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Abstract: Negative-stranded RNA viruses (NSVs) are important human pathogens, including emerg-
ing and reemerging viruses that cause respiratory, hemorrhagic and other severe illnesses. Vaccine
design traditionally relies on the viral surface glycoproteins. However, surface glycoproteins rarely
elicit effective long-term immunity due to high variability. Therefore, an alternative approach is to
include conserved structural proteins such as nucleoprotein (NP). NP is engaged in myriad processes
in the viral life cycle: coating and protection of viral RNA, regulation of transcription/replication pro-
cesses and induction of immunosuppression of the host. A broad heterosubtypic T-cellular protection
was ascribed very early to this protein. In contrast, the understanding of the humoral immunity to NP
is very limited in spite of the high titer of non-neutralizing NP-specific antibodies raised upon natural
infection or immunization. In this review, the data with important implications for the understanding
of the role of NP in the immune response to human NSVs are revisited. Major implications of the
elicited T-cell immune responses to NP are evaluated, and the possible multiple mechanisms of the
neglected humoral response to NP are discussed. The intention of this review is to remind that NP is
a very promising target for the development of future vaccines.

Keywords: negative-stranded RNA viruses; nucleoprotein; T-cell immune response; B-cell immune
response; vaccines

1. Introduction

Human negative-stranded RNA viruses (NSV) comprise nine viral families: Paramyx-
oviridae (measles virus, mumps virus and human parainfluenza viruses); Pneumoviridae
(respiratory syncytial virus and human metapneumovirus); Rhabdoviridae (rabies virus);
Filoviridae (Ebola and Marburg viruses); Bornaviridae (Borna disease viruses); Orthomyxoviri-
dae (influenza viruses types A, B and C); Bunyaviridae (Rift valley fever virus); Hantaviridae
(e.g., Puumala and Sin Nombre viruses) and Arenaviridae (Lassa virus and lymphocytic
choriomeningitis virus (LCMV)). The genomes of NSVs consist of either non-segmented (ns)
or segmented (s) single-stranded RNA. The former are members of the families Paramyxoviri-
dae, Pneumoviridae, Rhabdoviridae, Bornaviridae and Filoviridae, while the later are members
of families Orthomyxoviridae, Bunyaviridae, Hantaviridae and Arenaviridae (Figure 1). NSVs
with a segmented genome have six to eight (Orthomyxoviridae), three (Bunyaviridae and
Hantaviridae) or two (Arenaviridae) genome segments packed in a viral particle.
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Figure 1. Basic schematic representation of the virion structures of the negative-stranded RNA 
viruses. Structural proteins are shown. Some genera-specific proteins are omitted from the 
representation for simplicity (created with BioRender.com, accessed on 21 December 2021). 

The size of the genome varies between approximately 8.9 kb for Borna disease virus 
and 19 kb for Ebola virus. The viral genome is tightly associated with multiple copies of 
nucleoprotein (NP)/nucleocapsid (N) protein, which form a highly ordered 
ribonucleocapsid (RNC) located inside the viral envelope. The viral envelope originates 
from the membrane of the previous host cell. RNC protects the viral genome from 
degradation and serves as a template for transcription and replication. The vast majority 
of other NSV structural proteins form a cohort of proteins that exhibit high functional 
analogy. RNA-dependent RNA polymerase (RdRp) attached to the RNC is mostly 
encoded by a single large gene. The exception is Orthomyxoviridae, where RdRp is a 
complex of three viral proteins, namely PB1, PB2 and PA. Some of the NSVs require an 
additional protein (polymerase cofactor or phosphoprotein (P)) for viral transcription and 
translation that is also attached to the RNC. The inner side of the viral envelope is coated 
with the matrix (M) protein in all NSVs except bunyaviruses. Glycoproteins protruding 
as spikes through the envelope are usually present in a multimer form (di-, tri-, tetra- or 
pentamers) and are the key proteins for viral attachment to the host cell and fusion of the 
viral envelope to the host membrane, which enables the entry into the host cell. 

Upon entry of the virus into the new host cell, viral transcription initiates. This 
process is mediated by the orchestrated action of NP, RdRp and a cofactor/P. For the non-
segmented NSVs, the viral proteins are expressed, sequentially generating an mRNA 
abundance gradient (Figure 2). This means that the mRNA of genes proximal to 3′ end of 
the genome will be produced in larger quantities than those located distally from the 3′ 
end [1,2]. In segmented NSVs, each genomic RNA segment contains a distinct 
transcription/replication complex (Figure 1). Arenaviruses have evolved a slightly 
different strategy than the rest of the NSVs. They use an ambisense coding strategy, and 
each of the two genomic segments directs the synthesis of two polypeptides in opposite 
orientations [3]. The replication of NSVs is a two-step process, since the genome cannot 
serve as a template for the synthesis of the new genome because of the same polarity. 
Thus, the replication starts with a generation of an intermediate antigenome, a full-length, 
faithful, positive-sense copy of the genome, and then a new genome is produced using 
the antigenome as the template. 

Figure 1. Basic schematic representation of the virion structures of the negative-stranded RNA viruses.
Structural proteins are shown. Some genera-specific proteins are omitted from the representation for
simplicity (created with BioRender.com, accessed on 21 December 2021).

The size of the genome varies between approximately 8.9 kb for Borna disease virus
and 19 kb for Ebola virus. The viral genome is tightly associated with multiple copies of nu-
cleoprotein (NP)/nucleocapsid (N) protein, which form a highly ordered ribonucleocapsid
(RNC) located inside the viral envelope. The viral envelope originates from the membrane
of the previous host cell. RNC protects the viral genome from degradation and serves as
a template for transcription and replication. The vast majority of other NSV structural
proteins form a cohort of proteins that exhibit high functional analogy. RNA-dependent
RNA polymerase (RdRp) attached to the RNC is mostly encoded by a single large gene.
The exception is Orthomyxoviridae, where RdRp is a complex of three viral proteins, namely
PB1, PB2 and PA. Some of the NSVs require an additional protein (polymerase cofactor
or phosphoprotein (P)) for viral transcription and translation that is also attached to the
RNC. The inner side of the viral envelope is coated with the matrix (M) protein in all NSVs
except bunyaviruses. Glycoproteins protruding as spikes through the envelope are usually
present in a multimer form (di-, tri-, tetra- or pentamers) and are the key proteins for viral
attachment to the host cell and fusion of the viral envelope to the host membrane, which
enables the entry into the host cell.

Upon entry of the virus into the new host cell, viral transcription initiates. This process
is mediated by the orchestrated action of NP, RdRp and a cofactor/P. For the non-segmented
NSVs, the viral proteins are expressed, sequentially generating an mRNA abundance
gradient (Figure 2). This means that the mRNA of genes proximal to 3′ end of the genome
will be produced in larger quantities than those located distally from the 3′ end [1,2]. In
segmented NSVs, each genomic RNA segment contains a distinct transcription/replication
complex (Figure 1). Arenaviruses have evolved a slightly different strategy than the rest of
the NSVs. They use an ambisense coding strategy, and each of the two genomic segments
directs the synthesis of two polypeptides in opposite orientations [3]. The replication of
NSVs is a two-step process, since the genome cannot serve as a template for the synthesis of
the new genome because of the same polarity. Thus, the replication starts with a generation
of an intermediate antigenome, a full-length, faithful, positive-sense copy of the genome,
and then a new genome is produced using the antigenome as the template.

BioRender.com


Viruses 2022, 14, 521 3 of 37

Viruses 2022, 14, x FOR PEER REVIEW 3 of 37 
 

 

 
Figure 2. Schematic presentation of the transcription and translation processes with the RNA 
abundance gradient. 

NSVs globally cause a large number of infections, with symptoms ranging from a 
mild infection to life-threatening illness. Some of the world’s most prevalent respiratory 
diseases are caused by infection with NSVs such as influenza virus, respiratory syncytial 
virus (RSV) and human parainfluenza viruses (HPIV) types 1–4. In addition to respiratory 
symptoms, some NSVs can cause severe conditions such as lethal hemorrhagic fever 
(Ebola and Marburg viruses [4,5], bunyaviruses [6,7], hantaviruses [8] and arenaviruses 
(reviewed in Reference [9])) or manifest neuroinvasive potential, causing meningitis; 
encephalitis; myelitis and radiculopathy (measles virus, mumps viruses, rabies virus, 
arenaviruses [10], bornavirus (reviewed in Reference [11]), Rift valley fever virus [6,7] and 
arenaviruses [9]). While some of the NSVs inhabit exclusively humans (e.g., mumps and 
measles viruses), the others are zoonotic viruses (rabies virus, Ebola and Marburg viruses, 
Borna disease viruses, hantaviruses, Nipah virus and others) that use species other than 
humans as animal reservoirs and vectors (e.g., arthropods, bats and rodents) and 
occasionally infect humans upon transmission from the animal reservoir. Viruses causing 
zoonoses are far less contagious, because they do not have a strong capacity to spread 
from one human to another. Nevertheless, very often, zoonotic viruses cause severe illness 
and, consequently, have a high mortality rate. Zoonotic properties of the influenza virus 
stand out from other zoonotic NSVs, because the influenza virus not only has a high 
mutation rate (referred to as a genetic drift) but, also, the genome segments may reassort 
if two or more different influenza viruses coinfect the same organism (referred to as a 
genetic shift). These genetic modifications and changes can lead to adaptation of the new 
viral variant to a new host range and cause interspecies transmission (reviewed in 
Reference [12]). It has been shown that these events caused influenza pandemics in the 
20th century [12,13]. Altogether, the NSVs have a global impact on health and economy, 
especially because they pose a continuous threat for outbreaks, epidemics and pandemics. 

The therapeutic options against NSVs are limited, including vaccination as the most 
cost-effective strategy to reduce the mortality and morbidity caused by viral infections. A 
traditional vaccine approach has succeeded for measles and mumps viruses, so there are 
several effective live attenuated measles and mumps vaccines approved that are usually 
applied as a trivalent vaccine against measles, mumps and rubella. They were developed 
from wild-type isolates mostly in the 1960s [14–18] and have been in use for more than 
half a century. Meanwhile, pathogen evolution has continued generating new variants 
under the influence of vaccine-driven evolutionary pressure, and while measles and 
rubella vaccines seem to resist the evolutionary pressure, the mumps vaccine shows signs 

Figure 2. Schematic presentation of the transcription and translation processes with the RNA abun-
dance gradient.

NSVs globally cause a large number of infections, with symptoms ranging from a
mild infection to life-threatening illness. Some of the world’s most prevalent respiratory
diseases are caused by infection with NSVs such as influenza virus, respiratory syncytial
virus (RSV) and human parainfluenza viruses (HPIV) types 1–4. In addition to respiratory
symptoms, some NSVs can cause severe conditions such as lethal hemorrhagic fever (Ebola
and Marburg viruses [4,5], bunyaviruses [6,7], hantaviruses [8] and arenaviruses (reviewed
in Reference [9])) or manifest neuroinvasive potential, causing meningitis; encephalitis;
myelitis and radiculopathy (measles virus, mumps viruses, rabies virus, arenaviruses [10],
bornavirus (reviewed in Reference [11]), Rift valley fever virus [6,7] and arenaviruses [9]).
While some of the NSVs inhabit exclusively humans (e.g., mumps and measles viruses),
the others are zoonotic viruses (rabies virus, Ebola and Marburg viruses, Borna disease
viruses, hantaviruses, Nipah virus and others) that use species other than humans as
animal reservoirs and vectors (e.g., arthropods, bats and rodents) and occasionally infect
humans upon transmission from the animal reservoir. Viruses causing zoonoses are far
less contagious, because they do not have a strong capacity to spread from one human to
another. Nevertheless, very often, zoonotic viruses cause severe illness and, consequently,
have a high mortality rate. Zoonotic properties of the influenza virus stand out from other
zoonotic NSVs, because the influenza virus not only has a high mutation rate (referred to
as a genetic drift) but, also, the genome segments may reassort if two or more different
influenza viruses coinfect the same organism (referred to as a genetic shift). These genetic
modifications and changes can lead to adaptation of the new viral variant to a new host
range and cause interspecies transmission (reviewed in Reference [12]). It has been shown
that these events caused influenza pandemics in the 20th century [12,13]. Altogether,
the NSVs have a global impact on health and economy, especially because they pose a
continuous threat for outbreaks, epidemics and pandemics.

