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The spectrum-sum of a graph is defined as the sum of the absolute values of its eigenvalues.

The graphs with minimal spectrum-sums in the class of connected bipartite graphs with exactly

two vertex-disjoint cycles, in the class of connected bipartite graphs with exactly two vertex-

-disjoint cycles whose lengths are congruent with 2 modulo 4, and in the class of connected bi-

partite graphs with exactly two vertex-disjoint cycles one of which has length congruent with 2

modulo 4, are determined, respectively.
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INTRODUCTION

Let G be a simple graph with n vertices.1 The character-

istic polynomial of G is the characteristic polynomial of

its adjacency matrix, denoted by f(G, l).2,3 The eigenva-

lues of G denoted by l1,…, ln, are the roots of f(G, l) =

0. The set of graph-eigenvalues is also called the spec-

trum of the graph.4 The spectrum-sum of G is defined as

the sum of the absolute values of all elements in the gra-

ph-spectrum:

E(G) = l1 + l2 + ... + ln .

In the literature, the energy of a graph is usually em-

ployed for the spectrum-sum, e.g., Refs. 5–8. This term

was introduced by Gutman9 and an explanation why he

had chosen this term is given in Ref. 10. We choose the

term spectrum-sum since in physical sciences energy

represents a measurable quantity.

If G is the molecular graph of a conjugated hydro-

carbon, often called the Hückel graph,11 then the corres-

ponding set of eigenvalues is called the Hückel spec-

trum.12 The connection between the graph spectrum and

Hückel spectrum and the role of Hückel spectrum in the

theory of conjugated molecules were discussed in detail

elsewhere.13,14 The use of the Hückel spectrum in chem-

istry has been recently presented, for example, in this

journal.15

For a bipartite graph G (depicting the alternant

structures)16 with n vertices, its characteristic polyno-

mial can be written as:
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where bk(G) � 0 for k = 0,1,...,
n

2





. For convenience, let

bk(G) = 0 for k < 0 or k >
n

2





 . We also note that the

spectrum-sum can be calculated by the Coulson integral

formula:17
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Thus, one can define a quasi-order relation over the

class of all bipartite graphs: if G and G' are bipartite

graphs with n vertices, then:

G G G G� ' ( ) ( ' )⇔ ≥b bk k for k = 0,1,...,
n

2





.

If G G'� and there is a k0 such that b bk k0 0
( ) ( ' )G G> ,

then we write G G� '. According to the Coulson integral

formula for energy, for bipartite graphs G and G', we ha-

ve:

G G E G E G� ' ( ) ( ' )⇒ > (1)

Gutman18 determined acyclic conjugated structures

(trees) with extremal Hückel p-electron energies (spec-

trum-sums). That work triggered interest in determining

graphs with minimal or maximal spectrum sums.5–8,19–26

In the present report, we join these efforts by studying

graphs with minimal spectrum-sums in the class of bi-

partite graphs with exactly two vertex-disjoint cycles.

Examples of these graphs are shown in Figure 1.

PRELIMINARIES

Let Pn and Cn be the path and cycle with n vertices, res-

pectively. Let Un
l be the graph obtained by attaching n–l

pendent vertices to a vertex of the cycle Cl. The ver-

tex-disjoint union of graphs G and H is denoted by

G H∪ , �p�G denotes the vertex-disjoint union of p cop-

ies of G.

Lemma 1.10 – Let G be a bipartite graph and let uv be a

bridge of G. Then:

b b uv b u vk k k( ) ( – ) ( – – )–G G G= + 1 .

According to Lemma 1, it is easy to see that the fol-

lowing two lemmas hold.

Lemma 2. – Let G be a bipartite graph and let uv be a

bridge of G. Then G G� – uv.

For example, if an acyclic graph G with n vertices

contains a subgraph H with t < n vertices, then according

to Lemma 2, we have [ ]G H P� ∪ n t– 1.

Lemma 3. – Let G and G' be two bipartite graphs with n

vertices. Let uv be a bridge of G and u'v' be a bridge of

G'. If G G– '– ' 'uv u v� and G G– – '– '– 'u v u v� , or

G G– '– ' 'uv u v� and G G– – '– '– 'u v u v� then G G� '.

According to Theorems 4 and 5 in Ref. 5 and Theo-

rem 4 in Ref. 6, we have:

Lemma 4.5,6 – Let G be an n-vertex bipartite unicyclic gra-

ph whose unique cycle length is l. If G U≠ n
l , then

G U� n
l . If l > 4 then U Un

l
n�
4 . If l > 6 then U Un

l
n�
6 .

