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Abstract: Air temperature and precipitation data (1976–2021), stable isotope composition (δ18O, δ2H)
data, and deuterium excess (1980–2021) data were analyzed using principal component analysis (PCA),
Fourier analysis (FA), and wavelet analysis (WA). The PCA represented each month by a single dot in
the diagram, and month 1 and month 7 were clearly distinguished. The FA and WA gave the 12-month
period for all parameters, but the strongest power was for temperature, then δ18O and δ2H, and finally
for the precipitation amount and deuterium excess. Both Pearson’s r and Spearman’s ρ correlation
coefficients gave similar values for δ2H—δ18O and temperature—δ2H, δ18O correlations.
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1. Introduction

A statistical technique that deals with time-series data is called a time-series analysis.
Time-series data mean that the data are in a series of particular time periods or any other
intervals. It is used by many industries in order to extract meaningful statistics, characteris-
tics, and insights. Among time-series analysis, Fourier analysis (FA) and wavelet analysis
(WA) have proven to be powerful tools for detecting temporal variations in time-series data.

Principal component analysis (PCA) is a dimensionality-reducing method that is used
to reduce the dimensionality of large data sets by transforming a large set of variables
into a smaller one that still contains most of the information in the large set. Such a small
dimensionality set can be easily visualized and analyzed.

The strength of the relationship between the two variables is called a correlation
coefficient, and its values range between −1.0 and 1.0. A correlation of −1.0 is a perfect
negative correlation, while a correlation of 1.0 is a perfect positive correlation. A correlation
of 0.0 shows no linear relationship between the two variables.

Few stations have enough data to perform wavelet data analysis. About one-sixth
of the number of complete cycles can be confidently found [1]. Therefore, at least 6 years
of the data record is needed for accurate and precise determination of 1-year seasonal
fluctuations. The longer the observation time, the higher the accuracy and precision in
evidencing the cycles and their time span.

Most of the WA were used to study global long-term periods [2–7]. Some were used
to teleconnect large-scale climate indices and hydrochemical and isotopic characteristics of
a karst spring [8] or to study spatio-temporal variability of rainfall and streamflows over
the last decades [9].

Only a few studies have been applied to tritium analyses [10,11] or stable isotopes in
precipitation [12]. Wavelet analysis was used to determine tritium variation in precipitation
for several stations with long-term data and correlate them with solar activity fluctua-
tions [10] and determine solar cycle periodicity in tritium activity in precipitation in Zagreb
from 1996 to 2019 [11]. Time-series analysis (both FA and WA) was applied to a 7-year
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record (2012–2018) of δ18O, δ2H, deuterium excess in precipitation, as well as temperature
and precipitation amount [12].

The history of monitoring isotope data in precipitation at Zagreb is much longer than
the minimum of seven years—tritium has been monitored since 1976, while stable isotope
data are available for 1980–2006 and from 2012 onward. The series of data is rather scarce
in Europe [13], and it deserves to be analyzed in many different ways. Statistical analysis
of 3H activity concentration, δ2H, δ18O, and deuterium excess and comparison with basic
meteorological data (temperature, amount of precipitation) was presented in [14], but
no principal component analysis was performed, and no Fourier and wavelet analysis
was performed. Mean annual temperature showed a statistically significant increase of
0.07 ◦C per year. Annual mean δ18O and δ2H values showed an increase of 0.017‰ and
0.14‰ per year, respectively, resembling an increase in the temperature. The mean yearly
precipitation amount did not show any statistically significant change, but the annual
values showed higher dispersion from the mean during the last 20 years. The distribution
of the monthly amount of precipitation moved to the second half of the year, with the
maximum in September. The mean deuterium excess remained constant over the years,
but a change of distribution was observed: a decrease in deuterium excess in the first half
of the year and an increase in the second half (maximum in November) due to air masses
coming from the eastern Mediterranean.

Long-term (1980–2021) isotope data (δ2H, δ18O, deuterium excess) of monthly precipi-
tation in Zagreb were studied here using statistical time-series analyses. Data for meteoro-
logical parameters for 1976–2021 (mean monthly air temperature and the monthly amount
of precipitation) were also included. We used the data presented in [14] complemented
with the new data from 2019–2021 (Supplementary File, Table S1). Principal component
analysis, Fourier analysis, and wavelet analysis were used to determine what kind of results
could be obtained. The principal question was whether this kind of analysis could show
any dependence on temperature. Finally, we compared the two correlation coefficients
(Pearson’s r and Spearman’s ρ) to determine any possible difference between them.