The therapeutic options against NSVs are limited, including vaccination as the most
cost-effective strategy to reduce the mortality and morbidity caused by viral infections. A
traditional vaccine approach has succeeded for measles and mumps viruses, so there are
several effective live attenuated measles and mumps vaccines approved that are usually
applied as a trivalent vaccine against measles, mumps and rubella. They were developed
from wild-type isolates mostly in the 1960s [14–18] and have been in use for more than
half a century. Meanwhile, pathogen evolution has continued generating new variants
under the influence of vaccine-driven evolutionary pressure, and while measles and rubella
vaccines seem to resist the evolutionary pressure, the mumps vaccine shows signs of failure.
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Despite the remarkable public health success of the mumps vaccine, evidence of virus
escape from vaccine-induce immunity is piling up [19–27], suggesting that a new vaccine
with better-matched epitopes or a different strategy might be needed soon. Although there
were numerous trials to make a universal influenza vaccine (reviewed in Reference [28]),
most influenza vaccines approved today still contain the inactivated virus, its subunits or
purified hemagglutinin and neuraminidase of four influenza viruses (subtypes H1N1 and
H3N2 of type A and lineages Victoria and Yamagata of type B) [29]. In contrast to measles
and mumps vaccines, the influenza vaccine needs to be reformulated each season due to
the genetic changes in the circulating influenza viruses [30]. Unfortunately, most efforts to
make an effective human vaccine or treatment against other NSVs have been futile so far.
Therefore, it is important to further analyze the pathogenesis of the NSVs and identify new
potential viral targets for either effective vaccines or other drugs.

The development of new vaccines has been mostly focused on the importance of viral
surface glycoproteins, because they are able to induce neutralization antibodies, which are
considered to be the key determinants of vaccine-induced protective immunity. However, in
viruses such as RSV, the antibodies to surface glycoproteins do not appear to be protective.
Furthermore, viral surface glycoproteins have a high tendency to change their epitopes
under selective pressure, and more conserved targets for the immune system are desired.
NP is such a target, and the more we know about this protein, there is more and more
evidence that this protein is much more than a structural “brick” hiding and protecting
viral RNAs, both functionally and immunologically.

2. Structure and Function of NP
2.1. Genetic Stability of NP

The gene encoding NP is located at the 3′ end of the genome. Since NSVs have mRNA
an abundance gradient (as mentioned above, Figure 2), NP is the most abundant viral
protein in infected cells. The size of this protein varies between different NSVs and is in the
range between 245 amino acids (aa) for Rift valley fever virus and 739 aa for Ebola virus.
NP is highly conserved at the intraspecies level. A comparative analysis of 34 influenza
NPs of viruses isolated from 1933 to 1990 showed that the average rate of amino acid
substitutions is one amino acid every 6.6 amino acids [31]. A comparative analysis of all
HPIV2 complete genomes from GenBank [32] also showed a high degree of similarity for
NP genes (91.6%), as well as for proteins (93.4%). Both studies revealed that amino acid
substitutions are not evenly distributed. The N-terminal part of NP is far more conserved
(one aa substitution every 8.9 amino acids [31]), while the C-terminal part is prone to
mutations (one amino acid substitution every 5.4 amino acid [31]). Further confirmation of
the genetic stability and an uneven distribution of amino acid substitutions can be seen in
Figure 3 for the mumps virus. The N-terminal part and central domain of mumps virus
NP (aa 1–420) are highly conserved regions with only 16.1% substitutions in these regions,
while the rest of the proteins, including the C-terminal N-tail (aa 420–549), is remarkably
variable, with 83.9% substitutions found in this region only. As will be discussed in the
next section on NP structure, the N-terminal domain of the NP is engaged in NP–RNA
interactions and is densely packed. Thus, this region is neither exposed to the factors that
would drive NP evolution nor can mutations be tolerated, as this might lead to a loss of
viral fitness. In contrast, the C-terminal part does not participate in the NP–RNA complex
and is a free N-tail domain. In this way, the N-tail domain is easily accessible to host factors
such as enzymes and antibodies, which may generate a selective pressure and, finally, lead
to increased variability. A limited NP conservation was also observed at the interspecies
level in some members of the Paramyxoviridae and Pneumoviridae families. Cross-reactivity
was tested with large panels of monoclonal antibodies against NP of the mumps virus,
HPIV types 1–4, Sendai virus and Newcastle disease virus [33–35]. These studies show that
the mumps virus and human parainfluenza virus types 2 and 4 are antigenically related
viruses sharing some NP antigenically conserved sites. An antigenic similarity was also
observed for NP of pneumoviruses RSV and HMPV [36]. Recombinant NP and whole
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virus lysates were reciprocally reactive with antisera prepared against either RSV or HMPV.
Interestingly, a common immunoreactive site was found in the N–terminal region, aa 1–31.
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Given the genetic stability of this protein, the attribute of a highly conserved protein
paved the way for NP as a relevant biopharmaceutical.

2.2. Architecture of NP and Structural Organization of NP–RNA Complex

Since NP represents a potential antiviral target, a great amount of work was directed
to gain more knowledge about the NP structure, the mechanisms of RNA binding, multi-
merization and RNC formation. NSVs pack their genome into RNC, a helical RNA–NP
complex. The RNC is packed into virions. NP plays a key role in such an organized packing
of the viral genome. Since the details of the NP structure and RNC assembly are beyond
the scope of this review and comprehensive reviews have recently been published [37–40],
only the basics will be presented and discussed, with a focus on those aspects especially
related to further reading of this text.

New knowledge about the NP and RNC structures was first described for Bornaviridae,
Rhabdoviridae, Pneumoviridae and Paramyxoviridae, followed by NP studies of the Arenaviri-
dae, Bunyaviridae, Orthomyxoviridae, Hantaviridae and Filoviridae viral families [41]. The
general principles and architecture of NP and organization of the NP–RNA complex have
properties common to all NSVs, with some exceptions that may contradict this generalized
comparison. Although the amino acid sequence homology is absent and substructural
assemblies of NP monomers differ among different NSVs, related NSVs share highly
conserved characteristics of NP folding, the binding of NP to RNA, etc. NP of all NSVs
share the same domain organization. The NP protomer consists of two folded domains, a
N-terminal core domain (NTD) and a C-terminal core domain (CTD). Even though there is
a very low similarity in the primary sequence, all nsNSVs share a similar topology, having
the RNA-binding site in between the NTD and CTD lobes, which form “jaws” that clamp
the viral genomic/antigenomic RNA strand.

The main difference in the RNC between nsNSVs and sNSVs is its structure. The
difference is explained by different RNC multimerization mechanisms. In nsNSVs, N-
and C-terminal arms make identical interactions with neighbor molecules and, thus, form
a helical structure, while, in sNSVs, flexible arms responsible for oligomerization form
more irregular structures [42]. The RNA-free crystal structure of Borna disease virus NP
revealed that NP assemble into homotetramers [43]. The authors calculated the potential
mechanism of RNA binding. They suggested two models: (1) NP binds RNA through a
positively charged central channel, or (2) RNA winds around each tetramer and forms
linear RNPs. The second model offers a mechanism without NP disassembling to expose
RNA. Although the structures of rabies virus NP and other NSVs are alike and possess
similarities in folding, the place of RNA binding is different. Rabies virus nucleocapsid is
oriented inside-out, with RNA inside and the protein outside, while other studied NSV
nucleotide–protein complexes are the opposite [41,44–47].

Each NP protomer accommodates a fixed number of nucleotides. The number of
accommodated nucleotides varies between viral families (e.g., six nucleotides per protomer
(“the rule of six”) for paramyxoviruses [48] and nine nucleotides per protomer for vesicular
stomatitis virus [49]). In the absence of viral RNA, NP binds any RNA available. To
prevent this from happening, NP is chaperoned by P (or VP35 of the Ebola virus [50]),
which maintains NP as a monomer and sequesters it from binding to any host RNA, thus
preventing the formation of premature and empty virion. The assembly of the nucleocapsid
occurs via the domain-swapping mechanism, where the NTD is essential while the CTD
seems to be dispensable [40]. The very terminal region of the CTD, called the N-tail, is an
intrinsically highly disordered region [51–58]. It is highly sensitive to proteolysis [52,57],
and structural analyses of these regions are rarely successful [58–60]. To investigate the
role of N-tail in RNC formation and facilitate the structural analyses of NP, multiple
studies used recombinant NP, with the N-tail removed by trypsin. The removal of the
disordered tail domain showed a more rigid nucleocapsid structure that could be more
easily studied [46,61,62].
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Recombinant NP spontaneously assembles into ring- or string-like structures. The
crystal structure of a recombinant NP–RNA complex showed an organized structure
containing a varying number of protomers: nine per ring for the rabies virus [63,64], ten
per ring for RSV [65], 12–14 per ring for the measles virus [46,60,61,66], 13 per ring for
the mumps virus [58,67], 11.8 to 15.8 per turn for the Ebola and Marburg viruses [68,69]
and nine per ring for the influenza virus [44,70]. A mechanism of NP multimerization,
by which the N-terminal arm of one subunit extends and interacts with the hydrophobic
pocket of the next subunit, was proposed by the authors of Reference [71]. Assemblies of
the Rift valley fever virus were more flexible than observed in nsNSV [72]. The study of the
NP oligomerization in hantaviruses proposed an oligomerization mechanism in which the
C-terminal arm of a protomer is inserted in the core domain of the following protomer [73].

Transitions among the different NP assembly forms must occur during the viral life
cycle to be productive. They include: (i) a structure of the unassembled monomeric NP
form bound in the complex with the phosphoprotein (complex N0–P), (ii) a structure
that enables binding of the RNA and oligomerization of NP into helical RNC and (iii) a
structure that releases RNA, making it accessible to RdRp. In addition to NP, P participates
in orchestrated activities during these structural transitions. Unexpectedly, the N-tail is
essential for regulating the structural transition from one assembly form to another by
interacting with the disordered N-terminal region and the C-terminal X domain of P. The
docking of the complex of P-RdRp during viral replication/transcription is also governed
by its interaction with the N-tail [74], probably initiating the uncoiling of nucleocapsids [40].

2.3. Multiple Functions of NP

It was initially believed that the function of the most abundant viral protein was to
protect viral RNA from degradation by cellular enzymes. Although this is true, it is only a
part of the complete picture. Over the years, it has become clear that NP protects viral RNA,
but it also shapes the helical structure of RNP and actively participates in and orchestrates
the transcription and replication of viral RNA templates. Furthermore, different sets of
functions, unrelated to the complex with viral RNA, relate to the ability of NP to induce
immunosuppression in the infected cell or organism.

2.3.1. Protective Function

NSVs have small genomes and are able to encode for few proteins. These few viral
proteins are sufficient to ensure a new generation of virus only if they hijack accessory
proteins of the host cell transcription/replication machinery. This means that the viral
genome has to be in the cellular compartments (cytosol or, for the influenza virus, nucleus)
where the cellular proteins are available throughout the whole viral life cycle. By doing
so, the viral genome isconstantly in danger of being damaged or degraded by cellular
RNases, which are normally present in these cellular compartments. Therefore, a physical
separation away from the fatal host factors is an absolute prerequisite for a successful
viral life cycle. The most obvious feature of the NP is the RNA-binding capacity. In
fact, the NSV genomes are never free of NP in nature. For many NSVs, direct evidence
on the RNA-binding mechanism has been proven by co-crystallization of the RNA–NP
complexes [47,63,65,75–77]. Essential for the protective function of NP is its capacity to
tightly bind the RNA and oligomerize and shape a helical RNC. The atomic structures
described correspond to various oligomeric forms, except when the oligomerization domain
was mutated [78].

