_1'}$	9.45	$c_{\beta}^{A_1''}$	0.33
$c_{NO,\theta}^{A_1'}$	-0.1	$c^{A_1''}_{ hetaeta}$	$0.007(1+\cos 6\rho)$
$c^{A'_1}_{ hetaeta}$	0.66	$c_r^{A_2''}$	4.90
$c_r^{A_1''}$	5.00	$c_{\theta}^{A_2''}$	1.14
$c_{NO}^{A_1^{\prime\prime}}$	7.7	$c^{A_2''}_{\beta}$	0.33
$c_{ heta}^{A_1''}$	1.14	$c^{A_2''}_{ hetaeta}$	$0.007(1+\cos 6 ho)$

Tablica 11. Valentno polje sila koje opisuje interakciju NO_2 i CH_3 grupa u nitrometanu.

	r ₄	r_5	θ_1	θ_2	θ_3	$\beta_{2,3}$	$\beta_{1,3}$	$eta_{1,2}$
r ₄	1	2	3	4	5	9	9	9
r_5		1	6	7	8	9	9	9

Veza valentnih i simetriziranih konstanti sila raspisana je u tablici 12.

Tablica 12. Ovisnost valentnih konstanti sila iz Tablice 11
o $\rho.$

Const. no.

1	$\mathbf{K}_{r_4} = \frac{1}{2} (c_{NO}^{A_1'} + c_{NO}^{A_1'})$
2	$\mathbf{f}_{r_4,r_5} = \frac{1}{2} (c_{NO}^{A_1'} - c_{NO}^{A_1''})$
3	${ m f}_{r_4, heta_1} = - {1\over \sqrt{12}} c^{A'_1}_{NO, heta} + {1\over \sqrt{3}} c^{A''_1}_{NO, heta} \cos ho$
4	$f_{r_4,\theta_2} = -\frac{1}{\sqrt{12}} c_{NO,\theta}^{A_1'} - \frac{1}{2} c_{NO,\theta}^{A_1''} (\frac{1}{\sqrt{3}} \cos \rho - \sin \rho)$
5	$f_{r_4,\theta_3} = -\frac{1}{\sqrt{12}} c_{NO,\theta}^{A_1'} - \frac{1}{2} c_{NO,\theta}^{A_1''} (\frac{1}{\sqrt{3}} \cos \rho + \sin \rho)$
6	$f_{r_{5},\theta_{1}} = -\frac{1}{\sqrt{12}} c_{NO,\theta}^{A_{1}'} - \frac{1}{\sqrt{3}} c_{NO,\theta}^{A_{1}''} \cos \rho $
7	$f_{r_5,\theta_2} = -\frac{1}{\sqrt{12}} c_{NO,\theta}^{A_1'} + \frac{1}{2} c_{NO,\theta}^{A_1''} (\frac{1}{\sqrt{3}} \cos \rho - \sin \rho)$
8	$f_{r_{5},\theta_{3}} = -\frac{1}{\sqrt{12}} c_{NO,\theta}^{A_{1}'} + \frac{1}{2} c_{NO,\theta}^{A_{1}''} (\frac{1}{\sqrt{3}} \cos \rho + \sin \rho)$
9	$f_{r_4,\beta_i} = f_{r_5,\beta_i} = \frac{1}{\sqrt{12}} c_{NO,\theta}^{A'_1}, i = 1, 2, 3.$

Opažamo da se uvođenjem $c_{NO,\theta}^{A'_1}$ konstante između $S_{NO}^{A'_1}$ i $S_{\theta\beta}^{A'_1}$ koordinata javlja konstantni član neovisan od ρ u svim valentnim konstantama sila koje opisuju interakciju između koordinata NO istezanja i metilnih kuteva savijanja θ . Konstanta $c_{NO,\theta}^{A''_1}$ pak doprinosi članove ovisne o ρ (vidi tablicu 13).

U Ramanovom spektru tekućine postoji značajan preklop vrpci asimetričnog NO₂ savijanja na 1562 cm^{-1} , simetričnog NO₂ istezanja na 1401 cm^{-1} te simetričnog savijanja metilnih θ kuteva na 1378 cm^{-1} .

	$S_r^{A_1'}$	$S_{NO}^{A_1'}$	$S^{A'_1}_{ hetaeta}$	$S_r^{A_1''}$	$S_{NO}^{A_1''}$	$S_{\theta}^{A_1''}$	$S^{A_1''}_{\beta}$	$ S_r^{A_2''} $	$S^{A_2''}_{\theta}$	$S^{A_2''}_eta$
$S_r^{A_1'}$	$c_r^{A_1'}$	0	0				ал. К. 1			·
$S_{NO}^{A_1'}$	0	$c_{NO}^{A_1'}$	$c_{NO,\theta}^{A_1'}$	14						
$S^{A'_1}_{\theta\beta}$	0	$c_{NO,\theta}^{A_1'}$	$\mathrm{c}_{ hetaeta}^{A_1'}$			a de la composición de		36-11		, i
$S_r^{A_1''}$		20 20		$c_r^{A_1''}$	0	0	0			
$S_{NO}^{A_1''}$				0	$c_{NO}^{A_1^{\prime\prime}}$	$c_{NO,\theta}^{A_1''}$	0			
$S_{\theta}^{A_{1}^{\prime\prime}}$				0	$c_{NO,\theta}^{A_1''}$	$c_{ heta}^{A_1''}$	$c^{A_1''}_{\theta\beta}$			
$S^{A_1''}_{\beta}$				0	0	$c^{A_1''}_{ hetaeta}$	$c^{A_1''}_{\beta}$		2.5	
$S_r^{A_2''}$						8		$c_r^{A_2''}$	0	0
$S^{A_2''}_{\theta}$								0	$\mathrm{c}_{ heta}^{A_{2}^{\prime\prime}}$	$\mathrm{c}^{A_2''}_{ hetaeta}$
$S^{A_2''}_{\beta}$			e A					0	$c^{A_2''}_{\thetaeta}$	$\mathrm{c}_{\beta}^{A_{2}^{\prime\prime}}$

Tablica 13. Simetrizirane konstante sila nitrometana korištene u ovom radu.

Također se u tom području javlja nesimetrično savijanje metilnih θ kuteva u obliku ramena na vrpci kod 1401 cm^{-1} . Kako bismo odredili točan položaj vrpce nesimetričnog metilnog savijanja, proveden je rastav spektralnog područja od 1350 do 1650 cm^{-1} programom MINUIT [23] uz pretpostavku Lorentzovih profila. Rezultat je dao položaj metilnog nesimetričnog savijanja na 1416 cm^{-1} širine vrpce na pola intenziteta (FWHM) 94 cm^{-1} (vidi sliku 13). Pitanje degeneracije ovog moda ostalo je otvoreno. Više detalja o numeričkoj prilagodbi dano je u referenci [6]. U području 3000 cm^{-1} zanimalo nas je koji su položaji nesimetričnih modova CH istezanja metilne grupe. Iz Ramanovog spektra je bilo vidljivo da oko 3050 cm^{-1} postoje dvije vrpce i da se preklapaju (slika 14). Početno je dakle uz njih uzeta i vrpca simetričnog metilnog CH istezanja, ukupno tri vrpce. No

Slika 13: Ramanov spektar tekućeg nitrometana 1350-1650 cm^{-1} . Točke prikazuju eksperimentalne podatke.

kako u više pokušaja i nakon što je utvrđen položaj vrpci na 3040 i 3060 cm^{-1} nije uspjelo reproduciranje dugog repa na višim valnim brojevima, uvedena je četvrta vrpca. Njen je položaj utvrđen na 3124 cm^{-1} , a ona je interpretirana kao dvostruko pobuđenje vrpce na 1562 cm^{-1} - nesimetričnog NO₂ istezanja. Konačno su položaji nesimetričnih metilnih CH istezanja dobiveni na 3047 i 3065 cm^{-1} , a poluširine tih vrpci iznosile su 42 i 52 cm^{-1} .

Pregled opaženih i izračunatih vrijednosti vibracija CH_3NO_2 dan je u tablici 14.

	opažene	izračunate	Raspodjela potencijalne energije
A'_1	2965	2965	$0.33 (K_{r_1} + K_{r_2} + K_{r_3})$
-	1401	1454	$0.49 \text{ K}_{r_4} + 0.28 \text{ K}_R + 0.17 \text{ H}_{\alpha}$
	1378	1391	$0.23 (H_{\theta_1} + H_{\theta_2} + H_{\theta_3})$
	918	916	$0.40 \text{ K}_R + 0.39 \text{ K}_{r_4}$
	657	646	$0.39 \text{ H}_{\alpha} + 0.33 \text{ K}_{R}$
A_1''	3065	3074	$0.50 (K_{r_2} + K_{r_3})$
1	1562	1584	$0.93 \text{ K}_{r_4} + 0.29 \text{ H}_{\alpha}$
	1416	1380	$0.29 (H_{\theta_2} + H_{\theta_2}) +$
			$0.07 (H_{\beta_2} + H_{\beta_3}) + 0.06 K_{r_4}$
	1102	1103	$0.42 (H_{\beta_2} + H_{\beta_3})$
	482	509	2.06 H_{α}
A''	3047	3041	$0.67 \text{ K}_{r_1} + 0.17 (\text{K}_{r_2} + \text{K}_{r_2})$
2	1416	1413	$0.44 H_{\theta_1} + 0.11 (H_{\theta_2} + H_{\theta_3})$
	1102	1102	$0.59 H_{\beta_1} + 0.15 (H_{\beta_2} + H_{\beta_3})$
	608	571	0.97 H ₃

Tablica 14. Opažene (Raman tekućine) i izračunate osnovne vibracije od CH_3NO_2 u cm^{-1} ($\rho = 90^0$).

Slika 14: Ramanov spektar tekućeg nitrometana 2900-3200 cm^{-1} . Točke prikazuju eksperimentalne podatke.

Slika 15: VDPUR za $CH_3NO_2(-)$; CHD_2NO_2 (Δ), te doprinos kinetičkoj energiji u VDPUR od CHD_2NO_2 (•).

Vibracijski doprinos potencijalu unutrašnje rotacije nitrometana

U slučaju nitrometana upotrijebljene su niže vrijednosti $c_{\theta\beta}^{A_1''}$ i $c_{\theta\beta}^{A_2''}$ konstanti interakcije nego kod toluena. Također su i $c_r^{A_1''}$ i $c_r^{A_2''}$ u skladu s [24] uzete različite, dajući vibracijski doprinos potencijalu unutrašnje rotacije (VDPUR) na slici 15. Doprinos kinetičke energije izračunat je stavljanjem $c_{NO,\theta}^{A_1''} = 0$, i $c_r^{A_1''} = c_r^{A_2''} = 5.0 \frac{N}{cm}$. Efekt deuteriranja metilne grupe utječe na kinetičku energiju na sličan način kao u toluenu, no doprinos kinetičkoj energiji je veći nego u C₆D₅CHD₂ (slika 8).

Gorse i dr. [25] su proveli *ab initio* račun izotopomera nitrometana. Njihov rezultat za ovisnost CH vibracije CHD_2NO_2 o ρ jeste

$$\omega_0 + \omega_2 \cos 2\rho + \omega_4 \cos 4\rho \tag{40}$$

s $\omega_0 = 3032 \ cm^{-1}$, $\omega_2 = 17.5 \ cm^{-1}$ i $\omega_4 = -1.05 \ cm^{-1}$. Ova ovisnost $\omega_{CH}(\rho)$ prikazana je slikom 16. Naša izračunata $\omega_{CH}(\rho)$ prikazana je s \Box dajući niže vrijednosti za niže ρ .

Slika 16: VDPUR za CH istezanje od CHD_2NO_2 (\blacksquare); $\omega_{CH}(\rho)$ iz [24] (—), $\omega_{CH}(\rho)$ ovaj račun (\Box).

3 Nalaženje rješenja Mathieuove jednadžbe

Osim vibracijskog dijela u hamiltonijanu iz jednadžbe (19) se javlja i rotacijsko - unutrašnje-rotacijski dio hamiltonijana:

$$(T_{r/ur} + V(\rho))\Phi_{r/ur} = E\Phi_{r/ur}$$
(41)

gdje je $T_{r/ur}$ kinetička energija rotacije i unutrašnje rotacije. Klasični oblik $T_{r/ur}$ dan je u jednadžbi (4), gdje se vidi da postoji vezanje kutnih brzina ω_x , $\omega_y \omega_z$ s $\dot{\rho}$. Prijelaz na kvantnomehanički oblik kinetičke energije opisan je npr. u [5] ili [26]. Umjesto ω_x , itd. javljat će se operatori kutne količine gibanja poput P_x itd. Za molekule tipa C₆H₅CH₃ i CH₃NO₂ kvantnomehanički oblik izraza (41) je

$$\left[\frac{P_x^2}{2I_x} + \frac{P_y^2}{2I_y} + \frac{P_z^2}{2I_z^{frame}} - \frac{P_z p_\rho}{I_z^{frame}} + \frac{p_\rho^2}{2I_z^{red}} + V(\rho)\right]\Phi_{r/ur}(\rho) = E\Phi_{r/ur}(\rho).$$
(42)

gdje su

$$P_x = i\hbar \frac{\partial}{\partial \omega_x} \tag{43}$$

$$P_y = i\hbar \frac{\partial}{\partial \omega_y} \tag{44}$$

$$P_z = i\hbar \frac{\partial}{\partial \omega_z} \tag{45}$$

$$p_{\rho} = i\hbar \frac{\partial}{\partial \dot{\rho}}.$$
(46)

 I_x , I_y i $I_z = I_z^{frame} + I_z^{top}$ su momenti inercije u sistemu glavnih osi. I_z^{red} predstavlja reducirani moment inercije

$$I_z^{red} = \frac{I_z^{top} I_z^{frame}}{I_z^{top} + I_z^{frame}}.$$
(47)

Tako čak i u slučaju kada molekula posjeduje simetrični zvrk poput CH_3 grupe, postoje članovi vezanja u kinetičkoj energiji između rotacije čitave molekule i unutrašnje rotacije oko zajedničke osi z.

U prvoj aproksimaciji može se član vezanja u kinetičkoj energiji tretirati računom smetnje pri čemu nesmetani hamiltonijan ima oblik

$$H_o = H_o^{rot} + H_o^{un.rot} \tag{48}$$

$$H_o^{rot} = \frac{P_x^2}{2I_x} + \frac{P_y^2}{2I_y} + \frac{P_z^2}{2I_z^{frame}}$$
(49)

$$H_o^{un.rot} = \frac{p_{\rho}^2}{2I_z^{red}} + V(\rho),$$
(50)

a valna funkcija se može napisati

$$\Phi_{r/ur} = \Phi_{rot} \cdot \Psi(\rho). \tag{51}$$

Schrödingerova jednadžba za unutrašnju rotaciju

$$\left(\frac{p_{\rho}^2}{2I_z^{red}} + V(\rho)\right)\Psi(\rho) = E\Psi(\rho) \tag{52}$$

za potencijal $V(\rho)$ oblika

$$V(\rho) = \frac{1}{2}V_n(1 - \cos n\rho) \tag{53}$$

poprima oblik Mathieuove jednadžbe

$$B\frac{d^2\Psi}{d\rho^2} + \frac{V_n}{2}(1-\cos n\rho)\Psi = E\Psi.$$
(54)

SBsmo označili konstantu unutrašnje rotacije

$$B = \frac{\hbar^2}{2I_z^{red}}.$$
(55)

U literaturi se često uvodi supstitucija $2\gamma \equiv n\rho$ čime jednadžba poprima oblik

$$\frac{d^2\Psi}{d\gamma^2} + (b + s\cos 2\gamma)\Psi = 0.$$
(56)

Ovdje su b i s definirani sa

$$b = \frac{4E}{n^2 B} - \frac{2V_n}{n^2 B} \equiv \beta - s \tag{57}$$

$$s = \frac{2V_n}{n^2 B} \tag{58}$$

U knjizi [27] koristi se oblik potencijala $\frac{1}{2}V_n(1 + \cos n\rho)$, pa je jednadžba oblika

$$\frac{d^{2}\Psi}{d\gamma^{2}} + (b - \frac{s}{2} - \frac{s}{2}\cos 2\gamma)\Psi = 0.$$
 (59)

pri tome je b isto definiran, dok je s

$$s = \frac{4V_n}{n^2 B}.$$
(60)

Spomenute tablice daju rješenja Mathieuove jednadžbe za n koji nisu višckratnici broja 3. Za slučaj n = 3k rješenja je u obliku tablica objavio Herschbach [28].

Gornju jednadžbu možemo rješavati na višc načina. Opisat ćemo analitičko i numeričko rješavanje, te primjenu varijacijske metode kako je to učinio Hüller [29]. Opsežan pregled sistema s unutrašnjom rotacijom dan je u referencama [30] i [31].

3.1 Red trigonometrijskih funkcija

Pokazat ćemo na primjeru potencijala $\frac{1}{2}V_6(1-\cos 6\rho)$ kako se rješava Mathieuova jednadžba (56).

