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The method of multidimensional scaling (MDS) has long existed, but could only recently be applied to animal traits in the
context of dynamic energy budget (DEB) theory. The application became possible because of the following: (i) the Add-my-Pet
(AmP) collection of DEB parameters and traits (approximately 280) recently reached 3000 animal species with 45000 data sets
of measurements; (ii) we found a natural distance measure for species based on their traits as a side result of our research on
parameter estimation in DEB context; and (iii) we developed plotting code for visualization that allows labelling of taxonomic
relationships. Traits, here defined as DEB parameters or any function of these parameters, have different dimensions, which
hamper application of many popular distance measures since they (implicitly) assume that all traits have the same dimensions.
The AmP collection follows the workflow that measured data determine parameters and parameters determine trait values.
In this way we could fill up the species traits table completely, which we could not do by using measured values only, as
data availability varies considerably between species and is typically poor. The goodness of fit of predictions for all data
sets is generally excellent. This paper discusses links between the MDS method and parameter estimation and illustrates
the application of MDS for the AmP collection to five taxa, three ectothermic and two endothermic, which we consider to
be ‘complete’, in the sense that we expect that it will be difficult to find more species with data in the open literature. This
application of MDS shows links between traits and taxonomy that supplements our efforts to find patterns in the co-variation
of parameter values. Knowledge about metabolic performance is key to conservation biology, sustainable management and
environmental risk assessment, which are seen as interlinked fields.
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Introduction
Trait databases are proliferating (Kearney et al., 2021, Parra
et al., 2015), which calls for methods to analyse them in order
to extract knowledge about the underlying metabolism and
life history in a form that can readily be applied in practice.
This paper discusses the application of classical multidimen-
sional scaling (CMDS) to traits of animals species—as made
available in the Add-my-Pet (AmP) collection—to supplement
other methods (Augustine et al., 2019a, b, Kooijman, 1986,
2009, 2013, 2014, Lika et al., 2014) for the analysis of
patterns in parameter values of dynamic energy budget (DEB)
models.

This paper first introduces the AmP collection, then dis-
cusses distances between species on the bases of the set of
traits and the application of these distances in MDS. The
last sections illustrate applications of MDS with numerical
examples, illustrate the relationship between MDS and cluster
analysis and give a brief discussion.

The AmP database and parameter pat-
terns
The AmP collection is a free online database of referenced
data on animal energetics, including life history and aging,
and DEB model parameters (AmP, 2021, Marques et al.,
2018). It contains eco-physiological data on 3000 animal
species (as of 1 June 2021) from all major phyla from start of
development to death by ageing. The collection has been set
up as a journal, so everybody can contribute, and has a careful
curation procedure and version tracking. The use of the
collection is supported by free and frequently updated Matlab
packages that allow access to the DEB parameters and implied
traits (both at individual and population levels) offline in
order to analyse eco-evolutionary patterns in parameter val-
ues. The ability to compare species in a common frame-
work (i.e. DEBs) supports parameter estimation-in-context
and improves insight into eco-evolutionary development. The
unique property that the species-trait table is fully filled makes
it very suitable for multivariate analysis.

Each species represents an entry in the AmP database; both
the measured data and the code used to estimate parameters
from data are available. The estimation method is described
in (Marques et al. 2018, Marques et al. 2019, Augustine et
al. 2019a, Augustine et al. 2020 and Lika et al. 2020). The
database is continuously growing both in species number and
in the quality of each species entry because entries are revised
and improved with new data. The various versions of each
entry are archived and associated with a unique identifier.
Over the years, the AmP database became a means to ref-
erence parameter values used for analysing and extracting
parameter values from new and complex eco-physiological
experiments, hindcasting and forecasting simulation studies.
AmP grew into a unique platform whereby new insights on

animal metabolism and physiology could be included into
various modelling tools used to support decision-making.