Except from physical protection of the viral RNA, there is an additional impact of the
tightly bound NP to RNA. Viral RNA, either in single-stranded or in double-stranded form,
constitutes a very effective pathogen-associated molecular pattern (PAMP), which is a target
for specific cellular pathogen recognition receptors (PRRs): membrane-associated TLRs
(TLR3, TLR7 and TLR8) or cytoplasmic helicases RIG-I and MDA-5. By sequestering RNA
from the harmful environment, the NP also prevents sensing of the viral RNA by PRRs and
activation of downstream signaling, which would lead to the induction of interferon types
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I and III, interferon-stimulated genes (ISGs) and a number of proinflammatory cytokines
(reviewed in References [79,80]). Thus, NP indirectly prevents immune recognition by
the cells of the innate immune arm, which is critical for early detection and an antiviral
response to invading viruses.

2.3.2. Role in Transcription and Replication

NP is an important factor in regulating the replication and transcription of NSVs [37,81].
A seemingly indestructible assembly composed of viral RNA tightly packed within the
shell of multiple NP copies might present a challenging constraint for processes that are
about to take place upon the entrance of the virus into the host cell. Yet, a finely tuned and
coordinated sequence of events will follow, leading to a highly successful transcription
and replication resulting in a large number of progeny viral particles. During these events,
NP transiently detaches from the ancestral genome to give the complex of viral RdRp
and other viral and host cell cofactors access to initiate and carry out transcription or
replication. A number of host cell cofactors have been found to have an important role
in this process. Different RNA polymerase complexes (the transcriptase complex and
replicase complex) were purified by the immunoaffinity method from vesicular stomatitis
virus-infected baby hamster kidney cells [82]. The transcriptase complex consisted of virus-
encoded RNA polymerase L and P proteins and cellular protein translation elongation
factor-1alpha, heat-shock protein 60 and mRNA cap guanylyltransferase. On the other hand,
the replicase complex contained viral proteins, L, P and NP but lacked elongation factor-1
alpha, heat-shock protein 60 and guanylyltransferase. It was shown that the RdRp of
Rhabdoviridae and Paramyxoviridae preferentially performs transcription when NP is limited
while favoring genome replication when NP levels are abundant [83,84]. In the absence of
NP, the polymerase can initiate the synthesis of naked viral RNA, but its processivity is
reduced [37,83–85]. Studies with the influenza virus have shown that NP is not required for
the transcription and replication of short viral RNA templates up to 76 nucleotides in length
but still supports the transcription of templates of up to 125 nucleotides at diminished
levels [86]. This indicates that transcription and, subsequently, protein synthesis is a
priority immediately after the virus infects the host cell. In contrast, as soon as sufficient
amounts of NP that will protect and package the nascent genome are generated, genome
replication can initiate, and the NP assembles with it, to form a new RNC. Thus, NP
actively participate in and orchestrate these highly complex processes. By binding to
the genome, the role of NP may correspond to the histones in eukaryotic cells. The NP
of the influenza virus undergoes acetylation by two host acetyltransferases, GCN5 and
P300/CBP-associated factor (PCAF), and this modification affects the viral polymerase
activities [87]. Some studies demonstrated the direct association of the availability of
free NP for binding to viral RNA or the suboptimal structure of NP with the excessive
generation of defective viral genomes (DVGs). An insufficient level of NP was associated
with an increased generation of DVGs, which, in turn, induced the host antiviral response
in a RIG-I-dependent manner [88]. The same authors showed that this is applicable to a
wide range of NSVs (Sendai virus, influenza virus type A, HPIV3, measles virus, vesicular
stomatitis virus, Ebola virus and Lassa virus). Another study [89] suggested that only one
substitution in NP can deoptimize the NP structure, which results in a lower density of the
RNC, leading to a lower viral fitness, which, in turn, is critical for the integrity of Sendai
virus RNC and results in the enhanced production of DVGs.

2.3.3. Immunosuppression

As presented so far, NP has a protective role in physically separating viral genome
RNA from the cellular components that may harm it, preventing PRR from being activated
by viral PAMPs (i.e., viral RNA) and engaging in signaling employed in the induction of
the proinflammatory response, and it precisely orchestrates transcription/replication and
hijacks the cellular machinery. During this time, the host cell must be well-maintained,
enabling adequate conditions for viral progeny to be generated. This includes preventing
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apoptosis and blocking immune responses towards viral components. NSVs have evolved
different strategies to avoid immune mechanisms by the host. A transient but profound
immunosuppression is one of them, with NP having an important immunosuppressive
role for some NSVs, thus proving its versatility.

Infection with the measles virus is followed by acute and intense immunosuppression,
followed by complications caused by opportunistic infections, resulting a high morbidity
and mortality rate, especially in infants. The immunosuppressive effect of the measles
virus is evident in T-cell arm inhibition [90], impaired proliferation of peripheral blood
lymphocytes and lymphopenia [91], allospecific cytotoxicity [92] and an increased level
of IL-4 with a decreased level of IL-2 and interferon (IFN) gamma [93]. Although im-
munosuppression by the measles virus involves multiple actions of different viral proteins,
here, we evaluate only the role of NP in this complex interplay of viruses and the host
immune system and the virus. Given that in situ hybridization showed that not even 1% of
peripheral blood mononuclear cells are infected during the course of acute measles [94],
such a profound and long-term immunosuppression would require an indirect mechanism.
The measles virus NP protein in vitro studies indicate that the binding of recombinant NP
to Fc gamma receptor type II (FcγRII) inhibits antibody production by human B cells [95]
and impairs dendritic cell function [96]. Measles virus NP binds via its C-terminal part to
the receptor for the Fc portion of immunoglobulin G, FcγRII/CD32 [96]. The intracellularly
synthesized NP enters the late endocytic compartment, where it recruits its cellular ligand,
the FcγR [97]. NP is then expressed at the surfaces of infected leukocytes associated with
FcγR, and is secreted into the extracellular compartment, allowing its interaction with
uninfected cells. Finally, cell-derived NP inhibits the secretion of IL-12 and the generation
of the inflammatory reaction, both shown to be impaired during measles. Further, the
mechanism of immunosuppression induced by measles virus NP was revealed by Laine
et al. [98]. They identified a new receptor NR (nucleoprotein receptor) for extracellular
measles virus NP released from apoptotic infected cells. NP binds to both constitutively
expressed NR on a large spectrum of cells from different species and to human-activated
T cells, leading to suppression of their proliferation. Laine et al. suggested that, after
release in the extracellular compartment, NP binds to NR and thereby plays a role in
MV-induced immunosuppression.

Arenaviridae also induce severe acute immunosuppression during infection. The NP
has been implicated in suppression of the host innate immune system, but the mechanism
was unknown until Hastie et al. showed that the C-terminal domain of the Lassa virus NP
protein shows strong structural homology with DEDDh exonucleases [99]. Further charac-
terization has shown that NP has a strict specificity for double-stranded RNA substrates.
The exonuclease activity is essential for the ability of NP to suppress the translocation
of IFN regulatory factor 3 (IRF-3) and block activation of the innate immune system [99].
Previously, it has been shown that LCMV NP directly binds to RIG-I and MDA-5 to restrict
the regulation of the IFN type I response [100,101]. The same authors gave evidence that
LCMV NP reduces IFN-β induction by blocking the translocation of IRF3 to the nucleus.
Another mechanism of the immunosuppression in the family Arenaviridae was suggested
by Russier et al. [102]. They suggested that Lassa virus NP is involved in the inhibition
of antigen-presenting cell-mediated NK cell responses, which contribute to immunosup-
pression during Lassa virus infection. NP of the Junin and Lassa viruses suppress the host
immune response by completely different means. Truncated forms of NP in these viruses
inhibit apoptosis, acting as a decoy substrate for caspase cleavage [103].

The suppression of the IFN type I response at different steps of the IFN pathway
has also been attributed to the NP of influenza viruses, the rabies virus and the Borna
disease virus (BDV). Influenza virus NP exploits Hsp40 to inhibit the antiviral state in
the host cell. It interacts with the P58(IPK)/Hsp40 complex, which causes P58(IPK) to
dissociate from the Hsp40 complex and inhibit the phosphorylation of PKR, thus inhibiting
PKR activation [104]. The findings on rabies virus NP [105–107] strongly suggest that
rabies virus NP plays an important role in the evasion of innate immune responses in the
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brain—in particular, the evasion of interferon type I induction—and thereby in efficient
propagation and spread of the virus, leading to lethal outcomes of infection. Studies in vitro
have indicated that BDV NP inhibits the activation of IFN type I by preventing the nuclear
localization of IRF7 and inhibiting endogenous IFN induction by poly(I:C), coxsackie virus
B3 and IFN-β [108].

As presented above, the NP of different NSVs has evolved various means of immuno-
suppression during the arms race with the host. It can be expected that there are more
means of immunosuppression than have been described so far.

Although multiple functions of NP have been described, there is no doubt that this
multifunctional protein could prove in the future to be the number one viral protein when
it comes to versatility.

3. Immunity to NP

Infections with some NSVs induce long-term immunity, preventing reinfections (e.g.,
measles and mumps), while multiple reinfections throughout life with others are common
(e.g., RSV, HPIV 1–4 and influenza). Understanding of the processes during viral infection
and immunopathology induced by the virus are some major aspects for the development of
new vaccines and therapeutics. Exposure to an invading virus elicits an acute response by
the immune system, which, in most cases, is able to control the virus spread and replication
in the organism and its excretion, leading to resolving the disease. Virus-specific adaptive
immunity is mediated by primary T- and B-cell responses and the generation of memory
T and B cells. Memory cells function in the steady-state mode, awaiting the moment of
activation upon the invasion of the matching pathogen. If or when it happens, they quickly
respond to the secondary infection and are capable of faster and better control of the virus
upon re-exposure, causing only mild symptoms or no symptoms at all. The vaccination
paradigm is the generation of a long-term immunity against the pathogen-specific antigen(s)
by developing effective memory T and B cells. Additionally, the vaccination should elicit
a very similar dynamic of the immune response to one that develops upon resolving the
natural infection and that can prevent reinfection. Neutralization antibodies (NAbs) are
generated towards the viral surface glycoproteins essential for attachment to the host cells
and fusion of the viral envelope to the cell membrane. If NAbs are present in sufficient
titers and an adequate match between the NAb and antigen is achieved, they will be able
to prevent reinfection. Therefore, the titers of NAbs produced by memory B cells are very
often defined as correlates of protective immunity. A vaccine design that merely aims to
induce memory B cells that will secrete virus-specific NAbs can be successful only if an
adjuvant is used to generate a robust and long-term response. However, such a vaccine
design may encounter an obstacle in the form of numerous mutations in viral surface
glycoproteins, creating escape mutant viruses no longer susceptible to neutralization by the
NAbs. Therefore, the vaccine design should ideally comprise the induction of a combination
of both NAbs and CD8+ T cells. The NAbs response to NSVs is mostly well-characterized,
but studies on T-cell responses and the role of non-neutralizing Abs (nonNAbs) are very
limited. In order to gain more knowledge on how to include CD8+ T-cell responses and
nonNAbs into vaccine designs for NSVs, more research will be needed.

Interestingly, the vast majority of NSV-specific antibodies are directed against NP,
making this protein an immunodominant antigen. The internal localization of the NP
diminishes the odds that these Abs could have any neutralization capacity. Indeed, the titer
of NP-specific Abs could not be correlated with the neutralization titer of the total serum
Abs upon infection or immunization. Nevertheless, such a high titer of Abs, the role of NP
in T-cell induced immunity and a remarkable genetic stability, give this protein importance
as a novel viral target. It can be considered as a potential vaccine candidate that may help
to develop a broad protective vaccine.

We discuss here the role of NP in the specific induction of T- and B-cell responses
and review the current knowledge relating to these issues. Obviously, the T and B cell
responses should not be separated from each other, since they collaborate and complement
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each other during viral infection. However, for clarity, the T- and B-cell responses to NP
will be presented herein one after another.