Ranije smo prema grupi G_{12} klasificirali sin $k\rho$ i cos $k\rho$ funkcije. Možemo stoga sačiniti slijedeće kombinacije:

$$\Psi_{6p}^{A_1'} = \sum_{k=0}^p A_{6k}^{6p} \cos 6k\rho \tag{61}$$

$$\Psi_{6p}^{A_2'} = \sum_{k=1}^p B_{6k}^{6p} \sin 6k\rho \tag{62}$$

$$\Psi_{6p+3}^{A_1''} = \sum_{k=0}^p A_{6k+3}^{6p+3} \cos(6k+3)\rho \tag{63}$$

$$\Psi_{6p+3}^{A_2''} = \sum_{k=0}^p B_{6k+3}^{6p+3} \sin(6k+3)\rho \tag{64}$$

$$\Psi_{6p\pm1}^{E'',a} = \sum_{k=0}^{p} A_{6k\pm1}^{6p\pm1} \cos(6k\pm1)\rho$$
(65)

$$\Psi_{6p\pm1}^{E'',b} = \sum_{k=0}^{p} B_{6k\pm1}^{6p\pm1} \sin(6k\pm1)\rho \tag{66}$$

$$\Psi_{6p\pm2}^{E',a} = \sum_{k=0}^{p} A_{6k\pm2}^{6p\pm2} \cos(6k\pm2)\rho \tag{67}$$

$$\Psi_{6p\pm2}^{E',b} = \sum_{k=0}^{p} B_{6k\pm2}^{6p\pm2} \sin(6k\pm2)\rho \tag{68}$$

Odredimo energiju osnovnog stanja A'_1 . Uvrstimo (61) u (56) i izjednačimo sumand uz cos $k\rho$ za svaki k s nulom. Radi jednostavnijeg pisanja ispuštamo gornji indeks 6p. Nalazimo rekurzivne uvjete koji moraju biti zadovoljeni da bi jednadžba imala rješenje:

$$A_o(\beta - s) + \frac{s}{2}A_6 = 0 \tag{69}$$

$$A_6(-36 \cdot 1^2 + \beta - s) + sA_o + \frac{s}{2}A_{12} = 0$$
(70)

$$A_{12}(-36 \cdot 2^2 + \beta - s) + sA_o + \frac{s}{2}A_{12} + \frac{s}{2}A_{18} = 0$$
(71)

$$A_{6k}(-36 \cdot k^2 + \beta - s) + \frac{s}{2}(A_{6k-6} + A_{6k+6}) = 0, k \ge 3$$
(72)

Definirajmo v_m

$$v_m = \frac{\beta - s - m^2}{-s/2}.$$
 (73)

Tada je

$$\frac{A_6}{A_o} = v_o \equiv G_6 \tag{74}$$

$$\frac{A_{12}}{A_6} = v_6 - \frac{2}{v_o} \equiv G_{12} \tag{75}$$

$$\frac{A_{18}}{A_{12}} = v_{12} - \frac{A_6}{A_{12}} (1 + \frac{2}{v_o}) \equiv G_{18}$$
(76)

Definiramo li

$$G_{6k+6} \equiv \frac{A_{6k+6}}{A_{6k}} \tag{77}$$

imat ćemo za $k\geq 3$

$$G_{6k+6} = v_{6k} - \frac{1}{G_{6k}}.$$
(78)

Kako je

i

$$G_{24} = \frac{1}{v_{24} - G_{30}} \tag{79}$$

$$G_{18} = \frac{1}{v_{18} - G_{24}} \tag{80}$$

nalazimo da je

$$G_{18} = \frac{1}{v_{18} - \frac{1}{v_{24} - G_{30}}} \tag{81}$$

$$G_{18} = \frac{1}{v_{18} - \frac{1}{v_{24} - \frac{1}{v_{36} - G_{36}}}}$$
(82)

S druge strane G_{12} se da izraziti preko G_{12} i G_6 . Iz (76) nalazimo

$$G_{18} = v_{12} - \frac{1}{G_{12}} (1 + \frac{2}{G_6}).$$
(83)

Izjednačavanjem ovog i prethodnog izraza za G₁₈ tražimo izraz za v_o iz kojeg ćemo izračunati nepoznanicu β metodom iteracije. Nalazimo

$$v_o = \frac{2}{v_6} \left[1 + \frac{1 + v_6}{-1 + v_6 \left(v_{12} - \frac{1}{v_{18} - \frac{1}{v_{24} - \frac{1}{v_{30} - \cdots}}} \right)} \right].$$
 (84)

Kako svi v_{6k} sadrže β , metoda iteracije je najpogodnija za nalaženje energije E sadržane u β . Obično se pretpostavi da je za dovoljno velik k i v_{6k} velik, te da je $v_{6k}^{-1} = 0$. Recimo da je $v_{24}^{-1} = 0$. Tada je

$$v_o = \frac{2}{v_6} \left[1 + \frac{1 + v_6}{-1 + v_6(v_{12} - \frac{1}{v_{18}})} \right]$$
(85)

Potražimo sada rješenja koristeći neke konkretne vrijednosti parametara s i B. Neka je s = 10 i $B = 5.78 \ cm^{-1}$ (to je vrijednost B za CH_3NO_2). Jednadžba

$$\frac{10 - \beta^{(n+1)}}{5} = \frac{10}{46 - \beta^{(n)}} \left(1 + \frac{1 + \frac{46 - \beta^{(n)}}{5}}{-1 + \frac{46 - \beta^{(n)}}{5} \left(\frac{154 - \beta^{(n)}}{5} - \frac{5}{334 - \beta^{(n)}}\right)}\right)$$
(86)

Na mjesto $\beta^{(n)}$ uvrštavamo početnu vrijednost β , a $\beta^{(n+1)}$ izračunamo. Za $\beta^{(o)}$ dobijamo

$$\beta^{(1)} = 8.92 = \frac{E_o^{(1)}}{B} \tag{87}$$

$$E_o^{(1)} = 51.557 cm^{-1} \tag{88}$$

U drugom koraku uvrštavamo $\beta^{(1)}$ na mjesto $\beta^{(n)}$, te nalazimo

$$\beta^{(2)} = 8.65 = \frac{E_o^{(2)}}{B} \tag{89}$$

$$E_o^{(2)} = 50.006 cm^{-1} \tag{90}$$

U trećoj iteraciji

$$\beta^{(3)} = 8.61 = \frac{E_o^{(3)}}{B} \tag{91}$$

$$E_o^{(3)} = 49.758 cm^{-1}, (92)$$

a u četvrtoj

$$\beta^{(4)} = 8.61 = \frac{E_{\circ}^{(4)}}{B} \tag{93}$$

$$E_o^{(4)} = 49.77 cm^{-1}.$$
 (94)

Koliko smo pogriješili u v_{24}^{-1} (uzeli smo da je $v_{24}^{-1}=0)$? S ovim $\beta^{(4)}$ je

$$v_{24} = \frac{\beta^{(4)} - s - 24^2}{-5} = 115.478,$$
(95)

dok se u nazivniku za v_o javlja v_{24}^{-1}

$$\frac{1}{v_{24}} = 0.0086 < 0.01. \tag{96}$$

Preostaje nam odrediti koeficijente u valnoj funkciji

$$\Psi_{6p}^{A_1'} = \sum_{k=0}^{p} A_{6k} \cos 6k\rho \tag{97}$$

$$\Psi_{6\rho}^{A_1'} = A_o \left(1 + \frac{A_6}{A_o} \cos 6\rho + \frac{A_{12}}{A_o} \cos 12\rho + \frac{A_{18}}{A_o} \cos 18\rho\right) \tag{98}$$

$$\Psi_{6p}^{A_1} = A_o [1 + 0.2779 \cos 6\rho + 0.07826 \cos 12\rho - 0.00088 \cos 18\rho].$$
(99)

Koeficijent A_o određuje se normiranjem, što daje

$$\Psi_{6p}^{A_1'} = 0.3909 + 0.1086\cos 6\rho + 0.0306\cos 12\rho - \dots$$
(100)

Na sličan način nalaze se i energije pobuđenih A'_1 stanja, s tom razlikom što se iteracijski postupak provodi iz (70)

$$\beta^{(n+1)} - s - 36 = -s\frac{A_o}{A_6} - \frac{s}{2}\frac{A_{12}}{A_6}.$$
(101)

Na desnoj strani javljaju se

$$\frac{A_o}{A_6} = \frac{s/2}{s-\beta} \tag{102}$$

$$\frac{A_{12}}{A_6} = \frac{\frac{s}{s-\beta} + 1}{\frac{144+s-\beta}{s/2} - \frac{s/2}{s+324-\beta}}$$
(103)

tako da imamo

$$\beta^{(n+1)} - s - 36 = -\frac{s}{2} \left[\frac{s}{s - \beta^{(n)}} + \frac{\frac{s}{s - \beta^{(n)}} + 1}{\frac{144 - s\beta^{(n)}}{s/2} - \frac{s/2}{s + 324 - \beta^{(n)}}} \right].$$
 (104)

Uz početu vrijednost $\beta^{\circ} = 40$ i četiri iteracije dobivamo

$$\beta_1^{(4)} = 47.17\tag{105}$$

$$E_{1A_1'}^{(4)} = 272.66 cm^{-1}.$$
(106)

Za degenerirane nivoe procedura je analogna, no za npr E" nivoe trebaju se istovremeno uzeti redovi po $\cos(6k+1)\rho$ i $\cos(6k-1)\rho$. To će voditi na dvije paralelne rekurzije po koeficijentima A_{6k+1} i A_{6k-1} . Navedimo samo da je najniže E" stanjc računato ovom metodom energije 54.23 cm⁻¹.

Numerički program VIBAR koji stoji na raspolaganju u Laboratoriju za molekulsku fiziku napisan je u grupi profesora Duriga [32]. Njime se mogu računati nivoi energije molekula sa simetričnim i nesimetričnim zvrkovima čiji je potencijal suma članova oblika $V_i/2$ ($1 - \cos(i\rho)$). Program se zasniva na razvijanju valne funkcije u red konačnog broja trigonometrijskih funkcija *sin* i *cos*. Konačan broj funkcija baze znači da se više energije ne računaju s jednakom točnošću kao niže energije, jer se preklop s funkcijama izvan baze zanemaruje. U tablici 15 uspoređuju se energije koje smo izračunali iteracijskom metodom s rezultatima programa VIBAR:
Tablica 15. Usporedba nekoliko nivoa energije potencijala $\frac{V_6}{2}(1 - \cos 6\rho)$ za V₆ = 115.6 cm⁻¹ i B = 5.78 cm⁻¹. Energije su u cm⁻¹.

nivo	iteracija	VIBAR
$0A'_1$	49.77	49.86
$0\mathrm{E}''$	54.23	54.78
$1A'_1$	272.66	272.05

3.2 Varijacijska metoda Hüllera

Rješavanje Mathieuove jednadžbe kako je to opisano maloprije zahtijeva korištenje dosta velike baze. Na primjer, za račun prvih dvanaest nivoa u potencijalu sa šest minimuma potrebno je uzeti približno dvadeset sinusnih i dvadeset kosinusnih funkcija. No ako nam ne treba toliko vlastitih energija, možemo se poslužiti varijacijskom metodom Hüllera [29] za određivanje prvih šest nivoa. Opisat ćemo tu metodu za $V(\rho) = (V_6/2)(1-\cos 6\rho)$ potencijal. Poopćenje za $n \neq 6$ slijedi direktno.

Probne varijacijske funkcije ψ_j , j = 1, 2, ..., 6 sačinjavamo kao simetrizirane kombinacije funkcija ϕ_i izraženih kroz varijacijski parametar β_i :

$$\phi_i = e^{\beta_i \left[\cos\left(\rho + \frac{(i-1)2\pi}{6}\right)\right]}, i = 1, 2, ..., 6.$$
(107)

Koristeći točkastu C_6 grupu nalazimo koeficijente uz ϕ_i za pojedinu funkciju ψ_j :

$$\psi_1^A = \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6 \tag{108}$$

$$\psi_2^{E_1,a} = \phi_1 - \phi_4 + \omega(\phi_2 - \phi_5) - \omega^*(\phi_3 - \phi_6) \tag{109}$$

$$\phi_3^{E_1,b} = \phi_1 - \phi_4 + \omega^*(\phi_2 - \phi_5) - \omega(\phi_3 - \phi_6) \tag{110}$$

$$\psi_4^{E_2,b} = \phi_1 + \phi_4 - \omega^*(\phi_2 + \phi_5) - \omega(\phi_3 + \phi_6) \tag{111}$$

$$\psi_5^{E_2,a} = \phi_1 + \phi_4 - \omega(\phi_2 + \phi_5) - \omega^*(\phi_3 + \phi_6) \tag{112}$$

$$\psi_6^B = \phi_1 - \phi_2 + \phi_3 - \phi_4 + \phi_5 - \phi_6 \tag{113}$$

Između prvih šest nivoa postoje dva nedegenerirana, te dva para dvostruko degeneriranih nivoa. Od šest najnižih energija bit će četiri međusobno različite.

Energiju pojedinog nivo
a ψ_j nalazimo minimiziranjem izraza

$$E_j(\beta) = \frac{\langle \psi_j | T + V | \psi_j \rangle}{\langle \psi_j | \psi_j \rangle}.$$
(114)

Integrali koje treba u tom izrazu izračunati bit će oblika

$$\int_0^{2\pi} e^{p\cos x + q\sin x} \sin mx \, dx \tag{115}$$

$$\int_{0}^{2\pi} e^{p\cos x + q\sin x} \cos mx dx. \tag{116}$$

Uz pomoć tablica [33] nalazimo:

$$<\phi_i|T|\phi_j>=2\pi B\{\beta_j\cos(\frac{\theta_{ij}}{2})I_1(r_{ij})-\frac{\beta_{ij}^2}{2}I_o(r_{ij})+\frac{\beta_{ij}^2}{2}\cos(\frac{\theta_{ij}}{2})I_2(r_{ij})\}$$
(117)

gdje su

$$r_{ij} = \sqrt{p_{ij}^2 + q_{ij}^2},$$
(118)

$$p_{ij} = \beta_j + \beta_i \cos(\frac{(i-1)\pi}{3} - \frac{(j-1)\pi}{3})$$
(119)

$$q_{ij} = -\beta_i \sin(\frac{(i-1)\pi}{3} - \frac{(j-1)\pi}{3}).$$
 (120)

Kut θ_{ij} određen je zahtjevima

$$\cos \theta_{ij} = \frac{p_{ij}^2 - q_{ij}^2}{p_{ij}^2 + q_{ij}^2},\tag{121}$$

$$\sin \theta_{ij} = \frac{2p_{ij}q_{ij}}{p_{ij}^2 + q_{ij}^2}.$$
(122)

Integral koji će nam trebati za potencijal je

$$\langle \phi_i | \cos m\rho | \phi_j \rangle = 2\pi \cos(\frac{m\theta_{ij}}{2}) I_m(r_{ij}).$$
 (123)

Ovdje je I $_m$ modificirana Besselova funkcija redam.

Za integral potencijala imamo

$$<\phi_i|\frac{V_6}{2}(1-\cos6
ho)|\phi_j>=\frac{V_6}{2}2\pi[I_o(r_{ij})-\cos(3\theta_{ij})I_6(r_{ij})].$$
 (124)

Matrica norme je

$$\int_{0}^{2\pi} \phi_i^* \phi_j d\rho = 2\pi I_o(r_{ij}).$$
(125)

U radu [29] Hüller i Kroll nisu egzaktno izračunali ove integrale, već su funkcije ϕ_i razvijali u red po malim β . Beta ne mora međutim biti mali, kao što ćemo vidjeti.

Temeljem ovako izračunatih integrala napisan je fortranski program za račun četiri energije prvih šest nivoa A, E_1 , E_2 i B. Konstruirana je matrica preklopa $\langle \psi_i | \psi_j \rangle$ te je provjereno da su { ψ_i } međusobno ortogonalne i da je matrica hamiltonijana u njima dijagonalna. Odabravši neku visinu barijere V₆ te konstantu B, izračunate su energije $E_1 - E_4$ u širokom intervalu varijacijskog parametra β . U tablici 16 uspoređene su vrijednosti ovako izračunatih energija s rezultatima programa VIBAR [32]:

Slika 17: Energije stanja A (--), E_1 (---), E_2 (---) i B (---).

Tablica 16. Prve četiri energije u potencijalu $\frac{V_6}{2}(1 - \cos 6\rho)$ za $V_6 = 100$ cm^{-1} i B=5.78 cm^{-1} .

nivo	energija iz	VIBAR
	var. metode	
А	49.00	44.14
E_1	49.98	49.24
E_2	52.36	63.36
В	54.43	75.61

Nepotpuno slaganje proizlazi stoga što Hüllerove valne funkcije sadrže trigonometrijske funkcije periodičnosti najviše $\cos 6\rho$, dok su funkcije u programu VIBAR računate u bazi mnogo veće dimenzije pa sadrže $\cos 12\rho$ i $\sin 12\rho$ funkcije. Varijacijske energije kao funkcije parametra β prikazane su na slici 17.

Bolje slaganje nastojalo se postići drugim izborom baze { ϕ_i } s imaginarnim $\beta_i:$

$$\phi_i = e^{i|\beta_i|[\cos(\rho + \frac{(i-1)2\pi}{6})]}, i = 1, 2, ..., 6.$$
(126)

No takav izbor osim što vodi na bitno usložnjavanje integrala, vodi i na pojavu nestabilnosti u izračunatim $E_j(\beta)$. Za neke β energije postaju negativne i s mnoštvom lokalnih minimuma dok je apsolutni minimum u $-\infty$! Recimo samo da se s ovakvim funkcijama mogu izračunati energija osnovnog stanja A (49.29 cm⁻¹) te energija E_2 stanja (50.24 cm⁻¹).

36

Slika 18: Nivoi unutrašnje rotacije slobodne molekule toluena. $V_6 = 4.9$ cm^{-1} , $B = 5.51 \ cm^{-1}$. $V = (V_6/2) (1 + \cos 6\rho)$.

3.3 Granični slučajevi niske i visoke barijere

Do sada smo nastojali što točnije riješiti Mathieuovu jednadžbu za danu visinu barijere. Pogledajmo sada dva granična slučaja: slobodni rotor (barijera = 0) i harmonički oscilator (barijera = ∞).

Slobodni rotor

U slučaju da je barijera unutrašnje rotacije vrlo mala i da teži k nuli rješenja Mathieuove jednadžbe

$$B\frac{d^2\Psi}{d\rho^2} = E\Psi \tag{127}$$

koja zadovoljavaju periodički rubni uvjet $\Psi(\rho + 2\pi \cdot l) = \Psi(\rho)$, gdje je l cijeli broj, su:

$$\Psi_m(\rho) = \frac{1}{\sqrt{2\pi}} e^{im\rho}, m\epsilon \mathbf{Z}.$$
(128)

Energije +m i -m stanja su degenerirane:

$$E_m = m^2 B. (129)$$

Za slobodne molekule nitrometana i toluena barijere V₆ su toliko male da se za račun njihovih energija može primijeniti račun smetnje, a za nesmetane valne funkcije uzeti one slobodnog rotora. Slika 18 prikazuje nivoe slobodne molekule toluena, a crtkano su označeni nivoi slobodnog rotora iste rotacijske konstante. Analogno izgledaju i nivoi slobodne molekule nitrometana jer je njegova barijera još i niža (2.1 cm^{-1}). Za molekule poput ovih m je još uvijek dobar kvantni broj. Sasvim drugačije izgleda raspored nivoa za više barijere. Uzmimo da je V₆ = 400 cm^{-1} , B = 5.51 cm^{-1} (B od toluena). Nivoi energije prikazani su na slici 19. Ovdje se osnovno (A₁') stanje nalazi na 123.9 cm^{-1} , prvo pobuđeno (E'') stanje na 125.32 cm^{-1} , iduće (E')

Slika 19: Potencijal $\frac{V_6}{2}(1+\cos 6\rho)$ za V_6 = 400 cm^{-1} i B = 5.51 $cm^{-1}.$

stanje na 128.3 cm^{-1} i treće pobuđeno stanje (A_2'') na 129.9 cm^{-1} . Vidimo da postoji ukupno šest stanja vrlo bliskih energija. Kvantni broj m koji smo ranije koristili za slobodni rotor i koji je izražavao približno dvostruku degeneraciju nivoa više nije dobar kvantni broj.

Često se za ocjenu visine barijere upotrebljava s vrijednost koju smo ranije definirali i koja je proporcionalna omjeru visine barijere i konstante unutrašnje rotacije. U gornjem slučaju s = 8.06 što se ne smatra visokom barijerom. Općenito su to slučajevi $s \ge 20$. Tada se nivoi energije mogu vrlo dobro opisati harmoničkom aproksimacijom, razvojem cos 6ρ po malom argumentu. Nalazi se tada

$$V(\rho) = \sum_{i=1}^{6} 9V_6(\rho - \frac{(i-1)\pi}{3})^2.$$
(130)

Ovaj potencijal sastoji se od sume šest parabola, a nivoi energije su ekvidistantni kao kod svakog harmoničkog potencijala. Frekvencija u Hz koja određuje razmak susjednih nivoa podijeljen s Planckovom konstantom je

$$\omega_o^2 = n^2 \frac{V_n}{2I_z^{red}}.$$
(131)

U vibracijskoj spektroskopiji se često visina torzijske barijere procjenjuje upravo na osnovu gornje formule, odnosno njoj srodne za ω_o u cm^{-1} :

$$\omega_o^2 = n^2 V_n \cdot B, \tag{132}$$

gdje su i V_n i B u cm^{-1} . Energije u harmoničkoj aproksimaciji su dane sa

$$E_v = \hbar\omega_o(v + \frac{1}{2}) \tag{133}$$

U ovom slučaju je kvantni broj v torzijskog prijelaza dobar kvantni broj. Poznavajući ω_o iz eksperimenta (opažanjem v = 0 u v = 1 energije prijelaza možemo izračunati V_n samo ako znamo n, što ne mora biti slučaj. Kako bismo se uvjerili da i harmonička aproksimacija ima doseg valjanosti, uzmimo primjer barijere s visokom s vrijednosti. Neka je $V_6 = 1000 \ cm^{-1}$, $B = 5.51 \ cm^{-1}$, s = 20. Dobivena rješenja (vidi sliku 20) grupiraju se u grupama od šest nivoa vrlo bliskih energija, kao što daje i harmonički potencijal. Crtkano su označeni nivoi koje bi dala harmonička aproksimacija u ovom slučaju. U okviru harmoničke aproksimacije potencijala unutrašnje rotacije s n parabola valne funkcije se aproksimiraju Hermiteovim polinomima. Ovakav opis se naziva i opis putem džepnih stanja, jer su valne funkcije osnovnog stanja svake od parabola lokalizirane oko minimuma dotične parabole.

