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Prošireni sažetak 

1. Uvod 

1.1. Metali u prirodnim vodama 

Metali su prirodni konstituenti vodenog okoliša. S obzirom da su nerazgradivi, jednom 

uneseni u sustav, gotovo trajno postaju njegovim dijelom. Prirodne razine metala u vodama 

(„background“) ovise o području u kojem se nalaze, odnosno sastavu stijena i tla, te se stoga 

može govoriti o specifičnosti vodnih područja s obzirom razinu pojedinih metala (Sl. 1). U 

vodenoj sredini, koncentracija metala rezultat je niza procesa koji reguliraju njihov 

biogeokemijski ciklus. Raspon prirodnih koncentracija metala u vodama kreće se od 

nekoliko mikrograma do manje od nanograma po litri. Za metale koji su prisutni u vrlo 

niskim koncentracijama (obično manje od 10-8 mol L-1), u literaturi se koriste razni sinonimi 

kao što su tragovi metala i mikronutrijenti/mikroelementi, a određeni metali često se 

nazivaju i teški odnosno eko-toksični metali. Istraživanja su uglavnom usmjerena prema 

metalima i metaloidima koji imaju poznatu biološku funkciju poput Fe, Cu, Zn, Co, Se, ili 

su poput Hg, Cd, As, Cr toksični. Primjerice, esencijalni metali (Zn, Cu) važan su faktor u 

fiziološkom funkcioniranju živih organizama jer reguliraju mnoge biokemijske procese, no 

ako su prisutni u povećanim koncentracijama mogu imati toksični utjecaj na živa bića, a time 

posredno i na čovjeka. Prirodne razine metala u tragovima mogu se povisiti uslijed njihovog 

antropogenog unosa kao rezultat različitih aktivnosti poput turizma, prometa, poljoprivrede, 

industrije, ispuštanje otpadnih voda, izgaranje fosilnih goriva (Sl. 1).  

 

 

Slika 1. Prirodni i antropogeni izvori metala i njihov unos u vodeni sustav. 
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1.2. Estuariji 

Općenito, estuariji su obalna polu-zatvorena područja gdje se riječna voda miješa s 

morskom. Estuariji su nastali tijekom podizanja razine mora i poplava u riječnim dolinama. 

Gradijent saliniteta je ključna varijabla koja čini estuarije drugačijima od morskih i jezerskih 

sustava i važan je za cirkulaciju u estuarijima. Uz uvijek prisutni horizontalni, gradijent 

saliniteta može biti i vertikalni. Uz morfologiju područja, na vertikalnu i horizontalnu 

raspodjelu saliniteta značajno utječu još i plima, vjetar, valovi i protok rijeke. Prema načinu 

miješanja estuariji se dijele na estuarije slanog klina (miješanje na granici riječne i morske 

vode koje uzrokuje prodiranje morske vode a zbog minimalnog miješanja nastaje klin, koji 

je najdeblji na dijelu prema otvorenom moru, a smanjuje se prema kopnu); visoko uslojene 

(stratificirane) estuarije (u morima, s malim rasponom između plime i oseke, manje rijeke 

stvaraju visoko stratificirane estuarije, u kojima je vodeni stupac podijeljen na gornji boćati 

i donji morski sloj, koje razdvaja oštra haloklina); zaštićene estuarije s pragom (djelomično 

su zatvoreni prema oceanu plitkim površinskim pragom, cirkulacija nije u cijelosti razvijena 

- povratni tok slane morske vode blokiran je u dubini); dobro miješane estuarije (dominante 

plimne struje u odnosu na riječni tok, voda je dobro izmiješana, bez veće promjene saliniteta 

u vertikalnom stupcu). 

 

1.3. Metali u tragovima u estuarijima 

U prirodnom ekosustavu je od izuzetne važnosti razumijevanje ponašanja, sudbine i utjecaja 

metala u tragovima. Potrebno je imati na umu različite faktore koji kontroliraju 

biogeokemiju metala, posebno u estuarijima, gdje postoji velika razlika u sastavu vode, a 

uključuje fizikalne i kemijske promjene raspodjele i specijacije metala u tragovima (Muller 

et al., 1996). U estuarijima fizikalni parametri i biološka aktivnost utječu na razdjeljivanje i 

specijaciju metala u tragovima kroz procese kompleksacije, sorpcije, flokulacije, 

precipitacije, otapanja i otpuštanja.  U estuarijskim uvjetima u kojima postoji gradijent 

saliniteta postoji i gradijent koncentracije kojim se opisuje kompleksno ponašanje metala u 

tragovima. Ovisno o svojstvima metala, kao i o fizikalno kemijskim, hidrodinamičkim i 

okolišnim (npr. zagađenje) uvjetima, ponašanje može biti i konzervativno i nekonzervativno 

(Sl. 2). Do nekonzervativnog ponašanja metala u tragovima u zoni miješanja, u estuarijima, 

dolazi zbog varijacija u  ionskoj jakosti, adsorpciji ili biološkim utjecajem. 
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Slika 2. Ilustracija ponašanja metala u gradijentu saliniteta (Wen et al., 1999). 

 

1.4. Specijacija metala u tragovima 

Specijacija je kvalitativno i kvantitativno određivanje raspodjele fizičko-kemijskih vrsta 

metala u tragovima u prirodnim vodama. Temeljni razlozi za istraživanje i utvrđivanje 

specijacije tragova metala u vodenim sustavima je razumijevanje mehanizma pod kojim se 

odvija proces njihovog biološkog i geokemijskog kruženja. O raspodijeli kemijskih oblika, 

odnosno specijaciji (Tessier and Turner, 1996) u prirodnim vodama ovise reaktivnost, 

transport, bioraspoloživost i/ili toksičnost metala prema mikroorganizmima. Općenito, 

specijacija tragova metala može se promatrati obzirom na upotrijebljene metode određivanja 

raspodjele pojedinih fizičko-kemijskih oblika (operaciona specijacija) i obzirom na 

određivanje raspodjele pojedinih kemijskih oblika i vrsta (kemijska specijacija).  

U prirodnim vodama prisutne su različite vrste aktivnih mjesta koje vežu metale u tragovima. 

Dijele se na anorganske i organske ligande, površine čestica i površine organizama (različite 

biološke membrane). Prema tome, metali u tragovima u prirodnim vodama raspodjeljuju se 

između otopljenih vrsta i vrsta vezanih na čestice. Ova operativna definicija podrazumijeva 

da otopljena frakcija uključuje oblike metala koji prolaze kroz filtar s definiranom veličinom 

pora (0.45 ili 0.2 µm). Čestice koje prođu kroz filtar mogu biti anorganskog i organskog 

podrijetla, metali u tragovima, a koloidne čestice (pr. Fe(OH)3) mogu biti u formi čestica 

dovoljno malih da prođu kroz membranu filtra. Čestice mogu biti organske (živi organizmi 

i njihovi metabolički produkti) i anorganske (razni minerali koji potječu od stijena, silicij i 

kalcij koji potječu od uginulih organizama i sl.). 
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1.5. Određivanje kapaciteta kompleksiranja metala  

U prirodnim vodama vezanje metala s anorganskim ligandima je poznato i računski 

predvidivo, no razumijevanje interakcija između metala i prirodne organske tvari (kopnenog - 

u priobalnim područjima ili autohtonog podrijetla - nastala u vodenom stupcu) (Bruland et al., 

2004) i dalje je nedovoljno poznato, te stoga predstavlja veliki znanstveni izazov. Zbog niskih 

koncentracija u kojima su prisutni metali u tragovima (do razine pM) i zbog eksperimentalnih 

ograničenja vezanih uz odvajanje, ekstrakciju i mjerenje različitih kompleksa metala pomoću 

drugih analitičkih tehnika, uobičajeno se za karakterizaciju interakcija metala i organskih 

liganada koristi neizravan pristup, temeljen na titracijskoj metodologiji (Bruland et al., 2000; 

Louis et al., 2009; Omanović et al., 1996; Plavšić et al., 1982, 2009). Zbog dobre selektivnosti 

i visoke osjetljivosti najčešće se koriste elektrokemijske tehnike: anodna voltammetrija 

otapanja (Garnier et al., 2004)  i adsorptivna katodna voltammetrija otapanja s kompetitivnom 

izmjenom iona (van den Berg, 1985). Elektrokemijskim titracijama određuju se parametri 

kompleksiranja, koncentracija liganada (Li) i uvjetna konstanta stabilnosti (K'
i) koje se koriste 

u izračunima specijacije metala u tragovima. Ova metodologija je poznata i pod nazivom 

određivanje kapaciteta kompleksiranja metala (KKM). KKM se izražava u ekvivalentima 

metala s kojima se titrira, odnosno za koji se određuje specijacija. Postupak određivanja sastoji 

se od dodavanja standardne otopine metala u uzorak i mjerenja strujnog odziva sve dok nagib 

krivulje ovisnosti struje vrha vala labilnog metala o koncentraciji dodanog metala ne postane 

konstantan (Sl. 3).  

 

Slika 3. Princip određivanja kapaciteta kompleksiranja metala. 
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Dobivena titracijska krivulja interpretira se Ružić-van den Berg-ovom linearizacijskom ili 

transformacijskom  metodom (Ružić, 1982; Van den Berg, 1982; Gerringa et al, 1995) na 

temelju koje se, uz pretpostavku prisustva jedne ili dvije vrste liganada, određuje kapacitet 

kompleksiranja i prividna konstanta stabilnosti.  

 

1.4. „In-situ“ specijacija -  difuzijski gradijent u tankom filmu (DGT) 

Tehnika pasivnog uzorkovanja i „in-situ“ specijacije metala, difuzijski gradijent na tankom 

filmu (DGT) (Davison and Zhang, 1994, 2012) koristi se za određivanje otopljenih 

slobodnih iona i labilnih kompleksa metala, za koje se smatra da su organizmima 

potencijalno bioraspoloživi. Princip rada je da kompleksi metal difundiraju kroz difuzni gel 

i vežu se na kompleksirajuću  smolu (Sl. 4).  

 

Slika 4. Shematski prikaz DGT uređaja, s uvećanim dijelom koji prikazuje tri karakteristična 

sloja (Davison and Zhang, 2012). 

 

Korištenjem Chelex-100 gela kao kompleksirajuće smole, DGT uzorkivači se mogu koristiti 

za određivanje 24 metala važna u okolišu (Garmo et al., 2003). Prednost DGT tehnike je 

njena „in-situ“ primjena, pri čemu se sprječava promjena specijacije uzoraka, što može biti 

problem klasičnih specijacijskih analiza koje se provode u laboratoriju. DGT uzorkivači 

izlažu se u vodeni sustav tijekom određenog vremenskog perioda (od nekoliko dana do ~ 2 

mjeseca), a dobivena DGT-labilna koncentracija je prosječna koncentracija tijekom tog 

vremena (efekt pamćenja). 
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2. Eksperimentalni dio 

Estuarij rijeke Krke nalazi se na istočnoj obali Jadranskog mora. Vodeni stupac ovog 

estuarija zbog specifičnog položaja i male razlike između plime i oseke koja je 

karakteristična za Jadransko more je uslojen (postoje boćati sloj, sloj halokline i morski sloj). 

Koncentracija metala u tragovima u rijeci Krki (Cukrov et al., 2008) i u estuariju (Elbaz-

Poulichet et al., 1991) je iznimno niska zbog slabih antropogenih aktivnosti i jakog procesa 

samopročišćavanja (zbog sedrenih barijera). Posljednjih godina nautički turizam je u 

porastu, stoga je ovo istraživanje posvećeno antropogenom utjecaju na specijaciju i 

dinamiku metala i organske tvari u dva različita doba godine (ljeto/zima). Porast 

koncentracije metala u tragovima zabilježen je u okolici grada Šibenika i šibenskoj luci 

(Omanović et al., 2006) te je povezan s antropogenim zagađenjem. Uočen je antropogeni 

utjecaj na specijaciju Cu, odnosno na porast koncentracije slobodnog Cu2+ (Louis et al., 

2009) koji može biti štetan za mikro organizme u estuariju. 

Uzorkovanje duž estuarija rijeke Krke (~23 km) izvršeno je na 15 postaja tijekom dva 

kontrastna  perioda, ljeto (19.07.2011) i zima (28.02.2012), na tri dubine, u sva tri 

karakteristična vertikalna sloja, s ciljem određivanja koncentracije i ponašanja metala u 

tragovima u vodenom stupcu (Sl. 5). Dubine na kojima su se uzimali uzorci određene su 

nakon mjerenja fizikalno-kemijskih parametara u vodenom stupcu (salinitet, otopljeni kisik, 

pH, temperatura, fitoplanktonska aktivnost). Boćati sloj uzorkovan je direktno u „teflonske“ 

boce visoke kvalitete (FEP, PFA) koje su oprane prema proceduri propisanoj za čišćenje 

boca za analizu metala u tragovima, a za uzorke s ostalih dubina korišten je horizontalni 

uzorkivač tipa van Dorn (2.2 L). Dodatno uzorkovanje boćatog sloja (40 postaja) provedeno 

je u Šibenskom zaljevu (20.07.2012.) te na 10 postaja poprečnog profila (30.08.2013.). 