3.1. The Role of T-Cell Immune Response to NP

T cells are able to recognize antigens only if the specific epitopes are presented to the
T-cell receptor (TCR) as a complex within the major histocompatibility complex (MHC), also
known as human leukocyte antigen (HLA) (reviewed in Reference [109]). As mentioned
above, immune responses mediated by T cells involve the primary response of effector
expansion and differentiation ending with retreat but leaving memory T cells waiting
for the secondary encounter with the antigen, which will ensure that the expansion and
differentiation phases are triggered more rapidly. The major classes of effector T cells are
CD4+ and CD8+ T cells. CD4+ cells become activated by antigen-presenting cells (APCs)
expressing MHC class II–associated viral T-cell epitopes and co-stimulatory molecules.
Although CD4+ T cells mostly act as T-helper (Th) cells, a small population of CD4+ cells
display cytolytic activity [110]. Two different subsets of Th cells coordinate and promote
either arm of the adaptive immune system. The differential activity of Th cells is based
on the cytokine profile. Th1 cells produce mainly interferon gamma (IFN-γ) and IL-2 and
activate predominantly the cellular response (cytotoxic CD8+ T cells (CTL), macrophages,
etc.), while Th2 cells produce IL-4 and IL-13 and promote B-cell activation [111,112]. CD8+
T cells are proposed to play a major role in clearing from intracellular pathogens such
as viruses. Upon infection, they are activated and migrate from the lymphoid tissue to
the infection site. There, they recognize virus-specific epitopes associated with MHC
class I molecules. These epitopes originate from viral proteins expressed de novo and
processed intracellularly. Thus, CD8+ T cells distinguish infected from uninfected cells,
selectively lysing virus-infected cells while uninfected cells are left undamaged. CD8+
T-cell lytic activity is mediated by two types of granules: perforin and granzymes. Perforin
permeabilizes the membranes of the infected cells, enabling granzymes to enter the cells
and induce apoptosis. CD8+ T-cell-specific epitopes are located on all viral proteins, both
internal and surface. This enables a broad specificity displayed by these T cells. T-cell
epitopes are much less prone to mutations as a result of the selective pressure. Hence,
CD8+ T cells specific for conserved internal viral proteins, such as NP, can be exploited
to improve vaccine strategies by attempting to elicit cross-protective immunity as well.
Despite some apparent differences in the cytolytic machinery, it appears that the antiviral
cytotoxic activity of CD4+ and CD8+ T cells is similar (reviewed in Reference [113]).

The T-cell arm of the immune response to NP and targeted vaccination to induce
a T-cell response to NP sites have been extensively published, demonstrating that the
NP-specific T-cell response—in particular, in cytotoxic T cells—is valuable for clearing up
infections. However, due to the convenience of animal experiments, most were performed
on mice. The comparative analyses of murine and human immunity in general and CD8+
T-cell repertoire to the influenza virus show that the findings from mice are not completely
translationally equivalent to humans [114,115]. The murine repertoire to influenza virus
A appears to be quite limited. In contrast, the human memory CD8+ T-cell response to
influenza A virus is broadly directed to epitopes on a wide variety of proteins [114]. Hence,
in this work, we will focus only on the findings of the T-cell immunity to NP obtained from
human sources.

In some human NSVs, the role of NP in the T-cell response to infection has been better
studied than in others. In fact, only a few NSVs have been looked at in detail (influenza
virus, measles virus and Hantaan virus), while the NP-specific T-cell epitopes and the role of
the epitope-specific T-cell response in most NSV infections still remain largely unexplored.

3.1.1. Paramyxoviruses: Measles and Mumps Viruses

In spite of the massive use of the trivalent measles–mumps–rubella vaccine and, ever
more often, measles and mumps outbreaks, the details of the cellular response to infections
with these two paramyxoviruses are rather scarce. Proof that the cellular response is essen-
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tial for the control of measles virus infection comes from patients with hypogammaglobu-
linemia that recover normally from measles. In contrast, patients with severe congenital
or acquired anomalies in the cellular immune responses or combined deficiencies in the
cellular and humoral responses develop a progressive disease with complications [116].
The immunosuppressive effects exhibited by the infectious measles virus have greatly
hampered the in vitro study of the measles virus-specific cytotoxic response [117]. How-
ever, there is strong evidence that both HLA class I- and HLA class II-restricted T-cell
responses play an immense role in the clearance of measles infection [118–125]. The study
by Ilonen et al. showed that a specific cytotoxic response studied in seropositive adults
was directed at NP and hemagglutinin [126]. Later, Jaye et al. indicated fusion protein as
an additional target of the measles-specific T-cell response, along with NP and hemagglu-
tinin [125]. Little is known about the nature of the NP epitopes recognized by CD8+ T cells.
Moreover, some studies attributed the T-cell cytotoxic response to HLA class II-restricted T
cells [121–123,127]. Few studies have identified several different CD4+ T-cell epitope re-
gions (Table 1), although with a little controversy, because different reports have described
the identification of mostly different CD4+ epitopes (Table 1). The foundation of this contro-
versy may be in the fact that studies unraveling measles-virus specific CD4+ T-cell epitopes
used indirect methods for the stimulation of isolated human T cells. Synthetic NP-derived
peptides or whole NP were used instead of the infectious virus, which causes arrest in the
T-cell cycle. Hickman et al. analyzed the proliferative response stimulated with synthetic
NP-derived peptides 17–21 residues in length mediated by CD4+ T cells in association
with HLA-DR antigens. Although all peptides were able to sporadically stimulate some of
the donors, over 70% of all donors tested, which included both vaccinated and naturally
infected donors, responded to NP peptides representing aa 271–290, 367–386, 400–420 and
483–502, suggesting that these peptides may be broadly recognized within an HLA-diverse
population. The most frequently recognized T-cell epitopes in both naturally infected and
vaccinated donors were located in the genetically heterogeneous carboxy-terminal half of
N. Further analysis showed that some epitope regions were recognized by all naturally
infected donors but by only a small portion of vaccinated donors and vice versa [128].
In contrast to these findings, Marttila et al. analyzed the CD4+ T-cell lines established
from healthy controls and multiple sclerosis patients, all with a history of past measles
infection. Their results were based on the T-cell lines created with the whole NP. Their
work showed that the carboxy-terminal end of the polypeptide was not recognized by
any of the tested T-cell lines [129]. The epitopes most often recognized by the T-cell lines
were concentrated in two regions’ overlapping peptides (20 aa) containing aa 321–340 and
331–350 (Table 1). Other regions in the N-terminal part of NP were found only sporadically.
The divergence of the results from Hickman et al. [128] and Marttila et al. [129] could be
explained by the fact that Hickman et al. performed their study on T cells from donors
recently revaccinated or infected, while Marttila et al. stated that the donors had a history of
past measles virus infection. Additionally, a limited similarity between the CD4+ epitopes
identified in vaccinated and naturally infected donors may be due to the differences of the
measles virus strain used for vaccination and the strain that caused natural infection. Along
with these studies, two additional studies identified two more CD4+ epitope regions: aa
185–199 [130] and aa 372–385 [131] (Table 1). It would be of interest to further investigate the
induction of cellular immunity to the measles virus, especially in early life, as a foundation
to the development of the measles vaccine that would circumvent problems such as the
obstruction of effective vaccination by maternal antibodies in infants.
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Table 1. CD4+ T-cell epitopes of the measles virus.

Location Sequence HLA Antigen 1 Reference

271–290 LTIKFGIETMYPALGLHEFA n.d.

[128]
367–386 EMVRRSAGKVSSTLASELGI n.d.
400–420 TTEDKISRAVGPRQAQVSFL n.d.
483–502 QDPQDSRRSAEPLLRLQAMA n.d.
185–199 PDTAADSELRRWIKY HLA-DRB1*1103 [130]
321–340 QNKFSAGSYPLLWSYAMGVG n.d.

[129]331–350 LLWSYAMGVGVELENSMGGL n.d.
372–385 SAGKVSSTLASELG HLA-DRB1*0301 [131]

1 n.d.—not defined.

In the last two decades, numerous mumps outbreaks in highly vaccinated populations
worldwide have been reported (reviewed in Reference [132]). By studying the contribution
of cellular immunity to mumps vaccine failure, de Wit et al. identified the first naturally
processed CD8+ T-cell epitopes of the mumps virus [133]. Of those epitopes, 5% (n = 2) were
derived from NP. One epitope was located in the N-terminal part (aa 115–122, IPNARANL),
while the second one was found in the C-tail (aa 504–512, GGMEHQDLL). Although
such a low number of NP epitopes is somewhat surprising, the use of the Epstein–Barr
virus-transformed B-lymphoblastoid cell line (BLCL) from a single donor as the antigen-
presenting cells in the study by de Wit et al. could give a limited conclusion. However,
it was an interesting finding of these authors that one of the confirmed NP epitopes (aa
115–122, IPNARANL) has been previously recognized as a CD4+ T-cell epitope as well
(aa 110–124, GTYRLIPNARANLTA) [134]. The identified CD4+ T-cell clone expressed the
activation marker CD137 and produced gamma interferon, tumor necrosis factor and IL-10
in an HLA-DR4-restricted manner upon peptide-specific stimulation. Moreover, similar
to measles NP-specific CD4+ T cells, these mumps virus NP-specific CD4+ T cells exerted
a cytotoxic phenotype and specifically killed cells presenting NP aa 110–124 [134]. The
importance of this mumps virus epitope is yet to be confirmed. However, this conserved
epitope may represent a unique peptide able to activate both arms of adaptive immunity.
Thus, it may be of great interest in the development of an improved mumps vaccine.

3.1.2. Pneumoviruses: RSV and HMPV

RSV and HMPV are two related pneumoviruses and major human pathogens causing
a large number of acute infections of the lower respiratory tract with severe symptoms
especially in infants, elderly and immunocompromised patients. Due to the unclear
pathogenesis mechanisms of these two viruses, the need to administer these vaccines very
early in life and the fiasco of formalin-inactivated RSV vaccine in the 1960s [135], there is
currently no vaccine available, and the treatment is mostly only supportive.

Protective immunity generated following RSV infection seems to be impaired and
short-lived, which allows multiple reinfections throughout life [136–138]. From the obser-
vation of individuals with functional T-cell deficiencies, it became obvious that adequate
cellular immune response is required to stop virus shedding and to resolve the infection as
has been shown for RSV [139–141]. In spite of countless efforts to decipher it, the mech-
anism underlying severe RSV infections is still largely unknown. Many studies, most
of which were performed in murine model, indicate that severity of the RSV infections
originates from Th2-biased lung pathology, while others associate them with an exuberant
non-eosinophilic, lymphocytic, and neutrophilic response, or with a lack of inflammatory
response [142,143]. The literature suggests that in the absence of the strongly polarized Th1
response, an imbalanced Th2 and Th17 response can prevail. NP has been demonstrated to
be the major target antigens for cytotoxic immune response in man and mouse infected with
RSV, whereas the G protein was not recognized and can at best represent a minor target
antigen for CTL [144]. The dominant CD8+ T cell-specific epitope of NP was described to
be aa 306–314 (NPKASLLSL) [145].
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Although HMPV has been isolated relatively recently [146], undertaken studies have
confirmed that HMPV-specific antibody response does not provide a complete protection
and cannot effectively clear the virus as well [147,148]. A more comprehensive study of
T cell immune response immunodominance hierarchy of all HMPV antigens was per-
formed [149]. It showed that the immunodominant antigen for T cell immune response
against HMPV is F followed by NP.

Given what is so far known about the immunity raised during RSV and HMPV
infection indicates that RSV and HMPV evolved somewhat different modus operandi
than other studied NSVs. The levels of NAbs targeting F and G proteins show correlation
with resistance to reinfection, but protection is far from complete and lasts for short time
only [137]. So, to ward off infection with these two viruses, a vaccine design would need
an innovative approach based on alternative responses probably including NP as well.