Slika 20: Slučaj visoke barijere: $V_6 = 1000 \ cm^{-1}$, $B = 5.51 \ cm^{-1}$, s = 20. Crtkano su označeni nivoi u harmoničkoj aprosimaciji.

4 Molekule s unutrašnjom rotacijom na niskim temperaturama

Do sada smo se bavili vibracijskom dinamikom slobodnih molekula s unutrašnjom rotacijom - pokazali smo kako se mogu izračunati njihove vibracije, kako se može odrediti potencijal unutrašnje rotacije u pojedinom vibracijskom stanju te kako nalazimo rješenja Schrödingerove jednadžbe za rotaciju neke atomske grupe u molekuli (tzv. Mathieuove jednadžbe).

Hlađenjem kemijske supstance poput toluena ispod tališta možemo ju dobiti u obliku polikristaliničnog praha. Kako se mijenja dinamika ovakvih molekula kad se one ugrade u kristal? Međumolekulske interakcije igraju ovdje presudnu ulogu. Dok smo u odjeljku 2 nastojali što točnije odrediti polje sila slobodne molekule, ovdje baš interakcije među molekulama određuju tip kristalne strukture u koju se molekule smještaju kao i potencijal u kojem se svaka molekula nalazi. Upravo potencijal unutrašnje rotacije trpi drastične promjene kada je molekula u kristalnoj okolini. Molekule toluena i nitrometana koje su izabrane dosta su izučavane u literaturi i služe kao modeli za određivanje utjecaja međumolekulskih interakcija na potencijal unutrašnje rotacije. Mada dosta izučavane, za ove molekule nije proveden račun dinamike rešetke koji bi istovremeno uzeo u obzir i interakciju s koordinatom unutrašnje rotacije ρ . Svaka od spomenutih molekula ima svoje otežavajuće okolnosti: u kristalu α -toluena postoji ukupno osam molekula u jediničnoj ćeliji, od toga dvije familije različitih molekula. Svaka familija ima svoj potencijal unutrašnje rotacije. Kod nitrometana je pak problem izbor atom-atom potencijala za O-H interakciju i nesigurnost postoji li slaba vodikova veza. Povrh svega N i O atomi raspolažu prema rezultatima kvantnokemijskih računa s parcijalnim nabojima. Naboji izračunati za slobodnu molekulu ne moraju odgovarati nabojima kad se molekula ugradi u kristal.

Najprije će biti izložene opće eksperimentalne činjenice vezane uz otkriće da grupe atoma u molekuli kao i čitave molekule mogu rotirati u kristalima na niskim temperaturama. Potom ćemo se usredotočiti na tolucn i nitrometan, predočiti rezultate mjerenja niskotemperaturnom Ramanovom spektroskopijom i usporediti opažene vrpce iz fononskih spektara s rezultatima računa dinamike rešetke na bazi atom-atom potencijala. Kako slaganje nije potpuno pokušao se konstruirati modelni hamiltonijan za opis fonon-rotor interakcije neke od fononskih koordinata i koordinate ρ . Konačno se ovi rezultati uspoređuju s rezultatima iz literature dobivenim ostalim metodama.

Slika 21: Relaksacijsko vrijeme T_1^{-1} u ovisnosti o temperaturi za toluen. Kružići odgovaraju mjerenjima na 14.5 MHz, kvadratići na 40.7 MHz. Crtkana linija - staklo [38].

Otkriće molekulskih rotacija u kristalima

Kemp i Pitzer [34] su 1937 pokazali da se prividno neslaganje opaženih i izračunatih vrijednosti entropije etana na sobnoj temperaturi može ukloniti ako se pretpostavi da je rotacija oko jednostruke C-C veze zaprečavana (engl. hindered) prikladnom potencijalnom barijerom. Ovo otkriće imalo je velik utjecaj na daljnja istraživanja i potaklo mnoštvo radova u području određivanja toplinskog kapaciteta molekulskih kristala [35]. Pedesetih su godina Powles i Gutowsky [36] metodom protonske magnetske rezonancije mjerili širenje i oblike linija i zaključili da metilne grupe izvode zaprečavane rotacije oko svojih C_3 osi u više tetrasupstituiranih metana. Stejskal i Gutowsky [37] su 1958 izračunali prosječnu frekvenciju tuneliranja metilne grupe kao funkciju temperature i visine barijere.

Sredinom šezdesetih su Colwell i dr. [38] mjerenjem anomalija toplinskog kapaciteta izotopa metana zaključili da postoji cijepanje osnovnog stanja u ovim molekulama. Ova najniža stanja pripisali su stanjima vezanim uz rotacije čitavih molekula u kristalu. Krajem šezdesetih i ranih sedamdesetih intenzivno su vršena mjerenja T_1 protonskog relaksacijskog vremena spin-rešetka u ovisnosti o temperaturi. Haupt i Müller-Warmuth [39] proveli su mjerenja i na toluenu (vidi sliku 21). Svoje eksperimentalne podatke uspješno su objasnili formulom

$$\frac{1}{T_1} = C[\frac{\tau}{1+\omega^2\tau^2} + \frac{4\tau}{1+4\omega^2\tau^2}],\tag{134}$$

gdje je C = 3 \cdot 10° s $^{-2},$ dok je τ na niskim temperaturama dan sa

$$\tau = \tau_o'' \cdot e^{\frac{E_A''}{kT}}.$$
(135)

 \mathbf{E}''_A je aktivacijska energija na niskim temperaturama,
a τ''_o je konstanta. Na visokim pak temperaturama odgovar
ajući je izraz za τ

$$\tau = \tau_o' \cdot e^{\frac{E_A'}{kT}}.$$
(136)

Aktivacijska energija ${\rm E}'_A$ na visokim temperaturama razlikuje se od one na niskim T. Za toluen je nadeno

 E''_A (aktivacijska energija na niskim temperaturama) interpretirana je kao razlika pobuđenog i osnovnog torzijskog stanja molekule, dok je za E'_A (aktivacijska energija na visokim temperaturama) uzeta visina V_{max} barijere. Za toluen su tako V_{max} procijenili ispod 90 cm^{-1} , što je niže od vrijednosti barijera koje su nađene u drugim grupama drugim metodama.

Haupt 1971 [40] te Müller-Warmuth i dr. [41] 1978 izveli su teorijski oblik za T_1 tretirajući metilnu grupu kao kvantni sistem:

$$\frac{1}{T_1} = C_{AE} \left[\frac{\tau}{1 + (\omega_t + \omega_o)^2 \tau^2} + \frac{\tau}{1 + (\omega_t - \omega_o)^2 \tau^2} + \frac{4\tau}{1 + (\omega_t + 2\omega_o)^2 \tau^2} + \frac{4\tau}{1 + (\omega_t - 2\omega_o)^2 \tau^2} \right] + C_{EE} \left[\frac{\tau}{1 + \omega_o^2 \tau^2} + \frac{4\tau}{1 + 4\omega_o^2 \tau^2} \right]$$

(138)

 \mathcal{C}_{AE} je konstanta za A \rightarrow E prijelaze,
a \mathcal{C}_{EE} za E \rightarrow E prijelaze.
 ω_t je

$$\omega_t = \frac{E_{0E} - E_{0A}}{\hbar}.\tag{139}$$

U izrazu za T_1 veličine ω_t , C_{AE} , C_{EE} , te E'_A i E''_A ulaze kao parametri. Prilagodbom teorijskog izraza eksperimentalnim podacima mogu se ovi parametri odrediti. Spomenuti izraz za T_1 izveden je uz pretpostavku da spinovi protona iz metilne grupe interagiraju magnetskom dipol-dipol interakcijom. Tako se sistem sastoji od kristalne rešetke (s fononskim pobuđenjima), metilne grupe koja rotira (s prijelazima unutrašnje rotacije), te tri spina metilne grupe. Osim dipol-dipol magnetske interakcije spinova, pretpostavlja se i postojanje interakcije rotora i fonona, no ona ne dolazi do izražaja u magnetskim prijelazima jer je dijagonalna u spinskim stanjima.

Radi jasnoće prenosimo shemu najnižih stanja spinskog i rotorskog sistema (u osnovnom fononskom stanju) iz reference [40] (vidi sliku 22). Pretpostavi li se da je potencijal unutrašnje rotacije metilne grupe periodičan s periodom $2\pi/3$, energijska stanja tog potencijala mogu se klasificirati prema kompleksnoj C_3 grupi:

\mathbf{C}_3	E	C_3^1	C_3^2
A	1	1	1
\mathbf{E}^{a}	1	ε*	ϵ
\mathbf{E}^{b}	1	ε-	ϵ^*

Slika 22: Shema osnovnog i prvog pobuđenog torzijskog stanja metilne grupe. Objašnjenje je dano u tekstu.

gdje je $\epsilon = \frac{2\pi}{3}$. Tako su funkcije $e^{i\rho}$ i $e^{-2i\rho}$ simetrije E^a , dok su funkcije $e^{-i\rho}$ i $\frac{2^{i\rho}}{3}$ simetrije E^b . Funkcije $e^{3i\rho}$ i $e^{-3i\rho}$ su tipa A. Slika 22 prikazuje na lijevoj strani osnovno i prvo pobuđeno torzijsko stanje u aproksimaciji visoke barijere. Vibracijski kvantni broj v je u tom slučaju dobar kvantni broj, a razlika energija E_{01} sa slike odgovara energiji pobuđenja harmoničkog torzijskog oscilatora. Prava rješenja za periodički potencijal predstavljaju rješenja Mathieuove jednadžbe a njihove energije su na slici prikazane u sredini. Oznake stanja su one iz grupe C_3 . S $\hbar\omega_t$ označena je razlika energija E_o i A_o nivoa. Kada se uzme u obzir postojanje protonskih spinova, zahtjev da valna funkcija bude simetrična na zamjenu dva protona vodi na ograničenje spinskih valnih funkcija koje se mogu kombinirati s danim rotorskim stanjem da bi stvorile ukupnu valnu funkciju. Moguća stanja prikazana su sasvim desno na slici 22.

Sve do sada spomenute metode su energije prijelaza unutrašnje rotacije određivale indirektno. Metodama neutronske i Ramanove spektroskopije pak mogu se energije prijelaza mjeriti direktno, pa su ove spektroskopije najpogodnije za ovaj problem. Posebna je odlika kvazielastične neutronske spektroskopije da može mjeriti prijenose energije u μ eV području čime je direktno moguće mjeriti $\hbar\omega_t$. U više zbornika dan je opširan pregled ove metode i materijala na kojima je primijenjena [42,43,44].

Vibracijska Ramanova spektroskopija može mjeriti energije prijelaza u području 1 - 800 meV. U usporedbi s neutronskom spektroskopijom 1 posrednija je u smislu da ne zahtijeva primjenu nekih modela kako bi s iz eksperimentalnih podataka izdvojile relevantne informacije. Dok se u spektru raspršenih neutrona bilježe svi mogući prijelazi koje neki sistem može izvršiti u danom području energija, Ramanovi prijelazi ograničeni su izbornim pravilima koje određuje simetrija sistema (kristala, molekule) i odgovarajućeg tenzora polarizabilnosti. Posebno se od prijelaza između nivoa unutrašnje rotacije u vibracijskoj spektroskopiji mogu opaziti samo oni između stanja istog nuklearnog spina ($A \leftrightarrow A, E \leftrightarrow E$). Ovog ograničenja nema u neutronskoj spektroskopiji.

4.1 Niskotemperaturni Ramanovi spektri i dinamika rešetke

Niskotemperaturna Ramanova spektroskopija jedna je od mnogobrojnih primjena ove vibracijske spektroskopije. U Laboratoriju za molekulsku fiziku Instituta Ruđer Bošković snimanje Ramanovih spektara na niskim temperaturama omogućeno je korištenjem CTI CRYOGENICS kriostata (model 21) sa zatvorenim krugom helija. Uzorci, smješteni u kapilare i zataljeni pod vakuumom (nitrometan) odnosno zrakom (toluen), montirani su na hladni prst kriostata posebno prilagođenom za tu svrhu [45]. Kapilaru postavljenu na hladni prst obasjavalo je lasersko monokromatsko svjetlo valne duljine 514.5 nm. Raspršeno zračenje pod kutem od 90° padalo je na pukotine DILOR Z24 Ramanovog spektrometra gdje je bilo razlučivano po obrnutim valnim duljinama disperzijskim sistemom trostrukog monokromatora. Sakupljanje podataka izvedeno je sekvencijalnim načinom s korakom koji je u raznim zapisima varirao od 0.2 do 1 cm^{-1} . Širina pukotina odabrana je kao $300/350/350/300 \ \mu m$, a u slučajevima snimanja na najnižim temperaturama je probno smanjena i do $100/150/150/100 \ \mu m$. No bitno smanjenje signala koje je ovime prouzročeno nije bilo praćeno proporcionalnim povećanjem rezolucije u spektru, tako da su širine pukotina zadržane na 300 μ m.

Valni brojevi opaženih vrpci ispod 150 cm^{-1} korigirani su prema opaženim rotacijskim linijama zraka koje se dnevno kontroliraju.

Dinamika rešetke

Račun fonona za $\vec{q} = \vec{0}$ proveden je programom ASYM94. Taj program je

preradio i poopćio D. Kirin na osnovu programa CRASH što ga je napisao G. S. Pawley [46]. Program omogućava tretiranje molekulskih kristala s više od jedne molekule u asimetričnoj jednici (slučaj toluena). ² Dinamička matrica konstruira se zbrajanjem svih nevezanih atom-atom interakcija za odabrani skup molekula iz kristala (taj broj može biti manji ili jednak 120, najčešće se kretao ispod 80). Za svaku izračunatu fononsku frekvenciju program daje pripadne fononske normalne koordinate izražene preko translacijskih i rotacijskih koordinata u sustavu svake molekule u jediničnoj ćeliji. Određivanjem transformacijskih svojstava ovih normalnih koordinata s obzirom na operacije kristalne simetrije nalazimo simetrijski tip pojedine normalne koordinate. Usporedbom izračunatih npr. A_g i B_g fononskih frekvencija s položajima vrpci opaženim u Ramanovim spektrima možemo

Ovdje će biti izloženi rezultati dinamike rešetke za krute molekule toluena i nitrometana i njihovih izotopa, te uspoređeni s opaženim položajima fonona.

4.1.1 Toluen

Toluen bismo prema klasifikaciji Westruma [35] mogli svrstati u monotropne kristale. On naime postoji u dvije kristalne forme ispod točke taljenja (178 K) - govorimo o stabilnoj α fazi i metastabilnoj β fazi toluena. β toluen se razlikuje od α toluena po tome što je svih osam molekula u jediničnoj ćelliji međusobno jednako, dok u α tolu
enu postoje dvije familije različitih molekula. Slika 23 prikazuje prostorni raspored molekula toluena u fazi α . Struktura β faze je P_{bcn} [48], a α faze P2₁/c [49]. Metastabilnu β fazu su Cavagnat i Cornut [50] ostvarili naglim hlađenjem na 110 K, pri čemu je nastala staklasta faza, te su grijanjem ove faze na 130 K dobili fazu β . Nju je bilo moguće sporo ohladiti sve do 17 K. Rana studija strukture lpha toluena metodom difrakcije X zraka [48] provedena je za toluen na 165 K. Novija istraživanja iste strukture metodom raspršenja neutrona na polikristaliničnom prahu provedena su za znatno nižu temperaturu uzorka: 5 K [51]. Potonji podaci o strukturi s preciznije utvrđenim položajima vodikovih atoma u metilnim grupama dali su puno bolje slaganje izračunatih s opaženim fononskim frekvencijama od podataka iz difrakcije X zraka. Slika 23 prikazuje prostorni raspored molekula toluena u jediničnoj ćeliji kristala faze α .

Ukupno α toluen posjeduje 45 optičkih fonona simetrije

$$12A_g \oplus 12B_g \oplus 11A_u \oplus 10B_u. \tag{140}$$

²Programom se također može pojedina molekula tretirati kao sastavljena od više krutih podjedinica uz uvođenje dodatnih unutarmolekulskih konstanti sila, no taj aspekt programa ovdje nije upotrijebljen.

Slika 23: Prostorni raspored molekula toluena u fazi α .

Od toga je 12 A_g i 12 B_g fonona aktivno u Ramanovim spektrima, a 11 A_u i 10 B_u u infracrvenim spektrima. Ramanovi spektri kristala toluena koji su ovdje zabilježeni odnose se na stabilnu strukturu α toluena. Opaženo je ukupno 17 vrpci na temperaturi od 10 K. Slika 24 prikazuje Ramanove spektre α toluena od 150 - 10 cm^{-1} u ovisnosti o temperaturi. Obojena vrpca izdvojena je jer pokazuje najprije rast a potom pad intenziteta s porastom temperature. Cavagnat i dr. [52] objašnjavaju ovu pojavu pretpostavkom nesumjerljive faze α . No ta hipoteza nije potvrđena u ranije spominjanim radovima o strukturi.

Ovisnost položaja Ramanovih niskofrekventnih vrpci o temperaturi prikazana je slikom 25. Uočljivo je da nema značajnih prekida u položajima vrpci. Vrpca na 64 cm^{-1} (na 10 K) pomakne se na 54 cm^{-1} (na 50 K), dok

Slika 24: Ramanovi spektri α toluen'a u ovisnosti o temperaturi (150 - 10 cm^{-1}).

se vrpca na 57 cm^{-1} (na 10 K) praktički utopi ispod ostalih vrpci već na 20 K. Sličan se efekt opaža i za vrpcu na 84 cm^{-1} (na 10 K). Njih se praktički ne opaža iznad 20 K.

Račun dinamike rešetke za toluen proveden je atom-atom potencijalima Buckinghamovog tipa s parametrima Williamsovog IVB potencijala [53]. Potencijal atoma i i j prema ovoj prepostavci ima oblik

$$V(i,j) = -\frac{A_{ij}}{r_{ij}^6} + B_{ij}e^{-\alpha_{ij}r_{ij}},$$
(141)

uz parametre

atomi	A_{ij} (· 4184 J/mol)	$B_{ij} (\cdot 4184 \text{ J/mol})$	$\alpha \ (10^{-10} \text{ m})$
C-C	568	83630	3.60
C-H	125	8766	3.67
H-H	27.3	2654	3.74

Rezultat računa za α toluen dan je u Tablici 17. Odgovarajuće normalne koordinate izražene su preko translacijskih i rotacijskih koordinata molekule I i molekule II iz asimetrične jedinice u sustavima vezanim uz pojedinu molekulu. Ovi sustavi prikazani su na slici u Dodatku 1.

Asignaciju fononskih vrpci primjetno olakšava usporedba opaženih i izračunatih fononskih frekvencija za seriju izotopomera toluena. Rezultati za $C_6H_5CD_3$, $C_6D_5CH_3$ i $C_6D_5CD_3$ dani su u dodatku 1. Odstupanje izračunatih od opaženih vrijednosti je u većini slučajeva manje od 3 $cm^{-1},$ što je bolje od očekivanja.