Uzorkovanjem površine određeni su mogući izvora zagađenja, koji bi mogli imati utjecaj na 

raspodjelu metala u tragovima duž estuarija.  

S obzirom na određenu koncentraciju i raspodjelu metala u tragovima u estuariju, izabrane 

su dvije postaje koje su predstavljale „čisto“ (postaja Martinska) i „onečišćeno“ (marina 

Mandalina) područje. Na ovim postajama, detaljnije su proučavani fizikalno-kemijski 

parametri u stupcu vode, kao i raspodjela metala u tragovima te njihova specijacija tijekom 

dva kontrastna perioda (ljeto/zima) tijekom nekoliko godina (08.07.-12.07.2009; 30.01.-

04.02.2010; 19.07.-24.07.2010; 13.07.-18.07.2011; 01.03-06.03.2012) 
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Slika 5. Mapa estuarija rijeke Krke s označenim postajama transekta (◊) i detaljnog 

mapiranja (+). 

 

Specijacija/frakcionacija metala u tragovima određena je korištenjem dviju 

komplementarnih tehnika: voltammetrije anodnog otapanja i difuzijskog gradijenta na 

tankom filmu (DGT). Na temelju mjerenja vertikalnog profila saliniteta više puta tijekom ~ 

48h određeno je šest dubina na kojima su postavljeni DGT uređaji. Oni su postavljeni u 

triplikatu na po dvije dubine u svakom sloju (boćati sloj/haloklina/morski sloj) tijekom cca. 

5 dana. Korištene su dvije vrste DGT-a, oni s porama veličine 2-5 nm (OP-DGT) i oni sa 

manjim porama ~1 nm (RP-DGT).  

Nekoliko puta tijekom svakog dana mjereni su fizikalno-kemijski parametri u stupcu vode, 

s ciljem određivanja trenda gibanja vertikalne vodene mase (npr. promjene u salinitetu na 

svakoj dubini na kojoj su postavljeni DGT uređaji). Kako bi se umanjio utjecaj plime, vjetra 

ili valova, na održavanje dubine na koju su postavljeni DGT uređaji, pripremljena je posebna 

konstrukcija temeljena na principu “zračnog” protu-utega. S ciljem usporedbe dviju 

metodologija za specijaciju metala, tijekom perioda izlaganja DGT-a, ronilac je svaki dan 

(dva puta ljeti, jedan puta zimi) uzimao uzroke vode na dubinama na kojima su postavljeni 

DGT uređaji.  
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U laboratoriju su potom pripremljeni kompozitni uzorci - filtrirani (otopljeni metali u 

tragovima) i nefiltrirani (ukupni metali u tragovima). Dio uzoraka iz kojih se određivala 

otopljena i ukupna koncentracija (Zn, Cd, Pb, Cu, Ni i Co) zakiseljen je sa HNO3 s.p. na pH 

< 2 i izložen UV svijetlu kako bi se razorila organska tvar. Uzorci u kojima se određivala 

specijacija Cu, su filtrirani i ostavljeni pri prirodnom pH konzervirani samo s 1 M NaN3.  

Za određivanje otopljenog (DOC) i partikulatnog (POC) organskog ugljika koristio se 

stakleni sustav za filtriranje s vakuum pumpom i stakleni filtar od 0.7 μm (prethodno 

izvagan). Uzorci za određivanje DOC konzervirani su dodatkom 25 µl 1M NaN3 i čuvani na 

4°C. POC je određen iz količine uzorka koja zaostane na filtru nakon filtracije. Koncentracija 

suspendiranih čestica (SPM) određena je iz razlike mase filtra prije i nakon filtracije. Za 

analizu DOC i POC korišten je TOC-VCSH analizator (Shimadzu).  

Autolab (Methrom/EcoChemie) potenciostat/galvanostat u kombinaciji s troelektrodnim 

sustavom 663 VA Stand (Metrohm) i sustavom za automatsko doziranje korišten je za 

elektrokemijska mjerenja. Viseća živina kap poslužila je kao radna elektroda, kao referentna 

Ag|AgCl|sat. NaCl, a kao protuelektroda Pt žica. Koncentracije metala određene su metodom 

standardnog dodatka: Zn, Cd, Pb, Cu diferencijalno pulsnom voltammetrijom anodnog 

otapanja (DPASV), a Ni i Co diferencijalnom pulsnom adsorptivnom voltammetrijom 

katodnog otapanja (DPAdCSV) uz dodatak Nioxima (10-5 M). 

DGT uređaji su korišteni prema uputama proizvođača (DGT-Research). Koncentracija 

metala akumuliranih na Chelex-100 gelu, nakon ekstrakcije u kiselini određena je na 

masenom spektrometru visoke rezolucije s induktivnom spregnutom plazmom (HR ICP MS 

Element 2, Thermo Finnigan). Efektivni difuzijski koeficijenti koji su potrebni za izračun 

DGT labilne koncentracije zbog specifičnosti sustava (postojanje tri različita vodena sloja) 

određeni su laboratorijskim pokusom.  

DPASV je korištena za određivanje kapaciteta kompleksiranja Cu (KKCu). 

Kompleksometrijska titracija sastojala se od mjerenja početne koncentracije Cu u uzorku i 

potom 15 dodataka Cu, tijekom 23 sata provedbe eksperimenta. Boratni pufer (0.01 M) je 

dodan za održavanje stabilnog pH otopine tijekom provedbe eksperimenta (8.2 ± 0.1). Za 

obradu podataka korišten je program ProMCC, razvijen u matičnom laboratoriju 

(Laboratorij za fizičku kemiju tragova) (Omanović et al., 2015). Visual MINTEQ v3.0 

korišten je za izračun, tzv. „side reaction“ koeficijenta (αCu´).   
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3. Rezultati i rasprava 

3.1. Osnovni fizičko-kemijski parametri estuarija rijeke Krke 

Hidrološki uvjeti u rijeci Krki variraju i najviše ovise o vremenskim uvjetima (kišni periodi). 

Najviši su protoci, izračunati iz podataka za duži vremenski period (2008-2014), zimi (80-

90 m3s-1), a ljeti su značajno manji (< 10 m3s-1). Tijekom perioda uzorkovanja, relativno 

niski protoci bili su u ljeto 2011 i 2012. U estuariju je koncentracija SPM izrazito niska, no 

moguće je uočiti razliku u njenoj raspodjeli u sva tri sloja (Sl. 6A). U boćatom sloju 

koncentracija raste prema moru (od ~0.4 mgL-1 do ~3 mgL-1), a u morskom sloju raste u 

smjeru prema kopnu (od ~3 mgL-1 do ~6 mgL-1). U haloklini koncentracija SPM nalazi se 

između ova dva trenda, a transport u morskom sloju utječe na vertikalni profil SPM duž 

estuarija. 

Vertikalni profili saliniteta pokazali su dobro definiranu stratifikaciju u vodenom stupcu (Sl. 

6B). Definirana i oštra haloklina, posebno je bila uočljiva u prvoj polovici estuarija, na 

dubini 2 do 3 m, a njena debljina se progresivno povećavala u smjeru mora ( od ~ 0.4 do ~ 

2 m). 

A      B 

 

Slika 6. A - ovisnost suspendirane partikulatne tvari (SPM) u sva tri vertikalna sloja, i  

   B - vertikalna raspodjela saliniteta u cijelom estuariju (zimsko uzorkovanje) 

 

Koncentracije otopljenog organskog ugljika relativno su niske i kreću se od 0.4 mg L-1 u 

zimi do 1.8 mg L-1 ljeti. Dobiveni rezultati za otopljeni organski ugljik (DOC) ukazuju na 

ne-konzervativno ponašanje koje je više izraženo ljeti nego zimi uslijed pojačane biološke 

aktivnosti. Upravo biološka aktivnost rezultirala je i povećanom koncentracijom, ali i 

udjelom partikulatnog organskog ugljika u ljetnim mjesecima.  
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3.2. Raspodjela i ponašanje metala u estuariju rijeke Krke 

Rezultati mjerenja pokazali su da su koncentracije metala u tragovima niže u rijeci Krki nego 

u čistoj morskoj vodi, što je neuobičajena situacija jer većina Mediteranskih rijeka ima 

znatno veću koncentraciju metala nego morska voda. Detaljno istraživanje u području 

Šibenskog zaljeva pokazalo je da su koncentracije metala u tragovima povećane u području 

luke i nautičke marine (Sl. 7A).  

 A      B 

  

Slika 7. A – raspodjela otopljenog bakra površinskom sloju vodenog stupca u Šibenskom 

zaljevu; B – prostorna raspodjela Cu u estuariju rijeke Krke (sva tri sloja, ljeto) 

 

Koncentracije metala u tragovima uglavnom su više u ljetnom periodu što se može povezati 

sa povećanom nautičkom aktivnošću u estuariju, odnosno otpuštanjem metala (posebice Cu 

i Zn) iz protuobraštajnih boja s kojima su premazana plovila. Najviše vrijednosti 

koncentracija Zn, Cu, Cd i Pb u površinskom sloju zabilježene su u području Šibenskog 

zaljeva (15-20 km). Za većinu metala uočen je porast koncentracije u morskom sloju u 

uzvodnom smjeru, što se povezuje s njihovom akumulacijom u tom sloju i s duljim 

vremenom zadržavanja vode morskog sloja (Sl. 7B). 

U estuariju rijeke Krke za većinu metala u tragovima uočeno je ne-konzervativno ponašanje 

u horizontalnom gradijentu saliniteta s obzirom na dvije krajnje lokacije uzorkovanja (tzv. 

„end-members“), što je uglavnom posljedica unosa metala u estuarij u području Šibenskog 

zaljeva. Od mjesta unosa, koncentracija metala se očekivano smanjuje nizvodno (efekt 

razrjeđenja), ali također i uzvodno, što se može objasniti vertikalnim transportom metala u 

tragovima u dublje slojeve te njihovog transporta morskim slojem ispod halokline koji se 

kreće u obrnutom smjeru, tj. uzvodno. U morskom sloju dolazi do povećanja koncentracije 

gotovo svih metala, što se može objasniti hidrodinamičkim odnosno fizičko-kemijskim 

modelom.  
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Koncentracija metala u tragovima u partikulatnoj frakciji (osim Pb) u većini uzoraka je ispod 

10%. Nešto je veća ta koncentracija u ljetnom periodu u odnosu na zimski, no to se može 

povezati sa različitom prirodom SPM-a. U ovom je radu predložen model konzervativnog  

ponašanja koeficijenta distribucije (KD) u ovisnosti o koncentraciji  partikulatne tvari. Za Zn, 

Cd i Co utvrđena su negativna odstupanja od predloženog teoretskog modela ponašanja za 

rezultate zimskog uzorkovanja, dok su rezultati za ljetno uzorkovanje pokazali pozitivno 

odstupanje za sve metale. 

 

3.3. Primjena DGT tehnike za „in-situ“ specijaciju metala u tragovima 

DGT tehnika korištena je za određivanje specijacije metala u tragovima, odnosno njihove 

potencijalno bioraspoložive koncentracije, u vertikalnom gradijentu saliniteta estuarija 

rijeke Krke tijekom 3 ljetna i 2 zimska perioda. Tijekom izloženosti DGT uređaja na 

određenim dubinama uzimani su i diskretni uzorci vode iz kojih su potom napravljeni 

kompozitni uzorci. Prva serija uzorkovanja u ljeto 2009 obuhvaćala je i usporedbu dva 

kontrastna područja označenih kao „čisto“ i „onečišćeno“. Rezultati vertikalnih raspodjela 

otopljenih i DGT-labilnih koncentracija metala u tragovima (Zn, Cd, Pb, Cu, Ni, Co) na 

„čistoj“ i „onečišćenoj“ postaji jasno pokazuju povišene koncentracije metala, posebice Cu 

i Zn na potonjoj lokaciji.  

S obzirom na različit sastav vode u kojima su bili izloženi DGT uređaji, različit salinitet, bilo 

je potrebno provjeriti difuzijske koeficijente metala u primijenjenim DGT uređajima. 

Određivanja efektivnog difuzijskog koeficijenta istraživanih metala u tragovima provedeno 

je u kontroliranim laboratorijskim uvjetima, u sastavu otopina koji odgovaraju slatkoj, slanoj 

i vodi srednjeg saliniteta. Dobiveni rezultati pokazali su relativno dobro slaganje s 

literaturnim vrijednostima.  