3.1.3. Hantaviruses: Hantaan Virus

T cell responses specific for Hantaan virus (HTNV) NP correlates with the reduction
of the risk of progression to acute renal failure [150]. Humoral response and cytotoxic T cell
response during infection with hantaviruses are mostly directed against immunodominant
epitopes on the NP although other structural proteins are also involved [150]. An explana-
tion for this is the fact that the NP represents the most abundant and most conserved viral
protein expressed during infection [151]. First identification of cytotoxic T cell epitopes was
performed by Van Epps et al. [152] (Table 2), who suggested that the infection with Hantaan
virus results in the generation of cytotoxic T cell response to limited epitopes on the NP
protein. In depth analysis by several later studies have identified more than ten additional
HLA class I restricted epitopes in HNTV NP (Table 2). Some of the identified epitopes
were found conserved among closely related hantaviruses such as Hantaan virus and Sin
Nombre. Since NP-specific cytotoxic response is closely related with the progression and
severity of the infection with hantaviruses, in particular hemorrhagic fever with renal
syndrome (HFRS), and the fact that identified epitopes are conserved among different
human hantaviruses, the NP could be a promising target for effective vaccine development
against hantaviruses in humans.

Table 2. Cytotoxic T-cell epitopes of the Hantaan virus.

Location Sequence HLA Antigen 1 Cross-Reactivity to Distantly
Related Viruses 1 Reference

12–20 NAHEGQLVI HLA-B51 yes [152]
129–137 FVVPILLKA HLA-A2 yes [153]
131–139 VPILLKALY HLA-B35 yes [153]
167–175 DVNGIRKPK HLA-A33 yes [153]
197–205 RYRTAVCGL HLA-A11 yes [154]
245–253 KLLPDTAAV HLA-A24 yes [154]
247–255 LPDTAAVSL HLA-B35 no [153]
258–266 GPATNRDYL HLA-B7 yes [154]
277–285 ETKESKAIR HLA-A33 no [153]
301–315 SPSSIWVFAGAPDRC n.d. n.d. [154]
334–342 ILQDMRNTI HLA-A2.1 yes [155]
355–369 LRKKSSFYQSYLRRT n.d. n.d. [154]
415–429 DVKVKEISNQEPLKL n.d. n.d. [154]
421–429 ISNQEPLKL HLA-A1 yes [152]

1 n.d.—not defined.

3.1.4. Filoviruses: Ebola Virus (EBOV)

Virus replication and infection with EBOV is believed to be largely controlled by T
cell-mediated immune responses. The study of 32 Sierra Leonean EBOV disease survivors
with confirmed clinical infections during the 2013–2016 West African outbreak showed that
NP elicited the strongest and most abundant CD8+ T cell response [156]. Epitope mapping
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and HLA typing in these naturally infected individuals revealed that only minority of virus-
specific CD8+ T cells were specific for GP, while the NP-specific CD8+ cells dominated.
Epitopes were present throughout the NP but with a slight skew toward the N-terminal
third of the protein. The same aggregation of CD8+ epitopes at the N terminal part of the
NP was also described earlier by Sundar et al. [157]. They identified three HLA-A2-binding
9-mer peptides of EBOV NP using computer-assisted algorithm: aa 23–31, 56–64 and 74–82
(FLSFASLFL, RLMRTNFLI and KLTEAITAA, respectively). Interestingly, all three peptides
were conserved in three different strains of Ebola (Zaire, Reston and Sudan). Sakabe et al.
further suggested that a vaccine designed to elicit both humoral and cellular immunity
should minimally include GP and NP as immunogens [156]. The recently approved Ebola
vaccine contains both of them, as will be discussed in a later section.

3.1.5. Arenaviruses: Lassa Virus (LASV)

Data from human studies indicate a critical and dominant role of T cells over an-
tibodies in controlling and clearance of acute LASV infection and providing immunity
to reinfection [158]. A delayed and weak NP antibody response after natural infection
with LASV was detected only months after viremia has cleared and it seems to be strain
specific [159,160]. Additionally, the treatment of Lassa fever infected patients with immune
plasma does not lead to improved condition [161]. On the other hand, a strong memory
CD4+ T-cell response against the LASV NP was reported in healthy Lassa-antibody seropos-
itive as well as seronegative persons from an endemic region [162]. More recent study
studied T cell response in human Lassa fever survivors and identified CD8+ T cell epitopes
specific for NP at regions aa 155–164, 453–462 and 552–561 [163]. Data of Sullivan et al.
suggest that LASV-CD8+ T cell responses can respond to antigens from other lineages to a
high degree [164]. The antigenic regions that contributed to T cell response were identified
within the Lassa virus NP and glycoprotein complex. Taken together, more knowledge of
the epitopes recognized by T-cells will be needed for the development of a recombinant
LASV vaccine effective across different LASV lineages.

3.1.6. Orthomyxoviruses: Influenza Viruses

Influenza vaccines currently in use have some major imperfections: they provide
only strain-specific protection, require annual update on the strain content and need to
be administered yearly. New, universal vaccine which could elicit a broad and long-term
protection against multiple influenza virus subtypes is desired. Regions conserved among
different influenza strains and subtypes would be useful targets in achieving such cross-
protecting vaccine.

It is well established that effective protective immunity against influenza virus infec-
tion is mediated by neutralizing antibodies, but the knowledge of the precise role of T
cells in human influenza immunity is still incomplete [165]. The relevance and importance
of the T cells in influenza infection was demonstrated by the study of 342 previously
healthy adults in the H1N1 pandemic [166]. The pre-existing T cells to the pH1N1 virus
and conserved core protein epitopes were correlated with clinical outcomes after incident
pH1N1 infection. Higher frequencies of pre-existing T cells to conserved CD8+ epitopes
inversely correlated with the illness severity. This was particularly pronounced within
the functional CD8+ IFN-γ+ IL-2− population, cells with the CD45RA+ chemokine (C-C)
receptor 7 (CCR7)− phenotype inversely correlated with symptom score and had lung-
homing and cytotoxic potential. Furthermore, in the absence of neutralizing antibodies,
CD8+ T cells specific to conserved viral proteins NP and M1 correlated with cross-protection
against symptomatic influenza. This protective immune correlate could guide universal
influenza vaccine development [166]. Furthermore, CD8+ T cells activated upon infec-
tion with seasonal influenza type A strains can cross-react with pH1N1 [167,168], highly
pathogenic avian H5N1viruses [169,170] and H7N9 variants [171]. Similar finding was
published by Wang et al. who showed that early effective CD8+ T cell response (most
likely recalled from the memory pool) was associated with less cytokine/chemokine-driven
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inflammatory disease and better recovery of hospitalized patients with H7N9 [172]. Thus,
early control of influenza infection by CD8+ T cells (and other cellular responses) is required
to prevent exuberant inflammatory responses [173].

A study aimed at identifying a set of human T-cell epitopes that would provide broad
coverage against different influenza virus strains and subtypes indicated PB1 as the major
target for both CD4+ and CD8+ T cell response [174]. Other studies clearly indicated
NP as a major target of immunodominant CD8+ T cell response during influenza type A
response [175,176]. This discrepancy may reflect selection of donors, diverse infections
and/or vaccination history of the donors or methodologies used in the studies. Whatever
the reason for this discrepancy is, it is more than evident that highly conserved NP has very
important role in T cell response elicited upon influenza infection or vaccination, and thus
represents a good target for induction of broad type vaccine induced immunity. Due to the
impact of this virus on public health and the continuous threat of pandemic it is ultimate
interest to decipher influenza virus pathogenesis and immunity. The Immune Epitope
Database and Analysis Resource (IEDB, www.iedb.org, accessed on 13 January 2022) has
recorded 113 human CD8+ T cell epitopes and 163 human CD4+ T cell epitopes derived
from influenza A NP. In comparison to those numbers, a systemic survey of the literature
reveals relatively few well described human immunodominant CD8+ or CD4+ epitopes for
NP (Table 3). As seen from Table 3, epitopes are evenly distributed throughout the whole
NP sequence.

Townsend et al. published the initial CD8+ epitope for the influenza A virus NP
to be in the region aa 335–349 [177]. Later on, Grant et al. in their study narrowed and
finally defined a minimal epitope to be aa 338–346 (Table 3, [176]). Some of the other CD8+
epitopes in Table 3 are also reported in more than one publication, although not always as
minimal epitope, potentially indicating that some epitopes are more dominant than others,
e.g., epitopes aa 148–156 (TTYQRTRAL), aa 221–226 (RMCNIL), aa 338–346 (FELDRVLSF),
aa 383–388 (SRYWAI). Table 3 also shows that identified CD8+ epitopes for influenza A NP
have the potential of binding to a diverse set of HLA molecules. Thus, if used for a new
universal influenza vaccine, NP would be able to provide a broad coverage of the human
population, which is an ultimate goal for influenza vaccinologists.

Influenza B virus has recently diverged into two lineages Yamagata and Shangdong.
The dominant CD8+ epitope for Yamagata lineage was identified in the region aa 166–174
(FSPIRITFL) [178]. The Shangdong lineage differs from the Victoria lineage in this epitope
by having one amino acid difference at position aa 171 (FSPIRVTFL). The cross-protection
against both lineages regardless of amino acid difference was conferred in mice [179], while
the human confirmation of the cross-protective immunity is still pending.

Although influenza virus NP is highly conserved protein, a number of amino acid sub-
stitutions in this protein were associated with escape from human CD8+ T cells [180–182].
The mutations in epitope regions aa 380–388, 383–391, and 418–426 abolished class I-
restricted presentation allowing escape from the CD8+ T cells recognition [181,182]. Epi-
topes aa 380–388 (SRYWAIRTR) and aa 383–391 (ELRSRYWAI) escaped from CD8+ T cell
immunity by mutating position 384 (R384K and R384G). This mutation appeared in the
1993/1994 season by completely replacing previous variant. Immunodominant epitope aa
418–426 was identified to contain extensive variation among viruses from 1957, 1972 and
1980. These variations caused different degree of cross-reactivity including complete failure
of CD8+ T cells specific for older variants to recognize more recent strains of influenza
A [181].

Helper and cytotoxic CD4+ T cells in influenza virus infection play an extremely
important role. Hence, several studies described mechanisms and specific epitopes for
CD4+ T cells. Influenza-specific CD4+ cytotoxic T cells have been identified in seronegative
human volunteers experimentally infected with either non-pH1N1 or H3N2 influenza
viruses [183]. The preexisting baseline CD4+ T cell response, but not CD8+ T cell response,
correlated inversely with illness severity and virus shedding following infection. The
cytotoxic CD4+ response was primarily directed toward NP and M protein. These CD4+
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cells also responded to pandemic H1N1 (A/CA/07/2009) peptides. The same authors
suggested that these cells are an important statistical correlate of homotypic and heterotypic
response and may limit severity of influenza infection by new strains in the absence of
specific antibody responses.

A systemic study of Chen et al. of immunodominant CD4+ T cell responses to in-
fluenza A virus in healthy individuals showed that NP and M1 were immunodominant
targets of CD4+ T cell responses as well [184]. They used in vitro expanded multi-specificity
influenza A-specific T-cell lines and individual influenza A protein antigens produced by
recombinant vaccinia viruses. Interestingly, the conservation of immunodominant epitope
sequences correlated with an increased frequency of generated mutations, indicating a
strong selective pressure within these prominent epitopes [184]. Further, immunoinformatic
tools were used to identify predicted CD4+ T cell epitopes and predicted epitopes were con-
firmed both in HLA transgenic mice and with human peripheral blood lymphocytes [185]
(Table 3).

Since cytotoxic CD4+ T cells accumulate with age and the CD4 cytolytic activity was
found to be comparable between all age groups upon influenza vaccination [113], a science-
based strategy for designing new vaccines for the elderly could be to focus on the NP or
M1 peptides that carry cytotoxic CD4+-specific epitopes.

