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Abstract: The flour beetle Tribolium freemani is a sibling species of the model organism and important
pest Tribolium castaneum. The two species are so closely related that they can produce hybrid progeny,
but the genetic basis of their differences has not been revealed. In this work, we sequenced the
T. freemani genome by applying PacBio HiFi technology. Using the well-assembled T. castaneum
genome as a reference, we assembled 262 Mb of the T. freemani genomic sequence and anchored
it in 10 linkage groups corresponding to nine autosomes and sex chromosome X. The assembly
showed 99.8% completeness of conserved insect genes, indicating a high-quality reference genome.
Comparison with the T. castaneum assembly revealed that the main differences in genomic sequence
between the two sibling species come from repetitive DNA, including interspersed and tandem
repeats. In this work, we also provided the complete assembled mitochondrial genome of T. freemani.
Although the genome assembly needs to be ameliorated in tandemly repeated regions, the first
version of the T. freemani reference genome and the complete mitogenome presented here represent
useful resources for comparative evolutionary studies of related species and for further basic and
applied research on different biological aspects of economically important pests.

Keywords: Tribolium freemani; de novo genome assembly; mitogenome; repetitive DNA; sibling
species; the flour beetle; PacBio HiFi

1. Introduction

The decades-long eagerness of scientists to obtain reference genomes for species of
interest has been inspired by the reliance that the availability of whole-genome data of
various species will further our biological understanding and provide the infrastructure for
addressing comprehensively questions on evolution, ecology, conservation, biomedicine,
agriculture, and many other areas vital to sustainable life on Earth. The rapid develop-
ment of third-generation sequencing technologies and tailored bioinformatics tools that
have experienced an explosive boom in the last decade has enabled the deciphering of
genomes of different species in a relatively short time and at affordable prices [1]. The
two cutting-edge technologies that currently dominate the field of genome sequencing
have been introduced by PacBio (Pacific Biosciences, Menlo Park, CA, USA) and ONT
(Oxford Nanopore Technologies, Oxford, UK). In terms of sequence accuracy and read
length, both approaches have their advantages, but at the moment, PacBio HiFi sequencing
represents an optimal compromise ensuring >99.9% accuracy for reads up to 25 kb [2].
Consequently, PacBio HiFi data are included in the current best-practice genome assembly
guidelines of different genome sequencing consortia, from extensive ones such as Earth
BioGenome Project [3] to more specialized ones, such as the Ag100Pest Initiative, which
aims to generate reference genome assemblies for agricultural pest arthropods [4].

One million insect species make the class Insecta the most numerous group of the
kingdom Animalia, and beetles with >387,000 species represent not only the largest insect
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order Coleoptera but also account for 25% of all described animal life forms [5]. Beetles have
also been acknowledged as excellent model organisms in life sciences research through
different biological, environmental, and biomedical studies [6]. Despite the impressive
abundance of described beetle species with a potentially much higher number of undiscov-
ered ones, a surprisingly small number of beetle genomes have been sequenced so far, and
in terms of available genome assemblies relative to species richness, Coleoptera is heavily
underrepresented [7]. The importance of high-quality genome reference sequences has
been recognized by the insect research community, which strongly advocates sequencing a
large number of coleopteran genomes and making these data publicly accessible [4,8].

The representative species of Coleoptera is the red flour beetle, Tribolium castaneum, an
economically important pest of stored agricultural products. In addition to its cosmopolitan
distribution, T. castaneum has also been present in laboratory research for half a century [9].
As a coleopteran model organism, it is the first beetle to have its genome sequenced [10],
and the genome assembly has recently been upgraded, providing a new official gene set
for T. castaneum [11]. The Kashmir flour beetle, Tribolium freemani, is a sibling species of
T. castaneum (Figure 1). The first recorded specimen of T. freemani, an adult female, was
collected at Hispar in Kashmir (India) around 1893 and deposited in the British Museum
(nowadays The Natural History Museum), but the specimen was described as a new
species five decades later by British entomologist H. E. Hinton [12]. It took the next 30 years
to rediscover the living adults of T. freemani, which were found in Japan in a shipment
of corn imported from Brazil [13]. The live adults captured from that shipment were
propagated into a stable culture [13], which became the start-up stock for future laboratory
research worldwide.
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Among 36 species of the genus Tribolium, Hinton declared T. freemani the most related 
to T. castaneum based on morphological characteristics [12]. Notwithstanding the consid-
erable difference in body size (Figure 1), the experiments of crossing T. freemani with T. 
castaneum showed that these two species are capable of copulating and producing prog-
eny [13]. Although the hybrid offspring are sterile [13–15], the fact that the two species 
can hybridize speaks in favor of their genetic similarity. Based on the relative DNA con-
tent in Feulgen-stained spermatids, it was estimated that both T. castaneum and T. freemani 
have genomes of relatively similar size, 200 Mb and 230 Mb, respectively [16], with com-
parable karyotypes composed of 20 chromosomes and a 9 + Xyp meioformula [17]. Intri-
guingly, the genomes of the two species are overrun with two unrelated species-specific 
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Tribolium castaneum (B). Scale bar = 1 mm.