Iz glavnih značajki vertikalnih profila svakog metala vidljivo je da su profili za otopljene i 

DGT-labilne frakcije uglavnom sukladni, te da je prema očekivanjima DGT-labilna 

koncentracija manja od otopljene. Slika 8 prikazuje tipični primjer dobivenih profila. Uočeni 

problemi s primjenom ove tehnike odnosne se uglavnom na Zn, i vezani su za relativno 

visoke vrijednosti „blanka“. Primjena dva različita tipa DGT uređaja koji se razlikuju po 

veličini pora difuznog gela, tzv. „open pore“ (OP, ~ 5 nm) i „restricted pore“ (RP, ~ 1 nm) 

nisu dali rezultate uobičajene za riječne sustave (manje DGT-labilne koncentracije određene 

s RP; razlikovanje veličinski različitih organskih kompleksa metala), odnosno dobivene su 

gotovo istovjetne vrijednosti, što je također posljedica specifičnosti estuarija rijeke Krke. 



Prošireni sažetak  

12 
 

Pokazano je da se pomoću DGT tehnike određuje samo dio od ukupne koncentracije metala, 

što je operativno nazvano DGT-labilna koncentracija, i da je udio DGT-labilne koncentracije 

različit za pojedini metal (gotovo 100% Cd je DGT labilno, za razliku od 20-40% Cu), te da 

ovisi primarno o interakciji metala s prirodnom organskom tvari, odnosno o stabilnosti/jačini 

organskih kompleksa (Sl. 9). 

 

 

Slika 8. Vertikalni profili otopljenog te DGT-labilnog Cu na postaji Martinska. 

 

 

Slika 9. Srednja vrijednost postotka DGT-labilnih metala za svaki pojedinačni vertikalno 

odvojeni sloj. Brojevi iznad stupića prikazuju sveukupnu srednju vrijednost (sve dubine). 
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3.4. Primjena elektrokemijske tehnike za specijaciju bakra 

Primjenom metode određivanja kapaciteta kompleksiranja voltammetrijom s anodnim 

otapanjem (ASV) utvrđeno je da bakar (Cu) s organskim ligandima stvara dva tipa 

kompleksa (CuL1 i CuL2), pri čemu CuL1 kompleksi imaju veću prividnu konstantu 

stabilnosti, a koncentracija raspoloživih liganada je niža nego za drugi tip kompleksa (Sl. 

10). Temeljem parametara kompleksiranja dobivenih iz opisanih pokusa, izračunato je da je 

koncentracija slobodne (hidratizirane) vrste bakra (Cu2+) u vodenom stupcu (vrsta koja se 

smatra najviše bioraspoloživom, a time i toksičnom) uglavnom iznad granične vrijednosti 

od 10 pM. 

 

Slika 10. Vertikalni profili koncentracije i prividne konstante stabilnosti jakog ([L1], logK1) 

i slabog ([L2], logK2) liganada za sve provedene eksperimente. “c” i “p” označavaju „čistu“ 

odnosno „onečišćenu“ lokaciju.  

 

Usporedbom rezultata koncentracije DGT- i ASV-labilnog Cu određene pomoću ove dvije 

tehnike, utvrđeno je vrlo dobro slaganje trendova, s razlikom da su pomoću ASV metode 

određene niže vrijednosti, što je u skladu s karakteristikama tih tehnika (Sl. 11). 

Neravnotežne tehnike koje su korištene u ovom radu ASV i DGT imaju karakteristične 

kinetičke prozore (“kinetic window”) (van Leeuwen et al. 2005). Zbog toga kompleksi 
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metal/ligand), ali i o operativnim vremenskim skalama određenih tehnika (kinetička 

svojstva) (van Leeuwen et al., 2005; Town et al., 2009; Plavšić et al., 1980). Stoga se 

koncentracije izmjerene ovim tehnikama smatraju operativnima i nazivaju DGT-labilnima 

ili ASV-labilnima. Prednost korištenja DGT tehnike u odnosu na ASV tehniku je što ona 

omogućava in-situ mjerenje labilnih metalnih specija tijekom vremena izloženosti, u odnosu 

na ASV kojom se analizira diskretni uzorak, ali ASV s druge strane daje puno više podataka 

o interakciji metala s organskim ligandima.  

 

Slika 11. Usporedba reaktivnih koncentracija Cu dobivenih s OP DGT i ASV tehnikom.  

 

3.5. Usporedba dvije lokacije: „čista“ vs. „onečišćena“ 
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očekivane, jer se postaja nalazi u području marine. Povećane koncentracije Cu su posljedica 
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DGT-labilnih koncentracije Cu.  

Puno bolje slaganje između vertikalnih profila između DGT i ASV-labilnih koncentracija 

Cu dobiveno je na „onečišćenoj" postaji nautičke marine (Sl. 12), što je uglavnom posljedica 

viših koncentracija Cu. Manji udio ASV-labilnog Cu je i očekivan zbog kraćeg „kinetičkog 
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µm, i koeficijenta difuzije 5×10-6 cm2 s-1, dok je u uređaju DGT debljina difuzijskog sloja 

Cu (nM)

0 1 2 3 4 5

salinitet
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinitet
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinitet
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinitet
0 10 20 30

Cu (nM)

0 1 2 3 4 5

D
u
b
in

a
 (

m
)

0

1

2

3

4

5

6

7

8

9

salinitet
0 10 20 30

OP DGT

Cu (inorg)

Sal

2010 022009 07 2010 07 2011 07 2012 03



Prošireni sažetak 

15 
 

0.9 mm, efektivno vrijeme mjerenja je 13.5 min (Zhang and Davison, 2000). Važnost 

debljine difuzijskog sloja za operativno određivanje labilnosti metalnih kompleksa i njihov 

kinetički doprinos kod ASV, već je objašnjeno u mnogim radovima (Plavšić et al., 1980;. 

Lovrić et al., 1984; van Leeuwen et al., 2007, Grad et al., 2009). 

 

Slika 12. Usporedba koncentracija labilnog Cu određena elektrokemijskom (ASV-labilni) i 

DGT tehnikom (DGT-labilni) na „onečišćenoj“ (lijevo) i „čistoj“  (desno) postaji. 

 

 

Poznata je uloga Cu u prirodnim vodama u odnosu na njegovu bioraspoloživost/toksičnost 

prema vodenim organizmima (Fichet et al., 1998; Santore et al., 2001; Ytreberg et al., 2011), 
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biodostupne frakcije (slobodni ioni) i prelaza toksične granice od 10 pM za neke morske 

organizme (Sunda et al., 1987) kao što je 2009 pokazao Louis u svom radu (Louis et al., 

2009a). No organski ligandi koji imaju visoki afinitet za vezanje Cu dominiraju u specijaciji 

otopljenog Cu (Buck et al.,2007). Ti organski ligandi vežu > 99.9 % otopljenog Cu i 

učinkovito utječu na sustav, sprječavajući utjecaj malih promjena koncentracija otopljenog 

Cu i održavajući koncentracije slobodnog Cu2+ ispod granice toksičnosti u odnosu na vodene 

mikroorganizme. 
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4. Kratki rezime i zaključci 

Raspodjela i specijacija odabranih metala u tragovima (TM) (Zn Cd, Pb, Cu, Ni i Co), te 

njihovo ponašanje i sudbina istraživani su u vodenom stupcu vertikalno uslojenog estuarija 

rijeke Krke tijekom dva kontrastna godišnja doba (ljeto/zima) u periodu od 2009 do 2013. 

Istraživanja su obuhvaćala i mjerenja otopljenog/partikulatnog organskog ugljika 

(DOC/POC), te osnovnih fizičko–kemijskih pokazatelja (salinitet, pH, otopljeni kisik, 

temperatura), a uzorkovanja su provođena u tri karakteristična sloja (boćati, međusloj i 

morski). Voltammetrija s akumulacijom (anodna i adsorptivna katodna) bila je primarna 

analitička tehnika, dok je za specijaciju korištena i komplementarna tehnika pasivnog 

uzorkovanja temeljena na principu difuzijskog gradijenta u tankom filmu (DGT). 

Koncentracije TM niže su u rijeci Krki nego u vodi otvorenog dijela Jadrana, što je 

omogućilo identifikaciju puteva i procesa koji reguliraju horizontalnu i vertikalnu 

preraspodjelu TM u cijelom estuariju. Nekonzervativno ponašanje u površinskom sloju 

estuarija uočeno za većinu TM uzrokovano je primarno unosom metala u području 

Šibenskog zaljeva. Detaljno „mapiranje“ zaljeva pokazalo je da su luka i nautička marina 

područja s najvišom koncentracijom TM. Pokazalo se da je značajan porast Cu i Zn u cijelom 

estuariju tijekom ljetnih mjeseci u izravnoj vezi s pojačanom nautičkom aktivnošću, odnosno 

vezani su za otpuštanje metala iz protuobraštajnih boja s plovila. Vertikalni transport TM u 

dublje slojeve („scavenging“), te dulje vrijeme zadržavanja morske vode uzrokovali su 

uzvodni porast koncentracije TM u morskom sloju. 

Vrlo dobro slaganje vertikalnih profila DGT-labilnih i otopljenih koncentracija TM ukazuju 

da se DGT tehnika može uspješno koristiti za određivanje potencijalno bioraspoloživih 

koncentracija TM u estuarijskim uvjetima. Udio DGT-labilnih TM odraz je njihove kemijske 

specijacije (primarno vezanja s prirodnim organskim ligandima), te varira od > 90% za Cd, 

do < 20% za Cu, ali ovisan je također i o omjeru koncentracije metala i organskih liganada. 

Voltammetrijska specijacija Cu pokazala je prisutnost dva tipa organskih liganada koji 

stvaraju jake (L1, 9.6 < logK1 < 11.9) odnosno slabe (L2, 7.8 < logK2 < 9.9) Cu komplekse. 

Koncentracija slabijih organskih liganada (L2) u korelaciji je s koncentracijom DOC-a, te je 

veća ljeti najvjerojatnije zbog povećane biološke aktivnosti. Koncentracija slobodnih iona 

Cu (vrsta koja je najviše bioraspoloživa) pri okolišnim uvjetima regulirana je u većoj mjeri 

kompleksiranjem s jakim ligandima (L1). Za većinu uzoraka izračunate vrijednosti 

slobodnog Cu blago prelaze graničnu toksičnu vrijednost od 10 pM, međutim, te vrijednosti 

su rezultat upotrijebljenog načina izračuna i ne odražavaju nužno stvarno stanje. 
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1. Introduction 

Trace metals are non-degradable constituents present in aquatic environments, unlike organic 

compounds, which undergo degradation by biological or chemical processes. Metal pollution 

can occur in rivers, estuaries, and coastal zones by anthropogenic sources like industry, traffic, 

agriculture, waste waters disposals, fossil fuel burning, and tourism. Natural concentrations of 

trace elements that are of prime environmental concern are very low, so the lower the actual 

metal concentrations is, the more critical for the ecosystem is even small anthropogenic metal 

additions. The research focus is generally directed toward metals having known biological 

functions (e.g. Fe, Cu, Zn, Co) or being highly toxic (e.g. Hg, Cd, As, Cr). Due to their very 

low concentrations in natural waters, reliable analytical determination of trace metals demands 

expert knowledge and experience. 

The total metal concentration in an aquatic environment is essentially distributed between 

particulate and dissolved forms. This fractionation is purely operational and is defined by the 

filter cut-off (0.45 or 0.2 µm). An approved fundamental statement is that the reactivity, 

transport, bioavailability and/or toxicity for micro-organisms in natural waters are dependent 

on the speciation of trace metals (Tessier and Turner, 1996). Metals such as iron (Fe), zinc 

(Zn), copper (Cu), nickel (Ni), and cobalt (Co) are the essential micronutrients for marine 

phytoplankton, which control primary productivity. Consequently, these metals have a major 

influence on the global carbon cycle and thus play a key role in regulating global climate. 

However, the availability of these metals to the biota is governed by the distribution of their 

chemical forms, i.e. speciation, whereby trace metals are bound by organic ligands that may 

reduce or enhance metal bioavailability, depending on the metal and the resulting metal-ligand 

complex. Organic ligands are defined as molecules that can bind to, and form a stable complex 

with, trace metals in the dissolved phase (typically <0.45 μm or <0.2 μm). So, the total metal 

concentration, as well as its speciation, is of utmost interest. 

Understanding the behaviour, fate, and impact of trace metals on the natural ecosystems is of 

great interest, even if it is still very complex due to the numerous factors controlling their 

biogeochemistry, especially in estuarine environments where a large difference in water 

composition exists, which influences both physical and chemical changes of the trace metal 

distribution and speciation (Muller et al., 1996). In estuaries, partitioning and speciation of 

trace metals, are influenced by changes in the physical parameters and biological activity, 

through different processes like complexation, sorption, absorption, flocculation, 

precipitation, and dissolution. Trace metal behaviour in estuaries is complex, and its gradient 
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is ascribed to the relationship between concentration and conservative parameters, such as 

salinity. Depending on the metal characteristics, as well as the physico-chemical, 

hydrodynamic and environmental (e.g. pollution) conditions, conservative and non-

conservative behaviour may occur. Non-conservative behaviour of trace metals in the mixing 

zone of the estuary, occurs due to variations in ionic strength, adsorption and biological input.  

