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Abstract: Adhesion between cells and the extracellular matrix (ECM) is one of the prerequisites
for multicellularity, motility, and tissue specialization. Focal adhesions (FAs) are defined as protein
complexes that mediate signals from the ECM to major components of the cytoskeleton (microtubules,
actin, and intermediate filaments), and their mutual communication determines a variety of cellu-
lar processes. In this study, human cytoskeletal crosstalk proteins were identified by comparing
datasets with experimentally determined cytoskeletal proteins. The spectraplakin dystonin was
the only protein found in all datasets. Other proteins (FAK, RAC1, septin 9, MISP, and ezrin) were
detected at the intersections of FAs, microtubules, and actin cytoskeleton. Homology searches for
human crosstalk proteins as queries were performed against a predefined dataset of proteomes.
This analysis highlighted the importance of FA communication with the actin and microtubule
cytoskeleton, as these crosstalk proteins exhibit the highest degree of evolutionary conservation.
Finally, phylogenetic analyses elucidated the early evolutionary history of spectraplakins and cortical
microtubule stabilization complexes (CMSCs) as model representatives of the human cytoskeletal
crosstalk. While spectraplakins probably arose at the onset of opisthokont evolution, the crosstalk
between FAs and microtubules is associated with the emergence of metazoans. The multiprotein
complexes contributing to cytoskeletal crosstalk in animals gradually gained in complexity from the
onset of metazoan evolution.

Keywords: cytoskeletal crosstalk; spectraplakin; cortical microtubule stabilization complex; focal
adhesion; actin; microtubule; intermediate filaments; evolution; dystonin

1. Introduction

Cells respond to various external stimuli (shear stress, strain, matrix stiffness, pressure,
etc.) and can convert mechanical signals into biochemical signals, which is known as
mechanotransduction. These force-induced signals are important for a variety of biological
processes such as migration, differentiation, homeostasis, proliferation, and apoptosis [1].

External signals can be sensed by a variety of cellular receptors such as integrins,
cadherins, selectins, and the immunoglobulin superfamily [2,3]. Among them, integrins are
mainly responsible for communication by binding to extracellular matrix (ECM) proteins.
Since their discovery to date, they have been the most intensively studied cell adhesion
receptors and constitute the largest protein network that mediates and transmits signals
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from the ECM to the cytoskeleton [4]. Integrins are transmembrane molecules composed
of α- and β- dimers, with the 18-α and 8-β subunits forming a total of 24 heterodimers.
Instead of enzymatic activity, integrins possess the ability of bidirectional signalling, known
as inside-out and outside-in signalling [5]. Signals are sensed by integrin heterodimers on
the cell membrane and transduced in the cell via large complexes called focal adhesions
(FAs). Immediately after integrin binding to ECM proteins, conformational changes within
the integrin heterodimer enable signal transduction and activation of focal adhesion ki-
nase (FAK), which facilitates further signal transduction through autophosphorylation of
FAK and binding of SRC [6]. Integrin-mediated interactions between the ECM and the
cytoskeleton play a critical role in cell movement, shape, and orientation, implying that
cell adhesion processes are dynamic responses to external conditions such as mechanical
strain [7]. Thus, there is increasing evidence of interactions between microtubules and actin
filaments, and FAs appear to be a hotspot of cytoskeletal crosstalk [8].

The cytoskeleton of mammalian cells consists of three distinct cellular networks that
differ primarily in size and protein composition: actin fibers or microfilaments (~7 nm),
microtubules (~25 nm, MTs), and intermediate filaments (~10 nm, IFs) [9]. To function
properly, all three parts of the cytoskeleton must be synchronized and work together. Each
part of the cytoskeletal network can interact with other components of the cytoskeleton.
This occurs through direct interaction via shared protein linkers that enable cytoskeletal
crosstalk [10]. Therefore, proteins involved in crosstalk play a key role in the orchestrated
regulation of the cytoskeletal response to mechanical/external signals and are responsible
for various processes (migration, polarization, cell division, anticancer drug resistance),
where the simultaneous action of the cytoskeleton can be viewed as an overall complex.
Actin microfilaments and microtubules are found in all domains of life and support cellular
movement and division in all Eucaryotes [11,12]. On the other hand, cytoplasmic IFs
evolved in Metazoa from nuclear lamins, coinciding with the true origins of multicellularity
and are considered an animal invention [13]. In the Chordata, the four major subtypes of IFs
occurred sequentially, with extensive expansion of keratins associated with the transition
from water to land [13].

Cell adhesion is widely considered to be a prerequisite for the evolution of multicel-
lularity, including cell-cell adhesion and adhesion between cells and the ECM. Studies of
distant animal relatives provide evidence for the early evolution of the animal-like cytoskele-
ton. Although unicellular, amoebozoans are characterized by a complex cytoskeleton [14].
Entamoeba histolytica, for example, has a cortical cytoskeleton and adhesion plates [15].
Additionally, recent analysis of the transcriptome of amoebae has revealed the presence of
integrin genes [16]. Previous studies indicated early origins of integrin-mediated adhesion
and signalling complexes that preceded the emergence of multicellularity in Opisthokonta
(Fungi and Metazoa) [17]. In Amoebozoa, both integrin subunits were found mainly as
a single paralog, whereas in unicellular opisthokonts, several different integrin subunits
were discovered [16,17]. The genes encoding the major FA components that link these
complexes to actin filaments, including vinculin, talin, and actinin, have been found in
amoeba genomes [17]. In the sister lineage of Amoebozoa and opisthokonts, Apusomonads,
the unicellular organism Thecamonas trahens possesses microtubules as well as bundles
of microfibers that are located within the cell but are not connected to other cytoskeletal
components [18]. Integrins have also been found in its genome [17]. Capsaspora owczarzaki,
a unicellular opisthokont, can adhere to surfaces using actin-dependent filopodia. Integrin
β2 and vinculin were found to be localized as distinct patches in these structures [19].
Another unicellular organism, Corallochytrium limacisporum has an actin cytoskeleton that
shares features with both fungal and animal cells [20]. As an early-branching animal form,
sponges (Porifera) have specific adhesion mechanisms. In addition, they have both types of
adhesion systems found in other animals (adherent junctions and focal adhesions), arguing
for an early origin of these structures in animal evolution [21]. In sponges, the presence of
integrins that anchor the actin cytoskeleton through interactions with a large number of
cytoplasmic proteins such as talin, vinculin, and paxillin has been studied [22]. In another



Int. J. Mol. Sci. 2022, 23, 5594 3 of 23

early-branching animal, Trichoplax adhaerens (Placozoa), which possess only six distinct
cell types [23], surface adhesion proteins (α/β-integrins, cadherins) were found together
with its ECM-binding proteins (fibronectin, vitronectin). In addition, crosstalk proteins
responsible for downstream signalling and actin filament organization (vinculin, paxilin,
talin, and FAK) were also detected [24]. Furthermore, lamin-like genes have been identified
as precursor genes of intermediate filaments in these animals [25].