Among 36 species of the genus Tribolium, Hinton declared T. freemani the most re-
lated to T. castaneum based on morphological characteristics [12]. Notwithstanding the
considerable difference in body size (Figure 1), the experiments of crossing T. freemani
with T. castaneum showed that these two species are capable of copulating and producing
progeny [13]. Although the hybrid offspring are sterile [13–15], the fact that the two species
can hybridize speaks in favor of their genetic similarity. Based on the relative DNA content
in Feulgen-stained spermatids, it was estimated that both T. castaneum and T. freemani have
genomes of relatively similar size, 200 Mb and 230 Mb, respectively [16], with comparable
karyotypes composed of 20 chromosomes and a 9 + Xyp meioformula [17]. Intriguingly, the
genomes of the two species are overrun with two unrelated species-specific satellite DNAs,
tandemly repeated sequences that mainly build heterochromatic blocks of centromeric and
pericentromeric chromosomal regions. According to blot hybridization experiments, 17%
of the T. castaneum genome is made up of satellite DNA TCAST [18], while 31% of the
T. freemani genome is comprised of satellite DNA TFREE [19]. TCAST and TFREE satellite
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DNAs share no similarity in the nucleotide sequence, also showing a notable difference in
the repeat unit length (360 bp vs. 166 bp, respectively).

The goal of this work was to sequence the T. freemani genome by PacBio HiFi technol-
ogy to obtain highly accurate long reads and to generate the T. freemani genome assembly
by using the T. castaneum genome as a reference. By comparing the genome assemblies of
the two sibling species, we aspired to identify the major genomic differences between these
highly repetitive and thus assembling extraordinary challenging genomes. In addition to
the nuclear DNA assembly, we also aimed to supplement the T. freemani reference genome
with the complete mitochondrial DNA sequence.

2. Results
2.1. Genome Size Evaluation

By sequencing T. freemani genomic DNA, we yielded 23.8 Gb of the total sequence
contained in 1,617,087 HiFi reads. First, we applied a computational approach to estimate
genome size and genome repetitiveness based on k-mer frequencies in the input set of all
HiFi reads. There are several programs developed for this purpose, and we tested k-mer
frequencies calculated by Jellyfish with GenomeScope [20], findGSE [21], and CovEST [22].
In addition to testing different algorithms, we also tested different k-mer sizes since very
repetitive genomes could benefit from larger k-mers [20]. As shown in Table 1, genome
size prediction varied considerably with the program used and the k-mer sizes. FindGSE
predicted a larger genome size than GenomeScope, with CovEST estimates being even
larger. It has to be stressed that CovEST offers different models. We run CovEST with a
repeat model (CovEST RE), which assumes that certain k-mer sequences will have drasti-
cally increased occurrences, so the model tries to include them in the final prediction rather
than ignore or collapse them. Due to the assumed high repetitiveness of the T. freemani
genome, we tend to favor measurements obtained by CovEST RE analysis, thus estimating
that the haploid genome size for T. freemani could correspond approximately to 320 Mb, an
average value of CovEST RE estimates (Table 1). In addition, the repeat ratio in HiFi data
was estimated in the range of 29–33% according to GenomeScope and findGSE programs
(Table 1), confirming that a high presence of repetitive sequences should be expected in the
T. freemani genome.

Table 1. Summary of T. freemani genome size and repeat ratio estimation. Three different programs
(GenomeScope, findGSE, CovEST RE) were used with varying k-mer sizes.

Algorithm
Genome Size Prediction (Mb) Estimated Repeat Ratio (%)

k-mer Size Average k-mer Size Average

21 31 41 21 31 41
GenomeScope 189.6 202.2 212.8 201.5 30.4 28.4 28 28.9
findGSE 225.6 240.4 255.7 240.6 33.9 32.4 32.4 32.9
CovEST RE 238.7 305.5 412.3 318.8

2.2. Genome Assembly

According to the estimated T. freemani genome size of 320 Mb, 23.8 Gb of raw se-
quencing data (Table 2, left) correspond to approximate 74.4× genome coverage. A total
of 23.8 Gb was used for genome assembly construction with the hifiasm assembler [23].
The initial hifiasm output resulted in 679 contigs and 465.8 Mb with an N50 of 5.5 Mb
(Table 2, middle). Since hifiasm output was approximately 150 Mb longer than the esti-
mated genome size, we suspected that the difference could be due to the software’s inability
to properly assemble highly repetitive regions. For this reason, we inspected 679 contigs of
hifiasm output and found that 67% of the contigs (455 out of 679) contain tandem repeats of
the major satellite DNA TFREE. Moreover, TFREE makes up over 50% of the total sequence
length in 345 contigs (Table S1).
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Table 2. Statistics of raw PacBio HiFi data, contigs obtained using hifiasm assembler, and contigs
used for assembly with RagTag algorithm producing the assembly Tfree1.0.

Raw PacBio Data Hifiasm Output Tfree1.0

Number of reads 1,617,087 Number of contigs 679 Number of contigs 110

Total length (bp) 23,796,436,578 Total length (bp) 465,826,150 Total length (bp) 269,018,543

Number of reads <5000 bp 301 Min contig length (bp) 13,227 Min contig length (bp) 22,590

Largest read (bp) 42,982 Max contig length (bp) 23,376,958 Max contig length (bp) 23,376,958