We initiated the online database in 2009, and from there
felt an urgency to expand the collection rapidly, given the
following: (i) the world-wide collapse of species diversity,
stressing the need for effective conservation programs; (ii)
the need for sustainable management, including optimization
of culture and harvesting programs; and (iii) the need for
effective environmental risk assessment, e.g. by supporting
the analysis of ecotoxicity data to maximize efficiency (and
minimize the use of test animals) and the translation of toxic
effects on individuals in the laboratory to population and
ecosystem levels under field conditions.

All these interlinked activities require detailed knowledge
of energetics and the life history of species. This knowledge is
rarely sufficient, however, and must be supplemented with
knowledge from other fields. DEB theory found already
quite a few applications in conservation biology (Arnall
et al., 2019, Goedegebuure, 2018, Haberle et al., 2020, Marn
et al., 2020, 2017, McKenzie1 et al., 2016, Molnár et
al., 2010, Sarà et al., 2014, Taylor et al., 2019, Teixeira,
2016) and sustainable management/aquaculture (Bertolini
et al., 2021, Chary et al., 2020, Jackson, 2018, Jin et
al., 2020, Pete et al., 2020, Sangare et al., 2020, Sarà et
al., 2018, Stavrakidis-Zachou et al., 2021, Yang et al.,
2020), while it was developed since 1979 in the context of
ecotoxicity research (Kooijman & Bedaux, 1996, Kooijman
& Metz, 1984, and many other papers). Direct links between
sensitivity for chemicals and metabolic parameters (Baas &
Kooijman, 2015) demonstrate the relevance of knowledge of
metabolism for this important set of applications.

The AmP collection is unique in that all DEB parameters
have been estimated for all species in the collection, which
enables computation of any physiological property that can
be written as a function of parameters, for any species.

Five different types of patterns of co-variation of DEB
parameter values have been identified so far: the physical
co-variation rules (Kooijman, 1986, 2009), metabolic accel-
eration (Kooijman, 2014), waste-to-hurry (Augustine et al.,
2019b, Kooijman, 2013), supply/demand spectra (Lika et al.,
2014) and altricial/precocial spectra (Augustine et al., 2019a).

While the physical co-variation rules explain most of what
is known as body size scaling relationships (Calder, 1984,
Peters, 1983), such as the famous Kleiber’s law (Kleiber,
1932), DEB theory shows that body size itself is an emergent
property of metabolism (Lika et al., 2019), and suggests that
traits can better be linked to processes from which they result,
rather than to each other. This enables the understanding of
traits, as opposed to merely describing the relationships.

We see MDS, which takes both parameters and functions of
parameters as input, as complementary to the identification of
patterns in parameter values. A disadvantage of MDS is that
the eigenvectors do not have a direct biological interpretation,
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but an advantage is that they present a more holistic view on
the difference between species by including a set of several
traits, rather than a single one.

Traits and distances between species
A trait is here defined, in the context of DEB theory, as
a parameter or a function of parameters, which quantifies
some eco-physiological properties of a species. In principle, all
parameters and any imaginable function of parameters can be
used, but the present practical restriction is that they have to
occur in the (Matlab) structure allStat, which is used to read
trait values for the various species in the AmP collection. As
is clear from the definition of traits that we use, trait values
are interlinked, and sometimes in complex ways. The strict
application of mass and energy conservation rules in DEB
theory contributes to this interlinking.

Since some traits are specific for particular DEB models
(Marques et al., 2018), which are simple extensions of a
common standard model, a second restriction is that these
traits must be available for all species in the selected set of
species, so the species traits table must be completely filled.
This is still some 250 of the 280 traits per species; the number
of traits can readily be extended. Notice that measured data
has been used to estimate parameters, and parameters are
used to compute functions of parameters. So, here, traits are
not measured data; it would otherwise be impossible to fill
the species traits table completely for a larger set of species.