Although circulating influenza A strains are of diverse subtypes, an infection with one
subtype may result with the effective protection against heterosubtypic
virus [166,172,183,186–189]. Such cross-protective immunity can be attributable to the
pre-existing immunity raised against inter-subtype conserved viral antigens. Since viral
glycoproteins are main target of the genetic drift enabling virus to evade antibody response,
cytotoxic response to more conserved influenza A virus proteins such as NP, M1 and
polymerase proteins are thought to be major promoter of heterosubtypic immunity [187].

Several studies undoubtedly prove the in vivo existence of CD8+ cells which are
able to provide cross-reaction with homo- and heterosubtypic variants of influenza A
viruses [190–195]. Moreover, memory CD4+ and CD8+ T cells isolated from healthy donors
with the history of seasonal influenza exhibited cross-recognition of at least one H5N1
internal protein [170]. M1 and NP were the immunodominant targets of cross-recognition
demonstrated here. To go even further in details in the heterosubtypic protection, some
of the epitopes identified and mentioned earlier (aa 199–207, 219–226, 225–233, 265–273
and 383–391; Table 3) elicited CD8+T cell responses in all donors they tested and were
conserved between vaccine virus and Australian H1N1 and H3N2 isolates [170].

Conserved targets would be useful in formulating a ‘universal’ vaccine, as they would
cover multiple viral subtypes. Such ‘universal’ vaccine design can potentially be addressed
by a T-cell epitope ensemble vaccine comprising short, highly conserved, immunogenic
peptides from influenza able to activate T cells. Generally, an NP based influenza vaccine
oriented to generate cytotoxic T cell response could provide considerable breadth of protec-
tion against distinct influenza strains. However, it seems that the use of a single epitope
might not be sufficient to reach protection across global population. It has been computed
that for the population protection coverage (PPC) > 95% at least six epitopes are required
for vaccine based on the T cell epitopes [196]. The calculation involves the cumulative
phenotypic frequency of the relevant HLA alleles within the population restricting the T
cell epitopes.

Although the extensive knowledge of influenza immunity/pathogenesis and different
immunoinformatic tools are already available, a continuous evolutionary cat-and-mouse
game between the virus and the host still makes a rational design of universal epitope-based
influenza vaccine highly problematic.
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Table 3. T-cell epitopes of influenza A virus NP.

Location Sequence HLA Antigen 1 Reference

37–54 GRFYIQMCTELKLSDYEG A*01:01 A*02:01 B*08:01 [175]
39–47 FYIQMCTEL A*24:02 B*15:09 C*07:02 [196]
67–76 RMVLSAFDER A*03 [174]
91–99 KTGGPIYRR A*11:01 [176]

139–156 WHSNLNDATYQRTRALVR A*02:01 B*15:01 B*44:02 [175]
145–156 DATYQRTRALVR A*68:01 [176]
148–156 TTYQRTRAL A*02 [174]
158–166 GMDPRMCSL A*02 A*02:03 A*24:02 B*08:01 [185,196]
172–181 LPRRSGAAGA B*55:01 [176]
199–207 RGINDRNFW B*57:01 B*15:13 B*57:02 [176,196]
217–234 IAYERMCNILKGKFQTAA A*02:01 A*11:01 B*15:01 [175]
219–226 YERMCNIL B*:18:01 [176]
221–230 RMCNILKGKF B*44 [174]
225–233 ILKGKFQTA B*08:01 A*02:02 A*02:03 A*02:06 A*02:09 [196]
251–260 AEIEDLIFLA B*44 [174]
265–273 ILRGSVAHK A*03:01 A*02:03 A*11.01 A*33:01 A*68:01 [176,182,185,196]
328–336 LVWMACHSA A*02 [185]
329–339 QLVWMACHSAA A*02 [174]
331–348 MACHSAAFELDRVLSFIK A*02:01 A*24:02 B*12:02 B*35:03 [175]
335–349 SAAFEDLRVLSFIKG n.d. [177]
338–346 FEDLRVLSF B*37:01 [174,176]
379–395 LELRSRYWAIRTRSGGN A*01:01 A*02:01 B*08:01 B*07:02 [175]
380–388 ELRSRYWAI B*08:01 [181]
383–391 SRYWAIRTR B*27:05 [176,182]
397–414 NQQRASAGQISIQPTFSV A*02:01 A*11:01 B*15:01 B*44:02 [175]
418–426 LPFEKSTVM B*35:01 [180]

36–52 IGRFYIQMCTELKLNDY DR1 [185]
51–68 DNEGRLIQNSLTIERMVL DR1 [185]
75–89 RNKYLEEHPSAGKDP DR1 [185]

113–130 KDEIRRIWRQANNGEDAT DR1 [185]
147–154 TYQRTRAL DRB5*01:01 DRB1*07:01 DRB1*11:01 [196]
204–218 RNFWRGENGRKTRSA DR1 [185]
301–318 IDPFRLLQNSQVYSLIRP DR1 [185]
310–327 SQVYSLIRPNENPAHKSQ DR1 [185]
330–344 LVWMACHSAAFEDLR DR [174]
404–416 GQISIQPTFSVQR DRB1*04:04 [184]
409–425 QPAFSVQRNLPFERVTI DR1 [185]
463–475 VFELSDEKAASPI DRB1*09:01 [184]

1 n.d.—not defined.

3.2. B-Cell Response to NP

The production of virus-specific Abs by B cells following antigenic stimulation is an
important phase of the immune response to viral infection. While T cells are important for
viral clearance, Abs act in different steps of the viral life cycle. They can prevent infection by
virus neutralization, opsonization and virus inactivation, but can also facilitate destruction
of infected cell. Additionally, the virus budding, spread and invading of virus from one
cell to the neighboring cells can be prevented by Abs. All these actions are mainly directed
towards surface glycoproteins of the virus as the most accessible targets. Viruses evade the
Ab threat by mutating Ab-binding regions, shielding them by glycosylation, etc.

The predominant Abs raised during infection or vaccination with most, if not all, NSVs
are directed against the NP. We can only speculate about the reason why such a high titer
of NP-specific Abs is produced. The abundance of the NP in the virus and during infection
might be the reason. However, the amount of the protein does not necessarily correlate with
the level of specific Abs generated upon immunization. So more plausible explanation is
combination of the great abundance of this protein and the inherent self-assembly property
to form multimeric structure. Such a multimeric structure based on the repetitive units
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could effectively induce BCR crosslinking inducing cascade of molecular events in B cell
signal transduction leading to enhanced germinal center B cell selection and differentiation
into plasma cells finally resulting in Abs production [197]. This inherent property of NP to
form a multimer structure has a potential to be widely used in the design of the vaccine
based on the recombinant NP (rNP). As already mentioned, rNP assembles in homogenous
rings composed of NP subunits [58,63,66], enclosing any available RNA representing a
virus-like particles (VLP). A similar VLPs based on the L1 protein of human papilloma
virus (HPV) have been effectively used as HPV vaccine (reviewed in Reference [198]).

The internal localization of the NP within the virion gives poor chance for the NP-
specific Abs to have neutralization effect. That is the reason why these non-neutralizing
Abs (nonNAbs) have been studied only sporadically in the past. In spite of that, protec-
tive effect of NP-specific Abs was proven albeit in animal studies. Vaccination with the
influenza A rNP and passive transfer of non-neutralizing NP Abs fully protected against
influenza A challenge in mice [199,200]. Although only poor T cell response was elicited,
vaccination reduced the manifestation of disease symptoms and decreased the influenza
virus titers in the lungs of the influenza-infected animals [199]. A recombinant BCG vaccine
that expresses NP of RSV (rBCG-N-hRSV) protects mice against hRSV infection, eliciting
humoral and cellular immune protection. Further, this vaccine was shown to be safe and
immunogenic in human adult volunteers. In the model of neonatal calves, this type of
immunization increased virus-specific IgA and virus-neutralization activity in nasal fluid
and increased the proliferation of virus- and BCG-specific CD4+ and CD8+ T cells in lymph
nodes supporting the notion that this vaccine approach could be considered as a candidate
for infant immunization against RSV [201]. RSV may induce an inappropriate Th2-type
immune response, which causes severe pulmonary inflammation. The immunization of
BALB/c neonates, which are highly sensitive to immunopathological Th2 imprinting, with
rNP and adjuvants shows that protective vaccination against RSV can be achieved in
neonates but requires an appropriate combination of adjuvants to prevent harmful Th2
imprinting [202,203]. Like in most NSVs, in hantavirus infection NP represents a major
target antigen. At the very beginning of the acute phase, IgM and IgG antibodies can
be detected that react with hantaviral NP [204–211] while antibodies against Gc and Gn
appear later during the progress of disease [212]. Furthermore, the serological profile fol-
lowing Hantaan virus infection (hemorrhagic fever with renal syndrome (HFRS)) inversely
correlates with the level of NP-specific Abs and illness severity [213].

Since immune system is a highly complex and more and more new mechanisms and
pathways are being discovered every day, it is clear that there is more beyond NAbs and
that nonNAbs are somehow involved in the humoral response to viral infection. To be
accessible for a specific Ab and for them to be able to act, NP must be located on the surface
of the infected cell at least briefly during viral life cycle.

Although the classical model implied that only surface glycoproteins of NSVs are
present on the surface of the infected cells, a number of studies have shown that at least
some NSVs (e.g., RSV, LCMV, influenza virus, measles virus and mumps virus) contradict
this model. The first examples of an NSV whose nucleoprotein have been directly demon-
strated on the surfaces of both the infectious virus and the infected cell came from the
research of Fernie et al. [214] and Zeller et al. [215]. Fernie et al. showed that RSV NP can be
detected on the surface of continuous BALB/c mice embryo cell persistently infected with
RSV [214]. Several years later Zeller et al. demonstrated that NP of LCMV can be detected
on the cell surface of the infected chick embryo cells in vitro [215]. It has been shown that
influenza virus NP is expressed on the surface of infected cells for some time and, therefore,
can serve as a target for antibody-dependent immune mechanisms [216–221]. Influenza
virus NP was detected in the airways of infected mice as early as 2–3 d post-infection, it was
still present at day 7, and had declined to undetectable levels by day 9, corresponding with
the typical time of virus clearance [200]. Soluble NP was detected in nasal washes [200],
supernatants of infected MDCK cells in culture and also on the surface of influenza-infected
cells in vitro, along with barely detectable levels of M1 [216,217,220]. Mumps virus NP can
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be detected at the surface of Vero and A549 cells infected in vitro (Šantak, unpublished re-
sults). The surface expression of mumps virus NP is Golgi dependent and can be inhibited
by brefeldin A. Additionally, the cycloheximide experiments reveal that mumps virus NP
on the surface originated from de novo synthesized protein. Although all these findings
provide indisputable evidence of the presence of the NP at the surface of infected cell or
the secretion of the soluble protein in the cellular environment, almost nothing is known
about the mechanism by which NP is transferred to the cell surface or out of the cell.

Given that NP is found at the cell surface, the nonNAbs are able to exert their pro-
tective function through immune mechanisms such as antibody-dependent cellular cyto-
toxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), antibody-mediated
complement-dependent cytotoxicity (CDC), antibody-dependent intracellular neutraliza-
tion (ADIN) and antibody-mediated inhibition of formation of new viral particles. Multiple
mechanisms could involve NP specific nonNAbs at the same time, though neither of them
has been studied in detail.

ADCC is suggested by a couple of studies to be the main mechanism of action of
influenza NP-specific nonNAbs. Immunization of mice with rNP elicited NP-specific IgG
which promoted influenza virus clearance in mice by using a mechanism involving both
FcRs and CD8+ cells. Furthermore, anti-NP IgG rescued poor heterosubtypic immunity in
B cell-deficient mice, correlating with enhanced NP-specific CD8+ T cell responses [200].
Another study shows variable results for influenza NP-specific ADCC activity. It provides
strong evidence that non-neutralizing NP-specific Abs could play an important role in
ADCC by being able to opsonize NP, bind dimeric rsFcγRIIIa and mediate NK cell acti-
vation. The NK cell activating IgG was found in human sera and IVIG [222]. However,
when using cells infected with recombinant vaccinia viruses exclusively expressing NP as
a surrogate for influenza-infected cells enhanced cytotoxicity could not be observed. The
authors suggest that opsonizing antibodies to NP and M1 likely contribute to an antiviral
microenvironment by stimulating innate immune cells to secrete cytokines early in infec-
tion. In particular, NP-specific nonNAbs would form circulating immune complexes (ICs)
by opsonizing soluble NP. The ICs trigger activation of NK cells and innate immune cells
to release pro-inflammatory cytokines and chemokines capable of activating and recruiting
different effector cell types (macrophages, neutrophils and T-cells) [222].