2. Materials and Methods

Two frequency analysis methods were used: periodogram (Fourier analysis) and
wavelet. The algorithm for both methods used supports evaluating unevenly spaced
data points.

Unevenly and missing spaced data points could be converted to evenly spaced points
in a few different ways, such as interpolation, setting missing data points to zeros, and
others. However, practice showed that these methods are not reassuring. Therefore,
for periodogram analysis, we chose the Lomb periodogram [15]. In our case, N data
points (hi ≡ h(ti), i = 1, . . . , N) are measured at unevenly sampled times ti. The Lomb
normalized periodogram is given by
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1
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and angular frequency ω = 2π f , f being the frequency. The significance level of any peak

in PN(ω) is given by 1 −
(

1 − e−PN(ω0)
)M

for some concrete ω0, and M stands for the
number of independent frequencies. The method used for fast calculation of PN(ω) and M
can be found in [16].

To analyze signal transient and/or non-sinusoidal nature, wavelet analysis was chosen.
The algorithm for unevenly spaced data proposed by [17] was used. For the mother wavelet,
Morlet wavelet f (z) = e−cz2

(
eiz − e−1/4c

)
with c = 1/72 was used [1].

Our data can be viewed as a multidimensional point consisting of five variable vectors
(x1, x2, x3, x4, x5), where each point corresponds to a particular month of the year. The
vector components xi corresponds to temperature, δ18O, δ2H, precipitation, and deuterium
excess. Such arranged data are suitable for principal component analysis (PCA) [18] in the
points where all variables are present—in our case, 416 data points in total. Two principal
components (PC1 and PC2) were used to present the data point, and the confidence ellipse
and centroid were calculated. The confidence ellipses were calculated assuming bivariate
Gaussian distribution. The centroid point (X, Y) for k points (xi, yi), i = 1, . . . , k, was
derived as follows:

X =
1
k ∑k

i=1 xi (5)

Y =
1
k ∑k

i=1 yi (6)

Both Pearson’s and Spearman’s methods were used to measure the correlation between
the data. Pearson’s correlation coefficient r evaluates the linear relationship between two
continuous variables, while the Spearman correlation coefficient ρ is based on the ranked
values for each variable rather than on the raw data. Both the correlation coefficients
give a positive (or negative) correlation value, but the values can be different because
Pearson’s r measures δ, the linear relationship between the variables, while Spearman’s ρ
only measures monotonic relationships.

New stable isotope data (δ2H and δ18O of Zagreb’s precipitation), related to the period
2019–2021, were determined at the Laboratory for Spectroscopy of the Faculty of Mining,
Geology, and Petroleum Engineering, University of Zagreb, with a Liquid Water Isotope
Analyzer (LWIA-45-EP, Los Gatos Research, San Jose, CA, USA). Data were analyzed by
the Laboratory Information Management System (LIMS) [19]. The measurement precision
of duplicates was ±0.19‰ for δ18O and ±0.9‰ for δ2H.

3. Results

The temperature in 2019–2021 showed an increase in the lowest temperature and
steady highest temperature in the last 5 years [13], which gave 2019 the title of the hottest
year of the whole period of 1976–2021. Similar conclusions are also valid for δ18O and δ2H
data. The annual mean deuterium excess is constant throughout 1980–2018, but with higher
values in autumn than in spring, and this difference increased over time [14]. Deuterium
excess for 2019–2021 was around 8‰ for January–August, while for September–December,
it was higher than in all other periods, including 2012–2018 [14], reaching the average value
of 14‰ in November. The average amount of precipitation did not change in 1976–2018,
but larger fluctuations around the mean values were observed during the most recent
period [14]. Precipitation in 2019–2021 was average (± 1 standard deviation), equal to the
average value of 1976–2018.

3.1. PCA Analysis

PCA analysis (Figure 1) shows data points for months 1 and 7, together with their
confidence ellipses. Those two months, each representing a different season, can be statisti-
cally separated in the PC1-PC2 space. The PC1 axis accounts for 56.27% of the variability,
and PC2 for 25.04% of the variability in the data. We can also see that temperature, δ18O,
and δ2H are more closely aligned with the PC1 axis, and precipitation and deuterium
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excess are linked with the PC2 axis. This leads to the conclusion that the winter/summer
difference is most pronounced in temperature, δ18O, and δ2H changes.
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Figure 1. PCA of month 1 (blue squares) and month 7 (red dots); black dots connected with arrows
represent each month in the year.