Pokaz .je se da se sve vrpce iz Ramanovih spektara mogu pripisati nekoj fononskoj vrl ci, te da se prijelazi unutrašnje rotacije s njima preklapaju. Stoga je samo na temelju Ramanovih prijelaza vrlo teško odrediti moguć položaj osnovnog prijelaza $0A \rightarrow 1A$ unutrašnje rotacije. Usporedbom s već citiranim radovima iz područja raspršenja neutrona asigniran je ovaj prijelaz vrpci na 49 cm^{-1} , za koju je pretpostavljeno preklapanje s fononskom vrpcom istog valnog broja.

opažene (10 K)	izračunate	simetrija	opis koordinate
134	137	A_g	$R'_z + R''_u$
	136	\mathbf{B}_{q}	$R'_{z} + R''_{u} + R''_{z}$
130	128	A_q	$T'_{r} + R'_{r} + R''_{n}$
	127	\mathbf{B}_{q}	$T'_{x} + R'_{y}$
125	125	A_q	$T'_{x} + R'_{y} + T''_{y} + R''_{y}$
119	118	\mathbf{B}_{q}	$R'_{u} + R'_{z} + R''_{u} + R''_{u}$
105	109	A_{q}	$T''_{r} + R''_{r} + R''_{r}$
	101	A_q	$T'_{x} + R'_{y} + T''_{x} + R''_{x}$
96	95	\mathbf{B}_{q}	$T'_{r} + R''_{r} + R''_{n}$
84	89	\mathbf{B}_{q}^{s}	$\mathbf{R}_{r}^{\ddot{\prime}\prime} + \mathbf{R}_{z}^{\ddot{\prime}\prime}$
76	78	A_q	$T_z^{\tilde{\prime}} + T_z^{\tilde{\prime}} + R_z^{\prime\prime}$
70	66	\mathbf{B}_{g}	$\tilde{\mathbf{T}_{z}''} + \tilde{\mathbf{R}_{x}''}$
64	65	\mathbf{B}_{q}	$T''_x + T''_y$
57	57	\mathbf{A}_{g}	$T'_{y} + R'_{x} + R''_{x}$
	54	A_{q}	T'_{z}
49	52	\mathbf{B}_{q}	$\tilde{\mathbf{R}'_x}$
	52	\mathbf{B}_{g}	$T_{z}^{\tilde{\prime}}$
	51	A_g	$T'_z + T'_x$
44	42	\mathbf{B}_{g}	$T'_{u} + T''_{z}$
41	42	A_g	$T_{v}^{\ddot{\prime}} + T_{z}^{\ddot{\prime}}$
36	33	\mathbf{B}_{g}	$T'_{u} + T''_{z}$
31	32	A_q	$T'_{u} + T''_{z}$
28	25	A_q	$T''_{x} + T''_{y} + T''_{z} + R''_{z}$
21	18	\mathbf{B}_{q}^{s}	$T''_r + T''_n$

Tablica 17. Opažene i izračunate fononske frekvencije toluena $C_6H_5CH_3$ (cm^{-1}). T označava translaciju, R rotaciju molekula; ' se odnosi na molekule familije I, " na molekule familije II.

Vrpca na 28 cm^{-1} na 10 K čiji intenzitet početno raste te iznad 100 K pada s temperaturom pripisana je fononskoj koordinati $T''_x + T''_y + T''_z + R''_z$. To je uglavnom translacijska koordinata molekula familije II iz jedinične ćelije. Zanimljivo je primijetiti da se porastom temperature vrpca

Slika 25: Ovisnost položaja niskofrekventnih Ramanovih vrpci α -toluena o temperaturi.

na 64 cm^{-1} (na 10 K) dosta brzo pomiče ka nižim valnim brojevima (54 cm^{-1} na 50 K) te da i ona raste u intenzitetu s porastom temperature kao i vrpca na 28 cm^{-1} . No dok vrpca na 28 cm^{-1} iznad 100 K gubi na intenzitetu, vrpca na 64 cm^{-1} raste i dalje s temperaturom. Fononska koordinata koja je pripisana vrpci na 64 cm^{-1} također uključuje $\mathbf{T}''_x+\mathbf{T}''_y$ doprinos. Postavlja se pitanje ne znače li opažene promjene u Ramanovim spcktrima neku strukturnu promjenu povezanu s pomacima molckula familije II. Najčešće su strukturni fazni prijelazi prvog reda u molekulskim kristalima (oni pomičnog tipa) praćeni prekidom u zavisnosti položaja Ramanovih vrpci od temperature, dok su prijelazi drugog reda (tipa red-nered) praćeni promjenama intenziteta Ramanovih vrpci [54]. Ovdje bi fononska normalna koordinata ukazivala na promjenu pomičnog tipa, no promjene opažene u intenzitetima vrpci tome proturječe. Hipoteza Cavagnat i dr. [52] o tome da je α faza možda nesumjerljiva ostaje i dalje jedna od mogućnosti. U ovim eksperimentima zabilježeni su osim faze α toluena i spektri staklaste faze. Slika 26 prikazuje Ramanove spektre kristala (10 K), stakla toluena (110 K) te tekućine (300 K) u području oko 3000 cm^{-1} . U spektru tekućine od metilnih modova opaža se samo simetrično istezanje na 2920 $cm^{-1},\,{\rm dok}$ vrpce na 2950 cm^{-1} , koja se opaža u infracrvenim spektrima tekućine [19], nema. No, u spektru stakla ta se vrpca opaža sa zadovoljavajućim intenzitetom. U Tablicama 18 i 19 dani su položaji internih vibracijskih modova tolucna u kristalu, staklu i tekućini radi usporedbe. Asignacija vrpci provedena je ranije i dana u Tablici 8.

Slika 26: Ramanovi spektri toluena 3100-28 $50~cm^{-1}$: najgornji - α faza, 10 K; srednji - staklo 110 K; najdonji - tekućina 300 K.

	11 110 K	tales fina 200 K
α -toluen, 10 K	staklo, 110 K	tekucina, 500 K
3089 vw		
3063 vw	3069 s,sh	$3065 \mathrm{s, sh}$
3059 s		
3054 m,sh	3055 vs	3055 vs
3048 w		
3040 m	$3037 \mathrm{m}$	3034 m,sh
3028 w	,	
3018 w		
3003 w	3003 m	3003 w
3000 w	2	
2984 m	2988 m	2982 m
2975 w		
2960 w,sh		
2953 m	2951 m	
2934 w,sh		
2919 m	2918 s	2920 s
2913 w,sh		
2886 vw	i di mana av	
2873 vw	2877 m	
		2864 br,m
2854 vw	2856 m	

Tablica 18. Opažene frekvencije internih modova toluena $C_6H_5CH_3$ u različitim fazama (cm^{-1}) .

α-toluen, 10 K	staklo, 110 K	tekućina, 300 K
	1629 w	
1605 s	1606 m	1606 m
1597 vw	1598 w, sh	
1585 s	1586 m	1586 m
1578 vw, sh	1580 w, sh	
	1573 vw	
1496 vw	1497 w	1495 vw
1469 vw	1467 w	
1446 vw	1445 w	1441 vw
1432 w	1434 w	
1394 vw	1396 w	
1382 m	1380 m	1379 m
1376 m		
1336 w	1334 w	1332 vw
1318 vw	1317 vw	1308 vw
	1283 vw	
	1256 vw	
1214 s	1213 vs	1210 s
1188 m		
1179 w	1181 m	1180 w
1168 vw		
1162 vw,sh		
1158 m	1157 m	1156 w
1154 w		
1146 vw		
	1110 vw	
1084 w	1084 w	1082 vw
1048 vw		
1033 s	1031 s	1030 s
1024 vw	1023 w.sh	
1003 vs	1003 vs	1004 vs
990 w	991 m	992 m
985 w	985 w.sh	
968 vw	971 w	976 vw.sh
	938 vw	
904 vw	902 w	
899 vw.sh		897 vw
854 vw	849 w	001 1 1
844 w		845 vw
815 vw	814 w	811 vw
788 vs	787 s	787 vs
782 w. sh		
738 w	736 w	731 vw
700 vw	699 vw	
634 vw		
622 m	623 m	623 m
522 m	522 m	523 s
468 vw	469 w	467 vw
	410 w	406 vw
352 w		
348 w	349 w	348 vw
231 m	226 m	217 m

Tablica 19. Opažene frekvencije internih modova toluena $C_6H_5CH_3$ u različitim fazama (cm^{-1}).

4.1.2 Nitrometan

Usporedimo li kristalnu strukturu nitrometana s onom tolucna na prvi pogled se nitrometan čini jednostavnijim sistemom: on kristalizira u strukturu simetrije $P2_12_12_1$ sa četiri molekule u jediničnoj ćeliji (vidi sliku 27).

Slika 27: Položaji molekula u jediničnoj ćeliji nitrometana.

Metilna grupa svake od molekula nalazi se u istoj konformaciji zatvarajući kut s NO_2 ravninom od 0°.

Sa stanovišta broja mogućih fononskih vrpci u niskofrekventnom spektru i analize potencijala unutrašnje rotacije situacija je doista jednostavnija jer sve molekule imaju isti potencijal $V(\rho)$ a broj optičkih Raman aktivnih fonona je 21:

$$6A \oplus 5B_1 \oplus 5B_2 \oplus 5B_3. \tag{142}$$

U infracrvenim spektrima aktivno je 15 fonona (svi osim onih tipa A).

Nitrometan je molekula s dipolnim momentom od $11.42 \cdot 10^{-30}$ Cm. Molekula nitrometana ima prema rezultatima kvantnokemijskih računa [56] parcijalne naboje kako je dano u tablici 20.

Tablica 20. Izračunati parcijalni naboji molekule nitrometana [56].

atom	C	Ν	01	02	H_1	H_2	H ₃
atom	U		0.01 =	0.000	0.057	0.061	0.055
$r_{2}h_{0}i(.16.10^{-19} \text{ C})$	-0.023	0.496	-0.317	-0.333	0.057	0.004	0.000
11ab0J(-1.0-10-0)	0.0-0						

Kao i u slučaju toluena međumolekulske interakcije ovdje imaju odlučujuću ulogu u formiranju potencijala unutrašnje rotacije, pošto su unutarmolekulske sile u usporedbi s njima zanemarive (barijere slobodnih molekula su manje od 40 J/mol). Kako opisati interakcije CH_3NO_2 molekula u kristalu? Želimo li ih opisati interakcijama parova atoma jedna od provjera prihvatljivosti opisa jeste i račun dinamike rešetke kristala. Takav račun unatoč bitnim ograničenjima (molekula se tretira kao kruta jedinica, za centre interakcije uzimamo atome kojima možemo pridijeliti točkaste naboje) daje rezultate kroz čije se (ne)slaganje s eksperimentalnim podacima zaključuje o vrsti interakcija.

Potencijal O - H interakcije pokazao se zasebnim problemom i o njemu se dosta raspravljalo u literaturi [57,58]. Doprinos O - H interakcija ima za posljedicu V₆ član u potencijalu unutrašnje rotacije nitrometana. Temeljem rezultata neutronskog i Ramanovog raspršenja Cavagnat i dr. [52] su odredili potencijal u obliku

$$V = \frac{V_3}{2}(1 - \cos 3\rho) + \frac{V_6}{2}(1 - \cos(6\rho + \delta)), \tag{143}$$

uz V₃ = 25.5 meV (205.5 cm^{-1}), V₆ = -15.5 meV (-125 cm^{-1}) i δ = 30°. Minimum ovog potencijala ne nalazi se na ρ = 0°, već na ρ = 20°. Rice i Trevino poduzeli su analizu O - H interakcija u nitrometanu i uspjeli konstruirati O - H potencijal koji reproducira oblik potencijala unutrašnje rotacije naveden gore i koji ima apsolutni minimum u pravoj vrijednosti ρ = 0°. Atom - atom potencijal za O i H atome koji su odredili ima minimum na $r_o = 2.6 \cdot 10^{-10}$ m, dubinu minimum -0.075 eV, te lokalni maksimum = 0.025 eV za $r = 3.2 \cdot 10^{-10}$ m. Potencijal teži nuli za velike r i to s pozitivne strane y osi.

U literaturi su do sada zapažena barem dva rada koji referiraju niskofrekventne Ramanove spektre nitrometana [52] i [59], za razliku od radova s računom dinamike rešetke, kojih praktički nema. Jedan od razloga tomu je svakako što prijelazi unutrašnje rotacije također padaju u područje ispod 150 cm^{-1} i što je nitrometan polarna molekula.

Slika 28 prikazuje niskofrekventne Ramanove spektre u ovisnosti o temperaturi. Dvije najniže vrpce na 45 i 52 cm^{-1} već se na 50 K preklapaju u jednu vrpcu. Pri 50 K također se opaža pad intenziteta vrpce na 139 cm^{-1} . Ovu vrpcu pripisuju Cavagnat i dr. [60] drugom (0A \leftrightarrow 2A) prijelazu unutrašnje rotacije. Pretpostavit ćemo da vrpca na 52 cm^{-1} odgovara 0A \rightarrow 1A prijelazu. te da je vrpca na 139 cm^{-1} fononsko pobuđenje. Ovisnost položaja Ramanovih niskofrekventnih vrpci o temperaturi prikazana je slikom 29. Račun dinamike rešetke proveden je atomatom potencijalima Buckinghamovog tipa kao i za tolucn, uz što su i uzeti u obzir parcijalni naboji na svakom atomu dani u Tablici 20. Parametri

Slika 28: Ovisnost niskofrekventnih Ramanovih vrpci nitrometana o temperaturi.

potencijala korištenih za nitrometan dani su u tablici 21.

Slika 29: Ovisnost položaja niskofrekventnih Ramanovih vrpci nitrometana o temperaturi.

atomi	A_{ij} (· 4184 J/mol)	$B_{ij} (\cdot 4184 \text{ J/mol})$	$\alpha (10^{-10} \text{ m})$
C-C	568	83630	3.60
C-H	125	8766	3.67
H-H	27.3	2654	3.74
N-N	259.0	42000	3.78
0-0	259.4	77700	3.94
N-O	359.0	44000	3.86
C-N	383.5	59266	3.69
C-0	384.0	80610	3.76
H-N	84.0	22600	3.76
H-O	350.6	17268	3.94

Tablica 21. Parametri potencijala $-\frac{A}{r^6} + Be^{-\alpha r}$.

Parametri potencijala C-C, C-H i H-H interakcija isti su kao za toluen. N-N interakcija preuzeta je iz rada [61], O-O interakcija iz [62], dok su C-N, C-O i N-O konstante interakcije A i B izvedene kao aritmetička sredina konstanti interagirajućih atoma. Konstante α za iste interakcije računate su kao $\alpha_{NO} = \frac{2\alpha_{NN}\alpha_{OO}}{\alpha_{NN}+\alpha_{OO}}$. Parametri N-H i O-H potencijala su empirijski prilagođeni računu za nitrometan.

Izračunate fononske frekvencije ne slažu se u nekoliko elemenata s opaženim frekvencijama. Ponajprije najniža izračunata frekvencija (23 cm^{-1} , vidi Tablicu 22) odstupa za 15 cm^{-1} od najniže opažene frekvencije. Empirijske asignacije iz referenci [52] i [59] na temelju pomaka fonona u kristalima

deuteriranih spojeva se slažu u tome da je prvih nekoliko najnižih modova translacijskog tipa, dok su dva moda najviših frekvencija (139 i 158 cm^{-1}) pripisana libraciji čitavih molekula oko osi s najmanjim momentom inercije (ovdje je to y os, slika koja definira sustav vezan uz molekulu dana je u Dodatku 2). Ovdje predočen račun daje općenito veliko miješanje libracijskih i translacijskih modova. Rijetke su vrpce koje se mogu pridružiti čisto translacijskom ili libracijskom gibanju molekula u jediničnoj ćeliji. Tako npr. intenzivni mod opažen u Ramanovom spektru na 10 K na 70 cm^{-1} možemo pripisati čistoj libraciji oko osi z molekule. Kao najviši mod račun daje miješano gibanje s najvećim doprinosom od translacijskog gibanja molekula duž njihove x osi u kombinaciji s libracijom R_y . Razloge ovom malom nesuglasju možemo tražiti dijelom u modelu kristalne rešetke za koju smo pretpostavili da je sastavljena od krutih molekula i točkastih centara interakcije. Elektronska struktura kristala nitrometana ovim opisom ne mora biti zadovoljavajuće reproducirana, u x smjeru molekule je potencijal interakcije s okolnim najbližim molekulama prevelik tako da se mod T_x pojavljuje previsoko u izračunatim vrijednostima.

Račun vrlo zadovoljavajuće opisuje najintenzivnije Ramanove vrpce o kojima će još biti riječi prilikom analize taljenja kristala nitrometana, te pojave više mezofaza u intervalu temperature između kristalne i tekuće faze.

Radi potpunosti u Tablici 23 dan je popis internih modova nitrometana CH_3NO_2 opaženih u ovom radu. Plastične faze I i II bit će detaljnije diskutirane u idućem poglavlju.

opažene		izračunate		
Raman	IC [59]	simetrija		
158		B ₃	155	$T_x + R_y$
	152	B ₁	143	R_y
139		B_2	138	$R_y + R_z$
a i		А	136	$R_y + T_x$
114		B_2	125	$\mathbf{T}_y + \mathbf{T}_x + \mathbf{R}_z$
8	112	B ₃	118	$T_y + R_x$
=		B ₃	109	$T_y + T_z + R_y$
	$101 \mathrm{sh}$	B_1	104	$R_x + T_x$
99		А	103	$R_y + R_z$
	95	B_2	91	$T_z + R_y$
95		А	90	$T_y + R_x$
85		B_1	86	$T_y + R_z$
		B_1	81	R _z
77		А	76	$T_x + T_z$
70		B ₃	66	R _z
	70	B_2	64	R_x
		A	57	$T_y + R_x$
	56	B ₁	55	$T_x + R_x$
45		A	39	R _z
	38	B ₃	35	$R_x + R_z$
		B ₃	23	$T_y + R_x$

Tablica 22. Opažene i izračunate fononske frekvencije nitrometana CH_3NO_2 (cm^{-1}) .

kristal 14 K	plasična faza II 240 K	plastična faza I 241 K	tekućina 300, K
3083 m	*	3072 w	
			3065 ** m
3049 m	*	3046 w	3047** m
2970 s	*	2967 s	2965** vs
a 27			
1576 m	*		
$1565 \mathrm{m}$	1561 w	1560 m	1563 s
1537 m			
1430 m	1431 m	1425 m	1416** m
1403 vs	1402 s	1402 s	1401 vs
1377 m	1378 s	1379 s	1378 s
1321 w	1311 w	1311 w	1311 m
1120 w			
1106 m	1102 w	1102 w	1102 m
	ж ,		- 959 w
923 vs	918 vs	918 vs	918 vs
		903 w	902 m
664 m			
658 m	656 m	656 s	657 vs
609 w	607 w	607 w	607 m
486 m	482 m	482 m	482 s

Tablica 23. Opaženi Ramanovi interni modovi CH_3NO_2 u različitim fazama (cm^{-1}) .

* Faza se rastopila prije nego što je ovaj interval snimljen.

* Rezultat prilagodbe, vidi poglavlje Vibracijska analiza nitrometana.

Aktivacijska energija unutrašnje rotacije u CH_3NO_2

Na osnovu rada Rakova [63] su Remizov i Musajakaeva [64] zaključili da se u molekulama koje sadržavaju metilnu grupu može odrediti aktivacijska energija za unutrašnju rotaciju ove grupe na temelju vibracijske spektroskopije. Rakov je mjereći širinu Ramanovih vrpci internih modova molekula u ovisnosti o temperaturi zaključio da se širina vrpci $\delta(T)$ ponaša prema zakonitosti

$$\delta(T) = \delta_o + C e^{-\frac{E_a}{kT}},\tag{144}$$

gdje je C neka konstanta, δ_o je približno širina vrpce na najnižoj temperaturi a E_a aktivacijska energija za dani proces koji uzrokuje širenje vrpce. Remizov i Musajakaeva interpretirali su ovu aktivacijsku energiju različito

Slika 30: Mjerena širina vrpce na 2970 cm^{-1} u ovisnosti o temperaturi.

za razne modove. Naime baš u slučaju nitrometana opazili su mjereći širinu dviju vrpci - one na 921 cm^{-1} od C-N istezanja i one na 1097 cm^{-1} od asimetričnog CH₃ njihanja - da na 193 K vrpce imaju različitu širinu te da s porastom temperature širina vrpci raste različito. Za vrpcu C-N istezanja odredili su E_a kao 420 ± 105 cm^{-1} , a za vrpcu CH₃ njihanja dobili su E_a = 140 ± 7 cm^{-1} . Aktivacijsku energiju vrpce C-N istezanja interpretirali su kao barijeru reorijentacijskog gibanja čitave molekule (Brownovog gibanja), dok su E_a od CH₃ vrpce uzeli za aktivacijsku energiju unutrašnje rotacije metilne grupe. Kako je uobičajeno ovu aktivacijsku energiju na višim temperaturama poistovjetiti s visinom barijere, proizlazilo bi da su barijeru metilne grupe u kristalnom CH₃NO₂ našli jednaku 140 cm^{-1} .