Lemma 5.26 – Let G1 and G2 be two vertex-disjoint bi-

partite graphs. Then for any k � 0,

bk(G1 ∪ G2) = b bi k i
i

k

( ) –G1
0=
∑ (G2).

Proof: Let ni i= V G( ) for i = 1,2. Note that:
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The result follows directly. �

RESULTS

Let Bn n

l l

1 2

1 2

,

,
be the graph obtained by adding an edge be-

tween the vertex of maximal degree in Un

l

1

1 and the ver-

tex of maximal degree in Un

l

2

2 . Let G be an n-vertex con-

nected bipartite graph with exactly two vertex-disjoint

cycles. Then there are two vertex-disjoint cycles C(1) and

C(2) in G with lengths l1 and l2, respectively, and there is

a unique path P connecting a vertex say u = u1 in C(1)

and a vertex say v in C(2), such that each edge in P is a

bridge of G, where l1 and l2 are even and at least four.

Let u2 be the unique neighbor of u1 in P. Then G– u1u2

consists of two components G1 containing the cycle C(1)

and G2 containing the cycle C(2). Let ni i= V G( ) , i = 1,2

Obviously, n1 + n2 = n.

Theorem 6. – Let G be an n-vertex connected bipartite

graph with exactly two vertex-disjoint cycles, where n �

9. If G B≠ 4 4
4 4

, –
,
n then G B� 4 4

4 4
, –
,
n .

364 F. WEI et al.

Croat. Chem. Acta 81 (2) 363¿367 (2008)

n–8

4, 4

4, –4nB

n–12 n–10

6, 6

6, –6nB 4, 6

4, –4nB

Figure 1. Examples of graphs with minimal spectrum-sums in the
class of bipartite graphs with exactly two vertex-disjoint cycles.



Proof: According to Lemma 4, G Ui ni
�

4 for i = 1,2. Ac-

cording to Lemma 5:

G – u1u2 = G1 ∪ G2 � Un 1

4 ∪ Un2

4 .

Now we consider the graph G – u1 – u2 = (G1 – u1)∪
(G2 – u2). Note that G1–u1 is an acyclic graph containing

a path P3. According to Lemma 2, G1 – u1 � P3�n1 – 4�P1�

and if u2 lies on the cycle C(2), then G2 – u2 � P3∪
�n2 – 4�P1� Suppose that u2 lies outside the cycle C(2). Ac-

cording to Lemma 2, G2 – u2 � C l2
∪ �n2 – 1 – l2� P1. It is

easily seen that:

b1( C l2
∪ �n2 – 1 – l2�P1� � l2 	 
 � b1(P3 ∪ �n2 – 4�P1��

and bk( C l2
∪ �n2 – 1 – l2�P1� � � � bk (P3 ∪ �n2 – 4�P1� for

all k � 2. Thus, we have G2 – u2 � C l2
∪ �n2 – 1 – l2�P1 �

P3 ∪ �n2 – 4�P1. It follows that G2 – u2 � P3 ∪ �n2 – 4�P1

whether u2 lies on the cycle C(2) or not. Thus we have

proved that: G1 – u1 � P3 ∪ �n1 – 4�P1 and G2 – u2 � P3 ∪
�n2 – 4�P1. Now according to Lemma 5:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � �
�P3 ∪ �n – 8�P1.

If min�n1,n2 = 4 say n1 = 4 then since G B≠ 4 4
4 4

, –
,
n we

have G2 – u2 containing the path or the star on four verti-

ces as a subgraph, and so b1(G – u1 – u2) = b1(G1 – u1) +

b1(G2 – u2) � 2 + 3 > 4 = b1(�
�P3 ∪ �n – 8�P1), implying:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � �
�P3 ∪ �n – 8�P1.

According to Lemma 3, we have G Bn n�
1 2

4 4
,

,
and if

min�n1, n2 = 4, then G B B� n n n1 2

4 4
4 4
4 4

,
,

, –
,= and so the result

follows. By direct calculation:

f(Un 1

4 ∪ Un2

4 , l) = [ln 1 – n1l
n 1 2– + (2n1 – 8)ln 1 4– � �

[ln2 – n2l
n2 2– + (2n2 – 8)ln2 4– � =

[ln–nln– 2 + (n1n2 + 2n – 16)ln– 4 –

4(n1n2 – 2n)ln– 6 +

4(n1n2 – 4n + 16)ln– 8 .

Suppose that min�n1,n2 > 4. Then n1n2 > 4(n – 4).