While cytoskeletal crosstalk in humans has been analysed in several studies, to our
knowledge, no study has combined the evolutionary aspects of cytoskeletal crosstalk
between FAs, actin, MTs, and IFs. Thus, we summarized the proteins involved in the
different aspects of the cytoskeleton. Proteins discovered at the intersections of different
types of cytoskeletal filaments and FA complexes may be involved in crosstalk between
individual filaments. Because little is known about the origin and evolution of cytoskeletal
crosstalk in animals, we analysed its evolution in animals and their closest phylogenetic
relatives using examples of protein-protein interactions that are known to be essential for
cytoskeletal crosstalk in humans.

2. Results and Discussion
2.1. Retrieving of Cytoskeleton Crosstalk Proteins from Databases Pointed Dystonin as Major
Regulator of Cytoskeletal Crosstalk

Over the decades, the human cytoskeletal system, which is composed of proteins that
perform diverse and versatile functions, has been extensively studied. However, recent
high-throughput studies of various complexes have revealed many additional proteins
involved in cytoskeletal structure and function. Using the criteria described in Methods,
we selected 1298 proteins involved in various aspects of cytoskeletal organisation. To get an
overview of the relationships between the proteins of the cytoskeleton and their grouping
in general, we clustered all proteins of the cytoskeleton based on sequence similarities using
the tool CLANS in 3D space (Supplementary Figure S1). Using the “find cluster” in-tool
option, we obtained 12 groups of >10 proteins. By far the largest group of structural proteins
is the intermediate filament cluster (IF), which has the largest divergence in vertebrates [13].
As an indication of their young evolutionary age, almost all intermediate proteins fell into
this one cluster, whereas proteins belonging to other types of filaments are more randomly
distributed (Supplementary Figure S1) and form only isolated clusters. Another large
CLANS cluster consists of various types of kinases (mainly serine/threonine and tyrosine).
This is not surprising, considering their importance in the rapid recruitment of proteins
involved in signal transduction processes. A total of 77 kinases have been identified in
processes related to cytoskeleton remodelling (about 15% of the kinases in the human
kinome) [26].

We were particularly interested in uncovering the proteins at the intersections between
datasets containing proteins of the cytoskeleton and focal adhesions (Supplementary Table S1,
Sheets 1–4).

The overlapping of the retrieved datasets displayed only one common protein, dys-
tonin (DST, also known as BPAG1 or BP230) (Figure 1). Together with a microtubule-
associated crosslinking factor 1 (MACF1) DST belongs to the spectraplakin family of
proteins, a family of cytoskeletal regulators capable of binding different types of cytoskele-
tal filaments [27,28]. This is achieved through different binding modules present in these
proteins. The calponin homology (CH) domain is involved in actin binding, while GAS2
(growth arrest specific 2)-related domain interacts with microtubules (also known as GAR
domain) [29]. In addition, spectraplakin proteins possess a plakin domain that contains up
to nine spectrin repeats (SR1-SR9) and a Src-homology 3 (SH3) domain in the middle [30].
Finally, the plectin (or plakin) repeat domain (PR) in spectraplakin and plakin proteins
serves to bind IF proteins [31,32].
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[38]. Moreover, septin 9 increases the length of MT, by suppressing MT catastrophe [39]. 
Additionally, MISP has been shown to interact directly with ezrin, while activated ezrin 
regulates MISP levels by competitively binding to actin binding sites on the cell cortex. In 
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Figure 1. Putative cytoskeletal crosstalk proteins in humans. Venn diagram depicting 100 common
proteins when using different datasets related to microtubules (MT), focal adhesions (FA), intermedi-
ate filaments (IF), and actin filaments. Dystonin (purple) was found in all datasets, whereas crosstalk
proteins found in the MT, FA, and actin datasets are shown in a dark blue rectangle. Proteins at the
crossing points between MT and FA (pink), MT and actin (green), FA and actin (beige), IF and MT
(light blue), IF and actin (red), IF and FA (yellow) were generated as described in the Section 4.

DST is important for maintaining the integrity of FAs and plays a key role in cell-
substrate adhesion and cell spreading [33]. Moreover, it has been found to localize with
hemidesmosomes in a region where keratin filaments are associated with hemidesmosomal
plaque [34]. Additionally, DST interacts directly with MTs and their plus-end proteins EB1
and EB3 [28,35].

Five proteins were found in the intersection of the datasets of MT, FA, and actin: septin
9, MISP, ezrin, RAC1, and FAK. While RAC1 and FAK are well-studied effector proteins
involved in various pathways related to activation of FAs and cytoskeletal proteins [36,37],
other proteins emerged at the intersections during analysis. Septin 9 colocalises and asso-
ciates with MTs, whereas its depletion leads to thinning of the MT network [38]. Moreover,
septin 9 increases the length of MT, by suppressing MT catastrophe [39]. Additionally, MISP
has been shown to interact directly with ezrin, while activated ezrin regulates MISP levels
by competitively binding to actin binding sites on the cell cortex. In this way, the prevention
of excessive MISP levels in the cell cortex is regulated, allowing proper polarization and
optimal positioning of the mitotic spindle [40]. According to data retrieved from available
databases, signal transduction through FAs to MTs and actin filaments is mediated by at
least 36 different proteins, whereas to IF it is mediated by six proteins. Simplistically, signal
transduction from FAs to different filament types can be considered “vertical”, whereas
signal transduction between filaments can be considered “horizontal” crosstalk (Figure 2).
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Figure 2. Schematic representation of vertical and horizontal crosstalk. (A) After binding to ECM
proteins, the signal is transduced to focal adhesions via integrins. Proteins of the cortical microtubule
stabilization complex (liprins, ERC1, PHLDB2, CLASPs, AMER2, and APC) play an important role in
force transmission to microtubules, while direct binding of KANK to talin-1 and KIF21A contributes to
microtubule recruitment to the outer rim of focal adhesions. (B) Force transmission to actin filaments
is facilitated by the binding of talin-1 to cytoplasmic integrin tails that recruit mediators such as
vinculin and actinin alpha and help to transduce the signal to actin filaments. (C) ECM-integrin-
mediated force transmission to intermediate filaments is facilitated by binding of the β4-subunit and
plectin, whereas depletion of vimentin blocks β4-enhanced invasion. In addition, binding of plectin
to the β4 subunit is responsible for recruitment to focal adhesions and cell spreading. (D) Simplified
scheme of vertical and horizontal crosstalk.