Slika 30 prikazuje mjerenu širinu vrpce simetričnog CH_3 istezanja nitrometana od 10 K do 230 K. Pod mjerenom širinom ovdje se podrazumijeva rezultat numeričke prilagodbe Lorentzovog profila opaženoj vrpci na danoj temperaturi. Svaka točka na slici rezultat je jedne prilagodbe programom MINUIT [23]. Skup ovako dobijenih širina vrpci na odgovarajućim temperaturama dalje se koristio za određivanje aktivacijske energije prema formuli (144), također upotrebom MINUIT-a. Nađene su vrijednosti u dvije serije mjerenja

Tablica 24.	Aktivacijska energija unutrašnje rotacije nitrometana na	
osnovi	1 mjerenja FWHM vrpce simetričnog CH ₃ istezanja.	

	Serija I	Serija II		
E_a	$202 \pm 8 \ cm^{-1}$	$185 \pm 5 \ cm^{-1}$		

Ove vrijednosti su nešto više od visine barijere u kristalu kako su je odredili Remizov i Musajakaeva, koja iznosi $\approx 140 \ cm^{-1}$. Kako se njihovi rezultati odnose na asimetričnu njihajnu vibraciju metilne grupe, a ovdje na vibraciju simetričnog istezanja, postavlja se pitanje da li su obje vibracije jednako osjetljive na visinu barijere unutrašnje rotacije. Vrijednost E_a Remizova dvostruko je niža od vrijednosti barijere određene neutronskom spektroskopijom ($\approx 280 \ cm^{-1}$), ali njihova mjerenja imaju nedostatak što su vršena u intervalu (193 - 293 K) koji prolazi i obuhvaća 244 K, tj točku taljenja kristala. Tako se njihove eksperimentalne točke odnose i na kristal i na tekućinu, pa stoga zacijelo vide usrednjenu vrijednost barijere u dvije faze.

Za ovdje određenu visinu barijere od $\approx 200 \ cm^{-1}$ u nitrometanu bi se prijelaz 0A \rightarrow 1A trebao vidjeti na 140 cm^{-1} , dok bi energija tuneliranja bila 0.233 cm^{-1} (ili 28.8 μ eV). Opažena energija tuneliranja je 35 μ eV, a visina barijere je $\approx 280 \ cm^{-1}$ [69].

4.2 Vezanje fononskih i rotorskih stanja

Ovdje će biti opisane teorije kojima se nastoje objasniti eksperimentalni rezultati vezani uz dinamiku molekula poput toluena i nitrometana u kristalnoj fazi. Ukratko će biti opisane teorije Haupta [40], Hüllera [67], te Hewsona [68]. U svim pristupima osim onog Clougha [69] pretpostavlja se da ključnu ulogu u određivanju brzine skokova (engl. hopping rate) kao i nivoa energije metilnih grupa ima fononski spektar kristalne rešetke. Clough pak smatra da je sam oblik fononskog spektra nebitan već da ključnu ulogu ima visina barijere unutrašnje rotacije te temperatura na kojoj se sistem nalazi.

U jednom od prvih radova iz ovog područja Haupt [40] je izračunao ovisnost protonskog relaksacijskog vremena spin-rešetka računajući vjerojatnosti magnetskih prijelaza. Njegov hamiltonijan sistema spinovi + rotor + rešetka uključuju načelno i član koji opisuje rotor-fonon interakciju, no s tim članom Haupt nije imao potrebe pozabaviti se detaljnije jer on ne uzrokuje prijelaze između različitih magnetskih nivoa. Uslijed dipol-dipol magnetske interakcije protona unutar jedne metilne grupe dozvoljeni su svi magnetski prijelazi za koje je
 Δ I =1,2 osim \mathbf{E}^a \leftrightarrow
 \mathbf{E}^b prijelaza koji su zabranjeni. Usrednjujući izraz za prijelaznu vjerojatnost između dva rotacijsko-magnetska nivoa u vremenu, Haupt je izveo izraz 138. Njegovi rezultati daju u slučaju $\omega_t >> \omega_o$ neovisnost niskotemperaturne grane o ω_o (u nazivniku 138 tada zanemarujemo ω_o prema ω_t). No kako se vidi iz slike 21 za T_1 toluena eksperimentalno to nije potvrđeno, već upravo obrnuto: niskotemperaturna grana $\frac{1}{T_1}$ ovisi o ω_o . Haupt ovo objašnjava time što je račun proveden za rotacijsko-spinske nivoe izolirane metilne grupe, što nije slučaj za molekulu ugrađenu u kristalnu rešetku. Naruši li međumolekulska interakcija zabranu magnetskih $\mathbf{E}^a \leftrightarrow \mathbf{E}^b$ prijelaza, pojavit će se u izrazu za $\frac{1}{T_1}$ članovi oblika $\frac{\tau}{1+\omega_o^2\tau^2}$ neovisni od ω_t , upravo kako je eksperimentalno opaženo.

Računajući vjerojatnosti prijelaza Haupt je uzeo u obzir samo osnovno i prvo pobuđeno torzijsko stanje. Rotor je tretirao u aproksimaciji harmoničkog oscilatora te uzeo da je jedini mogući prijelaz $0 \rightarrow 1$. Za vrlo niske temperature to i jeste slučaj no Hewson je pokazao da uzevši u obzir prava rješenja Mathieuove jednadžbe postoje nezanemarivi matrični elementi smetnje između osnovnog i drugog ili viših stanja unutrašnje rotacije.

Hüller [29] je 1980. objavio rad o temperaturnoj ovisnosti frekvencije tuneliranja uslijed rotacije ω_t . Kako je prikazano na slici 22 $\hbar\omega_t$ je energija cijepanja dva najniža nivoa unutrašnje rotacije. Ovo cijepanje je konačno maleno za svaki rotor, no često je za visoke barijere premaleno da bi se moglo eksperimentalno opaziti. U literaturi iz područja fizike čvrstog stanja molekulskih kristala često se tuneliranje uslijed rotacije (engl. rotational tunneling) povezuje sa cijepanjem osnovnog stanja torzijskog oscilatora zbog interakcije s fononima. Prisustvo interakcije s fononima nije evidentno kroz opažanje konačne energije $\hbar \omega_t$ već kroz temperaturnu ovisnost položaja i širine vrpci $0A \leftrightarrow 0E$ prijelaza opaženih kvazielastičnim neutronskim raspršenjem.

Hüller je pretpostavio da se potencijal $A_o \cos 3\rho$ može prikazati u harmoničkoj aproksimaciji sumom tri parabole s minimumima na $\rho = 0, \rho = \frac{2\pi}{3}$ i $\rho = \frac{4\pi}{3}$. Za interakciju rotorskih stanja s nekom fononskom koordinatom x pretpostavio je da je bilinearna u ρ i u x. Rješenje ovog problema našao je dijagonalizirajući hamiltonijan za prvu od tri parabole u ρ :

$$H = \frac{I_r}{2}\dot{\rho}^2 + \frac{m}{2}\dot{x}^2 + \frac{9}{2}A_o\rho^2 + 3B\rho x + \frac{C}{2}x^2$$
(145)

Ova rješenja označio je s $|I,n_R,n_T \rangle$, gdje I označava prvi minimum, n_R kvantni broj torzijskog oscilatora (ρ) , a n_T vibracijski kvantni broj fononske koordinate x. Analogno su rješenja za $V(\rho) = \frac{9}{2} A_o (\rho - \frac{2\pi}{3})^2$ označena s $|II, n_R, n_T \rangle$, a za $V(\rho) = \frac{9}{2} A_o (\rho - \frac{4\pi}{3})^2$ s $|III, n_R, n_T \rangle$. Ova stanja Hüller naziva džepnim stanjima. Njihove valne funkcije nađene su kao egzaktna rješenja hamiltonijana 145 i uključuju produkt dva Hermitteova polinoma u novim koordinatama z_R i z_T . Ove koordinate se linearne kombinacije koordinata ρ i x s koeficijentima određenim matricom koja dijagonalizira $V(\rho, x)$ u bikvadratni oblik.

Preklop valnih funkcija $|I, n_R, n_T > i |II, n_R, n_T > je konačan i pada$ $s pobuđenjem viših <math>n_T$ (fononskih stanja). Pomak frekvencije ω_t s temperaturom je u ovom modelu proporcionalan s T⁴, u skladu s eksperimentalnim podacima, no širinu vrpce model daje beskonačno usku, dok je opaženo njeno povećanje s temperaturom.

Hewson [68] je opisao interakciju rotorskih i fononskih stanja koristeći račun smetnje. U njegovom opisu koriste se prava rješenja Mathieuove jednadžbe kao nesmetana stanja metilne grupe, te stanja harmoničkog oscilatora kao nesmetana stanja fonona frekvencije ω_k . Tretirajući sva fononska pobuđenja istovremeno, on interakciju pretpostavlja u obliku

$$\sum_{k} x_k (A_k \cos 3\rho + iB_k \sin 3\rho) \tag{146}$$

gdje su x_k fononske koordinate. Njegovi rezultati daju zadovoljavajuće slaganje kako pomaka tunelirajućih prijelaza u ovisnosti o temperaturi, tako i promjene njihove širine kako je opažena raspršenjem neutrona.

U nastavku će biti opisan model vezanja rotorskih i fononskih stanja baziran na Hewsonovoj pretpostavci o obliku njihove interakcije. Eksplicitno će se tretirati vezanje 0A, 0E, 1E i 1A stanja u osnovnom fononskom stanju s odgovarajućim stanjima u prvom pobuđenom stanju nekog fononskog stupnja slobode. Posebno će se uzeti u obzir vezanje rotorskih stanja s libracijom molekula oko osi unutrašnje rotacije. Račun smetnje drugog reda koji se želi izvršiti bit će moguće provesti tek po uklanjanju degeneracije OE i 1E stanja. Novokonstruirana OE,odnosno 1E stanja uključivat će kombinaciju osnovnog i pobuđenog fononskog stanja i s tako dobivenim novim stanjima krenut će se u račun smetnje.

Model vezanja fononskih i rotorskih stanja

Hamiltonijan rotor-fonon sistema možemo razdvojiti u hamiltonijan fononskog sistema H_{ph}^{o} , hamiltonijan rotora H_{rot}^{o} te hamiltonijan interakcije H_{I} :

$$H_{ph}^{o} = -\frac{\hbar^2}{2I_z^{fr}} \frac{\partial^2}{\partial R_z^2} + \frac{1}{2}kR_z^2$$
(147)

$$H_{rot}^{o} = -\frac{\hbar^2}{2I_z^{red}} \frac{\partial^2}{\partial \rho^2} + \frac{V_3}{2} (1 - \cos 3\rho) + \frac{V_6}{2} (1 - \cos 6\rho)$$
(148)

$$H_I = \frac{\hbar^2}{I_z^{fr}} \frac{\partial^2}{\partial R_z \partial \rho} + R_z (V^c \cos 3\rho + V^s \sin 3\rho), \qquad (149)$$

gdje je k = $I_z^{fr}\omega_o^2$, a ω_o nesmetana frekvencija libracijskog fonona. I_z^{fr} je moment inercije molekule bez rotora oko osi unutrašnje rotacije. ω_o ćemo aproksimirati rezultatom računa dinamike rešetke za krutu molekulu nađenim za libraciju čitave molekule oko osi unutrašnje rotacije (z osi).

Hamiltonijan rotora ćemo riješiti numerički, upotrebom programa VI-BAR [32]. Taj program osim svojstvenih vrijednosti daje i valne funkcije izražene kao red sinusnih i kosinusnih funkcija. Za odabrane parametre V₃, V₆ te rotacijsku konstantu $B = \frac{\hbar^2}{2I_2^{red}}$ možemo tako naći rješenja Mathieuove jednadžbe, normirati ih i iskoristiti u računu smetnje.

Uvedimo oznake stanja nesmetanog sistema. S (n_{ph}, ns) označit ćemo stanje s n_{ph} pobuđenih fononskih kvanata, s *n* redni broj pobuđenog torzijskog stanja rotora, a sa *s* simetriju stanja rotora. Bavit ćemo se stanjima rotora 0A, 0E, 1E i 1A. Shema nivoa energije nesmetanog sistema dana je slikom 31. Stanje 0E dvostruko je degenerirano, kao i stanje 1E. Dvije valne funkcije stanja 0E razlikuju se po tome što su sastavljene od reda kosinusnih funkcija (χ_{0E+}) ili reda sinusnih funkcija (χ_{0E-}). Analogno označavamo valne funkcije nesmetanog 1E stanja χ_{1E+} i χ_{1E-} . Valne funkcije fononskog sistema koje ćemo trebati su ona osnovnog stanja

$$H^o_{ph}\psi_o(R_z) = \frac{\hbar\omega_o}{2}\psi_o(R_z),\tag{150}$$

Slika 31: Shema nivoa nesmetanog fonon-rotor sistema.

te prvog pobuđenog fononskog stanja

$$H_{ph}^{o}\psi_{1}(R_{z}) = \frac{3\hbar\omega_{o}}{2}\psi_{1}(R_{z}).$$
(151)

Valne funkcije rotorskog sistema koje uzimamo u obzir su

$$H^{0}_{rot}\chi_{0A} = E^{o}_{0A}\chi_{0A} \tag{152}$$

$$H^{0}_{rot}\chi_{0E\pm} = E^{o}_{0E}\chi_{0E\pm} \tag{153}$$

$$H^{0}_{rot}\chi_{1E\pm} = E^{o}_{1E}\chi_{1E\pm}$$
(154)

$$H_{rot}^{0}\chi_{1A} = E_{0A}^{o}\chi_{1A} \tag{155}$$

Smetnja H_I uzrokuje miješanje stanja s n_{ph} = 0 i stanja s n_{ph} = 1. Tako će se stanja (0,0E+) i (0,0E-) pomiješati sa stanjima (1,0E+) i (1,0E-). Stanja (0,1E+) i (0,1E-) miješat će se sa stanjima (1,1E+) i (1,1E-). Sačinimo za 0E stanja kombinaciju valnih funkcija $\chi_{0E+}, \chi_{0E-}, \psi_o(R_z)$ i $\psi_1(R_z)$:

$$\Psi = (q_1\chi_{0E+} + q_2\chi_{0E-})\psi_o(R_z) + (q_3\chi_{0E+} + q_4\chi_{0E-})\psi_1(R_z).$$
(156)

Primjenom ukupnog hamiltonijana na Ψ te množenjem redom s $\chi_{0E+}\psi_o$, $\chi_{0E-}\psi_o$, $\chi_{0E+}\psi_1$ i $\chi_{0E-}\psi_1$ te integriranjem po R_z i po ρ nalazimo sistem od četiri jednadžbe za q_i .

$$q_{1}(E_{o} - E) + + q_{3}C_{13} + q_{4}C_{14} = 0$$

$$q_{2}(E_{o} - E) + q_{3}C_{14} + q_{4}C_{24} = 0$$

$$q_{1}C_{13} + q_{2}C_{14} + q_{3}(E_{o} - E) + = 0$$

$$q_{1}C_{14} + q_{2}C_{24} + q_{4}(E_{o} - E) = 0$$
(157)

Kao E_o uzimamo za $\chi_{0E+}\psi_o$ i $\chi_{0E-}\psi_o$ energiju E^o_{0E} dok za $\chi_{0E+}\psi_1$ i $\chi_{0E-}\psi_1$ uzimamo E_o = $\hbar\omega_o + E^o_{0E}$.

Koeficijenti C_{13} , C_{14} , i C_{24} su definirani sa

$$C_{13} = \frac{2A}{\hbar\omega_o} V^c C_{0E+0E+} \tag{158}$$

$$C_{14} = 4AD_{0E+0E-} + \frac{2A}{\hbar\omega_o} V^s S_{0E+0E-}$$
(159)

$$C_{24} = \frac{2A}{\hbar\omega_o} V^c C_{0E-0E-},$$
 (160)

gdje su

$$C_{0E+0E+} = \int_0^{2\pi} \chi_{0E+} \cos 3\rho \chi_{0E+} d\rho \tag{161}$$

$$S_{0E+0E-} = \int_0^{2\pi} \chi_{0E+} \sin 3\rho \chi_{0E-} d\rho$$
 (162)

$$D_{0E+0E-} = \int_0^{2\pi} \chi_{0E+} \frac{\partial}{\partial \rho} \chi_{0E-} d\rho.$$
 (163)

Konstanta A definirana je sa A = $\frac{\hbar^2}{2I_z^{fr}}$. U izračunavanju koeficijenata C korištene su relacije

$$\langle \psi_o(R_z)|R_z|\psi_1(R_z)\rangle = \frac{\hbar^2}{I_z^{fr}\cdot\hbar\omega_o} = \frac{2A}{\hbar\omega_o}$$
 (164)

$$<\psi_o(R_z)|\frac{\hbar^2\partial}{I_z^{fr}\partial R_z}|\psi_1(R_z)>=2A(\frac{1}{\sqrt{2}}-1).$$
(165)

Da bi sistem imao rješenja mora determinanta sistema iščezavati što daje uvjete na energije. Kako ispada da je S_{0E+0E-} uvijek 0 to je sistem trivijalno riješiti. Za E nalazimo četiri moguća rješenja:

$$E_1 = E_{0E}^o - \Delta_1 = E_{0E}^o - \sqrt{C_{13}^2 + 3C_{14}^2}$$
(166)

$$E_2 = E_{0E}^o + \Delta_1 = E_{0E}^o + \sqrt{C_{13}^2 + 3C_{14}^2}$$
(167)

$$E_3 = E_{0E}^o + \hbar\omega_o - \Delta_2 = E_{0E}^o + \hbar\omega_o - \sqrt{C_{13}^2 - C_{14}^2}$$
(168)

$$E_4 = E_{0E}^{\circ} + \hbar\omega_o + \Delta_2 = E_{0E}^{\circ} + \hbar\omega_o + \sqrt{C_{13}^2 - C_{14}^2}.$$
 (169)

Za nivoe 1E u osnovnom i pobuđenom fononskom stanju procedura je analogna. Njihove energije pomaknute su za odgovarajuće Δ_3 i Δ_4 .

Shema nivoa nakon ovoga prikazana je na slici 32. Kako sada niti jedno stanje nije degenerirano možemo nakon normiranja novih valnih funkcija provesti račun smetnje u drugom redu: (nivoe energije označili smo rednim brojem i = 1,11 kao na slici 32)

$$E_{i} = E_{i}^{0} + \sum_{j=1}^{11} \frac{\langle \Psi_{j}^{o} | H_{I} | \Psi_{i}^{o} \rangle \langle \Psi_{i}^{o} | H_{I} | \Psi_{j}^{o} \rangle}{E_{i}^{o} - E_{j}^{o}}, i = 1, 11.$$
(170)

Slika 32: Nivoi energije fonon-rotor sistema nakon uklonjene degeneracije.

U sumi je indeks j različit od indeksa i.

Rezultati i diskusija

Računom smetnje izračunato je jedanaest najnižih energija fonon-rotor sistema opisanog ranije. Barijere unutrašnje rotacije odabrane su tako da reproduciraju što bolje eksperimentalno opažene energije prijelaza. S ω_o označena je fononska frekvencija totalno simetrične libracije A oko osi unutrašnje rotacije molekula familije I α toluena, odnosno libracije tipa B₁ za nitrometan. Vrijednosti ω_o rezultat su računa dinamike rešetke za krutu molekulu. Vrijednost δ odnosi se na parametar potencijala

$$V(\rho) = \frac{V_3}{2}(1 - \cos 3\rho) + \frac{V_6}{2}(1 - \cos(6\rho + \delta)).$$
(171)

Tablica 25 sumira rezultate ovog računa smetnje za odabrane parametre smetnje. Općenito je račun pokazao veću osjetljivost o V^c nego o V^s konstanti interakcije. Izračunata smetana fononska frekvencija praktično je identična ω_o . Razlog tome je što je oblik smetnje takav da postoji preklop fononskih stanja $\psi_1(\mathbf{R}_z)$ i $\psi_2(\mathbf{R}_z)$, a ta i viša pobuđenja nismo uzeli u obzir. Stoga je za očekivati da je ovaj račun tek zadovoljavajuće aproksimativan.