GC (%) 32 GC (%) 31.52 GC (%) 32.53

N50 14,965 N50 5,522,289 N50 8,487,211

N90 11,545 N90 345,137 N90 1,794,767

L50 675,343 L50 23 L50 10

L90 1,394,918 L90 160 L90 30

Due to the high repetitive DNA content in the majority of contigs, in order to minimize
the inaccuracies that tandem repeats introduce to genome assembling, we decided to filter
out and keep for further assembly only the contigs that contained substantial genetic
information defined as a set of uniquely mappable features, UMFs (see Materials and
Methods Section 4.7). For this purpose, we took advantage of the fact that the closely
related species T. castaneum has the well-curated assembly Tcas5.2 and annotated official
gene set OGS3 [11]. First, we used Liftoff to select the hifiasm output contigs that contained
UMFs from the OGS3. We found that only 141 contigs contained UMFs from Tcas5.2
(Table S1). Out of 141 contigs, 110 had more than 10 UMFs (Table S1), a benchmark that
we deemed sufficient for accurate mapping in subsequent steps. Indicatively, 99.95% of
the total detected UMFs are present in 110 contigs selected for further assembling, while
only 0.05% of UMFs are contained in 569 discarded contigs (Table S1). As shown in
Figure S1, 569 discarded contigs are predominately made up of the TFREE satellite DNA.
Next, by using 23.8 Gb of T. freemani HiFi reads, we filled in the holes of the discontinuous
assembly Tcas5.2 to prevent fragmenting using the TGS-GapCloser tool with minimap2
parameters set to allow high sequence divergence. After the gap-filling step, we used the
RagTag tool [24] to orient 110 previously selected, UMF-enriched contigs into 10 linkage
groups corresponding to the Tcas5.2 chromosome-level linkage groups. Out of 110 contigs,
99 contigs (261.8 Mb) successfully orientated into 10 f LGs (abbreviation for T. freemani
linkage groups), and 11 contigs (7.2 Mb) remained unplaced (Table S2) based on mapping
and/or orientation confidence scores (Table S3).

The structural contiguity of the obtained T. freemani assembly, named Tfree1.0, was
analyzed by dot plot (Figure 2). A comparison of Tfree1.0 with Tcas5.2 assembly showed that
the majority of T. freemani contigs align with reference (Figure 2A). Furthermore, the alignment
of Tfree1.0 assembly on itself (Figure 2B) reveals a higher level of self-similarity with medium
to large dark blocks representing regions of repetitive sequences retained in 10 fLGs.

To validate the information present in the primary hifiasm output (679 contigs) but
lost in the Tfree1.0 assembly (110 contigs), we plotted all hifiasm contigs against the final
assembly (Figure S2). The dot plot analysis showed that the contigs present in the hifiasm
output have been successfully mapped to the Tfree1.0 assembly, proving that very little to
no non-repetitive information was lost.

A comparison of the size difference of the assembled chromosomal linkage groups
between T. freemani and T. castaneum is presented in Table S4, where each Tfree1.0 chro-
mosome is shown to be larger than the corresponding Tcas5.2 chromosome, ultimately
resulting in a 125.9 Mb longer assembled genomic sequence for T. freemani.
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2.3. Gene Annotation

In order to assess the quality of the Tfree1.0 assembly, BUSCO analysis with in-
secta_odb10 database was performed on all linkages groups together with 11 unplaced
contigs and compared to the results of the same analysis for T. castaneum Tcas5.2 assembly.
Gene completeness of Tfree1.0 was evaluated on a total of 1367 insect universal genes
and showed that only one gene is missing, with 98.3% of them being present in complete
and single-copy states and 1.5% in duplicated states (Figure 3). In comparison to Tcas5.2,
Tfree1.0 showed slightly fewer fragmented or missing BUSCOs, with several more genes
found in duplicated states. Nevertheless, overall levels of complete BUSCO genes are
similar, indicating comparable gene completeness between the two assemblies.
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Figure 3. Gene completeness assessment using BUSCO analysis of T. freemani Tfree1.0 and T. castaneum
Tcas5.2 assembly on all linkage groups and unplaced contigs in both species. Comparison of complete
and single-copy, complete and duplicated, fragmented and missing BUSCO genes expressed in
percentages (left) and absolute gene numbers (right).

Further, by taking advantage of a suitable quality of existing gene data from the
closely related species, we annotated the genes on the Tfree1.0 genome assembly using
the T. castaneum gene database. This database comprises predicted genes from two auto-
mated annotation pipelines and four ab initio prediction programs [10], and it was later
reannotated and improved by evidence from RNA-seq [11]. We mapped T. castaneum
genes to Tfree1.0 assembly using the Liftoff tool [25]. Of all 14,467 available genes present
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in the T. castaneum assembly, including genes found in unplaced contigs, 13,845 genes
(95.7%) were successfully found in the Tfree1.0 assembly (Table 3). Similar is true for well-
predicted mRNA, exons, and CDS regions, as there are 87–97% of them shared between the
two species.

Table 3. Comparison of assembly annotations between the reference T. castaneum Tcas5.2 assembly
and features lifted to the T. freemani Tfree 1.0 assembly.

Genomic Feature Tcas5.2 Tfree1.0 Retained Data (%)

Gene 14,467 13,845 95.70
mRNA 22,598 21,936 97.07
Exon 171,320 149,045 87.00
CDS 22,611 21,827 96.53

Transcript 317 289 91.17
lncRNA 1364 1165 85.41

Primary transcript 220 144 65.45
tRNA 247 237 95.95

Next, the global localization of genes and their positioning in the two species were
investigated. Gene coordinate comparison revealed that most of them (92.7%) are retained in
Tfree1.0 in the same linkage group/chromosome as found in the referent T. castaneum assembly
(Figure 4). The highest degree of gene position change can be seen on fLG3 and fLG8 (up
to 15%), which can probably be mostly attributed to mapping imperfections of RagTag and
Liftoff, but to some extent, it might also be a consequence of true translocation events.
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Figure 4. Retention of gene location between Tfree1.0 and Tcas5.2 assemblies. The bars show the
percentage of T. freemani genes lifted from Tcas5.2 assembly that in Tfree1.0 retained location on a
specific f LG chromosome corresponding to a specific LG chromosome in the Tcas5.2 assembly.