Two parameters contribute to the total number of proteins relevant to crosstalk: (1) the
number of relevant studies performed to date together with the number of database entries
for these studies, and (2) the total number of existing connections. First, we found that
some proteins that have already been characterized in detail with respect to the crosslinking
of different components of the cytoskeleton are not present in certain databases and this
could be considered as one of the main limitations using this approach. A perfect example
is the plakin protein plectin, which is known to crosslink FA, actin, and IF [41–44], but is not
yet present in actin and IF databases. Second, we can discuss the number of connections
that exist in terms of evolutionary age. Since IFs are by far the youngest cytoskeletal
structures [11], there was not enough time to evolve as many connections as there are
to MT and actin filaments. The same logic can be applied to “horizontal” links between
different filament types. We revealed 13 overlapping proteins between actin filaments
and MT and only 2 or 1 at the intersection of MT or actin datasets to IFs, respectively
(Figure 1). The role of IFs in signal transduction and mechanotransduction remains poorly
understood [45], and identification of new crosslinking proteins is expected in the future.
In any case, the number of proteins intersecting FAs and both MTs and actin is by far the
largest compared with other intersections. This is consistent with the important role of FAs
in cytoskeletal control.
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In summary, FAs communicate with the cytoskeleton through many different connec-
tions in a “vertical” manner. In contrast, fewer players have been identified for “horizontal”
crosstalk. Among these proteins, spectraplakins are by far the best characterized and stud-
ied. In addition, they may also act as “vertical” linkers by reaching out to FA. Dystonin is
pointed as the only protein that connects all elements of the cytoskeleton and FA, whereas
several other proteins have been found to be involved in the “triple” crosstalk. In the
second part of this study, we focus on the evolution of the multiple crosslinkers, with
particular attention to the spectraplakins and the “vertical” links. These analyses may help
us understand how and when specific hotspots of cytoskeletal crosstalk evolved.

2.2. Evolutionary Conservation of Cytoskeletal Crosstalk Proteins

To obtain a general overview on the evolution of the obtained crosstalk proteins,
we searched for the closest homologs in our organism dataset using human crosstalk
proteins as queries with the BLAST2GO tool. The results of this analysis revealed dynamic
evolutionary patterns within different cytoskeletal intersections (Figure 3). As expected,
most vertebrate proteins (from Rhinocodon typus to Homo sapiens, green rectangle) show a
high percentage of similarity to human homologs, while many corresponding homologs
show lower similarity to proteins from amoebae, unicellular opisthokonts, and fungi
(organisms in the purple rectangle, from T. trahens to Agaricus bisporus).

Actin and tubulin are considered to be present in the common ancestor of all life [11],
while the components of FA are found in the Amorphea clade, with Amoebozoa and Apu-
sozoa as the most distant animal relatives [17] (Supplementary Figure S2). Interestingly,
homologs of most proteins found at the intersection of actin and microtubules are missing
in more distant organisms, such as unicellular opisthokonts and early-branching Metazoa.
Contrary, intersections of MT or actin with evolutionary younger FAs show high conserva-
tion in half of the homologs in all organisms from our dataset (Figure 3). This may reflect
the important role of FAs in orchestrating cytoskeletal crosstalk that predates animal origins.
Finally, IFs are by far the youngest types of filaments that evolved from nuclear lamins and
are closely associated with animals divergence [46]. Few proteins are found at intersections
with IFs, and their overall homology with proteins of organisms other than Vertebrata
is low. However, the comparison of full-length proteins does not necessarily reflect the
function of the potential homolog in simpler organisms. It is likely that the conservation of
protein interaction domains does not exceed the significance threshold established in the
previous analysis because of the small size, despite the potential conservation of interaction
domains. Although high sequence homology is indicative of protein function, analysis of
specific domains and motifs involved in protein-protein interactions, in combination with
phylogenetic analysis, may provide more accurate answers to the evolution of cytoskeletal
crosstalk. The evolution of some crosstalk proteins and their domains that are important
for cytoskeletal filament binding, and whose role has been experimentally confirmed in
humans, is therefore reviewed and analysed in the following chapters.

2.3. Evolution of Horizontal Crosstalk Interaction Hot Spots

To understand the evolutionary relationships of the studied crosstalk proteins and
to track their abilities to interact with different components of the cytoskeleton, we have
analysed their orthologs in different Opisthokonta groups, as well as Amoebozoa as
an outgroup. Intersection analysis revealed dystonin, a giant protein that belongs to
the spectraplakin family, as the only protein found in all datasets, as mentioned earlier
(Figure 1). Clustering of all cytoskeletal proteins found in the database search grouped
all spectraplakins and plakins into a single cluster (Supplementary Figure S1, “spectrin”
cluster, Supplementary Table S1, Sheet 5). In addition, non-spectrin proteins such as filamin
and plastin are also part of this cluster, probably due to the presence of the calponin
homology (CH) domain. Using phylogenetic analyses and analyses of conserved domains,
we elucidated the early evolutionary history of spectraplakins (Figure 4).
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Figure 3. Evolutionary conservation of cytoskeletal crosstalk proteins. Heatmap representing percent-
age of homology for crosstalk proteins found at the crossing points of the microtubules (MT), focal
adhesions (FAs), intermediate filaments (IFs), and actin (ACT) in human cytoskeleton datasets. The
proteins found at the crossing points were classified according to their occurrence in the respective
datasets, and hierarchical clustering (Euclidean distance algorithm and average linkage method) was
performed for each group separately using the Morpheus online tool.
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Figure 4. Analysis of spectraplakin proteins and domains in animals, and its closest relatives.
(A) Phylogenetic relationship of different spectrin, spectraplakin, and GAS2 proteins. The phylogenetic
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tree was reconstructed based on concatenated CH, GAS2, SR1 and SR4 (or the last SR in spec-
trins, spectraplakins and SR-GAS fungal proteins) protein domains using a maximum likelihood
method. The numbers indicate SH-aLRT and UFBoot values (only >80 values are shown). Tree is
midpoint rooted. Schematic domain representation of corresponding proteins is designated on the
right: CH —calponin homology domain, PR—plectin repeat, SR—spectrin repeat, GAS2—growth
arrest specific 2 (Gas2)-related domain, SH3—Src-homology 3 domain. (B) GAS domain conserva-
tion. GAS domains from spectraplakins and GAS proteins belonging to phylogenetically distant
organisms were extracted using InterProScan and aligned. β plates 3, 4, and 5 indicate MT inter-
acting site. (C) SH3 (Src-homology 3) motif conservation in spectrin and spectraplakin proteins.
Alignment of SH3 motifs from spectraplakin and spectrin proteins were identified by InterProScan.
Putative interacting sites are designated with red arrows. Red boxes indicate change from spec-
trin aromatic residues to smaller side-chain amino acids. Overall conservation is indicated below
alignment, (B,C) 0→* increasing amino acid (aa) residues conservation, * = aa residues in all se-
quences are conserved. (D) Plectin repeat domain (PR) was identified by InterProScan in human
spectraplakins/plakins and different Protostomian spectraplakins. Identification of conserved re-
peated motifs was obtained by MEME suite. (E) Proposed evolutionary scenario of spectraplakins
and their domains and other related proteins.