Innate signaling pathways generate an antiviral state by producing proinflammatory
cytokines, such as NF-kB, AP-1, IRF3, IRF5 and IRF7. The same transcription factor
pathways were shown to be triggered by ADIN as well [223]. ADIN activity has not been
shown to be the property of NP-specific Abs, but it has been shown for nonNAbs specific
for P and M proteins of measles virus. P-specific IgA prevents the virus from evading type
I IFN signaling [224] and blocks P-NP interactions, which decrease the synthesis of viral
genome RNA and mRNA [225]. M-specific IgA mAb was able to effectively inhibit viral
replication by ADIN up to 78% [226]. ADIN mechanism was well studied in rotavirus,
a double-stranded RNA virus of the family Reoviridae. Rotavirus inner core protein
VP6 and NP share some general features: both are highly conserved inner proteins, very
abundant and the most immunogenic proteins in naturally infected humans. Rotavirus
VP6 protein also participates in the viral capsid formation and self assembles in different
nanostructures [227,228]. Intracellular neutralization of conserved inner core protein VP6
of rotavirus by VP6-specific IgA was shown to act by interfering with the viral replication
cycle, in particular by inhibiting transcriptase activity [229,230]. The equivalent activity
could be possibly applied to NP-specific IgA or IgG. The study of Bai et al. suggest that
IgG could have ADIN activity albeit under certain conditions. An intracellular neutralizing
activity for an influenza hemagglutinin-specific monoclonal IgG Y8, which has neutralizing
activity only at an acidic pH was detected when Y8 was applied to the basolateral surface
of MDCK cells expressing the rat neonatal Fc receptor for IgG (FcRn). Viral replication was
significantly reduced following apical exposure of the MDCK cell monolayer to influenza
virus. Prophylactic administration of Y8 mAb before viral challenge in WT mice, but
not FcRn-KO mice, conferred protection from lethality, prevented weight loss, resulted
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in a significant reduction in pulmonary virus titers, and largely reduced virus-induced
lung pathology [231]. Similar concept could work for NP whether it is present in the
cell, as a soluble form outside the cell or on the surface of an infected cell. The FcRn
express, among others, cells derived from bone marrow, mainly antigen presenting cell. The
formation of the IgG-NP immune complex (IC) could involve FcRn to transport the IC to the
degradative compartments involved in antigen presentation (reviewed in Reference [232]).
Taken together, this implicates that NP-specific Abs could facilitate immune response by
transcytosis-mediated mechanism although this is highly speculative, and the scientific
evidence is required.

A different model of action than models described above is probably involved in the
findings of Straub et al. They studied the mechanism of LCMV-specific IgG Abs isolated
from LCMV immune serum. These Abs were mainly directed against the viral NP and
completely lacked virus neutralizing activity, but accelerated virus elimination. Moreover,
mAbs specific for the LCMV NP were also able to decrease viral titers after transfer into
infected hosts. Intriguingly, neither C3 nor Fcγ receptors were required for the antiviral
activity of the transferred Abs [233].

Antibody-mediated inhibition of formation of new viral particles is one more mecha-
nism of how Abs can reduce viral burden and enhance viral clearance. The experiments
with measles virus and human convalescent serum provide evidence that multivalent
antibody can redistribute measles virus antigens on the surface of infected HeLa cells in
culture causing capping, a clustering of viral proteins on one pole of the cells. The formed
caps are being most likely extruded into the cell culture supernatant and disintegrated,
thus decreasing virus production [142,234]. This mechanism seems to be working for
glycoprotein-specific Abs of Marburg virus. NonNAbs against glycoprotein of Marburg
virus drastically reduced the budding and release of progeny viruses from infected cells
and inhibited the formation of virus-like particles (VLPs) [235]. The addition of NP-specific
mAb to mumps virus infected Vero cells resulted in a decreased virus titer, attributing this
observation to inhibition of new mumps virus particles formation similar to that described
for measles and Ebola viruses (Šantak, unpublished data).

Clinical progression of NSV’s infection due to Fcγ receptor-mediated antibody-
dependent enhancement (ADE) has not been described so far. So, the possible concern
about the potential ADE of infection mediated by NP-specific nonNAbs should not be
neglected, but does not seem to be very likely.

Collective lack of interest in humoral response to NP during NSVs’ infection and
nonexistence of standard methods to measure it (both qualitatively and quantitatively)
is responsible for the fact that very little is known about the role and the mechanism of
NP-specific Abs activity. Additionally, there are almost no data on the position of epitopes
for this immunodominant viral protein. A panel of six monoclonal antibodies against NP
of HPIV1 and a series of truncated NP was used to get more insight into a topology of this
protein. As a result, they discovered that half of the tested antibodies were specific for the
last 23% of the C-terminal of the NP. Additionally, they showed that two out of six mAbs
showed cross-reactivity with Sendai virus, a related murine parainfluenza type 1, indicating
that these two epitopes are conserved between these two related viral species [236]. Our
unpublished observation with the overlapping 30 amino acid long peptides of mumps virus
NP and polyclonal sera obtained from rabbits and rats immunized with whole mumps
virus indicate the localization of linear NP epitopes within the distal C-terminal region
spanning aa 415–430, 440–465 and 495–520. The location of epitopes at the N-tail domain
of these two viruses makes sense since the N-tail is intrinsically disordered and exposed
at the surface of the nucleocapsid. Thus, it is easily accessible for specific Ab to bind. As
discussed earlier, this region is also proved to be more variable than the rest of the NP,
probably as a result of the Ab-driven evolutionary escape.

As presented here, in spite of the high interest and need to invent vaccines which will
be able to generate a broad cross-protective immunity by the use of highly conserved inter-
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nal viral proteins such as NP, humoral immunity to NP remains sporadically investigated
and thus largely uncharacterized.

4. Vaccines Based on NP

Protection against viral glycoproteins is mostly strain specific due to the high variabil-
ity of antigenic sites which are under selective pressure by specific Abs. Broader immunity
can be achieved by cell-mediated immune response and, at least partly, by humoral immu-
nity as well, elicited to the epitopes of more conserved structural proteins such as NP and M
protein. When testing new vaccine candidates, the main focus is their immunogenicity and
safety. The testing results should provide relevant information on the quality and quantity
of the immune response (both humoral and cell mediated) and the safety of the tested
compound [198]. Standard methods for measuring cellular response or the level and quality
of NAbs are well known. However, to test the effectiveness of humoral response, which
is mediated by nonNAbs, new assays should be standardized or even developed. Since
nonNAbs may act through several different mechanisms, and even through mechanisms
uncharacterized so far, this is far more complex.

Different novel technologies have been used for the design of NP-based vaccines:
recombinant NP (influenza virus, HMPV, hantavirus, rabies virus), peptides (Ebola virus,
rabies virus), DNA (influenza virus, Ebola virus, LCMV, Lassa fever virus, rabies virus),
virus-like particles (RSV), Bacillus Calmette–Guérin (BCG) as vector (RSV) and various
viral vectors (modified vaccinia Ankara (MVA) vector for influenza virus, Ebola virus and
Lassa fever virus, rabies virus; measles virus vector for Lassa fever virus; poxvirus vector
for rabies and CMV vector for Ebola). The number of published animal studies describing
promising NP-based vaccine candidates (mostly in a murine model) is too numerous to
discuss them and cite them all. Despite such a high number of published animal studies on
potential vaccine candidates, only few have entered clinical trial procedures (Table 4).

Table 4. Clinical trials for novel vaccines based on the NP against human NSVs in Phases 1–3
listed by the FDA (https://www.clinicaltrials.gov, accessed on 1 February 2022) or EMA (https:
//www.clinicaltrialsregister.eu, accessed on 3 February 2022) by 1 February 2022.

Medical
Condition

Clinical Trial Identifier
(Regulatory Agency) Vaccine Type Phase (Status) Sponsor

influenza

2009-010334-21
(EMA)

MVA * encoding NP and M1
proteins

(MVA-NP + M1)

IIa (completed in 2010)

University of
Oxford

NCT00993083
(FDA) II (completed in 2010)

NCT01818362
(FDA)

chimpanzee adenovirus AdOx1
encoding NP and M1 (ChAdOx1

NP + M1)
I (completed in 2015)

2017-001103-77
(EMA)

seasonal inactivated influenza
vaccine in combination with

MVA-NP + M1

IIb (completed in 2018)
Vaccitech LimitedNCT03300362

(FDA) IIb (completed in 2018)

2021-002535-39
(EMA)

oligomerization domain OVX313
fused to NP which formed the NP

heptamer (OVX836)

IIb (ongoing)
Osivax S.A.SNCT03594890

(FDA) I (completed in 2019)

https://www.clinicaltrials.gov
https://www.clinicaltrialsregister.eu
https://www.clinicaltrialsregister.eu
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Table 4. Cont.

Medical
Condition

Clinical Trial Identifier
(Regulatory Agency) Vaccine Type Phase (Status) Sponsor

RSV

2017-004582-27
(EMA)

MVA * encoding RSV antigens F, G
(of subtypes A and B), NP and M2

(MVA-BN-RSV)

IIa (completed in 2019)
Bavarian NordicNCT04752644

(FDA) II (ongoing)

2018-000431-27
(EMA)

chimpanzee adenovirus Ad155
encoding F, NP and M2 proteins

(ChAd155-RSV)

I/II (completed in 2021)
GlaxoSmithKline

BiologicalsNCT02491463
(FDA) I (completed in 2017)

NCT03213405
(FDA)

BCG ** encoding RSV NP
(rBCG-N-hRSV) I (completed in 2018) UC Chile

Ebola NCT04152486

MVA * encoding glycoproteins of
Zaire ebolavirus, Sudan ebolavirus
and Marburg Marburgvirus, and

NP of Taï Forest ebolavirus
(MVA-BN-Filo)

III (ongoing)
London School of

Hygiene and
Tropical Medicine

* MVA—modified vaccinia virus Ankara strain; ** BCG—Bacillus Calmette–Guérin.

4.1. Vaccine Candidates Based on the NP as Antigen in Clinical Trials

The European Medicines Agency (EMA, https://www.clinicaltrialsregister.eu/, accessed
on 3 February 2022) and the Food and Drug Administration (FDA, https://clinicaltrials.
gov/, accessed on 1 February 2022) were surveyed for vaccine candidates in clinical trials
phase 1–3 based completely or partially on the NP for any of the NSVs (Table 4). Seven
vaccine candidates were found, most of them in the status of completed either phase 1
or phase 2. It is anticipated that at least few of them will enter next phase. Four of them
are intended for influenza vaccine: MVA-NP + M1 (University of Oxford), combination of
MVA-NP + M1 and seasonal inactivated vaccine (Vaccitech Limited), ChAdOx1 NP + M1
(University of Oxford) and OVX836 (Osivax). Additionally, three vaccine candidates
are intended for vaccination against RSV infection: MVA-BN-RSV (Bavarian Nordic),
ChAd155-RSV (GlaxoSmithKline) and rBCG-N-hRSV (UC Chile). Interestingly, only one of
the candidates is based on the recombinant protein (OVX836), while others are based on
viral vectors (MVA or ChAd) or BCG as vector.