Even though some traits are available as measured data
for some species, the availability of data varies considerably
among species and is typically very much restricted. The mean
relative error of predictions for all 45000 data sets for all
species in AmP collection is 0.05, meaning that the predictions
are, on average, very accurate and reliable enough to be used
instead of measured data. In other words, we do not see it
as a disadvantage that model-derived values for traits are
used, rather than measured values. If data come from various
sources, which they typically do, the various data sets can
easily be inconsistent for various reasons, while this does not
apply to the model-derived traits, since the model provides
the consistency. This has the drawback that the results are
model dependent, but we think that no plausible alternative
models will exist with a comparable simplicity and generality
that fully specify individuals thermodynamically from start of
development to end of life (Kooijman, 2020b).

For the present illustrative purpose, we used the selection
of traits as given in Table 1. Most traits speak for themselves
and only the specific somatic maintenance counts as param-
eter in this set, the others are functions of parameters, all at
the reference temperature of 20 ◦C. The precociality coeffi-
cient, i.e. maturity at birth as fraction of that at puberty, is
discussed in (Augustine et al. 2019a), and the supply stress, i.e.
maturation maintenance times squared somatic maintenance,
divided by cubed assimilation, in Lika et al. (2014). The latter

Table 1: A selection of 10 traits (out of 250 or 280 traits depending on
the DEB model) that have been used here to illustrate the application
of MDS in a DEB context

Symbol Units Description

am d Life span

ap d Age at puberty

ab d Age at birth

Ww∞ g Ultimate wet weight

Ww
p g Wet weight at puberty

Ww
b g Wet weight at birth

Ṙ∞ #/d Ultimate reproduction rate

ss - Supply stress

sbp
H - Precociality coefficient

[ṗM] J/d.cm3 Specific somatic maintenance

quantifies where species are in the supply–demand spectrum.
Notice that the dimensions of the various traits differ.

By definition, the distance dij between points i and j is
non-negative, while dij = dji and dii = 0. Distances can
be quantified in many ways, but most of the 13 distance
measures that were reviewed by Shirkhorshidi et al. (2015)
cannot be applied to traits of species, since they assume
that all traits have the same dimensions. Attempts to remove
dimensions, e.g. by dividing trait values through their mean
value, or subtracting the mean and dividing by the standard
deviation, would distort the distances between species. A
natural distance between two species should depend only on
their traits, and not on those of other species that happen to
be in the comparison set. Moreover, adding species would
affect the position of all other ones. We encountered this
dimension problem when developing methods to estimate
parameters simultaneously for a set of models from a set
of data sets (Lika et al., 2020, Marques et al., 2019). Such
an exercise makes sense if different models for the different
data sets of a species share one or more parameters, which
couples the estimation of the parameters: all parameters of
data set-specific models for all data sets for a species are
simultaneously estimated. This estimation is based on the
minimization of a loss function, which essentially quantifies
the distance between data sets and predictions for these
data sets. So, an intimate relationship exists here between
parameter estimation and MDS, since they use the same loss
function as a distance measure.

The common basis of parameter estimation and MDS
becomes important in future extensions of the concept aug-
mented loss functions (Lika et al., 2020), where terms are
added to the loss function that quantify distances to other
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species in the AmP collection in terms of traits. We come back
to this issue in the discussion.

The loss function that we identified as being most useful for
parameter estimation is the symmetric bounded loss function

Fsb =
n∑

i=1

ni∑

j=1

wij

ni

(dij − pij)
2

d2
i + p2

i

with di =
ni∑

j=1

dij

ni
and pi =

ni∑

j=1

pij

ni
,

where n stands for the number of data sets and data set i has
ni data points, dij is the (measured) data point j for data set
i, pij its corresponding prediction and wij its corresponding
(dimensionless) weight coefficient (set equal to 1 by default).
We call this loss function symmetric, because interchanging
data and predictions does not affect its value and bounded,
because, if a prediction goes to infinite, its contribution to
the loss function remains limited. The symmetry property
makes that this loss function is a distance measure. This is
of importance for avoiding over-estimation as well as under-
estimation, as discussed in Marques et al. (2019).