The members of spectraplakin family are known to be important players in cytoskeletal
crosstalk. As described in Section 2.1 human spectraplakins are multidomain proteins
that comprise several interacting modules. The CH domain is normally located at the
N-terminal end of the protein and consists of two tandem subdomains, CH1 and CH2. This
domain is widely distributed in the different kingdoms of life. In Amorphea, actinin alpha
is the simplest member of the group harbouring both CH domains, whereas giant and
multidomain spectraplakins are advanced integrators of the cytoskeleton. Actinin alpha
is considered the ancestral form of spectrin-based proteins [47,48]. Actinin itself probably
evolved from the protein-containing CH domain and a spectrin-like repeat [49].

The spectrin repeat (SR) is the second feature of spectraplakins and consists of approx-
imately 100–115 amino acids that can form three α-helices. The spectrin motif is also an
ancient evolutionary invention [50], and we detected it outside of Amorphea; however, it is
usually present as a single domain outside of this clade. Ancestral actinin probably had
two spectrin repeats, corresponding to SR1 and SR4 in modern actinin alpha [51]. Spectrin
proteins evolved from an actinin ancestor through multiple intragenic duplications of
spectrin repeats and serve as crosslinking molecules between actin filaments and integral
membrane proteins [52]. Previous studies have shown that SR1 of actinin corresponds to
SR1 in spectrin beta, whereas the last SR in spectrin alpha corresponds to SR4 of actinin,
indicating a split in ancestral spectrin [48]. We were unable to discover spectrin homologs
outside the Opisthokonta group using BLAST or SMART, HMMER, or InterPro-conserved
domain search. However, we have found highly conserved spectrin homologs in the plant
Rhodamnia argentea that were also experimentally characterized recently. Nevertheless, the
authors had no explanation for the presence of this protein in the single plant species [53].
Within the unicellular opisthokonts, both spectrin types, alpha and beta were previously
identified in the Choanoflagellata Monosiga brevicolis [52]. In addition, we have found both
spectrins in another Choanoflagellata, Salpingoeca rosetta. Phylogenetic analysis placed all
analysed spectrins in a strongly supported clade (Figure 4A), together with actinins alpha,
confirming previous studies on the phylogenetic relationships of these two proteins.

In the C-terminal region of spectraplakins, two autonomous domains can be identified,
EF hand (EF1-EF2) and GAS2. GAS2 alone is sufficient for microtubule binding and
likely enhances EF1-EF2-MT engagement [54]. While the EF hand is found in many
Ca2+-binding proteins throughout the kingdom of life [55], the GAS2 domain is more
common in unicellular opisthokonts, Fungi, and Amoebozoa. However, we also found this
domain outside the Amorphea clade, namely in the Alveolata species Stylonychia lemnae. In
the phylogenetically distant Amorphea, such as Amoebozoa, Fungi or Choanoflagellata
(Figure 4A), the GAS2 domain is usually found in combination with the CH domain
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(Figure 4A), similar to the human G2L1 and G2L2 proteins [29], and it probably has
the same function in connecting actin filaments to microtubules. The conserved region
spanning the β3-β5 sheets is involved in GAS2-microtubule binding [56]. This region is
highly conserved in diverse proteins from species as distant as unicellular premetazoans
and slime molds (Amoebozoa), indicating a conserved function in MT binding (Figure 4B).

In addition, both plakin and spectraplakin proteins possess a plakin domain that
characteristically contains up to nine spectrin repeats (SR1-SR9) and a Src-homology 3 (SH3)
domain in the middle [30]. Spectraplakin SH3 domain likely has common origins with the
SH3 domain from the spectrins (Figure 4C). Interestingly, in Choanoflagellata (M. brevicolis
and S.rosetta), the SH3 domain can be detected in both spectrin alpha and beta (Figure 4A,C).
Contrary, the SH3 motif is present only in alpha version of human spectrin [57]. In spectrins
beta of early-branching Metazoa (Porifera, Cnidaria, and Placozoa), we did not identify
a SH3 domain, indicating a loss of this domain from a spectrin beta ancestor during
early animal evolution. The SH3 domain is commonly known to mediate protein-protein
interactions [58,59]. Recent work describes this domain as a mechanosensor that plays a
critical role in mechanotransduction at hemidesmosomes [58,59]. Spectrins bind to proline-
rich domains of other proteins via the SH3 motif [60]. The plakin domain is also known to
interact with various proteins [61–63]. However, it appears that the affinity of this domain
for proline-rich motifs is different [64]. In the spectraplakins, several important aromatic
residues are replaced by amino acids with smaller side chains. We analysed how this motif
is conserved in the plakin domains of protostomes and deuterostomes and compared it
to spectrin SH3 from unicellular opisthokonts (Figure 4C). It appears that the origins of
spectraplakins involve specific modifications of this SH3 motif from primordial spectrin
that are conserved from cnidarian to human spectraplakins.

In preliminary phylogenetic analysis homologs from Porifera and Placozoa (A. queens-
landica: A0A1X7V918 and T. adhaerens: B3S1H0), grouped with Eumetazoa spectraplakins
(not shown). However, they do not have all spectraplakin modules present in higher ani-
mals, missing CH plakin domains and a large proportion of spectrin repeats. Considering
the similar domains arrangement in the spectrins (CH-SR-EF), and the presence of the SH3
domain in both spectrins and spectraplakins, we can speculate that these proteins are short-
ened versions of an ancestral protein-containing CH-SR-EF-GAS2 domain organisation.
A protein that can be considered true spectraplakin is found within Stylophora pystillata
(Cnidaria) proteome. This protein has plakin domain inserted between tandem spectrin
repeats, along with the CH domain at N-terminus and the GAS2 domain located at the C
terminus of the protein. Contrary, another Cnidaria species, Nematostella vectensis, possess
another “truncated” version of spectraplakin (Figure 4A).