In natural waters, the inorganic speciation of elements is known and predictable, and the 

challenging task is to understand the interactions between metals and natural organic matter 

(NOM) (either of mainly terrestrial (coastal regions), or autochthonous origin, produced by 

micro-organisms in the water column) (Bruland et al., 2004). Due to the very low 

concentration of metals in seawater, (down to pM level) and experimental limitations in 

separating, extracting and measuring the different metal complexes (defined by the detection 

limit), an alternate, indirect approach for the characterization of metal-organic ligand 

interactions is usually practiced. It is based on the titration of the sample, with the target metal 

at the natural pH (Bruland et al., 2004). The most widely spread are the electrochemical 

techniques because of their good selectivity and high sensitivity: anodic stripping voltammetry 

(ASV) (Plavšić et al, 1982; Omanović et al., 1996; Garnier et al., 2004) and competitive ligand 

exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV) (van den Berg, 1989; 

Buck et al., 2012). As a result of electrochemical titration, a set of complexation parameters, 

ligand concentrations (Li), and conditional stability constants (K’i), are obtained, and further 

used for the calculation of trace metal speciation.  

An alternate speciation methodology in recent years has been the technique of passive 

sampling that is based on the diffusion gradients in thin film (DGT) (Davison and Zhang, 1994, 

2012). It is a robust technique that is used to determine the dissolved free metal ions and labile 

metal complexes, which represent potentially bioavailable metal forms. By using Chelex-100 

as a binding resin, DGT can determine 24 elements, among which Pb, Zn, Co, Ni, Cu, Cd, Al, 

Mn, Fe, Cr and U are of environmental significance (Garmo et al., 2003). There are a few 

studies in which the DGT technique is used for trace metal speciation in estuaries (Dunn et al., 

2007; Warnken et al., 2004; Forsberg et al., 2006). The advantage of using the DGT technique 

is its in-situ application. In this way, the change in original speciation is prevented, which is 

usually the problem in classical speciation analysis in laboratories. In addition, as the DGTs 

are deployed over an extended period of time (from a few days to approximately two months), 

the obtained DGT-labile concentration is the average concentration during the deployment 
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period (memory effect). This overcomes the problem of, e.g. episodic contamination, which 

could not be spotted by the classical discrete sampling/speciation methodology. 

 

Objectives and scope of the work 

The objective of this work is to explore the influence of the variable physico-chemical 

conditions that exist in stratified estuaries (like the Krka River estuary) submitted to seasonal 

anthropogenic pressure by touristic boat traffic (e.g. antifouling paint, sacrificial anode), on 

the behaviour and fate of trace metals. By combining different analytical and modelling tools 

(e.g. sample titration, with additions in logarithmic mode and voltammetric measurement of 

the labile metal fraction, followed by the modelling of metal/organic matter interactions), the 

main process controlling spatial/temporal variability of metal content and speciation will be 

better understood. 

Both temporal and spatial field observation studies are expected to provide information on the 

dynamics of trace metals in the water column. The distribution of metals among particulate 

and dissolved phases will be examined in relation to the sharp vertical salinity gradient (salinity 

change about 30 in 0.5 m). To accomplish this goal, the in-situ dynamic speciation technique, 

Diffusive Gradient in Thin films (DGT), will be exploited as a comparative technique to the 

classical sampling and analysis in the laboratory using electrochemical techniques. 

Electrochemical techniques, anodic stripping and adsorptive cathodic stripping voltammetry, 

will be used for analytical purposes. In addition to trace metals, natural organic matter will be 

characterized by the content of dissolved organic carbon. Due to the very clean water 

environment, with concentrations of studied metals at the ppt level, clean handling and analysis 

protocols will be strictly followed in all stages of the work. Electrochemical speciation by ASV 

will be performed for copper by means of titration experiments, from which binding properties 

of copper with natural organic ligands will be determined (copper complexing capacity). 

Detailed field work examinations, laboratory experiments, and speciation modelling should 

provide answers to some key questions regarding the behaviour of trace metals in the 

conditions prevailing in stratified estuaries, e.g. the mechanisms of vertical/horizontal 

transport, the regulation of partitioning in terms of natural/manmade input of trace metals, the 

identification and characterization of the major components regulating the physical 

fractionation and chemical speciation of trace metals, and the regulation of trace metal 

bioavailability. 
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2. Literature overview 

2.1. Metals in aquatic environment 

Metals are natural constituents of every compartment in the environment. Practically all of 

the metals from the periodic table occur in broad variety of concentrations and forms in 

natural waters.  

According to concentrations basic classification of metals in the water: 

a) major components of seawater - metals in concentrations greater than 1 ppm  

b) minor components - metals in concentrations lower than 1 ppm 

c) trace metals - metals that occur at picomolar or nanomolar level.  

Metals could be essential for organisms as nutrients (Cu, Zn, Ni, Mo, Co) and could become 

toxic in concentrations when they exceed critical limits. Most of the trace metals are highly 

reactive and important in biogeochemical cycles.  

The toxicity, fate and transport of metals could be determined by their individual physico-

chemical properties. To understand their behaviour in the environment it is not enough to 

know the total concentration. It is important to know in what form metals occur and to 

understand interdependence of different processes (biological, physical and chemical) in 

order to predict their behaviour.  

 

2.1.1. Definition of terminology: heavy metals, toxic metals or trace metals 

The term “heavy metals” is applied to a large group of elements that are biologically and 

industrially important. For long time this was the most widely used and recognized term for 

elements, based on their density. According to different density, from 3.5 to 7 g cm-3 there 

can be misunderstandings in definition for heavy metals about which metals are heavy 

metals. For describing pollutions and toxicity aspect, “heavy metals” term is often used as 

collective name for a group of elements that are environmentally important. 

Another term that is quite often use is “toxic metals”. This term is even less appropriate 

because all trace elements could be toxic to living organisms if they are present in excess, 

but many of them are essential in small concentrations for the healthy growth of organisms 

(Cu, Zn, Cr, Mn, Co). The term “trace metals” is broad expression that emphasis on quantity 

more than on specific properties and includes different elements (like semi metals as Sb and 

As) (Hubner et al., 2010). 
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2.1.2 Trace metals in natural waters 

Most of the metals occur in natural waters at trace levels. Their low concentration in water 

does not mean that they are present at low levels in rocks. For instance Fe, Ti and Al are 

present in natural waters as trace elements and in rocks they occur as major elements. Reason 

for described behaviour is their low mobility at the earth’s surface (Gaillardet et al., 2013). 

Trace elements are sensitive indexes of human impact from local to global scale. That is why 

it is important to understand the behaviour of trace elements in geological processes, during 

chemical weathering and transport by waters. By transport processes and weathering trace 

metals get more fractionated than major elements. That fractionation helps to better 

understand nature and intensity of these processes.  

The amount of trace metals in river depend on their mobility during transport and weathering 

and their abundances in continental crust. In hydrological system ultimate source of trace 

metals is continental crust. In the river basin trace metals could come by rock weathering, 

wet and dry atmospheric deposition or by anthropogenic activities.  

Diagram in Fig. 2.1 compiles sources of metals, both natural and anthropogenic, in aquatic 

environment. The atmospheric input of trace metals is significant, according to abundance 

of trace metals in rain and aerosol solubility. In hydrological system there are a number of 

potential point and non-point sources of metal. Since the beginning of the twentieth century, 

the industrial revolution has caused a drastic increase in the exploitation and processing of 

metals, resulting in their release into the environment and release of associated elements with 

no economic value (Gaillardet et al., 2013). Release of metals could be associated with the 

use of trace metals in water treatment, fertilizers, pharmaceuticals, paints. For many trace 

metals anthropogenic contributions from different sources far exceed natural levels.  

Particles that are transported by large rivers represent complex mixing of primary minerals, 

clays, carbonates, oxides and biogenic remains. Different studies have confirmed that 

adsorption processes control the levels of trace elements in large rivers (Shafer et al., 1997; 

Smedley and Kinniburg, 2002; Wen et al., 1997).  

The determination of concentrations for different trace metals in river water is facilitated in 

particular by technical advances of ionic coupled plasma mass spectrometry (ICP MS). That 

technique provides rapid measurement for a large number of metals. It is needed to measure 

trace metals in order to better understand their behaviour during weathering, transport and 

for investigating pollution and toxicological studies.  
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Figure 2.1. Trace metal pathways to the aquatic system (Gaillardet et al., 2013). 

 

In river water concentrations of trace metals span over 10 orders of magnitude, similar to the 

range of crustal abundances. The abundance of trace metals in river waters depends on their 

mobility in weathering and transport processes and on continental abundances. 

Characteristic of trace metals in waters is their dependence on chemical conditions 

prevailing in the river (Gaillardet et al., 2013). Mobility of trace metals in river waters is 

result of a complex combination of different factors like their water solubility, the input to 

the system of no weathering sources like atmospheric of anthropogenic sources, the ability 

of the elements to be complexed by fine colloidal material and their affinity for solids (co-

precipitation, adsorption, solubility equilibrium). Owing to the global present day 

contamination of the atmosphere by anthropogenic emissions it is not easy to estimate the 

natural input of trace metals to hydro systems, but rain is significant source of metal 

transported by the rivers. Dependence of concentration of the trace metals in river water on 

pH and other chemical variables could be explained by the pH sensitivity of colloids stability 

in the aquatic system (Elbaz-Poulichet, 2005; Huser et al., 2011; Vasyukova et al., 2012). 

Studies in estuaries have shown that flocculation, coagulation and degradation of colloidal 

material controls the behaviour of metals in the mixing zones between fresh and sea water 

(Biati and Karbassi, 2010; Biati et al., 2010). 
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To separate trace metals from major and minor metals in natural waters a concentration of 

10 µmol L-1 is chosen. Trace metals can exist in different physical and chemical forms. The 

simplest distinction is on particulate and dissolved forms. This operational definition is 

based on separation by filters pore sizes (0.45 µm or 0.2 µm).  

In particulate forms metals could be: 

a) adsorbed onto particle surface  

b) incorporated within particles of biogenic origin  

a. incorporated in the matrix of minerals (i.e. aluminosilicate minerals) or 

b. co-precipitated on other antigenic minerals. 

 

2.1.3. Trace metals in seawater 

The concentrations and distributions of trace metals in seawater are controlled by a 

combination of different processes, such as external sources of trace metals that are delivered 

by rivers along sea boundaries, windblown dust from semi-arid and arid continental regions 

and hydrothermal circulation at mid ocean ridges. Trace metals could be removed from 

seawater with processes that include active biological uptake and passive scavenging onto 

living or non-living particulate material (Bruland and Lohan, 2013). Particulate material is 

usually internally recycled in the water column or in surficial sediments (sink of trace metals 

is generally marine sediments). The concentration of metals in seawater is ranging over 15 

orders of magnitude from most abundant cation like sodium (concentration 0.5 mol L-1) to 

iridium that is present at much lower concentrations (~0.5 f M) (Fresco et al., 1985).  

In surface seawater, a major fraction of many trace metals, especially those that are bioactive 

like Zn, Cd, Cu or Co are present as chelates with strong metal-binding organic ligands. 

Good correlations among trace metals are reported from a number of authors (Hatje et al., 

2001; Shynu et al., 2012; 1994; Wallner-Kersanach et al., 2009). 

Various soluble complexes and potential colloidal forms are included in dissolved metals. 

The chemistry and behaviour of many trace metals in the water column is dominated by 

complexation, biological assimilation at uptake sites on cell surface and adsorption on 

surface sites of suspended particles (Hering and Morrel, 1990). In seawater trace metals 

could be grouped in categories according to their distribution and chemical behaviour in 

seawater column (Bruland and Lohan, 2013): 
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1) Conservative type. Metals with this type of distribution interact only weakly with 

particles. Their oceanic residence time is greater than mixing time of the oceans (~ 105 

yr.) and concentration is maintaining relatively constant ratio to salinity. These metals 

are involved in the major biogeochemical cycles of particle formation and destruction. 

2) Nutrient type. Trace metals with distribution of this type are significantly involved in 

the internal cycles of biologically derived particulate material. Their concentrations are 

lowest in the surface waters where they are assimilated by phytoplankton or adsorbed 

by biogenic particles. In the subsurface waters concentrations increase as sinking 

particles undergo decomposition or dissolution. Aging of water causes increase of 

concentration along the flow path of water. Their residence type is intermediate from a 

few thousand to one hundred thousand years. 

3) Scavenged type. Process of surface adsorption that is followed by particle settling is 

known as scavenging (Turekian, 1977). Characteristic of trace metals with this type of 

distribution is strong interaction with particles and short oceanic residence time (~100 - 

1000 yr.). Concentrations tends to be maximal near major sources like atmospheric dust, 

hydrothermal vents, bottom sediments or rivers. With a distance from the sources 

concentrations decreasing along the flow path of deep water due to continual particle 

scavenging.  