Likewise for application in MDS, where ni = 1, and re-
using the symbol dij to denote the distance between species i
and j, this distance can be defined as

dij =
p∑

k=1

wk

p

(θik − θjk)2

θ2
ik + θ2

jk

,

where θik is the value of trait k for species i and the summation
is over all p traits. wk is the weight given to trait k (by
default is set equal to 1). Notice that this distance measure
is dimensionless.

Classical multidimensional scaling
The CMDS, known also as principal coordinate analysis
(PCoA), is a method that allows to position objects, species
here, in a space of reduced dimensionality, while preserving
the between-object distances as well as possible. PCoA has
similarities with principle component analysis (PCA), but
operates on dissimilarities, i.e. distances, rather than similar-
ities, i.e. correlations or covariances. CMDS also has similar-
ities with cluster analysis, as will be discussed in a section
below. These methods are part of multivariate analysis.

A summary of CMDS is as follows (Legendre & Legendre,
1998, Mardia et al., 1982, for details). For a distance, or
dissimilarity, matrix D with elements {dij}n

i,j=1, CMDS defines
a centered transformed distance matrix B = CAC, where
the transformed distance matrix A has elements aij = − 1

2 d2
ij

and the centering matrix is C = I − n−1E, where E is
a n × n matrix of all ones. The eigenvalue (or spectral)
decomposition of B is now B = QQ′ = Q�Q−1, where Q
is the matrix of normalized eigenvectors in its columns, also
called the configuration matrix, and � the diagonal matrix
with the eigenvalues of B, which are all real valued, since B is
symmetric. This implies that Q′Q = �.

The number of rows of the square eigenmatrix Q equals
the number of species, and the number of relevant columns
depends on the eigenvalues. The leading eigenvalue is typically
much larger than the next one and, if the 4th and subsequent
eigenvalues are small, the plot of the species (i.e. the rows
of Q) in three dimensions (i.e. the first three columns of Q)
captures most of the scatter among species. The coordinates
of species i in the 3D eigenspace are the i-th elements of the
eigenvectors corresponding to the first three eigenvalues of
the centered transformed distance matrix. Since the distance
matrix is symmetric, we know that all eigenvalues are real,
rather than imaginary.

Code implementation in AmPtool
AmPtool (AmPtool, 2021) is a software package (in Mat-
lab) that supports the analysis of the AmP collection; it is
interlinked with the more general package DEBtool (DEBtool,
2021) for applications of DEB theory. The taxonomic struc-
ture of AmP is detailed, meaning that a large number of
taxonomic ranks is recognized; member species of each rank
can be selected via the name of the clade. Traits for all species
are collected in a large structure allStat, and several functions
read from this structure. Function dist_traits takes the name
of a clade and a cell string of names of traits as input, to
deliver a distance matrix, using the data in structure allStat.
The names of the traits are standardized codes, which follow
the rules of DEB notation (Kooijman, 2010). Core-Matlab
function cmdscale computes the eigenvalues and eigenvec-
tors of the centered transformed distance matrix, using the
distance matrix as input. AmPtool function shstat presents
the species in the eigenspace graphically, while function con-
nect_subclade connects all subclade members, to recognize
the clade more easily; a legend with (user-defined) markers
is also presented.

AmPtool function prt_report_my_pet can be used to
see the 280 possible traits that are presently included in
allStat; this function takes the name of an entry as input
and the resulting html page has search options. Some traits
depend on the DEB model for that species. The species list
gives an overview of the model type that has been used for
all entries.