The last common feature of spectraplakins, the plectin repeat domain (PR), is found in
the Deuterostomia spectraplakins and the plakins, and Protostomia spectraplakin homologs
(Figure 4A,D). The PR domain represents a new interaction hotspot in the evolution of
Metazoa as a binding site for the animal-specific coil-1 region of IF proteins [31,32]. The
single PR module is composed of 38 aminoacids tandemly repeated five times. Different
PR modules are connected by less-conserved linker sequences of variable lengths [65] and
form PR domains (Figure 4A). These modules are variously combined in different human
spectraplakins and plakins and their isoforms [32] and serve to bind to different types of
IF proteins. For example, human plectin has six PRs arranged in a specific manner. In
addition to PRs, the linker region downstream of PR5 is likely involved in the interaction
with IFs [66–68]. Mechanistically, the basic grooves of PRs and linkers fit into the coiled-coil
rods of IFs. Using various domain search tools, we were unable to detect this domain
outside of Eumetazoa. Within the Protostomia proteomes in our organism dataset, we
found PRs in the spectraplakins of Mollusca, Brachiopoda, Insecta, and Platyhelminthes.
As shown in Figure 4D, PRs can be identified by InterProScan but the architecture of the
PR domains significantly differs between analysed spectraplakin proteins, as shown by
MEME analysis, with PRs showing divergence in terms of number of repeated modules.
It seems that Protostomia spectraplakins have a large number of PR modules compared



Int. J. Mol. Sci. 2022, 23, 5594 11 of 23

to human dystonin (spectraplakin) and plectin (plakin) (Figure 4D). The overall sequence
homology with human PR is also low, about 20%. Interestingly, arthropods are known to
lack cytoplasmic IF proteins [69]. We found that Apis mellifera (honey bee) is one of the
Protostomia species that have PRs in their spectraplakin proteins. Considering convergent
IF evolution [13], it can be assumed that the PR regions in the spectraplakin proteins of
protostomes and especially insects have evolved to perform different functions or bind to
different interaction partners than in the spectraplakin and plakin proteins of Vertebrata.
Moreover, the divergence of the interacting PR sites of the vertebrate spectraplakin and
plakin proteins is likely associated with expansion of IFs within this group of organisms.

Finally, to elucidate phylogenetic relationships and ancestry of Vertebrata multidomain
spectraplakins and plakins, we analysed three spectraplakin and plakin family proteins
in humans (Supplementary Figure S3). Phylogenetic analyses show that the human-like
plakin is derived from the common ancestor of Tunicata and Vertebrata, probably from a
common spectraplakin ancestor. Duplication to human-like dystonin and MACF1 occurred
later, before the divergence of the Vertebrata. These proteins can effectively link different
cytoskeletal elements in a time- and cell-type- or tissue-specific manner. In summary, phy-
logenetic analysis suggests an early origin of spectraplakin-like proteins (Figure 4A,E) [57].
We found the CH domain in combination with GAS2 in Amoebozoa grouped with other
CH-GAS2 proteins, along with the human G2L1 protein (Figure 4A). Different CH-GAS2
proteins comprise a well-supported clade in the reconciliation phylogenetic tree. Moreover,
these proteins form a distinct group in the phylogenetic tree built based on the CH domain
only (Supplementary Figure S4). Actinins, spectrins and spectraplakins form another
well-supported group. Both actinins (CH-SR-EF), which are considered as precursors
of spectrin-based proteins [57], and CH-GAS2 proteins are found in Amoebozoa. This
indicates that these two types of cytoskeletal crosstalk proteins were already present in
the common ancestor of Amoebozoa and Opisthokonta (Figure 4E). Spectrins and spec-
traplakins share a common feature, the SH3 motif, which is not present in actinin, or
any of the other analysed proteins. It is likely that the common ancestor of spectrin and
spectraplakin containing CH-SR-EF modules acquired SH3 motif before their evolutionary
split. This divergence probably occurred during early evolution of opisthokonts and is
supported by the presence of both spectrin alpha and beta in Choanoflagellata. Precisely,
ancestral spectrin containing all these modules (CH-SR-EF) was ancestor of spectraplakins
and later it was split to spectrin alpha and beta. As another line of evidence, we have found
the different intermediate forms of CH/SR/GAS2 containing proteins in Fungi (Figure 4A).
In a most simple scenario, we speculate that GAS2 could be acquired to the spectraplakin
progenitor after divergence from spectrins (Figure 4E) and this places the divergence of
the spectraplakin ancestor from the spectrin ancestor at least at the base of Opisthokonta
evolution before emergence of Fungi. There are also other possible scenarios; however,
based on our phylogenetic analysis they are more unlikely and complex (they involve more
events of domain loss and/or gain) and will not be discussed here in more detail.

Taking all this into account, spectraplakins were present at the base of Metazoa evolu-
tion, with almost all the basic modules evolved much earlier and arose from primordial
actinin. Specific changes in the SH3 motif and the multiplication of the spectrin repeat
modules specific to the spectraplakin proteins can be detected in early metazoans, as shown
by the presence of the plakin domain in Cnidaria. However, several lines of evidence
indicate much earlier emergence of ancestral spectraplakins, at the base of Opisthokonta
evolution. Finally, the PR module originated as a hotspot for interaction with IFs in early
Bilateria. The specific arrangement of spectraplakin modules suggests the evolution of new,
more complicated functions of these proteins, which likely provided a new plethora of
interaction partners and ways to regulate cytoskeletal crosstalk in animals.

2.4. Dataset Analysis Revealed MISP as a New Player in Human Cytoskeletal Crosstalk

Among obtained proteins found at the intersections, five proteins emerged as players
in interaction between focal adhesions, microtubules, and actin filaments: FAK, RAC1,
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septin 9, MISP, and ezrin. Homologs to some of these proteins were previously found in dis-
tantly related organisms. Based on these studies, we conclude a likely evolutionary origin of
the specific protein found in the triple intersection in our study (Figure 5A). Rac1 was iden-
tified in Amoebozoa [70], and is highly conserved with 91% sequence identity to human
RAC1. Direct FAK and septin homologs have been found in unicellular opisthokonts [71].
In addition, septins are known to be involved in many cellular processes in Fungi and
Metazoa [72]. In contrast, ezrin appears to be specific to vertebrates. However, ERM family
paralogs are highly conserved among themselves (about 75% sequence identity in human
ERM proteins) and the ERM domain itself also originates in unicellular opisthokonts [17].
This suggests that early ERM domain proteins likely serve similar functions and have simi-
lar interaction partners as human ezrin. Finally, MISP appears to be specific to vertebrates.
Previously, MISP was identified as homolog to proteins of AKAP family [73]. In addition,
vertebrates possess another MISP homolog, named MISP3. Human MISP and AKAP2
share a conserved C-terminal domain (Figure 5B). However, these proteins are poorly
characterized, especially with respect to the binding domains. Interestingly, the human
MISP protein is only 62% identical to the mouse and porcine proteins. BLAST hits obtained
using human MISP as a search query did not return MISP homolog in Chondrichthyes R.
typus and C. milli, present in our organism dataset. However, when BLAST was performed
against all Chondrichthyes, direct MISP homologs were found in two species (Scyliorhinus
canicula and Chiloscyllium punctatum), which was further confirmed by reciprocal BLAST,
suggesting that the MISP homolog was present at the base of Vertebrata evolution. Outside
Vertebrata, we detected homologs of AKAP2 only in Tunicata species. Distant homologs
have been observed previously [73]; however, they have low overall homology with human
proteins and generally with MISPs from Vertebrata.
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To better understand their evolutionary relationships, we constructed a maximum
likelihood tree (ML) with the Vertebrata orthologs of AKAP2 and MISP proteins (Figure 5B).
Multiple motifs and repeats are shared by these proteins and are even occasionally found
in invertebrate homologs [73]. Because we found MISPs at intersection of different compo-
nents of the cytoskeleton, we can assume that they have multiple motifs for binding to other
proteins or complexes involved in triple crosstalk. However, further experimental studies
are required to determine MISP-interacting amino acid residues. In general, the MISP
proteins appear to be specific, rapidly evolving proteins of the Vertebrata whose role in the
complexes that maintain the triple crosstalk of the cytoskeleton remains undiscovered.