	$C_6H_5CH_3$	(familija I)	$\rm CH_3NO_2$			
	izračunate	izmjerene	izračunate	izmjerene		
V ₃	200	240^{a}	210	205^{b}		
V_6	-105	-120^{a}	-110	-125^{b}		
δ	0	17°	0	30°		
V ^c	124	, <u>, </u>	124			
\mathbf{V}^{s}	35		165			
ω_o	137	130	143	139	presistic	Seely.
E_{0E+} - E_{0A}	0.390	0.209^{a}	0.218	0.282^{b}		
$E_{0E-} - E_{0A}$	0.487	0.229^{a}	0.699	0.282^{b}		
$E_{0E+} - E_{0E-}$	0.096	$< 0.08^{a}$	0.482	$< 0.08^{b}$		
$E_{1E+} - E_{0E+}$	49.52	49	51.87	52		
$E_{1E-} - E_{0E-}$	49.61	49	52.31	52		
$E_{1A} - E_{0A}$	52.53	49	55.20	52	8	

Tablica 25. Izračunate i izmjerene energije tuneliranja i torzijskih prijelaza za α -toluen i nitrometan (cm^{-1}) .

^a iz ref. [70]

^b iz ref. [60]

Najosjetljivije veličine na iznos interakcijskih konstanti su svakako energije $\hbar\omega_t$. Postojanje cijepanja 0E+ i 0E- stanja ukoliko se eksperimentalno opaža najprecizniji je pokazatelj jakosti interakcije. Naime izborom odgovarajuće interakcije može se postići inverzija 0E+ i 0A stanja te cijepanje 0E+ i 0E- stanja od $\approx 1 \ cm^{-1}$. Koliko je fizikalno prihvatljivo postojanje 0E+ najnižeg stanja zasebno je pitanje. Eksperimentalna rezolucija neutronskog eksperimenta ograničila je moguće 0E+ 0E- cijepanje na vrijednost manju od 0.1 cm^{-1} , no područje energije od 0.5 do 2 cm^{-1} moglo bi skrivati upravo ovakve prijelaze.

Mjerenja protonskog relaksacijskog vremena spin-rešetka T₁ postavljaju granicu visine barijere u toluenu bilo za familiju molekula I ili za familiju II ispod 90 cm^{-1} [39], dok analogna mjerenja deuterijskog T₁ daju za barijeru familije II jednostavan $\frac{V_3}{2}(1 - \cos 3\rho)$ oblik uz V₃ = 176 cm^{-1} [71].

U više navrata spominjali smo aktivacijsku energiju i to u kontekstu različitih eksperimentalnih metoda. Koji procesi stoje iza tako određenih aktivacijskih energija? Metodom NMR daju se odrediti dvije aktivacijske energije iz nagiba $\frac{1}{T_1}$ krivulje u ovisnosti o $\frac{1}{T}$: E''_A na niskim temperaturama i E'_A na visokim temperaturama. Pokazuje se da je E''_A istog reda veličine kao i aktivacijska energija određena iz širine kvazielastičnih vrpci u spektru raspršenih neutrona i da je približno 5 - 10 meV za toluen, dok je E'_A istog reda veličine kao aktivacijska energija određena iz širine Ramanove

interne vrpce koja uključuje mod metilne grupe i da je reda veličine < 20meV. Ove dvije aktivacijske energije bi se grubo mogle aproksimirati energijom $0 \rightarrow 1$ torzijskog prijelaza (E''_A) odnosno razlikom visine barijere i energije 0A stanja (E'_{A}) . Međutim ne moraju se ove energije odnositi na isti proces. Trevino [72] je pokazao da molekule nitrometana u intervalu 50 do 100 K vrše skokove od 120° oko osi koja se podudara sa smjerom C-N osi u kristalu. On je uspješno reproducirao elastično raspršenje neutronskog snopa modelom skokovite difuzije (engl. jump diffusion). Taj model pretpostavlja da je kut za koji se molekula zakrene uvijek isti, za razliku od modela rotacijske difuzije u kojem je vrijednost kuta skoka nasumična. Prema klasifikaciji Pressa [42] sistemi koji pokazuju skokovitu difuziju su oni u kojima je statički potencijal reorijentacije molekule veći od vremenski zavisnog doprinosa. Ovaj vremenski zavisan dio potencijala raste s temperaturom jer je uzrokovan toplinskim gibanjem atoma u molekuli i čitave molekule. Činjenica da nitrometan pokazuje reorijentaciju čitave molekule iznad 50 K mogla bi objasniti prijelaz iz kvantnomehaničkog režima ponašanja na niskim temperaturama u reorijentacijske skokove na višim temperaturama. Ovu temperaturu može se donekle odrediti na barem tri načina:

- 1. kao temperatura na kojoj nestaju $0A \rightarrow 1A$ i ostale Ramanove vrpce prijelaza unutrašnje rotacije
- 2. kao temperatura na kojoj se vrpce u spektru kvazielastično raspršenih neutrona stapaju s elastičnom vrpcom
- 3. kao temperatura na kojoj T_1 protonsko relaksacijsko vrijeme spinrešetka ima minimum.

Granična temperatura na kojoj se dešava promjena se po svemu sudeći nalazi za toluen i nitrometan u intervalu (20K, 40K).

5 Taljenje molekulskih kristala i pojava mezofaza

Zagrijavanjem kristala povećava se nered u položajima i orijentacijama molekula koje ga sačinjavaju. Prije nego što se kristal potpuno ne rastali i ne prijeđe u stanje izotropne tekućine (tako zovemo stanje gdje je položajni i orijentacijski nered potpun), moguće su pojave prijelaznih faza između kristala i tekućine. Ove prijelazne faze ili mezofaze kako ih je nazvao Friedel može se grubo podijeliti prema tipu nereda koji je u njima prisutan.

Tako tekućim kristalima nazivamo stanje djelomičnog ili potpunog translacijskog nereda u kojem (obično izdužene, štapićaste) molekule u prosjeku zadržavaju istu orijentaciju. Tekuće kristale (tako ih je prvi nazvao Lehmann [73]) dijelimo na termotropne i liotropne. Termotropne čine neamfifilne supstance koje porastom temperature vrše prijelaz u fazu tekućih kristala. Liotropne tekuće kristale čine amfifilne supstance (to su spojevi koji u sebi sadržavaju i hidrofilnu i hidrofobnu grupu atoma) kad se u nekoj koncentraciji pomiješaju s danim otapalom. Termotropne tekuće kristale dijelimo dalje na nematike, smektike, kolesterike i diskotične faze [74]. Smektici se razlikuju od nematika po tome što zadržavaju dio translacijskog uređenja, dok ga u nematicima nema. U kolestericima molekule pak od sloja do sloja mijenjaju prosječnu orijentaciju.

Drugu veliku klasu mezofaza čine molekule u kojima orijentacijski nered nastupa na nižim temperaturama od položajnog nereda. Ove faze otkrio je Timmermans 1938 [75] i nazvao plastični kristali. Njih sačinjavaju uglavnom kuglaste molekule, ali ne vrijedi tvrdnja da sve sferne molekule mogu oblikovati plastični kristal. Neka od svojstava plastičnih kristala kako ih navode Parsonage i Staveley [76] su:

- 1) kriterij plastičnosti nekog kristala kako ga je originalno naveo Timmermans bio je da će neka supstanca biti proglašena plastičnim kristalom ako je promjena entropije pri prijelazu iz faze na višoj temperaturi (faze I) u fazu na nižoj temperaturi (fazu II) biti manja od $\frac{5}{2}$ R, $R = 8.314 \frac{J}{Kmol}$. Ovaj kriterij ne treba uzeti doslovno. Obično je faza I plastična, a faza II pravi kristal, no poznat je slučaj cikloheptana u kojem postoje čak tri plastične faze.
- 2) ukoliko prijelaz iz faze II u fazu I uključuje samo orijentacijske stupnjeve slobode, bez difuzije molekula, prijelaz je postepen a krivulja toplinskog kapaciteta se kontinuirano nastavlja preko točke prijelaza. Ako prijelaz uključuje stupnjeve slobode oba tipa (orijentacijske i translacijske) prijelaz je prvog reda.
- 3) faza na višoj temperaturi (faza I) je često kubična, mada ne uvijek
4) opis neuređenih molekulskih kristala kao plastičnih potječe od opažanja Michilsa da ih se može istisnuti kroz neki otvor uz prilično mali tlak. Npr. da bi se CBr₄ u neplastičnom obliku istisnuo kroz neki otvor trebalo je upotrijebiti tlak od 1500 $\cdot 10^5$ Pa, dok je odgovarajući tlak za CBr₄ u plastičnoj formi bio ~ 250 $\cdot 10^5$ Pa.

Spomenuta podjela mezofaza na tekuće i plastične kristale vrijedi samo uvjetno. Tako npr. smektici D, G, H .. imaju translacijsko uređenje u tri dimenzije, a njihovo svrstavanje u smektike potječe iz optičkih svojstava i karakteristika miješanja na bazi rezultata Sackmanna i Demusa.

Prilično pouzdan kriterij koji bi upućivao na to da je neka prijelazna faza plastični ili tekući kristal jeste usporedba ΔS_t promjene entropije na prijelazu normalni kristal \rightarrow mezofaza te ΔS_m promjene entalpije na prijelazu mezofaza \rightarrow tekućina. U plastičnim kristalima je ΔS_t uvijek veće od ΔS_m , dok je u tekućim kristalima manja. K tome je ΔS_m za plastične kristale uvijek manja u odnosu na odgovarajuću veličinu za neki inertni plin, dok je u slučaju tekućih kristala obrnuto.

Zasebnu kategoriju spojeva predstavljaju molekule poput *n*-alkana, izdužene molekule s dodatnim stupnjevima slobode unutrašnje rotacije CH_2 podjedinica u lancu. Njihove se faze dijele na α i β faze koje se mogu dalje klasificirati prema tome jesu li lanci okomiti na ravnine slojeva ili pod nekim kutem, te da li su lanci svi *trans* ili u sebi sadrže i *gauche* defekte. Ove mezofaze nazivaju se i rotatorske alkanske faze, javljaju se na temperaturama od 30 do 60° C, dakle u području tjelesnih temperatura [77]. One su posebno interesantne jer različite faze fosfolipida i lipidnih dvosloja u staničnim membranama raznih organizama pokazuju takvo ponašanje.

U nastavku ćemo izložiti Pople-Karasz model taljenja molekulskih kristala stoga što on na jednostavan način daje objašnjenje pojave spominjanih mezofaza. Potom će biti analizirani Ramanovi spektri nitrometana i toluena zabilježeni u blizini točke taljenja ovih kristala.

5.1 Pople-Karasz model taljenja molekulskih kristala

Pople i Karasz objavili su 1961 teoriju taljenja molekulskih kristala [78,79] u kojoj su proširili model Lennard-Jonesa i Devonshirea za taljenje kristala inertnih plinova uzevši u obzir orijentacijske stupnjeve slobode molekula.

Lennard-Jones i Devonshire [80] opisali su porast položajnog nereda u kristalu koji nastaje zagrijavanjem pretpostavljajući da atomi zauzimaju položaje na čvorovima jedne od dviju međusobno se penetrirajućih rešetki. Čvorove ovih rešetki nazvali su α i β mjesta. U ravnoteži su svi atomi (njih N) ili na položajima α ili na položajima β . Porastom temperature raste i broj atoma na intersticijskim mjestima (npr. na čvorovima α kada je većina mjesta β rešetke zauzeta), sve dok nered ne postane potpun i α i β mjesta zauzeta u jednakoj mjeri. Kao parametar translacijskog uređenja definirali su veličinu

$$Q = \frac{N_{\alpha}}{N},\tag{172}$$

$$\frac{N_{\beta}}{N} = 1 - Q. \tag{173}$$

Pople i Karasz pretpostavili su da se prostorni kut u kojem molekula može vršiti reorijentaciju može podijeliti u dva dijela, te su definirali parametar orijentacijskog uređenja S kao omjer broja molekula s orijentacijom 1 prema ukupnom broju molekula N:

$$S = \frac{N_1}{N},\tag{174}$$

$$\frac{N_2}{N} = 1 - S.$$
 (175)

Uzevši da oko svakog α mjesta postoji z najbližih β mjesta te z' najbližih α mjesta, formirali su particijsku funkciju sistema:

$$Z = f^N \sum e^{-\frac{N_{\alpha\beta}W + N_{\alpha_1\alpha_2}W' + N_{\beta_1\beta_2}W'}{kT}} = f^N \Omega$$
(176)

Ovdje je s W označena energija interakcije α i β mjesta, a s W' energija interakcije molekule orijentacije 1 i molekule orijentacije 2. W' je uzeta neovisna od tipa čvora na kojem se molekule nalaze. Time se nastojalo opisati situaciju da molekula α_2 koja je okružena molekulama α_1 dobije nižu relativnu energiju ako se odluči prijeći na čvor β (na tom čvoru naime neće imati višu energiju nego što je imala ranije).

 $N_{\alpha_1\alpha_2}$ je broj relativnih $\alpha_1 - \alpha_2$ orijentacija na susjednim α mjestima (analogno za $N_{\beta_1\beta_2}$), a $N_{\alpha\beta}$ je broj parova u kojima su susjedi po jedna molekula α i po jedna molekula β . f je particijska funkcija jedne molekule u stanju potpunog uređenja, kada sve molekule zauzimaju ili α ili β mjesta. f ovisi o prosječnom volumenu po molekuli i o temperaturi. Više o njoj može se naći u radu [80].

Suma u Z ide po svim orijentacijama kao i po svim rasporedima molekula na α i β mjesta.

Particijska funkcija Ω određena je proširenjem Bragg-Williamsove metode za kooperativne fenomene. Uvođenjem parametara uređenja Q i S nalazi se

$$\Omega = \sum_{Q,S} \Omega(Q,S) \tag{177}$$

$$\Omega(Q,S) = \sum_{k=1}^{(Q,S)} e^{-\frac{N_{\alpha\beta}W + N_{\alpha_1\alpha_2}W' + N_{\beta_1\beta_2}W'}{kT}}$$
(178)

 $\sum^{(Q,S)}$ ide po svim konfiguracijama u kojima ima NQS molekula u α_1 položajima, NQ(1-S) molekula u α_2 položajima, N(1-Q)S u β_1 položaju i N(1-Q)(1-S) molekula u β_2 položaju. Kako particijska funkcija ima oštar maksimum traži se samo maksimum funkcije $\Omega(Q,S)$. Bragg-Williamsova ili nulta aproksimacija ovog problema jeste zamjena eksponenta u $\Omega(Q,S)$ s njegovom prosječnom vrijednošću, pa se nalazi

$$\Omega(Q,S) = \gamma(Q,S)e^{-\frac{zNWQ(1-Q)+z'NW'S(1-S)(1-2Q+2Q^2)}{kT}}$$
(179)

gdje je $\gamma(Q,S)$ broj načina na koji se mogu rasporediti molekule za dane Q i S:

$$\gamma(Q,S) = \left[\frac{N!}{(NQ)!N(1-Q)!}\right]^2 \cdot \frac{NQ!}{(NQS)!NQ(1-S)!} \cdot \frac{N(1-Q)!}{(N(1-Q)S)!N(1-Q)(1-S)!} \cdot \frac{N(1-Q)!}{(180)!}$$

Da bismo našli uvjete da bi $\Omega(Q,S)$ bila maksimalna deriviramo ju po Q i po S. Nalazimo uvjete

$$\ln \frac{Q}{1-Q} = \left[\frac{zW}{kT} - \frac{z'W'}{kT}S(1-S)\right](2Q-1), \qquad (181)$$

$$\ln \frac{S}{1-S} = \frac{z'W'}{kT} (1 - 2Q + 2Q^2)(2S - 1).$$
(182)

Definirajmo parametar ν

$$\nu = \frac{z'W'}{zW}.$$
(183)

To je praktično jedini parametar u Pople-Karasz teoriji i predstavlja omjer barijere za rotaciju molekule prema barijeri za difuziju molekule na intersticijsko mjesto (z je broj susjeda na intersticijskim mjestima a z' je broj suprotno orijentiranih susjeda na istoj rešetci).

Jednadžbe (181) i (182) uvijek rješava točka Q = 0.5, S = 0.5 koja odgovara stanju potpunog nereda (izotropnoj tekućini). Na visokim temperaturama (mali zW/kT) ovo je i jedino rješenje. Na niskim temperaturama vrijednosti Q = 1 i S = 1 odgovarale bi potpunom redu, tj pravom kristalu. Za neku vrijednost temperature, tj za dani ν i dani omjer zW/kT traže se vrijednosti Q i S iteracijom gornjih jednadžbi. Za $\nu = 0.2$ su Pople i Karasz našli oblik ponašanja Q i S s temperaturom kako je prikazan na slici 33. Ova slika pokazuje kako za dane z i W s porastom temperature kristal najprije gubi orijentacijsko uređenje zadržavajući translacijski red, da bi na višoj temperaturi izgubio i njega. Između zW/kT = 10.3 i 4.4 možemo reći da je nastala faza plastičnog kristala.

Za izbor $\nu = 1$ nalazi se drugačije ponašanje Q i S (vidi sliku 34). Ovdje je omjer rotacijske barijere i barijere za difuziju pet puta veći nego u prvom primjeru. Kristal za iste zW na višoj temperaturi kT $\approx \frac{zW}{5}$ najprije

1

Slika 33: Ovisnost parametra translacijskog reda Q i orijentacijskog reda S o temperaturi [77].

prestaje biti translacijski uređen da bi kasnije izgubio i orijentacijski red. U ovoj slici mogli bi identificirati fazu u području između $zW/kT \approx 5$ i $zW/kT \approx 4$ kao tekući kristal.

Pople-Karasz model dao je općenito dobro kvalitativno slaganje s poznatim činjenicama, no kvantitativno su bolje slaganje postigli Amzel i Becka 1969 [81]. Oni su proširili Pople-Karasz model uzevši u obzir mogućnost da se prostorni kut u kojem molekula rotira može podijeliti na proizvoljan broj D orijentacija. D je u njihov model ušao kao parametar. Za svaku od i = 1,2,...,D orijentacija uvodi se zaseban parametar uređenja:

$$S_i = \frac{N_i}{N},\tag{184}$$

$$1 = \sum_{i=1}^{D} S_i.$$
(185)

Analognom procedurom nalazi se $\Omega(Q, S_1, S_2, ..., S_D)$ te uvjeti na parametre uređenja da bi ona imala maksimum:

Slika 34: Ovisnost parametra translacijskog reda Q i orijentacijskog reda S o temperaturi [77].

Slika 35: Reducirane temperature faznih prijelaza kao funkcije parametra ν . S - kristal, N - nematik, L - tekućina.

$$\ln \frac{S_1}{1 - S_1} - \ln(D - 1) = -\frac{z'W'}{kT} \left[1 - \frac{DS_1}{D - 1}\right] (1 - 2Q + 2Q^2), \quad (187)$$

te uvjeti na S_i , $i \ge 2$

$$S_i = \frac{1 - S_i}{D - 1}, i \ge 2.$$
(188)

Na niskim temperaturma Q = 1, $S_1 = 1$ odgovaraju potpunom uređenju dok na visokim temperaturama Q = 0.5, $S_1 = \frac{1}{D}$ odgovaraju izotropnoj tekućini tj. potpunom neredu.