Illustrative examples of application
We illustrate the use of the code for five clades, namely
Cephalopoda, Chondrichthyes, Testudines, Austrodyptor-
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Figure 1: MDS for three ectotherm taxa in the AmP collection, with number of species and the sampling date. Members of the same clade are
linked by a black line. The abscissa and ordinate in the left figures represent the first two (dimensionless) eigenvectors of the centered
transformed distance matrix, based on the traits of Table 1. The edge color of the markers refers to higher ranked taxa. Cephalopoda:
Nautiloidea, black; Octopodiformes, red; Decapodiformes, blue. Chondrichthyes: Chimaeriformes, black; Selachii, red; Batoidea, blue.
Testudines: Pleurodira, red; Cryptodira, blue. Members of the clades Sepiida in the Cephalopoda, Chimaeriformes in the Chondrichthyes and
Chelonioidea in the Testudines are connected. The right figures present all eigenvalues. The first p eigenvalues, p is the number of traits, are
presented in blue.

nithes and Carnivora, which we consider to be ‘com-
plete’, meaning that it will not be that easy to find more
species with data in the open literature. The five scripts

mydata_msd_taxon, where taxon is one of the five clade
names, are available in AmPtool AmPtool (2021) and can
easily be adapted for other taxa and/or traits. Possibly with
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Figure 2: Like Fig. 1 for two endotherm taxa in the AmP collection. The edge color of the markers refer to higher ranked taxa.
Austrodyptornithes: Sphenisciformes, red; Procellariiformes, blue. Carnivora: Feliformia, red; Caniformia, blue. Members of the clades
Hydrobatidae, Diomedeidae, Eudyptes, Pygoscelis, Spheniscus and Pterodroma in the Austrodyptornithes and Canidae and Pinnipedia in the
Carnivora are connected.

the exception of the cephalopods, most species of the other
four clades are considered to be vulnerable, endangered or
even critically endangered.

Figure 1 shows three examples of application of MDS
to ectotherm taxa of the AmP collection; Fig. 2 does this
for two endotherm taxa. The number of eigenvalues equals
the number of rows (or columns) of the square symmetric
distance matrix between species, i.e. the number of species.
Although the code in AmPtool/mydata_msd_* generates 3D
mds-plots, the figures in this paper show only the first two.
The screen plots are interactive; you can rotate the figure,
and click on markers to see the species name. Species that
cluster in the eigenspace can be connected to enhance their
clustering. The traits of the Austrodyptornithes (i.e. penguins
and petrels) are discussed in Kooijman (2020a), in the context
of their natural history. The two outliers of the Procellariini
belong to the genus Procellaria; the three other genera do
cluster.

The cephalopods have the most complex configuration (i.e.
highest λ10/λ1 ratio); they are the only one of these five taxa
that sport metabolic acceleration, they have the largest range

in (maximum) body sizes and the size of neonates as fraction
of size at death is the smallest, so they grow most during their
(short) life span.

The Pinnipedia (seals) among carnivora show a clear
separation from Canidae (dogs) with respect to the first
axis (Fig. 2). To determine which traits contribute most
to the observed pattern among species, we correlated
the eigenvectors from the MDS with each trait. It turns
out that the ultimate reproduction rate (-ve), precociality
coefficient (+ve) and age traits (+ve) correlate the highest
with the first axis (correlation coefficients larger than
0.7). Getting a few large pups doubtlessly relates to their
aquatic life style, minimizing the time they need to spend on
the beach.

Like the seals among the carnivores, the petrels separate
from the penguins among the Austrodyptornithes, see the
blue versus red points in Fig. 2, and possibly for the same
reason: petrels have large eggs for their adult weight, while
the penguins have egg sizes that are typical for birds of that
weight (Kooijman, 2020a). This trait is intimately linked to
quite a few other traits.
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Table 2: The 10th eigenvalue of the centered transformed distance
matrix as fraction of the first one, with 10 traits per species, see Table 1

Cephalopoda 0.214

Chondrichthyes 0.160

Testudines 0.088

Austrodyptornithes 0.022

Carnivora 0.039

The sea turtles (Chelonioidea) cluster among the turtles
(Fig. 1). Although the mean egg weight of sea turtles is twice
that of turtles, their relative egg weight is much smaller, since
their adult weight is much larger than the mean for turtles.