2.5. The Evolution of Signal Transduction to Microtubules through CMSC and the KANK-KIF21
Axis Revealed Its Origin in Metazoa

Processes such as the evolution of movement (flagella and cilia in unicellular organ-
isms) and the development of multicellularity, differentiation, and complex movements,
as well as the precise segregation of large amounts of genetic information, make the evo-
lution of the cytoskeleton one of the prerequisites for the emergence of highly complex
genomes [74]. Therefore, communication between cytoskeletal filaments is one of the
key topics for understanding the above functions. Among the proteins linking MTs and
FAs, we found many proteins belonging to the cortical microtubule stabilisation complex
(CMSC) (Supplementary Table S1, Sheet 8). These complexes are linked to FA via KANK
proteins [75]. KANK proteins are important regulators of the crosstalk between MTs and
FAs and as such represent good candidates for analysis of the evolution of the MT-FA axis.
In addition, previous studies have identified interaction motifs with both KIF21 at MT side
and talin at FA side. Both KANK1 and KANK2 can bind talin via the KN motif [75,76]
and KIF21A via the ankyrin domain [77]. Structural analysis by Bouchet et al. showed
that the KN domain of KANK1 binds to the talin rod domain R7 [76]. A single mutation
in talin abolishes the binding of KANK1, suggesting that the interaction between talin-1
and KANK1 plays an important role in the association processes between the outer rim of
FAs and MTs. At the C-terminus of the KANK protein, ANK repeats are responsible for
binding to KIF21A. KANK1 recruits KIF21A to control MT growth, while on the other hand,
KIF21A affects the translocation of KANK1 to the plasma membrane [77]. In addition to its
role as a cortical MT growth inhibitor, KIF21A contributes to the formation of overlapping
clusters that include PPFIA1 (liprin α1), PPFIBP1 (liprin β1), and PHLDB2 (also known as
LL5β) at the cell cortex [78]. MT localization at the cortical site is regulated by plus-end
tracking proteins such as CLASPs by forming a complex with ERC1 and PHLDB2, while
the N-terminus of liprin β1 has been shown to be responsible for binding to the KANK
proteins [79,80].

Because CMSC (and CMSC-related proteins) is one of the well-described cytoskeletal
crosstalk complexes studied to date, we analysed the evolution of CMSC protein com-
ponents, including interaction of KIF21A as a key player in MT-FA linkage by KANK
(Figure 6A, Supplementary Figures S5–S9). The presence of CMSC protein homologs
within different Amorphea groups is shown in Figure 6A. The search for homologs was
filtered to all species within each analysed group, while NCBI BLAST was performed to
check for the presence of homologs in other organisms not included in our dataset. Ob-
tained proteins were also checked by InterProScan. A direct homolog of the plus-end TIP
protein CLASP can be found in Amoebozoa, Apusozoa, and unicellular opisthokonts, but
the degree of homology is less than 20% (Figure 6A). Phylogenetic analysis (Supplementary
Figure S5) reveals divergent CLASP homologs in Protozoa (T. trahens and C. owczarzaki),
early-branching Metazoa, and Protostomia. The CLASP1 and CLASP2 paralogs of fishes
(cartilaginous and bony) and humans share a common origin, likely due to CLASP dupli-
cation at the base of vertebrate radiation. In humans, the CLASP protein interacts with
ERC1 and PHLDB2 through its C-terminal domain [80]. Despite the low overall homology,
the C-terminal domain of CLASP is highly conserved in distant organisms that lack ERC1
and PHLDB2 homologs (not shown). It is possible that this region is also important for
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interaction with some other proteins. In addition, a direct KIF21A homolog was identified
in unicellular opisthokonts. As shown in Supplementary Figure S6, the homolog from T.
trahens branches with human KIF4A, indicating that the origin of KIF21A is related to the
evolution of Opisthokonta. Overall, the CMSC complexes as found in humans, did not
evolve before the emergence of Metazoa (Figure 6A), contributing to the evolution of key
Metazoan features, such as multicellularity, movement, and tissue specialization.
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linkers. (A) Presence of cortical microtubule stabilisation complex (CMSC) component homologs
in different Amorphea groups. The search for homologs was performed as described in M&M, hits
obtained after initial BLAST search to human queries were reciprocally BLAST to verify the best
hits. A protein was marked as a partial homolog if the coverage was <40% compared to the human
protein, while in the case of KIF21A and KANK, conservation of known interaction motifs with
KANK and talin was used, respectively. (B) Conservation of KN motif in KANK (talin-binding),
residues involved in specific interactions with talin are marked with red line. (C) Conservation of
KBD (KANK-binding domain) in KIF21A, residues involved in specific interactions with KANK are
marked with red/blue arrows. (B,C) 0→* increasing amino acid (aa) residues conservation, * = aa
residues in all sequences are conserved. (D) Increase in complexity of CMSC components from
unicellular opisthokonts to Chordata. Although CMSC originate in the premetazoa, they gradually
acquire new components during animal evolution.