Amzel i Becka pronašli su da postoji interval vrijednosti ν za koji dolazi do istovremenog gubitka orijentacijskog i translacijskog uređenja - npr. za $\nu = 0.7$. Njihovi su zaključci da ta vrijednost ν (za koju se T_t i T_m podudaraju) raste s porastom broja orijentacija D. Ako se pak uzme da je ν konstantan, temperature T_t i T_m padaju s porastom broja orijentacija D. Promjena entropije ΔS_t na prijelazu kristal - mezofaza raste s D a za svaki D raste s ν .

Pogledajmo konkretan primjer adamantana. Guthrie i McCullough su izračunali ΔS_t prema formuli $\Delta S_t = R \ln D$. Za D = 6 to iznosi 14.73 J/K mol, dok je vrijednost koju su našli Amzel i Becka jednaka 16.06 J/K mol. Eksperimentalno je nađeno $\Delta S_t^{exp} = 16.19$ J/K mol.

Modificirajući neke pretpostavke o obliku ovisnosti potencijala interakcije molekula o volumenu, Chandrasekhar je modificirao Pople-Karasz model kako bi postigao bolje slaganje u opisu nematika [82]. On je isto tako precizirao intervale parametra ν u kojima se odvijaju različiti tipovi prijelaza [83]:

 $\nu < 0.298$ postoje dva prijelaza, kristal - plastični kristal i plastični kristal - tekućina

 $0.264 < \nu < 0.298$ fazni prijelaz kristal - plastični kristal je prvog reda

 $\nu < 0.264$ fazni prijelaz kristal - plastični kristal je drugog reda

 $0.298 < \nu < 0.975$ postoji samo jedan prijelaz kristal - tekućina

 $0.975 < \nu$ postoje dva prijelaza, kristal - tekući kristal i tekući kristal - tekućina

 $0.975 < \nu < 1.047$ fazni prijelaz tekući kristal - tekućina je drugog reda

 $1.047 < \nu$ fazni prijelaz tekući kristal - tekućina je prvog reda

Suma ovih podataka dana je na slici 35. Veličina ϵ označava dubinu jame u međuatomskom potencijalu molekule.

Mada je ovdje izložen model još uvijek nedostatan za opis dinamičkih stupnjeva slobode, daje nam prihvatljivu sliku o nastanku mezofaza.

5.2 Pojava mezofaza u nitrometanu i toluenu

Nitrometan je tekućina koja pokazuje efekte pothlađivanja. Hladimo li ga postepeno možemo opaziti točku leđenja na 203 K, čak 41 K ispod točke taljenja kako ju deklarira proizvođač (244 K). Zagrijavanjem je točka taljenja, deducirana na osnovu Ramanovih spektara, utvrđena na 241 K, samo tri stupnja niže od deklarirane temperature.

Grijemo li kristal nitrometana, opažamo proširenje niskofrekventnih Ramanovih vrpci s temperaturom. Ovo proširenje raste dramatično iznad 230 K kako nam pokazuje slika 36. Fononske vrpce gube na intenzitetu, a Rayleigheva linija biva proširena. Primijetimo da se na 235 K javlja rame na Rayleighevoj liniji, te da na 237 K izrasta potpuno nov spektar. On je karakterističan za prijelaz u mezofazu koju ćemo nazvati plastična faza II. Njoj odgovarajući niskofrekventni Ramanov spektar prikazan je kao drugi odozgo na slici 37. Maksimumi intenzivnih, vrlo širokih vrpci nalaze se na ≈ 40 i 60 cm^{-1} . Slika 37 prikazuje uzastopno snimljene Ramanove spektre odozdo prema gore na temperaturi 240 K. Uzorak je prethodno bio na temperaturi od 230 K, na koju je bio zagrijavan u koracima od po 10 stupnjeva s temperature T = 10 K. U plastičnoj fazi II poluširina simetričnog CH₃ istezanja iznosila je 14.75 cm^{-1} , za razliku od 12 cm^{-1} na 230 K i 16 cm^{-1} na 250 K (u tekućini).

Nezavisno od ove serije mjerenja snimljeni su drugom prilikom spektri na 239 i 240 K prikazani na slici 38. Spektri su snimljeni neposredno jedan za drugim, onaj na 240 K petnaestak minuta po onome snimljenom na 239 K. Nalazimo sasvim novu mezofazu, plastičnu fazu I kojoj odgovara najgornji Ramanov spektar na slici 38. Oznake I i II odabrane su prema pretpostavljenom redoslijedu faza u smjeru padajuće temperature. Činjenica je da su faze I i II različite, a spektri snimljeni na istoj temperaturi - 240 K - tik pred taljenje. Odabrani redoslijed faza učinjen je

Slika 36: Taljenje nitrometana od 230 (najdonji spektar) do 237 K (najgornji spektar).(*) označava parazitne plazma linije Ar lasera.

na osnovu opažanja na slici 37 gdje je primijećeno da se faza II topi uz neznatno proširenje Rayleigheve vrpce.

Osnovni je problem pri ovakvim mjerenjima ostvarivanje toplinske ravnoteže uzorka u čitavoj kapilari, te izbjegavanje smjesa različitih faza. Zagrijavanjem polikristaliničnog praha u kapilari uzorak se tali najprije u dijelu kapilare koji je bliži toplinskom kontaktu s hladnim prstom kriostata. Potrebno je dugo čekati da se kristal jednoliko rastali u čitavom volumenu na kojem se raspršuje laserski snop, a često je upravo granica dviju faza u visini prolaza laserskog snopa. Naočigled je moguće promatrati kako bijel i neproziran polikristalinični prah grijanjem biva proziran, no ne sasvim bistar kao tekućina. Ramanove spektre plastičnih faza moguće je stoga snimati u geometriji prolaza snopa kroz uzorak, kao što se to radi za tekućine.

Zašto smo odlučili opažene mezofaze nazvati plastičnim fazama? Zaključak je izveden temeljem usporedbe sa srodnim spojevima 2,2-dinitropropana $(C(CH_3)_2(NO_2)_2)$ i *t*-nitrobutana $(C(CH_3)_3NO_2)$ za koje u literaturi pos-

Slika 37: Taljenje nitrometana. Spektri su snimani uzastopce odozdo prema gore, temperatura uzorka u svim spektrima je 240 K.

toje podaci o formiranju plastične faze [76]. 2,2-dinitropropan ima prijelaz iz pravog u plastični kristal na 267 K, a tali se na 326 K. Za njega je poznato da je mezofaza *fcc* rešetka. *t*-nitrobutan ima prijelaz na 260 K u plastičnu fazu a tali se na 299.2 K. U radu [84] Haffmans i Larkin analiziraju između ostalih i niskofrekventne spektre plastične faze 2-metil-2-nitropropana na 273 K. Kako je za sve ove spojeve utvrđeno da se radi o plastičnim fazama, a nitrometan je od svih najmanja molekula, zaključili smo da su i njegove mezofaze plastičnog tipa.

Kako interpretirati intenzitet širokih niskofrekventnih vrpci opaženih u Ramanovim spektrima plastične faze I i kako objasniti njihovo odsustvo u plastičnoj fazi II? Za objašnjenje ćemo opisati rezultate Sauvajola na plastičnom kristalu cijanoadamantana, biciklo(2,2,2)oktana i heksametiletana [85,86]. On je snimao Ramanove spektre na monokristalima plastičnih faza što mu je omogućilo izdvajanje modova pojedine simetrije i usporedbu njihovog intenziteta s izračunatim vrijednostima. U cijanoadamantanu on razdvaja dva gibanja koja doprinose spektralnom intenzitetu - skokove u kojima cijele molekule zamjenjuju mjesta, te libracije oko C₃ osi definirane -CN skupinom. Mjerenja raspršenjem neutrona na istom uzorku su pokazala da u cijanoadamantanu nema disperzije libracijskog moda (najnižeg opaženog optičkog moda) s valnim vektorom \vec{q} , što je navelo Sauvajola na zaključak da je libracijski mod u plastičnoj fazi lokaliziran. Također je izveđen i oblik F_{2q} vrpce u modelu gušenog oscilatora.

Biciklo(2,2,2) oktan ima Ramanov spektar plastične faze bez ijedne nis-

Slika 38: Taljenje nitrometana. Spektri su snimani uzastopce odozdo prema gore.

kofrekventne vrpce (poput plastične faze I nitrometana). Objašnjenje za to Sauvajol [85] nalazi u kvazisferičnosti tenzora molekulske polarizabilnosti, te zaključuje iz identičnosti F_{2g} i E_g profila da ne stoji pretpostavka o postojanju lokalizirane ravnotežne orijentacije u biciklooktanu.

Ni cijanoadamantan ni biciklooktan koje su obje "krute" molekule nemaju neku fleksibilnu atomsku grupu čija bi vibracija padala ispod 150 cm^{-1} , što olakšava analizu njihovih spektara. Međutim nitrometan i toluen imaju metilnu grupu koja u kristalu rotira u potencijalu barijere $\approx 360 \ cm^{-1}$ i čija dinamika se ne može ignorirati ni u plastičnoj fazi. Pogledajmo stoga analizu plastične faze heksametiletana [86]. Ovaj spoj ima plastičnu fazu Im3m (O_h) s 2 molekule po jediničnoj ćeliji. Sam naziv spoja govori da je u svakoj molekuli vezano po šest metilnih grupa, pa je za očekivati da će i Ramanov spektar imati složeniju strukturu. Ponajprije tu je pitanje jednog translacijskog moda koji je optički fonon, te torzije metilnih grupa. Sauvajol međutim ne napominje ništa o torzijama metila, dok mogućnost pojave translacijskog moda definitivno isključuje.

S obzirom na sve izneseno možemo pretpostaviti da su intenzivne vrpce plastične faze I nitrometana uzrokovane libracijama molekula oko položaja ravnoteže, dok je u plastičnoj fazi II nitrometana gibanje molekula toliko slobodno da svaka molekula ima gotovo sferni tenzor polarizabilnosti i gotovo nema niskofrekventnog Ramanovog spektra (kao što plin metan nema rotacijski Ramanov spektar).

Slika 39 prikazuje niskofrekventne Ramanove spektre toluena u taljenju

Slika 39: Taljenje toluena na 165 K (donji spektar - kristal) i 167 K (ostali spektri).

sa 165 K na 167 K. Za opaženu mezofazu toluena možemo pretpostaviti da je slična fazi II nitrometana, osim što je u toluenu značajno intenzivnije elastično raspršenje (Rayleigheva linija). Zanimljivo je usporediti spektar mezofaze sa spektrom stakla na 110 K - vidi sliku 40. Na 15 cm^{-1} javlja se maksimum asimetrične vrpce poznate kao Boseov vrh koja je karakteristična za razne amorfne materijale, dok druga široka vrpca koja je na nju superponirana odgovara najvjerojatnije gušenim fundamentalnim torzijskim prijelazima molekula toluena u staklenoj fazi. Njen je maksimum u intervalu između 70 i 80 cm^{-1} , baš kao i vrpce u plastičnoj fazi toluena. Porijeklo ove potonje je međutim sasvim različito.

Slika 40: Spektar stakla toluena na 110 K. Asimetrična vrpca maksimuma na 15 cm^{-1} je tzv. Boseov vrh.

6 Zaključak

U ovom radu analizirani su vibracijski spektri nekoliko molekula koje sadržavaju u sebi metilnu grupu. Kako torzija metilne grupe zahtijeva odvajanje od ostalih molekulskih vibracija, a vibracije same CH₃ grupe poseban pristup, to se provela detaljna vibracijska analiza molekula toluena i nitrometana u plinovitoj, tekućoj i kristalnoj fazi.

Iz širina vrpci Ramanovih spektara toluena u pari zaključilo se o mogućem valentnom polju sila i njegovoj ovisnosti o kutu unutrašnje rotacije ρ metilne grupe. Određen je doprinos potencijalu unutrašnje rotacije u svim pobuđenim vibracijskim stanjima.

Zabilježeni su i niskotemperaturni Ramanovi spektri spomenutih molekula od 10 K do sobne temperature. Osim spektara kristala α -toluena snimljeni su spektri njegove staklaste faze. Opažene su i slabe vrpce prijelaza unutrašnje rotacije na 49 cm⁻¹ za toluen i 52 cm⁻¹ za nitrometan. Ove vrpce bivaju potisnute i nestaju iz fononskih spektara na temperaturama između 30 i 40 K. Izmjerena je aktivacijska energija za unutrašnju rotaciju metilne grupe tako što je mjerena širina vrpce potpuno simetričnog CH₃ istezanja nitrometana. Nađena je vrijednost 193 ± 6 cm⁻¹, nešto niža od barijere prihvaćene u literaturi ($\approx 280 \text{ cm}^{-1}$).

Proveden je račun dinamike rešetke za kristale α -toluena i nitrometana korištenjem atom-atom potencijala Buckinghamovog tipa. Rješavanjem Mathieuove jednadžbe za prikladne vrijednosti barijera u spomenutim kristalima proveden je račun smetnje za prvih jedanaest stanja najnižih energija fonon-rotor sistema sačinjenog od metilne grupe kao rotora i libracije oko osi unutrašnje rotacije kao fonona. Uočeno je da se dobro slaganje opaženih i izračunatih energija postiže s malim parametrima interakcije.

Snimanjem Ramanovih spektara u intervalu temperatura neposredno prije točaka taljenja toluena i nitrometana otkriveno je postojanje dviju mezofaza u nitrometanu i jedne u toluenu. Usporedbom sa nitrometanu srodnim sistemima izveden je zaključak da se radi o dvije plastične faze, što je najvjerojatnije slučaj i sa mezofazom toluena.

7 Dodaci

7.1 Dinamika rešetke $C_6D_5CD_3$, $C_6H_5CD_3$ i $C_6D_5CH_3$.

Slika 41: Definicija koordinatnih sustava molekula familija I i II

opažene [52]	izračunate	simetrija	opis koordinate
124	125	Ag	$R'_z + R''_y$
	123	B_{g}	\mathbf{R}'_{z}
	118	A_g	$T'_x + R'_z$
116	117	\mathbf{B}_{g}	$T'_x + R'_y$
113	116	A_{g}	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{T}''_y + \mathbf{R}''_y$
	107	\mathbf{B}_{g}	$\mathbf{R}'_y + \mathbf{R}''_y + \mathbf{R}''_z$
99	100	A_{g}	$\mathbf{R}'_y + \mathbf{R}''_y + \mathbf{R}''_z$
93	93	A_{g}	$R'_y + R''_x$
85	89	B_{g}	$\mathbf{R}''_x + \mathbf{R}''_y$
	81	B_{g}	$\mathbf{R}''_x + \mathbf{R}''_z$
72	73	A_g	$\mathbf{T}'_z + \mathbf{T}''_x + \mathbf{T}''_z$
65	63	\mathbf{B}_{g}	$\mathbf{T}''_x + \mathbf{T}''_y + \mathbf{T}''_z$
60	61	B_{g}	$R''_x + R''_z$
52	53	A_{g}	$\mathbf{T}'_y + \mathbf{R}'_x + \mathbf{R}''_x$
	51	A_{g}	T'_z
	50	B_{g}	T'_z
46	48	\mathbf{B}_{g}	$\mathbf{R}'_{m{x}}$
43	46	A_{g}	$\mathbf{R}'_{m{x}}$
37	40	B_{g}	$T'_y + T''_z$
	40	A_{g}	$T''_y + T''_z$
34	31	\mathbf{B}_{g}	$T'_y + T''_z$
30	31	A_g	$T'_y + T''_z$
27	24	A_g	$\mathbf{T}''_x + \mathbf{T}''_y + \mathbf{T}''_z + \mathbf{R}''_x$
19	17	\mathbf{B}_{g}	$T''_x + T''_y$

Tablica 26. Opažene i izračunate fononske frekvencije toluena C_6D_5CD3 (cm^{-1}) . T', R': molekule familije I; T", R": molekule familije II.

onažene [52]	izračunate	simetrija	opis koordinate
134	133	Aa	<u> </u>
101	133	\mathbf{B}_{a}^{g}	R ['] ,
	125	A_{a}	$\mathbf{R}'_{r} + \mathbf{T}''_{r} + \mathbf{R}''_{n}$
120	120	\mathbf{B}_{g}	$\mathbf{R}'_{u} + \mathbf{R}'_{z}$
	119	\mathbf{B}_{g}	$T'_x + R'_y$
115	118	A_g	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}'_z$
e 14	118	A_g	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}'_z$
	113	\mathbf{B}_{g}	$\mathbf{R}'_y + \mathbf{R}''_y + \mathbf{R}''_z$
104	105	A_g	\mathbf{R}_{z}''
96	97	A _g	$R'_y + R''_x$
88	93	B_g	$\mathbf{T}'_y + \mathbf{R}''_x + \mathbf{R}''_y$
	86	\mathbf{B}_{g}	$R''_x + R''_z$
74	75	A_g	$T'_z + T''_x + T''_z$
68	65	B_{g}	$T''_z + R''_x$
62	63	\mathbf{B}_{g}	$\left \begin{array}{c} \mathbf{T}_x'' + \mathbf{T}_z'' + \mathbf{R}_x'' \\ \mathbf{T}_x'' + \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' + \mathbf{T}_z'' \\ \mathbf{T}_z'' + \mathbf$
	56	A_g	$\prod_{y'} T'_{y} + R'_{x} + R''_{x}$
46	53	A_g	T'_z
44	52	B_g	$T'_z + R'_x$
	50	\mathbf{B}_{g}	$T'_z + R'_x$
37	48	A_g	$ T_y + R_x $
35		\mathbf{B}_{g}	$ 1'_y + 1'_z $
30	32	A_g	$ T'_y + T'_z $
27	25	A_g	$ 1_x' + 1_y' + 1_z' + \mathbf{R}_x'' $
19	18	B _g	$1''_x + 1''_y$

Tablica 27. Opažene i izračunate fononske frekvencije toluena C_6H_5CD3 (cm^{-1}) . T', R': molekule familije I; T", R": molekule familije II.

opažene [52]	izračunate	simetrija	opis koordinate
126	129	Ag	$\mathbf{R}'_{z} + \mathbf{R}''_{y}$
	127	\mathbf{B}_{g}	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}'_z$
s.	123	B_{g}	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}'_z$
121	123	A_g	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}'_z$
117	119	A_g	$\mathbf{R}'_{z} + \mathbf{R}''_{y}$
	112	B_g	$\mathbf{R}'_{z} + \mathbf{R}''_{y} + \mathbf{R}''_{z}$
101	103	A_g	$T''_x + R''_z$
98	95	A_g	$R''_x + R''_z$
89	91	B_g	$\mathbf{R}''_x + \mathbf{R}''_y$
79	84	Bg	$R''_x + R''_z$
73	75	A _g	$T''_x + T''_z$
67	64	B_g	$\mathbf{T}''_x + \mathbf{T}''_y + \mathbf{T}''_z$
62	62	B_g	$\mathbf{T}'_x + \mathbf{R}'_y + \mathbf{R}''_x + \mathbf{R}''_z$
54	54	A_g	$T'_y + R'_x + R''_x$
	52	A _g	$T'_x + T'_y + T'_z$
	50	\mathbf{B}_{g}	$ T'_z $
47	49	B_g	\mathbb{R}'_x
44	48	A _g	$T'_y + R'_x$
38	41	B _g	T'_y
	41	A_g	T''_y
35	32	B _g	$T'_y + T''_z$
31	31	A_g	$ T'_y + T''_z $
27	24	A_g	$T''_x + T''_y + T''_z$
19	17	B _g	$ T''_x + T''_y$

Tablica 28. Opažene i izračunate fononske frekvencije toluena C_6D_5CH3 (cm^{-1}) . T', R': molekule familije I; T", R": molekule familije II.