4.1.1. Influenza Vaccine Candidates Based on the NP

Influenza vaccines used nowadays are mostly inactivated influenza virus or derivates
of it, i.e., surface proteins hemagglutinin and neuraminidase. Far less frequently used are
influenza vaccines based on the live attenuated influenza virus. Major disadvantage of
the current influenza vaccines is the need for yearly update of the vaccine strains due to
the genetic drift of the circulating viruses which mostly affect highly polymorphic viral
surface glycoproteins. This also means that the immune response to such vaccine is limited
to strain-specific Abs and the vaccine should be received each year. The ultimate goal for
influenza vaccine development is universal vaccine which would elicit a long term and
broad heterosubtypic immunity. Such a vaccine cannot be achieved by eliciting immunity
solely to surface glycoproteins, but by using more conserved internal proteins such as NP
and M1 protein (Table 4).

MVA-NP + M1 is a recombinant, replication-deficient MVA vector expressing the
influenza antigens NP and M1 as a fusion protein [237]. Several Phase I and Phase IIa
trials using MVA-NP + M1 generated in either chicken embryo fibroblast cells or in the
duck immortalized AGE1.CR.pIX cell line were completed so far. Phase I clinical trial
revealed that immunization with MVA-NP + M1 resulted in a rapid T-cell response across
age groups, which was maintained at levels above baseline responses over the course of
a year [237]. In the group aged 65 years and above, MVA-NP + M1 was able to boost

https://www.clinicaltrialsregister.eu/
https://clinicaltrials.gov/
https://clinicaltrials.gov/
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pre-existing levels of specific T-cells for up to at least 6 months [238]. Although there
was a trend towards the vaccine group having improved outcomes after intranasal in-
fluenza challenge (less laboratory confirmed cases with less pronounced symptoms, re-
duction number of days of viral shedding), statistical significance was not reached ([239];
https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-010334-21/results, accessed
on 3 February 2022).

Modification of vaccination strategy was made by a combination of a vaccine candidate
MVA-NP + M1 with licensed inactivated influenza vaccine in adults 65 years and above in a
randomized, participant-blinded, placebo-controlled, multi-center phase IIb efficacy study.
The aim of this vaccine strategy is to boost pre-existing cross-reactive T-cell responses to
highly protective levels, providing immunity to not only strain-specific influenza, but also
to heterosubtypic influenza A viruses [240,241]. This trial was terminated after one season
due to a change in the recommended seasonal vaccine strain. Under such circumstances
only 846 of a planned 2030 participants were recruited. The study shows expected increase
in the T cell response. Since this was underpowered study, there was no benefit seen in this
trial to inducing higher levels of hemagglutinin-specific antibodies by adding MVA-NP +
M1, and it was unable to show any association of illness outcomes with gamma interferon
T cell responses.

Different viral vector was used by Dicks et al. They constructed a novel replication-
deficient chimpanzee adenovirus vector expressing conserved influenza antigens NP and
M1 (ChAdOx1-NP + M1) [242]. Clinical assessment of this type of vaccine demonstrated
safety in trail participants with the increased T-cell response [243].

A more immunogenic version of NP was created by fusing it to the small oligomer-
ization domain OVX313 which led to formation of the NP heptamer named OVX836 [244]
which shows increased uptake by dendritic cells and immunogenicity compared with NP.
Intramuscular immunization in mice with OVX836 induced strong NP-specific CD4+ and
CD8+ T-cell systemic responses and established CD8+ tissue memory T cells in the lung
parenchyma [244]. Phase II clinical trial with this vaccine candidate was completed in
September 2020 (NCT04192500).

4.1.2. RSV Vaccine Candidates Based on the NP

In spite of the high health burden, the vaccine against RSV infection is still an elusive
goal. Main reasons for that are gaps in the puzzle of the immune response elicited upon
RSV infection, the variability of the surface glycoproteins and the fact that infants should
be vaccinated very early upon birth when immune system is still underdeveloped. Similar
to influenza, natural RSV infection does not confer lifetime immunity. Major target groups
for RSV vaccination are infants, elderly and immunocompromised people. Strategy is to de-
velop vaccine applicable for indirect vaccination of infants through maternal immunization
and direct vaccination of adults at high risk of developing severe complications if infected
with RSV.

NP is highly conserved between human RSV A and B serotypes. Therefore, an NP-
based vaccine alone or in combination with the fusion protein-based vaccine, could be one
of directions to reach the effective and safe RSV vaccine.

MVA-BN-RSV is a vector-based vaccine based on the MVA-BN backbone that can
enter mammalian cells and initiate viral protein expression without replicating in most
mammalian cells [245]. The vaccine was designed to encode and express five RSV antigens:
surface F protein and G protein of subtypes A and B, and internal conserved proteins NP
and M2 protein. In this way the vaccination is mimicking natural infection and could
provide a broad and long-term protection against RSV. Completed Phase I [246] and
Phase II [247] clinical trials show that MVA-BN-RSV induced robust T cell responses and
moderate, but consistent humoral responses were observed against A and B RSV subtypes
which persisted at least 6 months and can be boosted at 12 months, without significant
safety findings.

https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-010334-21/results
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Similar promising results were published for early phase trial for chimpanzee-
adenovirus-155 vector backbone vaccine encoding RSV F protein, NP, and transcription
antitermination proteins (ChAd155-RSV). The trials show that ChAd155-RSV increases
specific humoral and cellular response in previously exposed adults. No severe adverse
effects were observed [248].

Given the extensively accepted safety and immunogenicity profile of the bacillus
Calmette–Guérin (BCG) vaccine in newborns, the vaccine based on the recombinant BCG
expressing NP of RSV (rBCG-N-hRSV) is intended for direct use on neonates to prevent
severe hRSV infection [201]. A phase I clinical trial rBCG-N-hRSV vaccine showed that
the vaccine was safe; serum IgG antibodies directed against M. bovis and the N-protein
of RSV increased after vaccination, as well as the cellular response, consisting of IFN-γ
and IL-2 production against PPD and the N-protein. Interestingly enough, the sera of
volunteers immunized with the lowest dose of rBCG-N-hRSV were capable of neutralizing
RSV in vitro. However, it is possible that the neutralization capacity of some sera from this
cohort results from the natural exposure to RSV since this cohort was immunized in the
middle of the RSV seasonal outbreak [249].

Ebola vaccine based on the NP that is under approval process by the FDA has al-
ready been approved by the EMA and more of this vaccine will be discussed in the
following section.

4.2. Vaccines Based on NP as Antigen in Use

The only vaccine partly or completely based on the NP is vaccine against Ebola. Out-
breaks of Ebola are causing devastating consequences with >40% lethal cases. This has
urged the development of effective and widely available Ebola vaccine. The vaccine was ap-
proved by the EMA in 2020 and it is under the approval process by the FDA (NCT04152486).
The vaccine consists of two heterologous components given eight weeks apart [250]. The
component used for prime vaccination is a replication-deficient adenovirus type 26 vector-
based vaccine (Ad26.ZEBOV, Zabdeno), expressing Zaire Ebola virus glycoprotein. The
second component used for the boost is an MVA vector-based vaccine, encoding glyco-
proteins from Zaire Ebola virus, Sudan virus, and Marburg virus, and NP from the Tai
Forest virus (MVA-BN-Filo, Mvabea). This heterologous prime/boost vaccination regimen
is proved as safe, well tolerated, and immunogenic, with humoral and cellular immune re-
sponses persisting for 1 year after vaccination [250]. Since both components are replicative
or non-replicative viral vector platforms being an intrinsic adjuvant, no additional adjuvant
is required for effective induction of protective immunity.

4.3. Nucleoprotein as a Scaffold for Foreign Antigen Delivery

Nanosized self-assembled proteins are used as platforms in various biomedical imple-
mentations, including the development of new vaccine candidates [251].

Nanovaccines, having self-assembled proteins as a scaffold, are showing numerous
advantages. The key steps in increasing immunogenicity are uptake and processing by
APCs, whose activation is important for T-cell priming and activation of B-cells [252].
Pathogen-sized particles and nanoparticles are uptaken by APCs and consequently DCs are
activated through a series of downstream mechanisms. DCs can cross-present antigens, so
both CD4+ and CD8+ T-cells are switched on [253]. Since the adaptive immune response is
mostly induced in the lymphatic system, it is crucial for vaccines to enter lymphoid organs.
The lymph vessels are 10–60 µm in diameter, so molecules from 20 to 200 nm can easily
enter, and antigens can directly interact with B cells, while larger nanoparticles from 100 to
500 nm are carried by specialized cells [252]. The ability to present multiple antigens on the
particle surface, use of positively charged particles and hydrophobic clusters also have an
impact on increasing immunogenicity. Nanorings and nanoparticles, used in vaccination
nanotechnology, resemble viral capsid structure, while larger assemblies, nanofilaments
and nanotubes have the same conformation as some pathogen structures, e.g., pili, flagella
and helical viral capsids [253].
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NP from RSV forms a ring built from 10–11 monomers and it was used as a scaffold for
influenza virus vaccine [254]. Since M2e alone is only weakly immunogenic, a conservative
ectodomain of influenza virus transmembrane protein was anchored onto NP of RSV. In
this study, both N-M2e and N-3M2e (three copies of epitope linked to N-protein) were
expressed and purified in E. coli. N-M2e and N-3M2e showed stronger immune responses
compared to M2e and 3M2e alone. As expected, induced anti-M2e antibodies were not
neutralizing, as was the case after using conventional influenza vaccine. However, a
complete virus elimination in mice infected with influenza virus after N-3M2e injection
was shown. Importantly, in this study was confirmed that preexisting immunity against
NP did not affect immune response against this type of vaccine.

Measles RNP was fused to circumsporozoite protein (CS) from Plasmodium berghei,
which is present on Plasmodium surface and used as an antigen in malaria vaccine can-
didates. Fusion protein was expressed in Pichia pastoris and observed as a filamentous
structure in yeast cytoplasm. Mice susceptible to P. berghei infection were immunized
with whole yeasts expressing the fusion protein. A decrease in parasitemia in mice was
observed [255]. In the next study, mice were immunized with clear lysate retaining re-
combinant N-PbCS. Yeast lysates were shown to have adjuvating properties. Additionally,
PbCS fused to measles virus RNPs induced better antibody response compared with
non-multimerized PbCs. Since only multimerized PbCS could cause the delay in para-
sitemia, RSV RNPs from yeast lysate have a promising potential as carriers for the malaria
vaccine and, moreover, as a platform for the delivery of subunit vaccines from different
pathogens [256]. The development of veterinary vaccines has also recognized the benefits
of the NP nanoplatform. Mebatsion et al. localized a conserved B-cell immunodominant
epitope (IDE) of the Newcastle disease virus (NDV) NP spanning aa 447–455 and suc-
cessfully generated a recombinant NDV lacking the IDE by reverse genetics. Then they
inserted a B-cell epitope of S2 glycoprotein of murine hepatitis virus (MHV) instead of
the conserved IDE of NDV NP. Chickens immunized with the hybrid recombinant NDV
produced specific antibodies against the S2 glycoprotein of MHV [257].

So, the use of NP as a vaccine carrier due to the self-assembling properties and the
size of multimeric forms could be a new direction in a successful vaccine design.

5. Conclusions

In spite of the effort that has been invested in numerous studies and trials, only a few
vaccines against NSVs are available indicating the need for alternative approaches when
developing the new vaccines. This review revisited a large body of literature available on
a highly conserved NP showing versatile function of this protein in the life cycle of the
NSVs and identifying NP as a valuable target for the advancing vaccine design and target
of inhibitory drugs.

In spite of the abundance of the NP in the virion or infected cell and the overwhelming
antibody response to this protein, the interest in the complete understanding of the adaptive
immune response to this protein is not proportional. NP-based vaccines are considered as
T cell-directed vaccine and clinical trials are focused on the T cell response. At the same
time, NP-specific humoral response is mostly neglected. Sporadic studies on the role of
humoral response to NP in protection against NSVs have merely scratched the surface of
the underlying mechanism. However, these studies show that this arm of immune response
contributes to resolving the infection.

To conclude, the rational design of the vaccine against NSVs warrants better under-
standing of the immunobiology of each individual viral protein, and co-operation of cellular
and humoral immunity against them. These fragmented views indicate NP as a potent
vaccine target, either as a stand-alone vaccine or as a complementing component as has
been already used for Ebola vaccine strategy.
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