Thus b2 (Un 1

4 ∪Un2

4 ) = n1n2 + 2n – 16 > 4(n – 4) + 2n –

16 � b2 (U4
4∪Un – 4

4 ). Similarly, bk n n( )U U
1 2

4 4∪ > bk

(U U4
4

4
4∪ n– ) for k = 3,4 Note that bk n n( )U U

1 2

4 4∪ =
bk n( )–U U4

4
4

4∪ = 0 for k � 4. It follows that Un 1

4 ∪ Un2

4

� U4
4∪Un – 4

4 . According to Lemma 3, B Bn n n1 2

4 4
4 4
4 4

,
,

, –
,

.� It

follows that G B B� �n n n1 2

4 4
4 4
4 4

,
,

, –
,

. �

Theorem 7. – Let G be an n-vertex connected bipartite

graph with exactly two vertex-disjoint cycles, where

n � 13. If both cycle lengths of G are congruent with 2

modulo 4 and G B≠ 6 6
6 6

, –
,
n , then G B� 6 6

6 6
, –
,
n .

Proof: According to Lemma 4, G Ui � ni

6 for i = 1,2. Ac-

cording to Lemma 5, G – u1u2 = G1 ∪ G2 � Un 1

6 ∪ Un2

6 .

Now we consider the graph G–u1–u2 = (G1–u1) ∪
(G2–u2). According to Lemma 2, G1–u1 � P5 ∪ [n1–6]P1,

and if u2 lies on the cycle C(2) then G2–u2 � P5 ∪ [n2– 6]P1.

Suppose that u2 lies outside the cycle C(2). According

to Lemma 2, G2 – u2 � C
2l
∪ �n2 – 1 – l2�P1. It is easily

seen that:

b1( C l2
∪ �n2 – 1 – l2�P1� � l2 	 � � b1(P5 ∪ �n2 – 6�P1��

b2( C l2
∪�n2–1–l2�P1� �

l l
 
 �




� �–
	 � � b2(P5 ∪ �n2–6�P1��

and bk( C l2
∪ �n2 – 1 – l2�P1� � � � bk(P5 ∪ �n2 – 6�P1) for

all k � 3. Thus, we have G2 – u2 � C
2l
∪�n2 – 1 – l2�P1 �

P5 ∪ �n2 – 6�P1. It follows that G2 – u2 � P5 ∪ �n2 – 6�P1

whether u2 lies on the cycle C(2) or not. According to

Lemma 5:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � �2�P5 ∪ �n – 12�P1.

If min�n1,n2 = 6 say n1 = 6, then since G B≠ 6 6
6 6

, –
,
n

we have G2 – u2 containing a subgraph formed by at-

taching a pendent vertex to the path P5, and so

b1(G – u1 – u2) = b1(G1 – u1) + b1(G2 – u2) � 4 + 5 > 8 =

b1(�2�P5∪ �n – 12�P1, implying:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � �2�P5∪ �n – 12�P1.

According to Lemma 3, we have G B� n n1 2

6 6
,

,
, and if

n1 = 6, then G � Bn n1 2

6 6
,

,
= B6 6

6 6
, –
,
n , and so the result follows.

By direct calculation:

f(Un 1

6 ∪ Un2

6 ,l) =

[ln 1 – n1l
n 1 2– + (4n1 – 5)ln 1 4– – (3n1 – 18)ln 1 6– � �

[ln2 – n2l
n2 2– + (4n2 – 5)ln2 4– – (3n2 – 18)ln2 6– ] =

ln – nln–2 + (n1n2 + 4n – 30)ln–4 –

(8n1n2 – 12n – 36)ln–6 + (22n1n2 – 78n + 225)ln–8 –

(24n1n2 – 117n + 540)ln–10 + (9n1n2 – 54n – 324)ln–12.

If min�n1,n2 > 6 then n1,n2 > 6(n – 6), and from the

characteristic polynomial above, we have Un 1

6 ∪ Un2

6
�

U6
6∪ Un– 6

6 . According to Lemma 3, we have G B� n n1 2

6 6
,

,
=

B6 6
6 6

, –
,
n .�

The following theorem was reported in Ref. 26. He-

re we give an alternate proof.

Theorem 8. – Let G be an n-vertex connected bipartite

graph with exactly two vertex-disjoint cycles, where n �

11. If one cycle length of G is congruent with 2 modulo

4 and G B≠ 4 4
4 6

, –
,
n , then G B� 4 4

4 6
, –
,
n .
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Proof: Suppose without loss of generality that l2 ≡ 2

(mod 4). According to Lemma 4, G1 �Un 1

4 and G2 �Un2

6 .

According to Lemma 5, G – u1u2 = G1 ∪ G2 � U Un n1 2

4 6∪ .