7.2 Dinamika rešetke CD_3NO_2 .

86

onažen	e		izračı	inate
Domon [52]	IC [50]	simetrija		
Kallan [52]	10 [09]	D	144	TITIP
50	150	B ₃	144	$I_x + I_z + \Lambda_y$
2.	141	B ₁	131	$\mathbf{R}_{oldsymbol{y}}$
127	а Хар	B_2	127	$R_y + R_z$
		Α	124	$T_x + R_y$
113		B_2	117	$T_x + T_y + R_y$
	111	B ₃	111	$T_y + R_x + R_y$
2	101	B ₃	104	$T_y + T_z + R_y$
98		Α	100	$R_y + T_x$
and the	96	B ₁	98	$T_x + R_x$
95	93	B ₂	89	$T_z + R_y$
		A	86	$T_y + T_z + R_x$
84		B ₁	83	$T_y + R_z$
74		B ₁	79	\mathbf{R}_{z}
		Α	72	$\mathbf{T}_x + \mathbf{T}_y + \mathbf{T}_z$
67		B ₃	65	R_z
63	60	B ₂	61	$R_x + R_z$
58		A	56	$T_y + R_y$
50	49	B ₁	54	$T_x + T_z + R_x$
44		A	38	R _z
6	39	B ₃	34	$R_x + R_z$
		B ₃	22	$T_y + R_x$

Tablica 29. Opažene i izračunate fononske frekvencije CD_3NO_2 (cm^{-1}).

8 Sažetak

Molekule s unutrašnjom rotacijom predstavljaju temeljni problem i model za analizu dinamike molekula od biološkog interesa, u kojima se pojavom vodikovih veza i nabiranja fleksibilnih prstenova vibracijski problem samo još usložnjava.

Izborom molekula nitrometana i toluena koje sadrže metilnu grupu koja je simetrični zvrk i čije je prijelaze unutrašnje rotacije moguće opaziti u Ramanovim niskofrekventnim spektrima učinjen je prvi korak u razumijevanju dinamike složenijih sistema s asimetričnim rotorima.

Pokazalo se da je Ramanova spektroskopija dobro sredstvo za ispitivanje visine barijere unutrašnje rotacije ako se mjere širine metilnih Ramanovih modova u ovisnosti o temperaturi. Također se Ramanovom spektroskopijom mogu izvrsno detektirati faze između kristalne i tekuće faze i to u intervalima užim od dva stupnja K.

9 Abstract

Molecules exhibiting internal rotation represent a fundamental problem as well as a model for analysis of the dynamics of biologically interesting molecules, where the appearance of hydrogen bonds and ring-puckering makes the vibrational problem even more complicated.

By choosing the nitromethane and toluene molecules which have methyl group (which is a symmetric top) and whose internal rotation transitions can be observed in low-frequency Raman spectra we have made the first necessary step towards better understanding of the more complicated situations where the asymmetric rotors perform large amplitude motions.

Raman spectroscopy is a good method for investigating the barrier height of a rotor in molecular crystal. If one chooses a proper band that is sensitive to the movement of some specific group of atoms and measures its bandwidth in the dependence on temperature, one can acquire an estimate of the barrier height for the rotation of that particular atomic group in the molecule. For nitromethane the barrier for internal rotation of methyl group was found to be $193 \pm 6 \ cm^{-1}$, $\approx 80 \ cm^{-1}$ less then accepted value found in the literature.

It has also been shown that Raman spectroscopy can be used to detect any possible mesophase into which a molecular crystal may change when heated, even if the temperature interval is as narrow as 2 K. In the case of nitromethane two plastic phases were detected in 237 K - 240 K interval below the melting point (241 K by Raman spectroscopy). In the case of toluene one plastic phase was found at 167 K.

10 Životopis

Rođena sam 11. XII 1963. u Zagrebu, gdje sam 1982. završila Matematičko-informatički obrazovni centar i upisala studij fizike na Prirodoslovnomatematičkom fakultetu (PMF). Od 1984. do 1988. bila sam stipendist Zavoda za fiziku, energetiku i primjenu Instituta Ruđer Bošković (IRB). Diplomski rad s naslovom "Rotacijski i rotacijsko-vibracijski Ramanovi spektri malih molekula" izrađen u Laboratoriju za molekulsku fiziku IRB-a obranila sam 11. V 1988., a od 1. VI se zaposlila u istom laboratoriju kao mladi istraživač.

U jesen 1988. upisala sam Postdiplomski studij prirodnih znanosti iz područja fizike, smjer Atomska i molekulska fizika na PMF-u u Zagrebu. Rezultat trogodišnjeg studija bio je magistarski rad "Vibracije i fazni prijelazi diciklopropilacetilena" izrađen pod vodstvom Dr Krešimira Furića.

Od 1. VIII 1991. zaposlena sam u Laboratoriju za molekulsku fiziku kao znanstveni asistent. Do sada sam autor ili koautor jedanaest objavljenih znanstvenih radova, uglavnom iz područja vibracijske spektroskopije organskih molekula.

Udana sam i živim u Zagrebu.

Popis radova 11

- 1. S. Musić, Z. Bajs, K. Furić i V. Mohaček: Mössbauer and vibrational spectra of sodium borosilicate glasses containing europium or tin ions, J. Mater. Sci. Lett. 10 (1991) 889 - 892.
- 2. V. Mohaček i K. Furić: Vibrational analysis of some cyclopropyl derivatives, J. Mol. Struct. 266 (1992) 321 - 326.
- 3. K. Furić, V. Mohaček, M. Bonifačić i I. Štefanić: Raman spectroscopic study of H_2O and D_2O water solutions of glycine,

J. Mol. Struct. 267 (1992) 39 - 44.

4. V. Mohaček i K. Furić: Bose peak and vibrational bands in Raman spectra of sodium borosilicate glass,

Croat. Chem. Acta 65(1) (1992) 119 - 123.

5. S. Musić, K. Furić, Z. Bajs i V. Mohaček: Spectroscopic characterization of alkali borosilicate glasses containing tin ions,

J. Mater. Sci. 27 (1992) 5269 - 5275.

- 6. V. Mohaček, K. Furić, M. Dakkouri i M. Grosser: Stable and metastable solid phases of dicyclopropylacetylene, J. Phys. Chem. 96 (1992) 11042 - 11047.
- 7. K. Furić, V. Mohaček and M. Mamić: Methanol in matrix isolated, vapour and liquid phase: Raman spectroscopic study, Spectrochim. Acta 49A(13/14) (1993) 2081 - 2087.
- 8. K. Furić, M. Ivanda, J. Kučar-Kopić i V. Mohaček: Remarkable increase of organic particles in the atmosphere above Croatia, Spectrochim. Acta 50A(13/14) (1994) 449 - 462.
- 9. S. Musić, M. Gotić, S. Popović, K. Furić i V. Mohaček: Structural properties of lead vanadate glasses containing La^{3+} or Fe^{3+} ions,
 - J. Mater. Sci. 29 (1994) 1227 1232.

- V. Mohaček Grošev, H. W. Schrötter i J. Jonuscheit: Vibrational contribution to the internal rotation potential of toluene and nitromethane, J. Raman Spectrosc. 26 (1995) 137 - 147.
- Th. S. Bican, H. W. Schrötter i V. Mohaček Grošev: The Raman Spectrum of Toluene Vapour, J. Raman Spectrosc. 26 (1995) 787 - 790.

Popis literature

- [1] G. O. Sœrensen and T. Pedersen, Studies in Physical and Theoretical Chemistry, Volume 23, 219-236.
- [2] W. A. Kreiner, H. D. Rudolph, B. T. Tan, J. Mol. Spectrosc. 48 (1973) 86.
- [3] C.Eckart, Phys. Rev. 47 (1935) 552.
- [4] A. Sayvetz, J. Chem. Phys. 7(6) (1939) 383.
- [5] E. B. Wilson Jr., J. C. Decious, P. C. Cross, "Molecular Vibrations", Dover Publications, New York 1980.
- [6] V. Mohaček Grošev, H.W. Schroetter and J. Jonuscheit, J. Raman Spectrosc. 26 (1995) 137.
- [7] Th. S. Bican, H.W. Schroetter and V. Mohaček Grošev, J. Raman Spectrosc. **26** (1995) (u tisku).
- [8] H. Frunder, L. Matziol, H. Finsterhölzl, A. Beckmann and H.W. Schrötter, J. Raman Spectrosc. 17 143 (1986).
- [9] M. Schopp, H. W. Schrötter and N. Douklias, Appl. Spectrosc. 44 562 (1990).
- [10] J. W. Fleming and C. N. Banwell, J. Mol. Spectrosc. **31** 378 (1969).
- [11] P. R. Bunker, "Molecular Symmetry and Spectroscopy", Academic Press 1979.
- [12] J. K. Wilmshurst and H. J. Bernstein, Can. J. Chem. 35 911 (1957).
- [13] N. Fuson, C. Garrigou-Lagrange and M. L. Josien, Spectrochim. Acta 16A 106 (1960).
- [14] C. La Lau and R. G. Snyder, Spectrochim. Acta 27A 2073 (1971).
- [15] A. B. Dempster, D. B. Powell and N. Sheppard, Spectrochim. Acta 31A 245 (1975).
- [16] J. A. Draeger, Spectrochim. Acta 41A(4) 607 (1985).
- [17] M. Anderson, L. Bosio, J. Bruneaux-Poulle and R. Fourme, J. Chim. Phys. Chim. Phys. Biol. 74 68 (1977).

- [18] J. H. Schachtschneider and F. S. Martiner: Vibrational Analysis of Polyatomic Molecules V and VI, Shell Company Tech. Report Nos 57
 - 65 and 231 - 64, Emeryville CA 1964.
- [19] G. Varsányi: Asignments for Vibrational Spectra of 700 Benzene Derivatives, Akádemiai Kiádó, Budapest 1973.
- [20] H. D. Rudolph, H. Dreizler, A. Jaeschke, P. Wendling, Z. Naturforsch. 22a (1967) 940.
- [21] D. Cavagnat and J. Lascombe, J. Mol. Spectrosc. 92 141 (1982).
- [22] S. F. Trevino, E. Prince and C. R. Hubbard, J. Chem. Phys. 73(6) 2996 (1980).
- [23] F. James, M. Roos, Comp. Phys. Commun. 10 (1975) 343.
- [24] D. C. McKean and R. A. Watt, J. Mol. Spectrosc. 61 184 (1976).
- [25] D. Gorse, D. Cavagnat, M. Pesquer and C. Laponge, em J. Phys. Chem 97 4262 (1993).
- [26] J. T. Hougen, Can. J. Phys. 42 (1964) 1920.
- [27] Tables relating to Mathieu functions, Columbia University Press 1951.
- [28] D. R. Herschbach, Tables for the Internal Rotation Problem, Department of Chemistry, Harvard University 1957.
- [29] A. Hüller, D. M. Kroll, J. Chem. Phys. **63**(10) (1975) 4495.
- [30] C. C. Lin J. D. Swalen, Rev Mod. Phys **31**(4) (1959) 841.
- [31] J. E. Wollrab: Rotational Spectra and Rotational Structure, Academic Press 1967.
- [32] P. Groner, R. D. Johnson, J. R. Durig, J. Mol. Struct. 142 (1986) 263.
- [33] I. S. Gradstein, I. M. Ryshik, Tables, Verlag Harri Deutsch 1981, Vol 1. str. 533, 534.
- [34] J. D. Kemp, K. S. Pitzer, J. Am. Chem. Soc. 59 (1937) 276.
- [35] E. F. Westrum Jr, J. A. McCullough, Thermodynamics of Crystals in "Physics and Chemistry of Organic Solid State", eds. D. Fox, M. M. Labes and A. Weissberger, John Wiley 1965.

- [36] J. G. Powles, H. S. Gutowsky, J. Chem. Phys. 21 (1953) 1695.
- [37] E. O. Stejskal, H. S. Gutowsky, J. Chem. Phys. 28 (1958) 388.
- [38] J. H. Colwell, E. K. Gill, J. A. Morrison, J. Chem. Phys. 42 (1965) 3144.
- [39] J. Haupt, W. Müller-Warmuth, Z. Naturforsch. 24a (1969) 1066.
- [40] J. Haupt, Z. Naturforsch. 26a (1971) 1578.
- [41] W. Müller-Warmuth, R. Schüler, M. Prager, A. Kollmar, J. Chem. Phys. 69 (1978) 2382.
- [42] W. Press: "Single Particle Rotation in Molecular Crystals", Springer Tracts in Modern Physics Vol 92, Springer Verlag 1981.
- [43] T. Springer: Quasielastic neutron scattering for the investigation of the diffusive motions in solids and liquids, Ch. 7 in "Rotational Diffusion in Molecular Solids", Springer Tracts in Modern Physics Vol 64, 1974.
- [44] R. K. Thomas: Inelastic and quasielastic neutron scattering spectroscopy, Ch. 6 in Molecular Spectroscopy Vol 6, Special Periodical Reports of the Chemical Society 1979.
- [45] V. Mohaček, K. Furić, M. Dakkouri, M. Grosser. J. Phys. Chem. 96 (1992) 11042.
- [46] G. S. Pawley, Phys. Stat. Sol. **49b** (1972) 475.
- [47] D. Kirin, J. Chem. Phys. 100 (1994) 9123.
- [48] M. anderson, L. Bosio, J. Bruneaux-Poulle, R. Fourme, J. Chim. Phys. 74 (1977) 68.
- [49] A. Defrain, M. Dupont, M. Jamet, N. Trong Linh, C. R. Acad. Sci. 267 (1968) 1642.
- [50] D. Cavagnat, J. C. Cornut, J. Chim. Phys. 76 (10) (1979) 975.
- [51] M. Prager, M. Monkenbusch, R. M. Ibberson, W. F. David, D. Cavagnat, J. Chem. Phys. 98(7) (1993) 9653.
- [52] D. Cavagnat, J. Lascombe, J. C. Lassegues, A. J. Horsewill, A. Heidemann, J. B. Suck, J. Physique 45 (1984) 97.
- [53] D. Williams, J. Chem. Phys. 47(11) (1967) 4680.

- [54] A. Novak, Croat. Chem. Acta 61(2) (1988) 213.
- [55] S. F. Trevino, E. Prince, C. R. Hubbard, J. Chem. Phys. 73(6) (1980) 2996.
- [56] J. Caillet, P. Claverie, Acta Crystallogr. A 31 (1975) 448.
- [57] D. Cavagnat, M. Pesquer, J. Phys. Chem. 90 (1986) 3289.
- [58] B. M. Rice, S. F. Trevino, J. Chem. Phys. 94(11) (1991) 7478.
- [59] D. A. Prystupa, A. Anderson, B. H. Torrie, J. Raman Spectrosc. 20 (1989) 345.
- [60] D. Cavagnat, A. Magerl, C. Vettier, I. S. Anderson, S. F. Trevino, Phys. Rev. Lett. 54(3) (1985) 193.
- [61] K. V. Mirskaja, V. V. Naučitelj, Kristalografija 17 (1972) 73.
- [62] A. Gavezzotti, M. Simonetta, Chem. Rev. 82(1) (1982) 1.
- [63] A. V. Rakov, Opt. Spektrosk. 7(2) (1959) 128.
- [64] A. B. Remizov, R. H. Musajakaeva, Opt. Spektrosk. 38 (1975) 226.
- [65] F. J. Bartoli, T. A. Litovitz, J. Chem. Phys., 56(1) (1972) 413.
- [66] L. A. Nafie, W. L. PPeticolas, J. Chem. Phys. 57(8) (1972) 3145.
- [67] A. Hüller, Z. Physik B 36 (1980) 215.
- [68] A. C. Hewson, J. Phys. C Solid State Phys. 15 (1982) 3841, *ibid* 15 (1982) 3855.
- [69] S. Clough, A. Heidemann, A. J. Horsewill, J. D. Lewis, M. N. Paley, J. Phys. C Solid State Phys. 15 (1982) L525.
- [70] D. Cavagnat, A. Magerl, C. Vettier, S. Clough J. Phys. C Solid State Phys. 19 (1986) 6665.
- [71] D. van der Putten, G. Diezemann, K. Hartmann, H. Sillescu, J. Chem. Phys. 96(3) (1992) 1748.
- [72] S. F. Trevino, W. H. Rymes, J. Chem. Phys. 73(6) (1980) 3001.
- [73] O. Lehmann, Z. phys. Chem. 4 (1889) 462.
- [74] S. Chandrasekhar: Liquid Crystals, Cambridge University Press 1992.

- [75] J. Timmermans, J. Phys. Chem. Solids 18 (1961) 1.
- [76] N. G. Parsonage, L. A. K. Staveley, Disorder in Crystals, Clarendon Press, Oxford 1978.
- [77] E. B. Sirota, D. M. Singer, J. Chem. Phys. **101**(12) (1994) 10873.
- [78] J. A. Pople, F. E. Karasz, J. Phys. Chem. Solids, 18(1) (1961) 28.
- [79] F. E. Karasz, J. A. Pople, J. Phys. Chem. Solids, 20(3-4) (1961) 294.
- [80] J. E. Lennard-Jones, A. F. Devonshire, Proc. Roy. Soc. A 170 (1939) 464.
- [81] L. M. Amzel, L. N. Becka, J. Phys. Chem. Solids, 30 (1969) 521.
- [82] S. Chandrasekhar, R. Shashidhar, N. Tara, Mol. Cryst. Liq. Cryst. 10 (1970) 337.
- [83] S. Chandrasekhar, R. Shashidhar, N. Tara, Mol. Cryst. Liq. Cryst. 12 (1971) 245.
- [84] R. Haffmans, I. W. Larkin, J. Chem. Soc Faraday Trans. II 68 (1972) 1729.
- [85] J. L. Sauvajol, J. Chim. Phys. 82(2-3) (1985) 219.
- [86] H. Gharbi, J. L. Sauvajol, H. Fontaine, M. More, J. Raman Spectrosc. 16(2) (1985) 79.

Podaci o disertaciji

I Autor

.	VI / M.L. J. C.
lme 1 prezime	Vlasta Monacek Grosev
Datum i mjesto rođenja	11. XII 1963. Zagreb
Naziv, mjesto i datum	MIOC, Zagreb
završetka srednje škole	1982.
Naziv fakulteta i datum	Prirodoslovno-matematički
završetka nastave II stupnja	fakultet, Zagreb, dipl. 1988, magist. 1991.
Sadašnje zaposlenje	znanstveni asistent
	Institut Ruđer Bošković,
	Zagreb

II Disertacija

Naslov	Vibracijska dinamika molekula
	s unutrašnjom rotacijom
-	na niskim temperaturama
Broj stranica, slika, tablica	97, 42, 29
i bibliografskih podataka	86
Ustanova i mjesto gdje je	Institut Ruđer Bošković,
rad izrađen	Zagreb
Znanstvena disciplina iz koje je	fizika
postignut akademski stupanj	
Voditelj rada	Dr. Krešimir Furić
	viši znanstveni suradnik
Ustanova gdje je	Prirodoslovno-matematički
rad obranjen	fakultet u Zagrebu

Ocjena i obrana

Datum prijave teme:	19. XII 1994.
Datum predaje rada:	13. IX 1995.
Datum sjednice na kojoj	A 1 - 5
je disertacija prihvaćena:	2r B. Rakvin
Sastav komisije koja	Prof. Dr. S. Barišić, Dr. K. Furić
je rad ocijenila:	Dr. D. Kirin
Datum obrane rada:	
Sastav komisije pred	Prof. Dr. A. Dulčić, Prof. Dr. S. Barišić
kojom je rad obranjen:	Dr. K. Furić
Datum promocije:	

Ocjena i obrana

Datum prijave teme:	19. XII 1994.
Datum predaje rada:	13. IX 1995.
Datum sjednice na kojoj	
je disertacija prihvaćena:	and the second state
Sastav komisije koja	Prof. Dr. S. Barišić, Dr. K. Furić
je rad ocijenila:	Dr. D. Kirin
Datum obrane rada:	B. RAKVIN
Sastav komisije pred	Prof. Dr. A. Dulčić, Prof. Dr. S. Barišić
kojom je rad obranjen:	Dr. K. Furić
Datum promocije:	