2.4. Repeat Annotation

Repeat elements were annotated on the T. freemani Tfree1.0 assembly using Repeat-
Masker [26] and the database of well-curated reference repeats from Repbase [27]. Repeat
elements occupy 11.1% or 29.8 Mb of the Tfree1.0 assembly (Table S5). By the number of
repeats, they mostly comprise simple repeats, low-complexity regions, and DNA trans-
posons (Figure 5A). The high abundance of simple repeats and low-complexity regions can
be explained by the high AT-content of the genome (68%, Table 2), as there is an increased
likelihood for them to be recognized by RepeatMasker purely due to the probabilities based
on the nucleotide composition of the genome. However, when the total length is considered,
DNA transposons make up almost half (47.1% or 14.1 Mb) of all annotated repeat elements
(Figure 5B). In addition, significant contributors are LINE and LTR elements that occupy
larger areas of 2.9 Mb and 1.8 Mb, respectively (Table S5).
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When the Tfree1.0 and Tcas5.2 assemblies are compared, an increase in representation
across all interspersed repetitive categories is observable (Figure 6A, Table S5). Together
with a large number of DNA transposons annotated in Tfree1.0, SINE elements show more
than a 4-fold increase compared to the Tcas5.2 assembly (Figure 6B). In addition, there is
a noticeable positive difference in the numbers of LTR, LINE, and rolling circle elements
(Figure 6B). In order to elucidate the distribution of DNA transposons (Class II transposable
elements) as major interspersed constituents of the T. freemani genome assembly, we per-
formed a more in-depth comparison of specific DNA transposon subclasses and compared
them between species (Figure 6C). All of the DNA transposons present in Tcas5.2 were
detected in Tfree1.0 but with differences in copy number. We found that the TcMar-Tigger
family is the only family significantly underrepresented in Tfree1.0 compared to Tcas5.2
(Figure 6C). Multiple families were enriched, and the most significant difference was ob-
served for IS3EU and TcMar-Tc1 DNA transposons, which showed an increase of more than
6000 and 3400 elements in the Tfree1.0 assembly, respectively (Figure 6C, Table S6).

In addition to interspersed repeats, we investigated tandemly repeated, highly abun-
dant satellite DNA TFREE that was previously described as the major satellite DNA in
T. freemani [19]. TFREE repeat with a monomer of 166 bp was annotated in the Tfree1.0
genome assembly using megablastr, and was found to comprise 36 Mb or 13.4% of the
assembled part of the genome (Table S7). The satellite DNA TFREE is organized mostly in
the form of long homogeneous stretches of tandemly repeated units as visualized by dot
plot (Figure 2B) and by the size distribution of TFREE arrays (Figure 7). It can be observed
that half of the TFREE arrays are longer than 10 kb (Figure 7) with a maximal array length
of 93.7 kb (Table S7), altogether representing huge repetitive regions.

To disclose the global assembly structure, we visualized the position of tandemly
repeated sequences together with interspersed elements and coding sequences on a single
circular plot (Figure 8). In the Tfree1.0 assembly, several linkage groups (f LG4, f LG10,
f LGX) are deprived of major satellite DNA blocks (Figure 8), and we assume that this could
be due to assembly and contig orientation limits. It is possible that these f LGs are acrocentric
and end in highly abundant tandem repeats, lacking unique genetic segments onto which
either the assembler or the contig orientation algorithms can map to. This is also supported
by the high major satDNA content in hifiasm contigs comprising 35.8% (Table S7) that is
cut down to 13.4% in the final Tfree1.0 assembly, most probably due to array shrinkage
and potential exclusion in acrocentric regions. Next, from the genome representation plot,
it is visible that the genes are distributed along the length of all chromosomes with large
gene-poor gaps that correspond to extremely satellite DNA-rich regions (Figure 8). On
the other hand, transposable elements show a more scattered and uniform distribution
pattern throughout the whole genome, revealing a larger tendency than genes to invade
regions of long satellite arrays. Lastly, the unplaced contigs are not characterized by the
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presence of the TFREE satellite DNA (Figure 8). Instead, they are highly enriched in
transposable elements and genes and most likely represent true genomic regions that could
not be arranged due to high sequence divergence or large intra-chromosome events such
as translocations or inversions.
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Figure 6. Distribution and evaluation of interspersed elements in the Tfree1.0 assembly in comparison
to the Tcas5.2 assembly. (A) Profile of annotated interspersed elements in Tfree1.0 expressed as
the difference in absolute number of elements annotated in Tfree1.0 and Tcas5.2. (B) Difference
in number of interspersed elements in Tfree1.0 compared to Tcas5.2, expressed in percentages.
(C) Graph of DNA transposon subclasses in Tfree1.0 plotted as increase/decrease in absolute number
of elements compared to same elements present in Tcas5.2 (based on data in Table S6). The analyses
were performed on the assembled linkage groups (T. freemani f LGs and T. castaneum LGs) and the
unplaced contigs.
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Figure 8. Circular visualization of the T. freemani genome assembly Tfree1.0. The assembly was pro-
duced by hifiasm and orientated into ten linkage groups (f LGs) by using RagTag and the T. castaneum
genome assembly Tcas5.2 as a reference. The tracks represent genes, transposable elements (TEs),
and the major satellite DNA (satDNA) distributed along ten chromosomal linkage groups (f LGs) and
the unplaced contigs. Density of annotation distribution is color-coded with blue representing areas
with less and red representing areas with more element-rich regions. Visualization was performed
with circlize package implemented in R.
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2.5. Mitochondrial DNA