Now we consider the graph G – u1 – u2 = (G1 – u1) ∪
(G2 – u2). According to Lemma 2, G1 – u1 � P3 ∪
�n1– 4� P1, and if u2 lies on the cycle C(2), then G2 – u2 �

P5 ∪ �n2 – 6�P1.

Suppose that u2 lies outside the cycle C(2). According

to Lemma 2, G2 – u2 � C l2
∪ �n2 – 1 – l2� P1. It is easily

seen that:

b1( C l2
∪ �n2–1–l2�P1� � l2 	 � � b1(P5 ∪ �n2 – 6�P1��

b2( C l2
∪ �n2–1– l2� P1� �

l l2 2 3

2

( – )
	 � � b2(P5∪ �n2–6�P1��

and bk( C l2
∪ �n2 – 1– l2� P1) � 0 = bk(P5 ∪ �n2 – 6�P1) for

all k � 3. Thus, we have G2 – u2 � C l2
∪ �n2 – 1 – l2� P1�

P5 ∪ �n2 – 6� P1. It follows that G2 – u2 � P5 ∪ �n2 – 6� P1

whether u2 lies either on the cycle C(2) or not. According

to Lemma 5:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � P3 ∪ P5 ∪ �n – 10� P1.

If n1 = 4 then since, G ≠B4 4
4 6

, –
,
n , we have G2 – u2

containing a subgraph formed by attaching a pendent ver-

tex to the path P5 and so b1(G –u1 – u2) = b1(G1 – u1) +

b1(G2 – u2) � 2 + 5 > 6 = b1(P3 ∪ P5∪ �n – 10�P1, implying:

G – u1 – u2 = (G1 – u1) ∪ (G2 – u2) � P3 ∪ P5 �n – 10� P1.

According to Lemma 3, we have G B� n n1 2

4 6
,

,
, and if

n1 = 4, then G B B� n n n1 2

4 6
4 4
4 6

,
,

, –
,= , and so the result fol-

lows. By direct calculation:

f(Un 1

4 ∪ Un2

6 , l) = ln – nln–2 + (n1n2+2n2+2n–23)ln–4 –

(6n1n2 + 10n2 – 15n – 18)ln–6 +

(11n1n2 + 16n2 – 48n + 120)ln–8 –

(6n1n2 + 12n2 – 36n + 144)ln–10.

If n1 > 4 then f(n1,n2) = an1n2 + bn2 > f(4, n–4) for

(a,b) = (1,2), (6,10), (11,16), (6,12) and thus from the

characteristic polynomial above, we have Un 1

4 ∪ Un2

6 ∪
U4

4 ∪ Un– 4
6 . According to Lemma 3, we have G � Bn n1 2

4 6
,

,
�

B4 6
4 6

, –
,
n .�

Let G be an n-vertex connected bipartite graph with

exactly two vertex-disjoint cycles, where n � 9. Accord-

ing to Theorems 6, 7 and 8, and using (1), we have:

(i) If G ≠B4 4
4 4

, –
,
n then E(G) > E(B4 4

4 4
, –
,
n ).

(ii) If both cycle lengths of G are congruent with 2

modulo 4 and G ≠B6 6
6 6

, –
,
n where n � 13 then E(G) >

E(B6 6
6 6

, –
,
n )

(iii) If one cycle length of G is congruent with 2 modulo

4 and G≠B4 4
4 6

, –
,
n , where n � 11 then E(G) > E(B4 4

4 6
, –
,
n ).

For the graphs B4 4
4 4

, –
,
n , B4 4

4 6
, –
,
n and B6 6

6 6
, –
,
n with n � 12,

it may be easily checked by Lemmas 3 and 4 or by the

characteristic polynomials that E(B4 4
4 4

, –
,
n ) < E(B4 4

4 6
, –
,
n ) <

E(B6 6
6 6

, –
,
n ).
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SA@ETAK

Minimalne spektralne sume bipartitnih grafova s to~no dva prstena razmaknuta jednim bridom

Fuyi Wei, Bo Zhou i Nenad Trinajsti}

Spektralna suma grafa definirana kao zbroj apsolutnih vrijednosti svih elemenata u spektru grafa. Prona|e-

ni su grafovi s minimalnim spektralnim sumama u klasi bipartitnih grafova s to~no dva prstena razmaknuta

jednim bridom gdje su veli~ine prstenova sukladno s 2 modulo 4 i u klasi bipartitnih grafova s to~no dva prste-

na razmaknuta jednim bridom gdje je veli~ina jednoga prstena sukladana s 2 modulo 4.
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