4) Hybrid distribution. Several trace metals like copper and iron show distributions that 

are influenced a lot by recycling and intense scavenging processes.  

5)  Mixed distribution. Trace metals that exist in various chemical forms have 

substantially different distributions. 

 

 

2.2. Organic matter in natural waters 

To describe hydrocarbon compounds of natural origin (other than living organisms) and 

anthropogenic system the term “organic matter” (OM) is formed. With filtration over 0.7 

µm glass fibre filter it is possible to distinguish dissolved OM (DOM) from particulate OM 

(POM). DOM is present in all aquatic environments and creates one of the largest pools of 

reduced carbon on Earth’s surface (Hedges and Keil, 1995). In freshwater organic matter 

could exist in form of dissolved molecules, colloids or particles. It is very important in global 

biogeochemical cycles of C, N and P (Carlson, 2002) and in oceanic carbon budgets 
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(Hartnett and Devol, 2003; Hedges, 1992). The concentration of DOM in river waters 

exceeds those of the dissolved trace elements and represents a major component of organic 

matter in river waters (Wells, 2002). It could originate from a range of sources, it could be 

formed in water due to the microbial degradation or it could come from soils and rocks by 

weathering, urban waste water, atmospheric inputs, human activities (Hudson et al., 2007). 

The majority of organic carbon in the oceans is in the form of dissolved organic carbon 

(DOC). DOC represents one of the largest active organic carbon reservoirs in the biosphere 

(Amon and Benner, 1996). Amount of DOC in the oceans could be compared with the 

amount of CO2 carbon in the atmosphere (Mannino and Harvey, 2000). In the upper ocean 

and in the coastal zone concentrations of marine DOC are the highest. Characteristic 

concentration in surface waters of open ocean are 60 - 80 µM and in the coastal zone they 

could go up to 200 µM, and then rapidly decrease within a few kilometres of shore (Vlahos 

et al., 2002). The majority of DOM consists of humic substances and in a lesser extent of 

fulvic substances (Džombak et al., 1986). DOC consist of a non-humic fraction with a known 

molecular class of compounds, like carbohydrates, polysaccharides, lipids, amino acids, 

proteins and resins (Piccolo, 2001) and a humic fraction that is defined as a category of 

naturally occurring biogenic, heterogeneous organic substances of high molecular weight 

(MacCarthy et al., 1990). Humic substances could be separated according to solubility into 

three components: humic acid, fulvic acid and humin (McDonald et al., 2004). Variations in 

concentration of organic carbon in river waters reflect terrestrial ecosystem changes and their 

export into the ocean have effect on ocean carbon budget and cycling. 

As estuaries are highly dynamic systems that are an obligate pathway for material between 

rivers and sea, biologically reactive fraction of the riverine organic matter could be almost 

entirely mineralized (Hopkins et al., 1997; Moran et al., 1999). In the estuaries DOC exhibits 

a linear distribution as a function of salinity, that suggests conservative mixing (Abril et al., 

2002; Avery Jr. et al., 2003; Dai et al., 2012; Dixon et al., 2014). DOC from river water 

contains significant labile fraction that is highly variable (Moran et al., 1999). Conservative 

DOC behaviour could be attributed to presence of simultaneous sources and sinks, so net 

changes in bulk concentrations is small (Moran et al., 1999; Raymond and Bauer, 2000). 
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2.3. Coastal environments - Estuaries  

Basically, a semi-enclosed coastal zone where freshwater from rivers mixes with seawater 

is called estuary. Estuaries were formed throughout the sea level rising and flooding of river 

valleys. They represent major biogeochemical interfaces where flux of materials, dissolved 

and particulate, are brought from the land to the sea. Over the deposition of river material, 

coarse grained sediments are deposited near the mouth and finely grained sediments are 

taken further away. Estuarine regions are dynamic both physically and chemically (Fig. 2.2).  

 

 

Figure 2.2. Schematic representation of major processes in the estuary 

 

The result of fresh and seawater mixing is formation of a sharp gradient of different 

parameters like salinity, temperature, pH, dissolved oxygen and concentration. Different 

temporal and spatial variability in the estuary have a huge influence on physico-chemical 

conditions and processes. These processes are mostly biogeochemical like, sorption, 

flocculation or redox cycling of contaminants (Millward and Turner, 1995). Circulation and 

mixing controls the degree of vertical stratification. That depends on the proportions of 

riverine and tidal forcing. During estuarine mixing two non-biological and counteractive 

processes occur: desorption of metals from particles and the flocculation of metal-humates 

from solution. As seawater weights about 2.5% more than the same volume of freshwater, 

seawater is flowing in bottom layer in opposite direction from freshwater at the surface layer. 
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Despite strong density stratification these two types of water are often mixed. This mixing 

is dependent on the different hydrodynamic and morphologic characteristics of particular 

estuary. 

 

2.3.1. Main types of estuaries 

Estuaries could be classified according to different structures like topography, salinity, 

waves, tidal influence and etc. The main mechanism that is responsible for mixing is flow, 

but there are also other processes that have great influence like tide, wind or waves. Tide 

represents an important force that causes turbulence and mixing in the estuary. Wind is a 

powerful force only when the difference between high and low tide is small. It has great 

impact on the shallow estuaries, especially those with large open areas. Internal waves that 

affect mixing are generated under influence of wind.  Due to the significant differences 

between the tides it is possible to have stronger mixing. By reduction of this tide differences, 

mixing becomes weak and stratification is formed.  

According to different types of mixing, estuaries could be divided on: 

a) Salt-wedge estuary. Mixing on the border of freshwater and seawater causes intrusion 

of saltwater into the surface layer with an increase in direction of the sea. Minimal 

mixing of salt and fresh water forms a wedge that is the thickest part of the seaward, 

and decreases toward the mainland. Due to the minimal mixing of the water, a sharp 

change of salinity is formed along the vertical depth profile (e.g. Mississippi, Rio de 

la Plata, Ebro, Krka, Raša, Zrmanja, …) (Fig. 2.3). Depending on the flow of the river 

shape of the wedge could be changed. These systems are highly stratified during high 

tide, when the seawater comes in the shape of a wedge, and during dry periods wedge 

shape may disappear. The water at the bottom is rich in nutrients that are there due to 

decomposition of plant and animal remains and causing a stimulation of biological 

production in the estuary. When organic and inorganic particles that are transferred by 

rivers come into contact with salt water they tend to flocculate and precipitate. After 

sinking from the upper layer, material is carried upstream by salt wedge. 

Decomposition of organic matter leads to the occurrence of even more nutrients within 

the estuary. Inorganic substances are deposited on the bottom, they enrich sediment 

and allow the growth of plants in the seawater. In areas where the circulation within 

the estuary is strong enough to remove deposited sediment, leaving a stony/rocky 

bottom, rooted plants are replaced by algae that can grow on these surfaces. 
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Phytoplankton floats freely in the water rich with a large amount of nutrients, 

especially near the river, grows quickly and provides food for zooplankton. As this 

community is carried downstream, dead organisms and animal faecal pellets sink to 

the bottom and enter in the "wedge" and they could be carried back to the river. Due 

to their decomposition water is richer in nutrients.. 

 

Figure 2.3. Schematic representation of the salt-wedge estuary. 

b) Highly stratified estuary. A highly stratified estuary occurs when a range between 

high and low tide is small. Their characteristic is dominant influence of river flow with 

a great interference due to the tidal currents (in large, turbulent rivers mixing of water 

column is stronger) and sharp halocline that separates water column on upper and 

lower layers. The salinity in the surface layer increases towards the sea, while the deep 

layer retains at the previous salinity. Stratification in these estuaries are similar to the 

salt wedge estuary, but remains strong during the tidal cycle, like those in other fjords 

and estuaries where the depth is > 20 m. 

c) Partially mixed estuaries. In shallow estuaries the volume of water that flows in and 

out of the estuary on the tidal cycles, creates strong currents in the saltier layer due to 

the volume of water in the “tidal prism” that is confined to a shallow layer. Partially 

mixed estuaries are nutrient traps. Nutrients are brought to the estuary by freshwater 

or sea water. From the fresher surface layer particles sink into the saltier layer and 

subsurface flow carries them. The deep salty current mixes then into the upper layer 

with mineralized plant nutrients. These estuaries are generally very productive. 
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d) Vertically homogeneous estuary (un-stratified). Characteristic of un-stratified 

estuary is the dominant tidal currents as opposed to river flow (Fig. 2.4). Water is 

mixed well without major changes in salinity in the vertical water column. Gradual 

increase of salinity appears in direction from river to the sea.  

 

Figure 2.4. Schematic representation of vertically homogeneous estuary. 

 

2.3.2. Processes in estuaries 

Physical processes in estuary could be divided on those related to transport and those related 

to sedimentation. 

a) Hydrodynamics 

Several factors such as bathymetry, bottom roughness, wind, diffusion and boundary 

conditions (ex. tidal amplitudes) have an influence in determination of the 

contaminants transport in the estuary. Beside the mass transfer that is caused by the 

primary circulation, secondary currents could be created due to the tides.  

b) Topography 

In the estuary topographic features interacts with flow (a tributary junctions, bends, 

capes, deep holes and shallows) and lead to formation of secondary flows and waves. 

Internal waves are significant feature that appear due to the topography of estuary. 

They occur due to longitudinal flow over a shallow area and can lead to additional 

mixing. Topographical features in the estuary may have a significant role in 

enhancing the mixing or dispersion (Dyer, 1989). 



2. Literature overview 

31 
 

c) Salinity 

Salinity can inhibit vertical vortices due to the vertical gradient and may effect on 

sediment transport through increased flocculation. That is why the knowledge about 

salinity distribution is necessary. Middle layer is often called intermediate layer (the 

boundary between river and sea water) and it shows a trend that agrees with average 

river flow. Appearance of stratification and de-stratification in the estuary are very 

important processes for the contaminant transport and the flow of river water.  

d) Wind 

Wind is significant due to the changes that induce. It affects the sea level, currents 

and stratification, especially in shallow estuaries. 

 

2.3.2.1 Sedimentation processes 

Sediment in the estuary is formed from inorganic and organic particles that come to the 

estuary by river and sea water. "Salt wedge" that floats upstream along the bottom also brings 

sediment to the estuary. This may be the same sediment that the river has passed downstream 

and deposited on elsewhere in the estuary or suspended particulate matter originating from 

the ocean. Suspended sediment may occur in the estuary from the growth of phytoplankton 

and excretion from organisms or erosion of sediments. An important process in the estuary 

is the flotation process. Aggregates are formed from the particles under the influence of 

salinity changes that affects the rate of deposition on suspended solids. The amount of 

suspended particles in the estuary varies depending on the oscillation of tidal and seasonal 

factors. The combination of erosion and deposition affect the transformation of alluvial 

estuary and indicates the dynamic of the process. Variation in the flow rate can cause 

sediment re-suspension by increasing the concentration of particles suspended in the water 

column. 

2.3.2.2 Chemical processes 

Chemical processes such as the formation of precipitates, sorption in suspended sediment 

and degradation, determine the distribution of contaminants in the sediment, water column 

and atmosphere (Fig. 2.5). Salinity plays an important role in defining the structural and 

functional characteristics of wildlife in the estuary. Changes in the ionic strength of water 

are important for chemical processes in the salinity gradient. In seawater, the ionic strength 

is stable, however determination of macro constituents and total salinity are based on the 

concentration of one of the major constituents. When the river water and seawater are mixed 
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in the estuary, the question is what the ionic strength is and what is the lowest salinity at 

which Knudsen rule still stands. A change of the particles charge in water that occurs at a 

critical salinity of 5-8 is one of the most important physical phenomena in the salinity 

gradient (Telesh and Khlebovich, 2010). It results in different sedimentary formations on 

both sides of the critical salinity due to increased flocculation that affects the physical 

properties of water such as transparency (Khlebovich, 1990). The salinity gradient from 5 to 

8 is formed in the nucleus of the estuary, and the chemical, physical and biological processes 

show no linear dynamic. 

 

Figure 2.5. Biological and chemical processes that occur in the zone of low salinity in the 

estuary (McLusky and Elliot, 2004). 

 

There is no linear relationship between chemical species in traces and salinity due to the 

different processes that affect their concentration during route through the estuary (Fig. 2.6).  