Together with the nuclear genome, we assembled the T. freemani mitochondrial genome.
The mitogenome was obtained from hifiasm assembled contigs by MitoFinder pipeline
using the mitochondrial DNA (mtDNA) of closely related T. castaneum as a reference.
The mtDNA of T. freemani was found present in one contig. The complete mitochondrial
genome is 15,757 bp long and contains 13 protein-coding genes, 22 transfer RNA (tRNA)
genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region (Figure 9).
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In order to compare the conservation of mitogenome between T. freemani and T. casta-
neum, their gene content was evaluated. In addition to their similar mtDNA sizes, the two
species share collinearity of all 37 mitochondrial genes. The genes showed a high degree of
conservation, with most of the genes having pairwise similarity scores above 85% (Table S8).
As mitochondrial genomes are valuable sources of sequence data for phylogenetic anal-
ysis, we compared T. freemani mtDNA to 10 coleopteran mtDNAs to test its applicability
at different taxonomic levels. The ML phylogenetic analysis recognized T. freemani and
T. castaneum mtDNAs as the most closely related, and it placed the four tested Tribolium mi-
togenomes into a separate group supported by a 100% bootstrap value (Figure S3), perfectly
reflecting their intragenomic species-groups distribution as suggested by Hinton [12]. The
ML analysis also clustered tenebrionid mtDNAs into one group, separating them from the
mtDNAs of other coleopteran superfamilies (Figure S3), thus confirming mtDNA relevance
for phylogenomics of close related (congeneric level) and distant species (suborder level).

3. Discussion

In this work, the genome of the flour beetle T. freemani has been sequenced and
assembled. Our motivation was to provide a genome sequence of the species that is the
most closely related to the coleopteran representative species T. castaneum, the important
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food pest, and the second most popular model insect after Drosophila [11]. Many sequencing
consortia emphasize the necessity of sequencing not only representative species but also
their near relatives because various genome traits, including the correlatives of species
boundaries, can only be revealed through the comparison of close sister species [28].

To provide a high-quality genomic sequence, we opted for highly accurate PacBio
HiFi sequencing. The analysis of k-mer frequencies in 23.8 Gb of sequencing data esti-
mated the approximate genome size of T. freemani to be around 320 Mb. This genome size
estimation is higher than the previous estimation of 230 Mb, calculated from the densitomet-
ric measurements of nuclear content of spermatids, which showed significant individual
heterogeneity [16]. Although computational predictions of genome size performed with dif-
ferent programs showed variability, k-mer analyses estimated that approximately one-third
of the T. freemani genome is made of repeat sequences.

The presumed highly repetitive content of the T. freemani genome had the largest
impact in directing our choice of an assembly pipeline. In spite of significant progress
in sequencing technologies and assembly methods, repetitive sequences such as tandem
repeat arrays and segmental duplications still pose a major challenge for creating accurate
high-resolution or gapless genomic maps [29], hindering ab initio genome assembling in
particular. It has been shown that a reference-guided de novo assembly approach facilitates
assembling but also outperforms the corresponding de novo assembly strategy without a
reference genome [30]. Reference-assisted scaffolding avenues have been used successfully
in generating many genome assemblies, including those of insects [31]. Therefore, in our
endeavor to decipher the T. freemani genomic sequence, we decided to use the latest version
of the high-quality T. castaneum genome assembly Tcas5.2 [11] as a reference. Aware of the
large share of tandemly repeated sequences in both genomes [18,19] and the extent to which
they can obstruct accurate assembling, we chose a gene-focused assembly strategy favoring
gene-enriched contigs. With this approach, we assembled 262 Mb of the genomic sequence
by anchoring 99 highly contiguous T. freemani contigs into 10 pseudomolecules/linkage
groups. Based on the BUSCO assessment using insect universal orthologous genes as a
reference, the completeness of the T. freemani assembly Tfree1.0 was estimated to be 99.8%,
indicating a high-quality assembled genome comparable in quality to other available insect
genome assemblies [7]. The 10 T. freemani pseudomolecules (f LGX-f LG10) correspond
to the 10 T. castaneum chromosomes (9 autosomal chromosomes and the X), indicating a
chromosome-level assembly based on their continuity.

The comparison of the T. freemani and T. castaneum genome assemblies showed that
the two sibling species are very similar in their coding sequence. We successfully annotated
95.7% of the T. castaneum genes in the T. freemani assembly, and among orthologous genes,
92.7% keep their position on the corresponding chromosomes. The observed differences in
the number of annotated genes coincide with the cumulative length of the coding sequences,
which is 40.8 Mb in Tfree1.0 and 44.9 Mb in Tcas5.2. We nevertheless hypothesize that the
smaller number of genes annotated in the Tfree1.0 assembly is not necessarily due to their
effective loss in the T. freemani genome. It could be that some genes in the Tfree1.0 assembly
were not recognized in the Liftoff analysis because they diverged from T. castaneum genes
to an extent below the sensitivity of the algorithm. It is also possible that a smaller number
of genes is concealed in highly repetitive regions/contigs that were not included in the
assembly, but mapping of uniquely mappable features within the unassembled contigs
indicates that the number of “discarded” genes cannot be large.