The right-hand sub-figures in Figs. 1 and 2 show that
the subsequent eigenvalues rapidly go to zero and hardly
become negative, meaning that the distances between species
behave like Euclidean distances. Notice that the number of
eigenvalues equals the number of species (so the size of the
distance-matrix). The number of eigenvalues colored in blue
equals the number of traits that has been used, see Table 1.
This was motivated by the idea that the more traits are
included the more complex the distance structure between
species becomes, with the consequence that more eigenvalues
will be large. Table 2 shows the 10th eigenvalues as fraction of
the first (i.e. largest) ones for the five examples. The lower this
fraction, the fewer dimensions are required to capture most
scatter in position of the species in the eigenspace.

These illustrative examples show that, in quite a few cases,
related species appear clustered in the eigenspace. This points
to links between parameter values and taxonomic position of
a species.

Cladograms versus MDS
This section compares a data presentation in the form of a
cladogram with that in MDS to illustrate the relationship
between these methods. For clarity, we will use a simple
example of a distance matrix that can be presented explicitly.
A cladogram presentation is a special case of the larger class of
cluster techniques, as are nowadays frequently used to present
DNA, RNA or amino acid sequences.

The distance between two taxa can be expressed in terms
of years since divergence of these taxa during evolution. For
vertebrate taxa, divergence timing is given in Table 3, and
this table is used to compose the cladogram in Fig. 3 and
the CMDS plot in Fig. 4, two alternative representations of
the same thing. The cladogram can be produced in Matlab
with function seqlinkage, method average, in toolbox bioin-
formatics; the CMDS plot with function cmdscale in toolbox
statistics. Ta
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Figure 3: A cladogram of the evolutionary relationships between vertebrate taxa on the basis of the distance matrix of Table 3. The time since
divergence is given on top, in MYA.

Figure 4: CMDS applied to the distance matrix of Table 3. The Actinistia almost hide behind the Tetrapoda, while the Dipnoi fully hide behind
the Tetrapoda and the Galeomorphi behind the Squalomorphi. The edge color of the markers relates to the classification: blue for
Chondrichthyes, magenta for Actinopterygii and red and green for the Sarcopterygii.

The divergence between the Cyclostomata (lampreys and
hagfishes) and the Gnathostomata (the other vertebrates) is
estimated at 797 MYA (Hedges & Kumar, 2021), but the
origin of the Vertebrata at 615 MYA; we used the latter
value in the Table 3. One does not need a cluster program
in this case to construct the cladogram from the distance

table. Although the biological interpretation of this clado-
gram in presently less relevant, the discussion whether the
coelacanth-lungfish group (CL-group) is a monophyletic sis-
ter group of the closely related tetrapods (Shan & Gras, 2011,
Zardoya & Meyer, 1996), or the prevailing view that lungfish-
tetrapod group (Rhipidistia) is monophyletyc (Forey, 1986),
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is still open and possibly cannot be resolved (Takezaki et al.,
2004).

The lampreys, cyclostomes, come out as very distant from
the other vertebrates (gnathostomes) in both presentations.
The rays and sharks (chondrichthians) cluster separately from
the ray-finned fish (actinopterygians) in the CMDS plot while
the three sarcopterygian taxa cluster very tightly. This is also
visible in the cladogram. The lungfish, Dipnoi, have the same
first two coordinates in the eigenspace as the tetrapods in
the CMDS plot. This also applies to the Galeomorphi, which
have the same first two coordinates as the Squalomorphi.
They only differ in the seventh coordinate, where they have
opposite signs. A full presentation of the CMDS plot requires
11 dimensions, while the figure shows only the first 2.

Discussion
The strength of MDS is that it can reveal relationships
between taxa based on combinations of trait values, in a
way that is not that easy to see directly in the values of
traits, since it is the combination of traits that matters. The
Pinnipedia among the Carnivora and the Sphenisciformes
among the Austrodyptornithes are striking examples in Fig. 2:
they appear fully separated from the other carnivores and
petrels, respectively, in the eigenspace. This invites for a closer
analysis of such taxa, to better understand what makes them
that different, leading to improved eco-evolutionary insight. It
turned out that the distances, as quantified by the symmetric
bounded loss function, are almost Euclidean.