Additionally, Figure 1 shows centroids from all twelve months, with their path in the
PC1-PC2 space denoted here by vectors marked with the numbers of the month. Such
a representation further emphasizes that warmer months are mostly on the right side of
the PC1 axis, corresponding to a higher temperature, δ18O, and δ2H. On the PC2 axis,
precipitation and deuterium excess dominate. Months 3, 4, and 5 are separated from
11, 10, and 9, suggesting that the latter have more precipitation and a greater excess of
deuterium. Here, the difference is less pronounced than on the PC1 axis.

3.2. FA Analysis

Fourier analysis (FA) of the temperature, δ18O, and δ2H values (Figure 2a,b and S1)
showed the strongest peaks. All peaks were well above the significance level of p = 0.05.
The peak appeared at 12.01 months since those values exhibit strong annual seasonality.
However, the increase in temperature due to global climate changes in recent decades
cannot be seen [14].

FA of the precipitation amount (Figure 2c) and deuterium excess (Figure 2d) showed
more frequencies, although the mean frequency is still one year, and others are not statisti-
cally significant. The 1-year peak is still well above the limit of p = 0.05, but the power of the
peak (~30) is significantly lower than that of temperature (~250) or δ18O and δ2H (~120).
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Figure 2. Fourier analysis (FA) graphs of: (a) temperature; (b) δ18O; (c) precipitation, and
(d) deuterium excess. The red line marks p = 0.05 statistical significance.

3.3. WA Analysis

The temperature shows a typical graph of seasonal fluctuation within a period of
12 months (Figure 3a), localized at the (12 ± 1) month period. δ18O (Figure 3b) and δ2H
(Figure S2) graphs also show typical seasonal graphs with slightly lower localization in
a 12-month period. Here, we should mention that δ2H and δ18O graphs were obtained
for 1980–2006 and separately for 2012–2021 because of a large gap in data from 2007 to
2011. However, the same dominant period is observed in both cases.

The WA graph for precipitation and deuterium excess (Figure 3c,d) showed an
average period of 12 months, but with much larger fluctuations compared to δ2H and
δ18O—they contained more non-dominant periods. The deuterium excess graph is also
divided into 1980–2006 and 2012–2021 periods with the same characteristics.

WA analysis confirms that the dominant 12-month periodicity is stationary in time.
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Figure 3. Wavelet analysis (WA) of the: (a) temperature; (b) δ18O; (c) precipitation amount, and
(d) deuterium excess.

3.4. Correlations

Correlations among the studied quantities were quantified by both Pearson’s (r) and
Spearman’s (ρ) correlation coefficients for linear and monotonic correlation, respectively
(Table 1 and Figure 4). Both gave similar results, and the strongest correlations were found
between δ2H and δ18O (both r and ρ values > 0.98), temperature and δ2H (both r and
ρ values > 0.79), and temperature and δ18O (>0.79), justifying the linear and monotonic
correlations. The other quantities showed much weaker or no correlation at all.

Table 1. Pearson’s r and Spearman’s ρ correlation coefficients.

ρ
r

δ18O
(‰)

δ2H
(‰)

Precipitation
(mm)

Temperature
(◦C)

Deuterium
Excess (‰)

δ18O (‰) - 0.986 0.084 0.799 −0.238
δ2H (‰) 0.988 - 0.117 0.799 −0.098

Precipitation (mm) 0.089 0.127 - 0.246 0.225
Temperature (oC) 0.793 0.799 0.235 - −0.137

Deuterium excess (‰) −0.277 −0.126 0.235 −0.155 -
Numbers in bold—significant correlation.
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4. Conclusions

The time series analyses justified previously observed behavior of temperature, precip-
itation amount, and stable isotope data in precipitation concerning seasonal periodicity. All
used statistical methods indicate a similar behavior pattern of temperature, δ18O, and δ2H.
Both FA and WA gave the highest power periodicity for the temperature, followed by δ18O
and δ2H, and finally, the precipitation amount and deuterium excess. FA showed a peak at
12 months, which was confirmed by WA, suggesting a stationary periodicity in time.

However, this kind of analysis does not give information on the long-term temporal
change of the parameters, such as the dependence on temperature. This could be an
important parameter for relating the stable isotope data in precipitation with the current
climate change.

Thus, the results of the current paper present complementary results to the previously
published ones. In the future, any analysis of precipitation data for at least 7 years of
isotope data will not be considered complete without the following: principal component
analysis, Fourier or wavelet analyses, δ18O vs. δ2H relation, and δ18O vs. temperature or
precipitation amount.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w14132008/s1, Figure S1: Fourier analysis of δ2H; Figure S2: Wavelet analysis of δ2H;
Table S1: Precipitation amount, temperature, δ18O, δ2H, deuterium excess, and tritium activity
concentration in monthly precipitation in Zagreb, 2019-2021.
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