Regarding the non-coding part of the genome, repetitive DNA was estimated to
comprise >30% of T. castaneum and T. freemani genomes ([32], this work). Although neither
T. castaneum Tcas5.2 nor T. freemani Tfree1.0 assemblies were completed in their repetitive
regions, the available data allowed us to compare repetitive elements within the assembled
regions. Inspection of individual repetitive elements disclosed distinctions between the
two species. The same categories of interspersed repeats are found in both assemblies
in similar proportions, but the interspersed elements occupy a 17 Mb longer sequence in
the Tfree1.0 assembly, suggesting their proliferation in the T. freemani genome. However,
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this assumption should be taken with caution because the assemblies of the two species
did not derive from the same type of sequencing data, and it is possible that HiFi reads
allowed longer repetitive regions to be assembled in Tfree1.0, thus allowing more elements
to be annotated. Among the interspersed repeats present in the Tfree1.0 assembly, DNA
transposons show the largest difference in number compared to Tcas5.2, especially for IS3EU
and TcMar-Tc1 elements. Interestingly, TcMar-Tc1 transposons have been found highly
expanded in the genome of the nematode Caenorhabditis inopinata, a recently discovered
sibling species of Caenorhabditis elegans, and it was assumed that they could be the main
driver for the genome size differences between Caenorhabditis species [33]. Although
interspersed repeats make up a significant proportion of the T. freemani genome, tandem
repeats undoubtedly contribute the most to the genome size. The most dominant sequence
in the T. freemani genome is TFREE, the major satellite DNA that was identified 30 years
ago [19]. The analyses of eight species of the genus Tribolium have shown that Tribolium
genomes tend to accumulate large amounts of satellite DNAs, which can occupy up to 60%
of the genome [18,19,34–38], and most of them, except for T. audax/T. madens satellite DNAs
are species-specific. In terms of nucleotide sequence, TFREE satellite DNA is not related to
the T. castaneum major satellite DNA TCAST, but both satellite DNAs form large blocks of
heterochromatin in (peri)centromeric regions [18,19,39]. Due to tandem organization, these
sequences remain largely excluded from the assembled parts of the genome, and TCAST
composes only 0.3% of the assembled T. castaneum genome [11,32,39]. In the Tfree1.0
assembly, we annotated long arrays of TFREE tandem repeats that cumulatively comprise
36 Mb, making 13.4% of the assembled sequence. We assume that the remaining 50 Mb of
the estimated missing genome sequence could be primarily made of TFREE. The fact that in
situ hybridization detected large TFREE arrays on all T. freemani chromosomes [19], while
we failed to assemble them on three chromosomes, due to their acrocentric architecture and
highly repetitive content, speaks in favor of our assumption. Even though Tfree1.0 assembly
does not provide the comprehensive assembly of the major satellite DNA, the estimated
80–90 Mb of TFREE repeats in T. freemani versus approximate 30–40 Mb of TCAST repeats
in T. castaneum genome unequivocally points to the satellite DNA as the most substantial
quantitative difference in genomic sequence between the two sibling species.

T. freemani and T. castaneum diverged approximately 14 Mya [40], but they still can
hybridize [13]. Given the unexplored geographical distribution of T. freemani, it is not
known whether the two species meet in nature, but in laboratory conditions, they produce
sterile F1 hybrid progeny in reciprocal crosses, revealing postzygotic reproductive isolation.
It is tempting to speculate that the prodigious disparity in major satellite DNAs and the
heterochromatin in the (peri)centromeric regions they build in T. freemani and T. castaneum
might lead to the reproductive isolation of the two species. The impact of satellite DNA
divergence on interspecies hybrids’ lethality and sterility has already been reported for
animal sibling species. Satellite DNA-based variations of heterochromatin impact chro-
mosome segregation and ultimately result in hybrid lethality of Drosophila melanogaster
and Drosophila simulans sibling crosses [41], and could also play a role in speciation of
mosquitoes from the Anopheles gambiae group, whose sibling species produce sterile F1
hybrids [42]. On the other hand, hybrid dysfunction can be caused by large-scale alterna-
tions in gene expressions, as was shown for sterile mice hybrids between Mus musculus
musculus and Mus musculus domesticus subspecies [43], or for F1 hybrids of the nematode
sibling species Caenorhabditis briggsae and Caenorhabditis nigoni [44]. From the “zoomed-out”
perspective, highly divergent satellite DNAs and a core set of genes, which T. freemani and
T. castaneum appear to share, represent the structural and functional antipodes of their
genomes. An extensive and comprehensive future research of both coding and non-coding
DNAs will be needed to address an appealing question of the genetic basis of T. freemani-
T. castaneum postmating incompatibilities, and their hybrids certainly could serve as a
worthy model for studying postzygotic reproductive barriers between sibling species.

Along with the nuclear genome, we also assembled the T. freemani mitochondrial
genome. With conserved order and orientation of 37 genes that it encodes, the T. freemani
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mitogenome is consistent with an ancestral insect mitochondrial genome [45]. Phylogenetic
analysis on a limited number of taxa showed that among related species, the T. freemani
mitogenome is most similar to that of T. castaneum, also perfectly reflecting taxonomic rela-
tionships between tested species at the suborder level. In addition to their most prevalent
usage for molecular systematics at different taxonomic scales, mitochondrial genomes of
some insects have been reported to be related to insecticide resistance. For example, changes
in sequence and expression of some mitochondrial genes in the malaria vector Anopheles
sinensis appeared to be associated with resistance to the pyrethroid insecticide [46], while
changes in the expression level of mitochondrial-encoded genes in Drosophila melanogaster
91-R strain are linked to DDT resistance [47]. Differential expression of the genes related to
mitochondrial functions was also found in the T. castaneum population resistant to phos-
phine, a fumigant used for stored products treatment to control pests [48]. Although the
ecological range of T. freemani is unknown and thus assumed to be limited, its easy rearing
on the wheat medium and other food commodities, under the conditions optimal for
T. castaneum, suggests that T. freemani has a great potential to be a serious stored product
pest [13]. Being a closest sibling of one of the most important worldwide pest insects,
T. freemani could serve as a comparative model for studying insecticide resistance mecha-
nisms and potentially be applied in the development of novel pest management approaches.