Processes that affects dissolved substances: 

a) Photosynthesis – leads to the formation of carbohydrates for feeding the cells and 

release oxygen 

b) Adsorption and desorption – substances could be removed from the estuary by 

adsorption on the particles and desorption with the particles (Na+ replaces 

adsorbed Ca+) 
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c) Coagulation - a charge of suspended particles could be neutralized by adsorption 

of ions that are present in water and allowed by Van den Waals forces. Deposition 

of bigger particles that are formed. 

d) Deposition - larger particles are deposited through the water column into the 

sediment by removing adsorbed species 

e) Reactions in the sediment - many substances are thermodynamically unstable (ex. 

organic material) or become like this in the sediment (e.g., metal oxides). New 

minerals may be formed (ex. pyrite). These reactions are the reason why the 

sediment pore water may have a different composition of estuarine water above 

the sediment. Concentration differences lead to exchange of substances between 

the sediment and estuarine water through diffusion or re-suspension. 

 

Figure 2.6. Processes in the estuary 

The distribution of chemical species affects biological processes and biological productivity 

in the estuary. In many estuaries there is a significant anthropogenic influence of chemical 

species either directly or due to the river inflow. There are complex interactions between 

chemical, biological and physical processes in the estuary (Fig. 2.7). Since estuaries are time 

variable systems with characteristic topography, circulation and residence time behaviour of 

chemical constituents varies from estuary to estuary. 

Mixing process in the estuary leads to continuous variations in salinity that corresponds to 

the important variables of physical and chemical reactions and ionic strength gradient. 

Concentrations in water depend on the geology of the environment and the various 
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processes. Major constituents in seawater have a concentration gradient in the same direction 

as salinity. Micro constituents are usually present in higher concentrations in rivers in 

comparison to the sea. The concentration of dissolved substances in the river varies, but is 

generally between 20-400 mg L-1. 

 

Figure 2.7. Chemical processes in the estuary. 

The pH of coastal waters is usually around 7.8 or slightly higher. The pH of the river water 

varies from acidic water to water with high alkalinity. Extremes are possible but in the 

estuary pH is usually between 7.3 and 8.4. Changes of pH with mixing are nonlinear and 

additional changes could occur due to primary production and respiration.  

Oxidation and reduction processes in water represent important physico-chemical variables. 

In the presence of free oxygen, at concentrations of saturation natural waters are oxidizing 

medium. The decomposition of organic matter that is mainly caused by bacteria is oxidation 

process. At low concentrations of oxygen, nitrate could be used as terminal electron 

acceptors. Some ions can be reduced in conditions of different redox potential that can occur 

in aqueous systems due to different amounts of oxygen present. After the exhaustion of 

nitrate, sulphates are used for the oxidation of organic matter. Due to the large amounts of 

organic matter in sediments of the estuaries, changes in redox conditions from oxidation to 

reduction are often immediately below the sediment and water border. 

Most of the major elements are present in higher concentrations in seawater due to higher 

salinity. However metals like Fe, Al, Mn, Zn, Cu, Co, nutrients like P, N, Si and dissolved 

organic matter have usually higher concentration in freshwater.  
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2.3.3. Trace metals in estuaries 

In the estuaries trace metals typically occur at concentration less than 1 ppb (µg L-1). 

Although this concentration is low, their influence is important as micronutrients and due to 

their possible toxic effect. Metals fate and transport in the estuaries are controlled by a 

variety of factors, from redox, ionic strength, abundance of adsorbing surfaces, and pH 

(Turner and Millward, 2002; Wen et al., 1999). Highly dynamic nature in estuarine system 

is characterized by strong chemical and physical gradients. This makes trace metals cycling 

more complex in estuaries than in other aquatic systems (Millward and Turner, 1995; Morrel 

et al., 1991).  

Interactions between particles and trace metals are important in controlling concentrations 

of trace metals in estuaries. Intense mixing and ionic strength gradients can significantly 

affect concentrations of dissolved and particulate metals in the water column through 

processes such as sorption/desorption, flocculation and different biological processes in the 

estuarine turbidity maximum (ETM). Processes in estuaries that could change physico-

chemical forms or distribution of metals are association/dissociation, adsorption/desorption, 

precipitation/dissolution and aggregation/disaggregation (Cobelo-Garcia and Prego, 2004; 

Louis et al., 2009; Oursel et al., 2013; Waeles et al., 2009). They are strongly affected by the 

abundance of inorganic and organic colloidal material (Dai and Martin, 1995; Millward and 

Turner, 1995; Oursel et al., 2013; Santschi et al., 1997; Wen et al., 1999). In controlling 

adsorption/desorption of trace metals there are important binding sites on Fe and Mn 

oxyhydroxides, carbonates, clays and POC. Physical and chemical forces are critical in 

controlling the binding of trace metals to particle surfaces (Santschi et al., 1997). On larger 

scale internal processes and processes like storm events, tidal exchange, wind effects and 

input from rivers also contribute to the overall partitioning of metals in estuaries. Metal ion 

adsorption enhance at a higher pH and decrease at a lower pH. According to Santschi 

adsorption edges indicate that binding by cations are “metal like” and for anions “ligand 

like” (Santschi et al., 1997). On trace metal behaviour in estuaries great influences also have 

particle-particle interactions that involves metal oxides, clay minerals and colloids.  

The reactivity of metals in estuaries could be interpreted by plotting metal concentrations 

along salinity gradient (Fig. 2.8). The simplest distribution pattern is a steady state with two 

end member. Metal with conservative behaviour is the one that shows linear trend with 

salinity.  
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 Figure 2.8. Illustration of steady state system with two end members (Wen et al., 1999). 

 

In the case when metal is showing a non-conservative behaviour there is a net loss or some 

gain in the concentrations across a salinity gradient. Extrapolation from high salinities can 

yield an “effective” river concentrations (C*). With that concentration metal reactivity could 

infer and their total flux could be determined. In the case when C*=C0 metals are behaving 

conservatively. Characteristic of non-conservative behaviour is removal of the metal 

(C*>C0) or addition within the estuary (C*<C0). This model with two end members is 

commonly used for estimation of river flux to the estuary.  

Specific conditions are needed for application of conservative behaviour model. The river 

flow, stratification and seasonality are related to the high variability inherent in these factors 

together with their effect upon the metal concentrations in the end members (Michel et al., 

2000). Salinity is representative variable of the mixing and dilution of the river end member 

concentrations into the marine water that is habitually more diluted (Elbaz-Poulichet et al., 

1996; Nolting et al., 1999; Owens and Balls, 1997). Conservative behaviour was reported 

for Cu in many estuaries like Amazon estuary (Boyle et al., 1982), Dungun River estuary 

(Tahir et al., 2008), in Ob and Yenisey estuary (Dai and Martin, 1995) and in Rhone estuary, 

Wanquan Eiver estuary and Wenchang/Wenjiao River estuary (Fu et al., 2013). Pb showed 

conservative behaviour in Rhone (Dai et al., 1995; Elbaz-Poulichet et al., 1996) and in 

Yenisey estuary (Dai and Martin, 1995); Zn in Scheldt estuary (Zwolsman et al., 1997). 

Behaviour of Ni is mostly showing conservative behaviour according to literature (Dai et al., 

1995; Fu et al., 2013; Hatje, 2003). 
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Different factors like the ion exchange, variation of ionic strength, adsorption and biological 

uptake could have influence on behaviour of trace metals in the mixing zone of an estuary 

so they start to behave as non-conservative. Cu could behave also in non-conservative way, 

that was recorded in San Francisco Bay estuary (Eaton, 1979), in Penze River estuary 

(Waeles et al., 2008), in South-eastern U.S. estuaries (Windom et al., 1983), in Vigo Ria 

(Santos-Echeanidia et al., 2008) and other estuaries (Koshikawa et al., 2007; Nolting et al., 

1999; Owens and Balls, 1997). That behaviour could be associated to a slight increase of the 

strongest ligand which implies both variables co-vary during estuarine mixing as in Scheldt 

estuary (Nolting et al., 1999; Van den Berg et al., 1987). Cd was showing non conservative 

behaviour in different estuaries according to literature (Dabrin et al., 2009; Elbaz-Poulichet 

and Martin, 1987; Owens and Balls, 1997; Tahir et al., 2008; Tang et al., 2002; Waeles et 

al., 2009). Cd desorption could be expected in estuaries due to chloride and sulphate 

complexation and effects of ionic strength. In China Rivers Co and Pb has showed non 

conservative behaviour (Fu et al., 2013). Pb was found to behave on non-conservative 

manner (Monbet, 2006; Tahir et al., 2008) and results showed that estuary is acting as a sink 

for it. Co has showed non-conservative behaviour in Mississippi River delta (Shim et al., 

2012).  

Trace metals like Zn, Cu, Ni and Co are following spatial trends with percentage of organic 

matter in the water column. Most of the Fe in rivers may be in colloidal form, that is critical 

in the coagulation/aggregation removal processes of Fe in estuaries (Millward and Turner, 

1995). Cd and Ni have a low affinity for colloidal matter (Dai et al., 1995). The limitation 

on particle-water interactions due to the low particle affinity of Ni and its strong affinity for 

DOM, Ni was found to be largely unreactive during mixing in Beaulieu estuary (UK) (Turner 

et al., 1998). It was associated with colloidal materials in river and it was converted into low 

molecular weight materials with increasing salinity in the Ochlocknee estuary (Powell et al., 

1996). 

Trace metals that are particle reactive (e.g. Pb) or have a nutrient-like behaviour (e.g. Cd) 

are typically removed from surface waters via adsorption in their vertical transport through 

the water column. Hydrous oxides of Fe and Mn are important in the sorptive removal of 

trace metals in estuaries (Perret et al., 2000; Turner et al., 2004). The distribution of these 

carrier-phase metals in estuaries, in lateral and vertical direction, is largely controlled by 

particle dynamics contrasting to other metals (e.g. Cu, Zn, Co) that are more affected by 

biotic uptake processes. 
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2.4. Speciation of trace metals in natural waters 

The geochemistry and bioavailability of metals is controlled by their chemical speciation 

(the distribution over various chemical forms/species). To prevent the confusion problem 

about expressions, the International Union for Pure and Applied Chemistry (IUPAC) has 

defined following terms (Templeton et al., 2000): 

 Chemical species - specific form of an element, defined as the isotopic composition, 

electronic and oxidation state and/or complex of molecular structure 

 Speciation analysis - analytical activities of identifying and/or measuring  the 

quantities of one or more individual chemical species in a sample 

 Speciation of an element; speciation - distribution of an element amongst defined 

chemical species in the system. 

When speciation is not applicable the term fractionation should be used: 

 Fractionation – process of classification of an analyte or a group of analytes from a 

certain sample according to physical (e.g. solubility, size) or chemical (e. g. 

reactivity, bonding) properties 

 

On the speciation and consequently on the mobility and bioavailability strong influence have 

natural and anthropogenic changes in environmental conditions. Natural systems are 

dynamic and changes in conditions (episodic changes) affect concentrations and speciation 

on a short term scale.  

To specify the physico-chemical form of a particular element of interest the term speciation 

is used. Speciation could be defined in three ways (Fig. 2.9).  

 First way is based on the physical attributes like size, density or electrical 

charge. Methods for measurement of these attributes usually are dialysis, 

filtration or electrophoresis. These methods are known as fractionation 

techniques. Fractionation may be dynamic like filtration or reflects 

equilibrium conditions like dialysis. 

 Second way is based on complex liability and indirectly calculated size from 

mass transport phenomena such as voltammetry. This could be defining as 

kinetic speciation methods. 

 Third way is based on free ion activity or concentration at equilibrium that is 

measured by ion selective electrodes or techniques of equilibrating a solution 

with ion exchange resin. These are equilibrium speciation techniques.  
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Figure 2.9. Schematic illustration of three type of speciation: 1) fractionation; 2) kinetic 

speciation; 3) equilibrium speciation (Lead et al., 1997). 

 

Speciation of metal represents molecular form of metals under which they are transported in 

hydro systems. For instance trace metals are transported in surface waters in complexed 

forms. Organic or inorganic complexes represent association of an anion and a cation or 

neutral molecule. Measuring the concentration of an individual complex is rarely possible. 

Most of the techniques for measuring trace metal concentrations give the total concentrations 

regardless the speciation. Depending on the total concentration, pH, Eh conditions, the major 

element chemical composition of the water or complexation constants of the assumed 

complexes, it is possible to calculate the proportion of metals corresponding to the different 

chemical forms. For prediction of toxicity and bioavailability it is crucial to know 

concentration of the metal species. Specifically the toxicity of metals depends on their 

chemical form in waters more than on total concentration (Morrel and Hering, 1993). 

Complexation inhibit or enhance adsorption on surfaces. In river waters organic ligands are 

small organic weak bases like acetate or oxalate and low-molecular-weight humic acids that 

contains carboxylate or phenolate groups. Complexation constants of trace elements in 
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aqueous solution could be determined with different techniques (potentiometry, 

spectrophotometry, calorimetry, ion exchange, conductometry) (Nordstrom, 2003). 