Another application of MDS is in supporting parameter
estimation. To what extent measured data determine parame-
ters accurately is always an issue, which directly affects values
of traits and, therefore, distances between species. Concerns
might be (i) the limited availability of data, (ii) uncertainty
in measurements (in many cases food and temperature condi-
tions had to be guessed and biological data does have scatter)
or (iii) differences in geographic races and populations that
have been used for measurements. To reduce this problem, we
developed several methods to estimate parameters in context
(Lika et al., 2020, Marques et al., 2019), and have written
code to compare species and use the recognized patterns in
parameters to judge to what extent some parameters are
outliers. MDS is a valuable additional tool in this respect. If
we identify outliers, we revisit the parameter estimation and
study the possibility to get the parameters more in concert
with that of related taxa, without affecting the goodness of
fit. Although the parameter combination for which the loss
function has a global minimum is the combination we are
looking for, the loss function might have other local minima
that are hardly higher than the global one and might be
biologically more realistic.

CMDS is just one of a set of related methods aiming to
produce ordination of data points in few dimensions, while
preserving, as well as possible, the distances among them.

We briefly discussed links with PCA and cluster techniques.
The latter methods aim to cluster similar data points into
the same clusters, while dissimilar or distant data points are
placed into different clusters. Other MDS methods involve
additional steps, beyond the initial scaling used by the CMDS.
Extended MDS methods iteratively reposition the objects in
the configuration using an algorithm that improves the fit
between the dissimilarities and the inter-object distances. The
Matlab function mdscale performs non-classical MDS with
choices to perform metric or non-metric scaling.

In addition to the symmetric bounded loss function that
we used in this analysis, we have tried several other distance
measures that allow traits with different dimensions, e.g. Can-
berra metric and coefficient of divergence, see Shirkhorshidi
et al. (2015), with classical and non-classical MDS algorithms
but did not find one with better results, i.e. clustering related
species better. The symmetric unbounded loss function, as
proposed by Marques et al. (2019) for parameter estimation
as alternative for the symmetric bounded one, seemed to
perform poorly in this context.

We also tried several selections of traits and have the
impression that a much shorter list performed less well, while
a larger list did not change the result much, but we cannot
claim that the list as mentioned in Table 1 is optimal in any
respect and the best selection might very well depend on the
taxon.

We see our discovery that the loss function that we use in
parameter estimation and now also in MDS as an important
new insight that links the two fields in a deep way. Some long-
known distance measures, such as the Euclidean distance,
strongly remind of least-squares regression problems and so
of parameter estimation, but they are the ones that give
dimension problems, both in multi-model parameter estima-
tion and in MDS with traits (Marques et al., 2019). Parameter
estimation and MDS are, therefore, only linked using a proper
choice for the distance measure. To see that the link is deeper
than just using the same loss function, it is possible to include
trait distances between species in an augmented term in the
loss function that is used in multi-species parameter estima-
tion, like we did for minimizing the variation coefficients
for selected parameters (Lika et al., 2020) that is currently
implemented in DEBtool. The importance of simultaneous
minimization of trait distances in parameter estimation is then
controlled by weight coefficients. By step-wise increasing the
weight coefficients and monitoring the effect on the mean rel-
ative error of predictions for observations, it becomes possible
to distinguish random differences in trait estimates from data-
supported differences. By imposing these constraints, the total
number of parameters to be estimated is reduced, so are the
associated ill-posedness problems. We see this as a further step
in parameter estimation in context.

The present examples only focus on taxonomic position,
but the AmP collection also has identifiers for climate, eco-
zone, habitat, embryo-environment, migration, diet, gender
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and reproduction type for all entries, see https://bio.vu.nl/thb/
deb/deblab/add_my_pet/AmPeco.html. It might very well be that,
if these identifiers are taken into account as well, the clustering
in species positions in the eigenspace improves considerably.
We are only at the start of a whole new direction in the
analysis of the AmP database, but we can conclude that these
first MDS applications look promising.
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