In conclusion, here we provided de novo assembly of the remarkably repetitive
genome of the flour beetle T. freemani. Repetitive sequences are the most severe obstructers
of gapless assemblies, and very often, it is not possible to assemble them correctly, even
with great effort [49]. Our Tfree1.0 assembly certainly needs to be improved and completed
in repeated regions; however, by reference-guided gene-oriented strategy, we assembled
the genomic sequence approaching the chromosomal level. While waiting for the follow-
up attempts to resolve those highly repetitive stretches, we release the first, high-quality
version of the T. freemani assembly together with its mitogenome for the research community
to exploit this background information for further discoveries.

4. Materials and Methods
4.1. Insect Material

The initial stock of the flour beetle T. freemani was obtained from USDA-ARS (Manhat-
tan, KS, USA) in 2015 and maintained as a laboratory culture. The insects were reared in
the whole wheat flour at 27 ◦C and 55% humidity in the dark, being sub-cultured every
four weeks.

4.2. DNA Extraction and PacBio HiFi Sequencing

Genomic DNA was isolated from 24 snap-frozen pooled male and female larvae using
the Qiagen Genomic tip 100 kit (Qiagen, Germantown, MD, USA). DNA isolation and
library preparation using SMRTbell Express Template Prep Kit 2.0 (Pacific Biosciences,
Menlo Park, CA, USA) were performed by the sequencing provider. PacBio HiFi sequencing
was performed at DNA Sequencing Centre (DNASC) at Brigham Young University (Provo,
UT, USA) using the Sequel II System machine. The sequencing resulted in 1,617,087 HiFi
reads with a total length of 23.8 Mb. The quality of HiFi reads was assessed with FastQC,
and no remaining adapters or specific overrepresented sequences were found.

4.3. Genome Size Estimation

Genome size estimation was performed using three different publicly available pro-
grams: GenomeScope [20], findGSE [21] and CovEST [22]. The algorithms have been
developed for estimating genome sizes from k-mer occurrences using different mathemati-
cal models from Illumina short reads sequencing data; however, due to the low error rate
of PacBio HiFi technology, all of the models are also applicable to PacBio HiFi reads [50].
All three coverage estimates required the previous creation of a histogram file with the
jellyfish program [51] using the following command:

jellyfish count -C -m xx -s 4000000000 -t 16 reads.fasta -o reads.jf
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where the “-m” flag was changed according to the different required k-mer size used in the
subsequent prediction. After the creation of the jellyfish count file, a histogram file was
created using the jellyfish “histo” module with “xx” representing the k-mer size used:

jellyfish histo -t 16 reads.jf > reads_mxx.histo
Afterward, the programs for genome size estimation were run by applying the specified
commands for each of the programs. GenomeScope was run with the following command:

Rscript genomescope.R reads.histo xx 15000./genoscope_output/
The findGSE program was run from R using the CRAN deposited library and the following
function call:

findGSE(histo=“reads_mxx.histo”, sizek=xx, outdir=“./”)
Finally, CovEst was run using the following command:

covest -m ‘repeats’ -k xx -r 15000 reads_mxx.histo > covest_repeats_mxx.txt
where “xx” represents the k-mer size used, and the number ”15000” represents the N50 of
the reads.

4.4. Reference Sequence

The reference assembly used in this work was the T. castaneum genome assembly
Tcas5.2 [11], available in the NCBI genome database under the accession number
GCA_000002335.3. The Tcas5.2 assembly consists of contigs that have been anchored
to ten pseudomolecules (accessions CM000276-CM000285), representing linkage groups
(LG) of nine autosomes (LG2-LG10) and the X chromosome (LGX = LG1), with the remain-
ing sequence represented as unplaced scaffolds and unplaced singletons, including the
unassembled y chromosome. The assembly also includes the newly revised and curated
gene set OGS3 [11], which is used for T. freemani gene annotation on hifiasm contigs and
the final T. freemani assembly.

4.5. T. castaneum Assembly Gap Filling

In order to successfully map and orient T. freemani hifiasm contigs, we decided first to
fill in gaps present in the T. castaneum reference assembly Tcas5.2 with as much T. freemani
genomic information as possible. Using the same HiFi reads as for hifiasm assembly, we
performed gap filling with the TGS-GapCloser program, as described in the reference
manual [52], with minimap2 [53] parameters best suited for mapping HiFi reads onto the
Tcas5.2 assembly, allowing high sequence divergence because of differences we expected
between the two species. The tool was run with the following command:

TGS-GapCloser.sh –scaff tcast52_assembly.fasta –reads t_free_pacbio.fasta –output
gap_filled_freemani –ne –tgstype pb –minmap_arg ‘-x asm20’ > pipe.log 2>pipe.errAfter