According to traditional definitions and methods, separations of differently sized metals in 

natural waters are based on a single split into “particulate” and “dissolved” fractions. This 

fractionation of trace metal in continental waters depends on the pore size of filters. Due to 

the presence of very small particles in solution that pass through filters they were 

operationally defined as a colloidal fraction (0.20 µm or 0.45µm to 1 nm) and a truly 

dissolved fraction (< 1 nm) (Buffle and Van Leeuwen, 1992; Stumm, 1993). The dynamics 

of colloids has big influence on modelling of reactive solute transport due to dependence of 

toxicity on speciation, abundance and bioavailability of trace metals. 

 

2.4.1 Complexes of trace metals in natural waters 

The concentration of metal ions [M] can be presented as the sum of the concentrations of 

different physico-chemical forms of metal ions: 

[𝑀] = [𝑀𝑛+] + Σ[𝑀𝑋] + Σ[𝑀𝐿] + Σ[𝑀𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠] 

[Mn+] - concentration of free metal ions (hydrated ion)  

Σ [MX] - sum of the concentrations of inorganic metal complexes  

Σ [ML] - sum of the concentration of organic metal complexes  

Σ [Mparticles] - sum of the concentrations of chemical species related to particles  

In natural waters different types of ligands that complex with metals are present and they 

could be divided into four basic groups:  

 inorganic ligands - OH-, Cl-, CO3
2-, HCO3

-, SO4
2-  

 organic ligands - including simple organic ligands (such as acetates, oxalates, amino 

acids) and macromolecules (humic substance)  

 particle surface (external surface OH- groups of Fe and Al)  

 surface of organisms, different biological membranes  

Simple scheme of interaction of metal ions (M) and ligand (L) shows the formation of a ML.  

𝑀 + 𝐿 ↔ 𝑀𝐿 (→ 𝑘𝑎;  ← 𝑘𝑑)    (1) 
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Where the association constant is marked with ka, and dissociation constant with kd. From 

the relationship ka and kd it is possible to obtain stability constant K.  

𝐾 =
[𝑀𝐿]

[𝑀][𝐿]
=

𝑘𝑎

𝑘𝑑
      (2) 

Depending on the association and dissociation rate of the metal ion complexes with inorganic 

and organic ligands they could be divided into two main groups: labile and inert. 

Labile complexes are characterized by a dissociation rate constant. In voltammetry 

measurements they provide only one peak (peak or wave) independent of the number of 

ligands which are bound to the central ion. Due to the increased concentration of complexing 

ligand, for the unchanged concentration of dissolved metal, there is a difference of redox 

potential in relation to the redox potential of free metal ions. It is possible to calculate the 

stability constants of the complexes. In anodic voltammetry the lability of the complex 

depends on the time of its retention in the diffusion layer. This residence time is dependent 

on the thickness of the diffusion layer, and can be changed by changing the stirring rate of 

the solution.  

Inert complexes are characterized by the dispute dissociation. Measurements provide two 

separate voltammetric signals. The signal on the positive potential corresponds to a reduction 

of free and labile complexed metal ions, and that on more negative potential comes from the 

reduction of inert complexes. As the complex is more inert - a potential of reduction is more 

negative.  

 

2.4.2 Trace metals speciation in the estuary 

In estuarine waters key processes is organic complexation of metals (Kozelka and Bruland, 

1998; Louis et al., 2008; Shank et al., 2004; Tang et al., 2001, 2002; Van den Berg et al., 

1987; Wells et al., 1998). Distribution and speciation of trace metals in estuaries depends on 

their concentrations and on the concentrations of dissolved complexing ligands and their 

associated coordination sites on colloids and particulates (Kozelka and Bruland, 1998). 

Across different estuarine systems number and role of important ligand classes that controls 

the complexation of different trace metals is highly variable across different estuarine 

systems. Zn and Cd are controlled by three ligand classes in Narragansett Bay (Kozelka and 

Bruland, 1998), Pb is controlled by two ligand classes in San Francisco Bay (Kozelka et al., 

1997) and Narragansett Bay (Kozelka and Bruland, 1998) estuaries. For Cu concentrations 

of the stronger ligand class [L1] are equal or greater than total dissolved Cu [CuD], this trend 
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is commonly found in other estuarine systems (Kozelka and Bruland, 1998). Experimental 

and field measurements have shown that production of [L1] by phytoplankton occurs in 

response to [Cu2+] concentrations (Bianchi, 2007). In case when [L1] > [CuD], CuL1 is 

predominant specie. In estuary with anthropogenic metal input, [CuD], could be greater than 

[L1], and weaker ligands [L2] and [L3] may be produced by bacterioplankton/phytoplankton 

to “buffer” complex the remaining Cu (Gordon et al., 2000; Kozelka and Bruland, 1998; 

Louis et al., 2009). Other studies have shown that the stronger binding ligands are produced 

by microorganisms, while the weaker-binding ligands have more humic character (Moffett 

et al., 1997; Vachet and Callaway, 2003). Some research has shown that typical range of Cu 

stability constants are logK’1=11-14and logK’2=8-10 (Coale and Bruland, 1988; Donat and 

Van den Berg, 1992). In the case of the strong ligand class [L1], Pb and Cu speciation are 

controlled by dissolved and colloidal sized ligands in different regions of the bay. In all cases 

the weak ligand classes were found in the colloidal phase with stronger more stable ligands 

in the dissolved phase (Muller, 1999). Pb is a non-bioactive metal that is mostly bound in 

the colloidal sized complexes and essential bioactive metals Zn, Cd, Cu are mostly found in 

the dissolved complexes. 

 

2.4.3 Bioavailability and effect of competition 

The aim of determining the speciation is to learn more about bioavailability. Free ions of Cd, 

Pb, Cu and Al, are the most toxic forms of metals in aqueous systems, but their toxicity is 

reduced by complexation with natural ligands (Di Toro et al., 2001). It was found that Cd 

toxic effect towards green algae shows variations depending on the season in a eutrophic 

lake. To decrease toxicity of Cd (Mungkung et al., 2001) and Cu (Lorenzo et al., 2002) 

humic acid could be added.  

Decrease of bioavailability of metal ions happens in the presence of humic ligands (HL) 

(Penttien, 2010). Reduction of toxicity in hard water can be explained by competition of Cd 

and Ca. In the aqueous environment in term of concentration, cations responsible for water 

hardness (Ca and Mg ions), are significantly represented. They are competitive for the 

binding sites as compared to Zn and Cd ions. Although this competition is not fully 

explained, the available data suggest that it is one of the reasons for the decrease in their 

bioavailability (toxicity).  

Different binding strengths exist due to the heterogeneity of natural organic substances 

(Džombak et al., 1986). By a discrete model they could be grouped on place of similar 
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characteristics for the complexation in seawater. Thus, there are binding sites that can be 

defined as potential ligands (denoted by L1 with the lower concentration) and a weak ligand 

(denoted by L2, with the higher concentration). According to the current knowledge on 

dissolved organic ligands (Hirose, 1994), their concentration in the seawater is around 1-3 

nM for a strong ligand (L1), and 20-60 nM for a weak ligand (L2). The concentration of free 

Cu2+ in seawater affects the reactivity of Cu that is directly linked to its relation to marine 

microorganisms (Sunda and Guillard, 1976). The concentration of free Cu2+ in the seawater 

is calculated as the total concentration of Cu on the basis of the equilibrium model (Hirose, 

2007), that is taken into consideration and the effect of Ca and Mg. 

The concentration of free Cu2+ is steadily growing in toxic concentrations of Cu (greater 

than 10 pM) (Sunda and Huntsman, 1995), wherein the concentration of total Cu exceeds 

that of strong organic ligands. The concentration of free Cu2+ is steadily growing when the 

Cu concentrations are toxic (greater than 10 pM) (Sunda and Huntsman, 1995), wherein the 

concentration of total Cu exceeds that of strong organic ligands. The concentration of free 

Cu2+ in the lower values (lower than 10 pM) is within the range of the total Cu concentration 

in seawater. With increasing of ligand concentrations, concentration of free Cu2+ ions is 

shifted towards lower values. These findings suggest that a weaker ligand has a greater 

influence than stronger ligand on decreasing of Cu toxicity in marine microorganisms. This 

agrees with the knowledge that a weaker ligand dominates in the speciation of Cu in coastal 

waters where Cu exists in higher concentrations (Donat et al., 1995). 

Chemical model connected with the reactivity of organic ligands that are in the interaction 

with trace metals is moderated due to the Ca and Mg complexation. In seawater, the 

concentration of ligand is buffered by an excess of Ca and Mg. The concentration of free 

ligands is regulated, at low values, by the change of total concentration of ligands in solution. 

 

 

2.5 Determination of trace metals concentration and speciation 

A number of techniques are available to measure chemical speciation and fractionation of 

the metals in aquatic environments (Lead et al., 1997). These techniques have been 

developed for determining the physical and chemical form and type of trace metals in aquatic 

systems: electrochemical methods (voltammetry with the anode and cathode dissolution, 

potentiometry), spectroscopic methods, ion exchange, extraction, dialysis, ultrafiltration, 

chromatography and computer modelling (Florence, 1986). It is not possible to determine 
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all physic-chemical types of trace metals due to the method specificity. Each method is 

characterized by the so called “detection window”, which means that a particular method 

determines only a part of the distribution of trace metals.  

For trace metal speciation it is important to use robust methods as toxicity and mobility of 

trace metals are connected to the metals speciation (Stumm and Morgan, 1996). The first 

step in determining speciation of trace metals is to define a certain group of complexes that 

needed to be determined. Usually they could be separated by physical shapes and by 

chemical species. Physical shapes represent trace metals connected to a variety of solid 

surfaces (colloids, particular particles, different organisms, etc.). Chemical species include 

various metal complexes with inorganic and organic ligands that are dissolved in solution.  

Following requirements should be guided for selection of the method for determination of 

the metal chemical species (Nürnberg, 1977): 

 In initial composition of the sample make the least possible changes 

 Between sampling and analysis delay should be minimal 

 It should have possibility for determination of the natural metal concentrations (nM, 

pM) 

 It should be selective for certain forms 

 It is preferably to quickly determine at the same time more metals 

 Low cost due to the need of a large number of determination 

 

2.5.1. Voltammetric techniques for trace metal speciation determination 

Voltammetry techniques have provided a powerful tool for measuring the speciation of trace 

metals at low concentrations. Most of the bioactive trace metals are now analysed with this 

technique. Different forms are involved in different biological and geochemical interactions 

and hence the cycling of trace metals within the ocean. Studies of trace-metal speciation 

have impact on ideas of the role of trace metals in biological systems.  

Voltammetry procedures like anodic stripping voltammetry have been used extensively for 

determination of metal concentration and for making speciation measurements in natural 

waters (Buffle, 1988). It is possible to measure both, free metal ions and complex species of 

trace metals. To measure metals in the complex, the complex must be labile and mobile. If 

dissociation occurs in the time needed for the complex to diffuse through the diffusive 

boundary layer that surrounds the electrode, criteria for lability is satisfied. Time needed for 

dissociation is typically 0.1 seconds. Mobility is determined by movement through the 
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boundary layer by diffusion. It is related to the diffusion coefficient and consequently to the 

size of the complex. For standard laboratory electrodes, where current response to the analyte 

is proportional to the square root of the diffusion coefficient, the size cut off, above which 

particles are effectively not measured, has been calculated to be about 50 nm (Buffle, 1988).  

With electrochemical methods like sensitive anodic stripping voltammetry in differential 

pulse (DP) mode it is possible to study Zn (Bruland, 1989), Cd (Bruland, 1992), Pb 

(Capodaglio et al., 1990) and Cu (Coale and Bruland, 1990). Broader group of trace metals 

could be determined with another voltammetry technique, adsorptive cathodic stripping 

voltammetry (AdCSV). The application of AdCSV for speciation studies includes the 

addition of known ligand (AL) that creates a competitive equilibrium with the natural ligands 

for the metal of interest (Van den Berg, 1988). Neutral bis-complex could be formed with 

the AL in most of the methods (Bruland et al., 2000).  

Complexation of trace metals with strong metal binding organic ligands is important in 

surface waters of sea. For instance in surface waters great percentage of metals are 

complexed with organic ligands: around 98% of dissolved Zn in surface waters (Ellwood 

and Van den Berg, 2000; Lohan et al., 2002), approximately 80% of Cd (Bruland, 1992), 

more than 99% of Cu exists as organic complexes (Coale and Bruland, 1988; Moffett et al., 

1990). Chemical structure of organic ligands that are involved in binding with metals in sea 

water is not very well known. 

 

2.5.1.1 Anodic stripping voltammetry (ASV) 

Anodic stripping voltammetry is a technique that is used to directly measure the kinetically 

labile complexes (inorganic and weak organic) and free metal ions (Mn+). Sample is titrated 

with the metal of interest and at each titration point it is possible to determined 

concentrations of the metal-binding ligands and conditional stability constants (binding 

strengths) for metal-ligand ligand complexes. Metals that could be determined by ASV are 

those that are soluble in liquid Hg (forming amalgams), that can be reduced and reoxidized 

at the suitable potentials and metals that are chelated with strong organic ligands so they are 

kinetically inert.  