Direct homologs of ERC1, liprin and KANK, can also be identified in Porifera. All of
these proteins are present as single homologs in early-branching Metazoa, but with less
than 40% coverage to human proteins, indicating the absence of some domains (Figure 6A,
Supplementary Figures S7 and S8) [81]. Human KANK and liprin interact through their
N-terminal regions, while the N-terminus of ERC1 is linked to the liprin CC2 region
(aa 259–542) [79,82]. These domains in CMSC homologs of Porifera are at least partially
conserved. However, because no precise interacting motifs/residues are reported, we
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cannot discuss whether these interactions might be established in these simple animals.
The last examined CMSC protein, PHLDB2, has origins in Bilateria. According to our
phylogenetic analysis, the closest homolog from Cnidaria species S. pystillata is more
closely related to human KIF16B protein (Supplementary Figure S9). Thus, nearly all
CMSC components are present in all Bilateria, including APC protein, suggesting that these
complexes were completed before the divergence of Deuterostomia and Protostomia.

In a further step, we analyse in more detail the direct MT-FA axis via the KANK
proteins. KANK is known to bind to talin via the KN motif and to KIF21A via ANK repeats,
providing a direct link between MT and FA [76,77,83]. The major residues involved in talin
binding are PYG and LDLF patches within the KN motif [84]. Interestingly, despite the
presence of KANK homologs, we did not detect a conserved KN motif in Porifera and
other non-Bilateria animals (Figure 6A,B). In addition to running BLAST, we also scanned
the KANK homologs using InterProScan to search for KN motifs. We also searched our
local database using KN motif seed and Leitmotif server. Of the 28 Metazoa (excluding
Craniata), we found the KN motif in the KANK protein in three of four Mollusca, two
Nematoda, three of six Arthropoda (all Insecta), and all four non-Craniata deuterostomes
proteins. It is likely that this motif originated in the basal Bilateria but has been lost in some
lineages. In any case, “KANK” homologs lacking the KN motif probably cannot bind talin
in the manner described in the literature, resulting in their inability to connect FAs to MTs.
On the other hand, the R7R8 domain of talin is mostly conserved (not shown) to the most
distant organisms in our data set, indicating the importance of this region as a common
binding hub.

We also analysed the other side of this axis, the linkage between KIF21 and KANK.
KIF21A homologs are present in all groups studied except Amoebozoa and Apusozoa
(Figure 6A, Supplementary Figure S6). The structure of KIF21A with KANK via KANK1-
binding peptide domain (KBD) was resolved, showing that two short α-helices in the
KIF21A KBD peptide occupy the groove formed by the capping domain and the first ANK
repeat of KANK1 [83]. Although KIF21A homologs can be found in Fungi and unicellular
opisthokonts, its binding partner KANK is absent. In Porifera, the KIF21A homolog has a
partially conserved KBD-like domain, with residues involved in the hydrophilic interaction
with the ANK repeat more conserved than amino acids involved in the hydrophobic
interaction (Figure 6C). Alignment of the ankyrin domain and comparison of the KIF21A
binding residues in KANK also show a high degree of conservation (Supplementary Figure
S10). This suggests a likely interaction between these two proteins in basic Metazoa.
However, further in-depth modelling and experimental analyses are needed to determine
whether the KANK protein from sponges can bind to KIF21A.

In Cnidaria, the KBD site is almost the same as that of the human KIF21A protein
(Figure 6C), as well as the interacting residues in the ankyrin domain of KANK (Supple-
mentary Figure S10), probably allowing mutual interaction. Finally, using CMSC as an
example, we have shown the gradual evolution of these cellular structures (Figure 6D),
which increase in complexity with the addition of new proteins and protein domains, and
can be traced from unicellular opisthokonts to complex animal forms. The interaction
between MTs and FAs via KANK or spectraplakins likely originated in the earliest animals.
However, given the number of proteins we have found at the interface of MTs and FAs,
the other proteins and complexes that perform crosstalk between these components of
the cytoskeleton should also be considered [85–87]. The nature and precise role of these
interactions remain to be characterized experimentally.

3. Conclusions

The aim of this study was to summarize the proteins important for cytoskeletal
crosstalk in humans and to explore the evolutionary background of the proteins found at
the intersections of the cytoskeletal datasets. The spectraplakin protein dystonin emerged
from the analysis as the only protein found in all datasets examined, consistent with previ-
ous work asserting the role of spectraplakin proteins in cytoskeletal crosstalk [27,28]. Based
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on our analysis, it appears that complete spectraplakin proteins, comprising the necessary
domains for interaction with all components of the cytoskeleton, arose first in Bilateria
(Figure 4E). However, the various spectraplakin modules came together much earlier, at
the onset of the evolution of Opisthokonta, and were able to communicate between micro-
tubules and actin filaments in these simple life forms. In comparison, the origins of vertical
crosstalk by CMSC complexes are associated with metazoan emergence (Figure 6D). How-
ever, considering the number of highly conserved homologs mediating crosstalk between
FAs and actin filaments or microtubules, which have not been studied in detail here, it is
probable that other vertical crosstalk mechanisms have a much earlier origin. In summary,
specific crosslinker domains or multiprotein complexes that contribute to cytoskeletal
crosstalk in animals have gradually increased in complexity from the base of metazoan
evolution, consistent with the evolution of more complex cell and tissue complexes.

Finally, five proteins emerged as possible players in crosstalk between FAs, MTs and
actin filaments: FAK, RAC1, ezrin, septin 9, and MISP. Here we propose the mechanism
that includes all proteins found at the intersections of three datasets (Figure 7). FAK has
been known to play the main role in cytoskeleton remodelling, participating in many pro-
cesses including the regulation of Rho-family GTPases (CDC42, and RAC1) [36]. Another
member of cytoskeletal proteins with GTP-ase activity, septin 9 has been shown to regulate
cytoskeletal processes through FAK/Src/paxillin signalling pathway [71]. In addition,
knockdown of septin 9 decreases the levels of CDC42, RhoA, and RAC, which are impor-
tant members in the activation of IQGAP, a scaffold protein found at the intersection of FAs
and MTs that plays a key role in regulating cell motility processes. Ezrin, another protein
detected at the intersections of FAs, MTs, and actin filaments, directly binds IQGAP and
affects its cortical localization [88]. In addition, Vodicska et al. showed that MISP interacts
directly with terminal part of IQGAP, enabling the binding of MISP to CDC42 through
IQGAP [89]. They also showed that MISP knockdown promotes cortical accumulation of
IQGAP, and IQGAP mediated CDC42 deactivation. IQGAP is responsible for the capturing
of the astral MTs to the cell cortex, in collaboration with CLIP1 (also known as Clip-170) or
APC. Activated CDC42 and RAC1 are key regulators of cell polarization that orchestrate
the crosstalk between actin and MTs by activating IQGAP, through formation of a ternary
complex with APC. When bound together, this complex possesses the ability to bind CLIP1,
attaching to the plus-end of the microtubules via its interaction with EB proteins [90–92].
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In summary, we have shown the importance of the evolutionary studies of the cy-
toskeletal crosstalk to elucidate the development of complex interfilamentary mechanisms
and interactions that likely contributed to the development of motility and tissue spe-
cialization. However, this study represents the first insight into the evolution of general
cytoskeleton crosstalk. Further bioinformatic and experimental studies are needed to un-
cover signal transduction through cytoskeletal filament associations with focal adhesions.