4.6. GenomeAassembly

The assembly of T. freemani HiFi reads into contigs was performed with hifiasm [23] using
the options specified in the reference manual and applicable for highly repetitive genomes:

hifiasm -N 200 -a 6 -o freemani_assembly -t 64 reads.fastq
Due to the fact that BUSCO showed a high level of gene completeness (Figure 3) and because
hifiasm performs six rounds of error correction, we deemed that it was not necessary to
perform genome polishing since no new information would be included in the assembly.
The orientation of contigs into chromosome-level scaffolds was performed using the RagTag
algorithm [24]. In short, RagTag first uses minimap2 algorithm to find optimal positions and
orientations of contigs and then concatenates all the placed contigs into single chromosome-
level units. The RagTag algorithm was called with filtered contigs and the gap-filled
T. castaneum assembly using the following command:

ragtag.py scaffold gap_filled_freemani_2.fasta filtered_tigs.fasta -r -o./scafolding_6 -C
-w -f 200000
where “-r” is the option to imply gap sizes in order to produce an assembly of the highest
similarity. The dot plot graphs were created using the dotPlotly (https://github.com/
tpoorten/dotPlotly) algorithm (accessed on 15 January 2022).

https://github.com/tpoorten/dotPlotly
https://github.com/tpoorten/dotPlotly


Int. J. Mol. Sci. 2022, 23, 5869 15 of 18

4.7. GeneAanalysis and Liftoff

The T. castaneum gene set (from GCF_000002335.3_Tcas5.2_genomic.gff) was lifted
onto the contigs to filter out only those contigs that carry genetic information that have
unique genetic mapping. The lifting was performed using the Liftoff program [25] and the
following line:

liftoff -g tcast_52_annots.gff3 -m./liftoff/minimap2/minimap2 tcast_assembly.fasta
contigs.fasta -o lifted _genes_to_contigs.gff3 -p 16 -copies
With the “copies” flag, we have allowed multiple copies of the same feature to be mapped
in case of uncollapsed contigs and/or duplication. Here, the term “feature” represents any
gene, exon, CDS, mRNA, transcript, lnc_RNA, primary_transcript, miRNA, or pseudogene
annotation, as annotated in the T. castaneum official gene set OGS3. As the specified features
have a non-repetitive qualification in the T.cas5.2 assembly, we named them uniquely
mappable features (abbreviated, UMFs). After lifting the UMFs, we selected only those
hifiasm contigs that had more than 10 UMFs and used them for the subsequent assembly.
In the same manner, we performed final gene lifting from T. castaneum to the T. freemani
assembly produced by RagTag.

Benchmarking Universal Single-Copy Orthologs (BUSCO) is a highly used measure
for quantitative assessment of genome assembly and annotation completeness based on
evolutionarily informed expectations of gene content for the genome of interest [54]. All
BUSCO analyses were performed with the BUSCO v5.0.0. module on the Galaxy web
platform (usegalaxy.org, accessed on 10 May 2022) using “insectaodb10” as the gene set
marking full completion.

4.8. Repeat Analyses

RepeatMasker is a widely used tool for finding and masking different repeat elements
within a given target sequence [26]. RepeatMasker is used here in order to obtain the
GFF/GTF formatted data with the position and orientation of different classified RepBase
repeat elements, from which quantity, size, and distribution of different elements were
examined. All masking was performed on the Galaxy server using the RepBase RELEASE
20181026 and RepeatMasker (4.0.9_p2). All of the repeat content and sequence analyses
were performed on the GFF files. Annotation and discovery of the major satellite DNA
repeats within the T. freemani assembly were performed using the NCBI’s BLAST algorithm
and the interface to the R programming language package metablastr [55]. As a query, the
TFREE satellite monomer sequence (GenBank entry X58539.1) was used, and the repeat was
discovered if the BLAST algorithm resulted in a query coverage and percent identity >70%
for the satellite DNA sequence.

4.9. Mitochondrial DNA

The T. freemani mitochondrial DNA (mtDNA) sequence was extracted from hifiasm
assembled contigs instead from reads, as showed in [56], for increased speed and accu-
racy using the MitoFinder algorithm, settings of which have been handled and run with
MitoHifi [57]. The T. freemani mtDNA was found present in three highly conserved con-
secutive copies (99.99% identity) within a 51.7 kb long contig ptg000244l. The mtDNA of
closely related T. castaneum [58] was used as the reference point for discovery. The obtained
T. freemani mtDNA was compared to whole mtDNAs of 11 insect species, whose sequences
were retrieved from the NCBI GenBank database as follows: T. castaneum (NC003081.2),
Tribolium audax (KJ752724.2); Tribolium confusum (KP420018.1), Tenebrio molitor (KP994554.1),
Asbolus verrucosus (KP698408.1), Gonocephalum kochi (MW822744.1), Ulomoides dermestoides
(KM046492.1), Rhyzopertha dominica (MW020612.1), Platisus zelandicus (MK614519.1), Dor-
casomus pinheyi (MN447435.1), and Drosophila melanogaster (NC_024511.2). The sequences
were aligned using the MUSCLE algorithm [59] with the maximum number of 4 iterations
with kmer4_6 distance measure, UPGMB clustering, and CLUSTALW sequence weighting
scheme. The maximum likelihood (ML) tree was reconstructed based on the Hasegawa–

usegalaxy.org
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Kishino–Yano model using MEGA 11.0.10 [60]. Statistical testing of the robustness of the
tree topology was performed by bootstrap resampling of 500 replications.
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6. Adamski, Z.; Bufo, S.A.; Chowański, S.; Falabella, P.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Salvia, R.; Scrano, L.;
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