4. Methods
4.1. Protein Dataset Assessment—Updating a List of Proteins Belonging to Human Cytoskeleton

The list of proteins linking integrin-related adhesion complexes (IACs) to intermediate
filaments, microtubules, and the actin cytoskeleton is described in Supplementary Table S1
(Sheets 1–4). The preliminary dataset containing the list of proteins (Supplementary Table S1)
was defined using the online gene ontology tool QuickGO [93]. When using an interactive
search tool for genes and gene products, the following conditions were set: (a) taxon: Homo
sapiens (9606); (b) gene products: proteins; (c) references: any Pubmed; (d) evidence: ex-
perimental evidence used in manual assertion (ECO:0000269), including its Child terms.
Furthermore, the following GO terms were used: “actin cytoskeleton (GO:0015629)”, “mi-
crotubule cytoskeleton (GO:0015630)”, “intermediate filament cytoskeleton (GO:0045111)”,
and “focal adhesion (GO:0005925)”. QuickGO database was assessed in November 2021 to
retrieve human cytoskeletal proteins. Furthermore, obtained datasets were curated accord-
ing to the published datasets. Briefly, the Intermediate filament dataset is expanded with the
proteins from the Human Intermediate Filament database [94]. The microtubule dataset is
enriched by proteins curated in the literature [10,95,96]. In addition to the QuickGO dataset,
the FA list is defined by adding the proteins from the literature curated dataset [97] and
the consensus adhesome proteins [98]. In addition, recent datasets obtained on long-term
cultured cells were compared with the meta-adhesome [98], while the matched proteins
were added to the focal adhesion dataset [97–100]. Overall, the dataset contains the proteins
responsible for integrin-mediated signalling and focal adhesions to microtubules, actin
filaments, and intermediate filaments. The intersections of the generated protein datasets
were performed using the Venn diagram online tool Venny (2.1.0 software version) [101].

4.2. Clustering of Human Cytoskeleton Proteins

Cluster Analysis of Sequences (CLANS) has been used to identify groups of proteins
within the human cytoskeleton. CLANS is a Java utility based on the Fruchterman-Reingold
graph layout algorithm [102]. It runs BLAST on given sequences, all against all, and clusters
them in a 3D space according to their similarity. Thus, all retrieved proteins are clustered
into groups based on sequence similarities. A 2D representation was obtained by randomly
distributing sequences in an arbitrary distance space. Groups were determined using the
in-tool option network clustering (10, true, true) (Supplementary Table S1, Sheet 5).

4.3. Model Organism Dataset

To investigate the evolutionary development of cytoskeletal crosslinking complexes,
taxa belonging to the supergroup Amorphea (formerly known as Unikonts) were included
in the organism dataset. These include Metazoa (animals) and their closest relatives: fungi
and protists, which also belong to Opisthokonta clade, and Apusozoa and Amoebozoa
as the closest sister groups [103]. Furthermore, NCBI taxonomy was used as the basis
for species relationships [104]. Species were selected using datasets from previous stud-
ies [105,106]. In the final dataset, metazoan taxa were represented with at least 1 species
for each class; several protists (1 Choanoflagellatea, 1 Filasterea, 1 Ichthyosporea, and
Corallochytrium), 3 fungal species, T. trahens (Apusozoa), and Dyctyostelium discoideum
(Amoebozoa) (Supplementary Table S1, Sheet 9). When necessary for the construction
of the phylogenetic trees, protein sequences from additional organisms are added to the
dataset. The taxonomic structure describing the final dataset is shown in Supplementary
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Table S1 (Sheet 9) and Supplementary Figure S2, and is based on the topologies used by the
NCBI Taxonomy database [107] and the Tree of Life project [108,109].

4.4. Data Collection

Local BLAST proteome databases were created using the Blast2GO tool, version
5.2.5 [110]. This database, created from representative proteomes, was then used to search
for protein homologs, using human proteins as queries. For the simplification of the analysis
only canonical isoforms were used in this study. The following parameters were used in
the analysis: Blast expectation value less than 1 × 10−5, High scoring segment pair length
cutoff = 33. Positive hits were matched to the human database at BLAST to determine if the
obtained protein was the best match to the human query protein (Supplementary Table S1,
Sheet 8). Hierarchical clustering (Euclidean distance; Linkage method: average) between
proteins within each cut group was performed separately using Morpheus software [111].

4.5. Identification and Analysis of Protein Conserved Domains

Proteins were scanned using InterProScan, version 5.55–88.0, within InterPro to de-
termine functional domains [112,113]. HMMER, version 3.3.2 [114], or Leitmotif server,
version 2.0 [115] were used to search for “hidden homologs” that were not detected using
BLAST. For this purpose of Leitmotif scan, seed motifs were built based on multiple se-
quence alignments (MSAs), conserved domains previously described in the literature, and
InterProScan results. These motifs were then used to search our local proteome database
using default parameters. Hits with scores > 0 were considered significant. SMART ver-
sion 9 [116] and CDD search, version 3.19 [117] were used for further domain architecture
analysis. Motif enrichment analysis was performed with MEME Suite [118].

4.6. Phylogenetic Analysis

Multiple sequence alignments were created using the MAFFT tool, version 7 [119].
Jalview, version: 2.11.2.0 w used for MSA analysis and manual editing [120]. Additionally,
Gblocks server was used for the removal of variable regions within MSA [121]. All MSA
are available upon request.

Phylogenetic trees were constructed using the maximum likelihood method in PhyML
3.0 [122]. aLRT values (approximate likelihood ratio test) were used to infer branch support.
The aLRT values above 0.7 were indicated on the phylogenetic trees. For the phylogenetic
analysis of spectraplakins (Figure 4A) four domains (CH, GAS2, SR1 and last SR in ac-
tinins, spectrins, spectraplakins, and fungal SR-GAS2 proteins) were separately aligned
using MAFFT or ClustalW implemented in Geneious® 9.1.8 and concatenated into one
alignment [123]. Maximum-likelihood (ML) phylogenetic analysis was performed using
iqtree version 2.0 [124]. The best-fit model for each individual alignment was selected
using ModelFinder [125] and the branch supports were assessed with ultrafast bootstrap
approximation [126] and SH-like approximate likelihood ratio test [122].

FigTree software, version 1.4.4, was used for statistical analysis and graphical repre-
sentation of the results. PhyloT, version 2, was used to create phylogenetic trees of the
species [127].
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