This method is a two-step technique that involves a pre-concentration step and a stripping 

step. In the pre-concentration step a controlled potential is applied to the working electrode, 

at a potential more negative than the half wave potential of the metal ion while the working 
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electrode behaves as a cathode. Duration of this step could be between 5 to 10 minutes. 

During that time M’ is continually reduced and concentrated into Hg amalgam. The 

reduction reaction is allowed to take place over a fixed time period and under identical 

conditions. For the stripping step, the potential applied to the electrode is reversed, i.e. to 

potentials more positive than the half-wave potential of the metal ion, the working electrode 

behaves as an anode. As the applied potential reaches the half wave potential of the metal 

ion, oxidation of the amalgam occurs and the metal ion is stripped from the amalgam back 

into the solution. The peak currents are produced as the system reaches the oxidation 

potentials, that are characteristic for each electrochemical species that is measured. The 

deposited analyte is determined by voltammetric procedure and resulting voltammogram 

provides the analytical information of interest.  

Some limitations exist in ASV, such as the requirement that the element is reduced to the 

elemental state and that is soluble in mercury. Four metals (Cd, Pb, Cu and Zn) can 

successfully be determined by ASV.  

Problems considering metal determination by ASV could be due to too low concentration or 

there could be interference such as those due to the formation of insoluble intermetallic 

compounds in Hg. When intermetallic compounds are present, the stripping peaks may be 

shifted, severely depressed or absent completely (Willard et al., 1988). The main advantage 

in this technique is in the preconcentration step prior to the voltammetric scan. 

 

2.5.1.2 Adsorptive Cathodic stripping voltammetry (AdCSV) 

Adsorptive cathodic stripping voltammetry is a very sensitive technique for the analysis of 

numerous trace metals which cannot be determined in water using conventional electrolytic 

stripping procedures. The mechanism involves the formation a surface active complexes of 

the target metal (in presence of a suitable complexing ligand that is added to a water sample 

and forms an adsorptive complex with the trace metal) and interfacial accumulation of 

complex onto the working-electrode. In the most cases, chosen adsorption potential is 

slightly more positive than the reduction potential of the metal-ligand complex. Deposited 

material could be determined by linear-scan or pulsed voltammetric measurements. The scan 

direction is towards more negative potentials and the resulting current is measured. The 

current produced is the result of the reduction of adsorbed metal complex. 
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Adsorption process could be described (Wang, 1989): 

- The metal 𝑀𝑛+reacts with a ligand L to form the complex in solution 

𝑀𝑛+ + 𝑛𝐿 → (𝑀𝐿𝑛)𝑛+    (3) 

- Then complex is adsorbed onto the electrode surface 

(𝑀𝐿𝑛)(𝑠𝑜𝑙)
𝑛+ → (𝑀𝐿𝑛)(𝑎𝑑𝑠)

𝑛+     (4) 

- Following complexation reactions ligand L is adsorbed first 

𝑛𝐿(𝑠𝑜𝑙) → 𝑛𝐿(𝑎𝑑𝑠)     (5) 

𝑀𝑛+ + 𝑛𝐿(𝑎𝑑𝑠) → (𝑀𝐿𝑛)(𝑎𝑑𝑠)
𝑛+     (6) 

- Surface-active complex with ligand could be formed not just with metals and 

cations, but also with oxidized or reduced electrochemical form of the metal 

cation 

𝑀𝑛+ ± 𝑚𝑒 → 𝑀𝑛±𝑚    (7) 

𝑀𝑛±𝑚 + (𝑛 ± 𝑚)𝐿 → 𝑀𝑛±𝑚𝐿(𝑛±𝑚)   (8) 

(𝑀𝑛±𝑚𝐿(𝑛±𝑚))
(𝑠𝑜𝑙)

→ (𝑀𝑛±𝑚𝐿(𝑛±𝑚))
(𝑎𝑑𝑠)

   (9) 

 

Adsorptive stripping voltammetry has been applied to the determination of a variety of 

inorganic cations at very low concentrations. The cations complex with surface-active 

complexing agents (ligands) and detection limits are in range 10-10 to 10-11 M (Skoog et al., 

1996). Ni and Co were determined by method of adsorptive cathodic stripping voltammetry 

with addition of Nioxime as ligand and boric puffer to control pH as the formation of the 

metal-ligand complex is pH dependent. Contrasted to ASV this method does not require the 

metal solubility in Hg, so it could be used for a different trace metals. For speciation studies 

AdCSV method could be as well used (i.e. Zn (Ellwood and Van den Berg, 2000; Lohan et 

al., 2002), Cu (Donat and Van den Berg, 1992), Co (Ellwood and Van den Berg, 2001; Saito 

and Moffett, 2001), Fe (Bruland et al., 2001). 

 

 

2.5.2. Diffusive gradient in thin films (DGT) technique 

Technique of diffusive gradient in thin films (DGT) was created in 1994 by Davison and 

Zhang for in situ measurements of labile trace metal species in aquatic environments 

(Davison and Zhang, 1994). This technique allows diffusion of chemical species through a 

diffusive gel with known diffusion coefficients for the species. DGT devices could be used 

in water (Zhang and Davison, 1995), in sediments (Winderlund and Davison, 2007; Zhang 



2. Literature overview 

48 
 

and Davison, 1995) and in soils (Zhang et al., 2001). Main advantage of DGT technique is 

minimization of variations in speciation for the period of sampling and storage (Lead et al., 

1997). In addition with this technique it is possible to measure more metals at the same time, 

for deployment and retrieval it needs shorter effective time and it is relatively inexpensive. 

Plastic sampling device with an opening, contains a membrane filter, diffusive layer and 

binding layer (Fig. 2.10) (Zhang and Davison, 1995).  

 

Figure 2.10. Illustration of DGT piston assembly and an expanded view of the binding and 

diffusion layers (Davison and Zhang, 2012). 

 

To determine the diffusible components of water this technique involves the use of hydrogels 

in the presence of ion exchange resin. The “diffusible” species diffuse through the diffusive 

layer and accumulate in the binding layer where metals bind with resin. The diffusive layer 

has a well-defined thickness and normally consists of a polyacrylamide diffusive hydrogel 

and a protective membrane filter. The binding layer is made from Chelex-100 cation 

exchange resin embedded in polyacrylamide gel. In the diffusion layer concentration 

gradient is developed. Concentration is there equal to the bulk concentration on interface 

water/filter membrane and it is effectively zero at the binding layer surface (Fig. 2.10). Until 

the saturation of binding layer the concentration gradient is maintained. The use of a gel 

layer in front of the resin provides a well-defined diffusive boundary layer that constrains 

mass transport and given fully quantitative data (Davison and Zhang, 1994). Process of 

accumulation continues during the deployment time. To calculate the average concentration 

of metals during the exposure time it is needed to know time of deployment, temperature of 

media, accumulated mass and diffusion coefficient of the analyte. 



2. Literature overview 

49 
 

2.5.2.1. Factors affecting DGT performance 

On accuracy of DGT measurements several factor could have influence: DGT blank 

variability, elution factor, diffusive coefficient, diffusive boundary layer, temperature 

variations during deployment, and variations in thickness of the diffusive gel.  

 

Effective sampling area. According to measurement with ICP-MS the effective adsorption 

area on the binding layer from simple, non-complexing, inorganic solutions were 

systematically higher then concentrations measured directly in solutions. With this error 

overestimation of concentration could be ~20% more than the area of the DGT device 

window (Warnken et al., 2006). This was related with difference between geometric surface 

area of DGT (3.14 cm2) and effective surface area (3.80 cm2) (Fig 2.11). The main reason 

for this difference is a fact that the diffusion pathway into the membrane is not vertical then 

also lateral on the filter paper, there is extra material supplied at the edges in curved diffusion 

paths (Davison and Zhang, 2012).  So the systematic error was suggested to originate from 

this fact.  

 

 
 

Figure 2.11. Sketch of diffusion pathways on the DGT device without convection in 

solution. (a) for physical geometric area. (b) effective surface area (Davison and Zhang, 

2012) 
 

Binding layer. DGT with Chelex 100 as resin gel could be used for measurement of 24 

elements: Zn, Cd, Pb, Cu, Co, Ni, Al, Mn, Ga, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 

Tm, Tb, Lu and Y (Garmo et al., 2003). In natural waters, major cations are present at high 

concentrations with very low affinity to Chelex resin. Due to the modification of the binding 

layer it is possible to apply DGT for measurements of other metals. For instance with 

exchange of Chelex resin with an iron oxyhydroxide it is possible to measure anionic 

phosphate (Zhang et al., 1998) and inorganic As (Panther et al., 2008), Se in soil (Sogn et 

al., 2008) and P, As, V, W, Mo, Sb, U in the sediments (Stockdale et al., 2008, 2010). TEVA 
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and Dowex 1x8 anion exchange resin could be used for determination of Tc (French et al., 

2005) and U (Li et al., 2007). Concentration of labile Hg (Dočekalová and Diviš, 2005) and 

methyl Hg (Clarisse and Hintelmann, 2006) could be measured by Thiol resin. 

 

Diffusive boundary layer (DBL). At the interface between the protective membrane filter 

and surrounding water, a thin layer is developing. Transport of elemental species in that layer 

is changing from advection and diffusion processes in the sample solution, to diffusion in 

the diffusive gel. This layer is called diffusive boundary layer (DBL). This layer works as 

an extension of the diffusion layer (Fig. 2.10). Initially thickness of the DBL was assumed 

to be negligible in well mixed solutions and natural waters (Davison and Zhang, 1994) 

however it was soon shown to be significant in stirred solutions at low stirring speeds (Zhang 

and Davison, 1995). DBL depends of water flow; it is larger when the flowing is low. In 

high flowing waters thickness, δ, of DBL was estimated on 0.23 mm (Warnken et al., 2006), 

that is approximately 25% of the DGT diffusive layer thickness, Δg. 

With neglecting the DBL the error is less than 10 % for standard thickness of the gel. In 

laboratory conditions DGT devices could be immersed in solution with well-defined vortex 

by using a magnetic stirrer, DBL is then around ~ 0.2 mm. If the complexes in solution are 

fully labile the contribution of free and complexed metal to the total metal accumulated will 

be governed by the rate of diffusion of each species (Scally et al., 2003).  

According to new founding the term material diffusion layer (MDL) is now in use. It takes 

in account thickness of diffusive layer and membrane filter (Fig. 2.10) (Levy et al., 2012; 

Warnken et al., 2006; Webb and Keough, 2002).  

 

Bio-fouling. In natural waters biofilm could be formed at the surface of DGT as a 

consequence of the exposure. Various elements like extracellular polymers from cell 

metabolism, algae, bacteria and fungi that creates biofilm, interacts with trace metals through 

different processes in water (van Hullebusch et al., 2003). Problem with appearance of 

biofilm on the DGT membrane surface is its influence on the thickness of DBL and possible 

modification of diffusion coefficient (Pitchette et al., 2007; Uher et al., 2012). Biofilm effect 

could be avoid by deployment time less than 7 days in conditions that are suitable for biofilm 

growth (Uher et al., 2012). 
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Temperature. Temperature is important factor in determination of proper diffusion 

coefficient. So it is needed to be measured during deployment. Temperature data loggers are 

usually deployed on the same depth as DGT. Diffusion coefficients are determined for 

temperature range 5-35°C (Zhang and Davison, 1995).  

 

pH. Organic complexation in natural waters is mostly controlled by pH due to increase of 

organic acids dissociation with increasing pH, and making more COO- and OH- groups for 

trace metal complexation (Eby, 2004). DGT measurements could be made in wide pH range. 

Limitations are connected only with the characteristics of the binding agents and diffusion 

coefficients. For instance lowest pH for determination of Cd is between 4-5 (Gimpel et al., 

2001; Zhang and Davison, 1995) and Cu in synthetic solutions could be measured up to pH 

2 (Gimpel et al., 2001).  

 

Ionic strength. Research of the DGT properties has showed that DGT could be used in 

waters with low ionic strength (I), down to 10 nM (Zhang and Davison, 1995). Further 

researches have shown that for I < 1 mM precision and accuracy are lower (Sangi et al., 

2002; Warnken et al., 2005). During the production of DGT it is important to wash diffusive 

gels to decrease product of polymerization that were not reacted (Warnken et al., 2005). 

According to some research it was concluded that DGT could be used down to I = 0.1 mM 

with good precision (Scally et al., 2006; Warnken et al., 2005).  

 

Capacity of accumulation. Based on the capacity of the adsorbent, in binding layer, 

maximum of accumulation is limited. For DGT with Chelex-100 resin maximum capacity 

for DGT is approximately 6 µmol (Zhang and Davison, 1995). In the oceans due to the low 

metal concentrations, maximum accumulation corresponds to 2.5 years, with saturation as 

only limiting factor. In coastal water and unpolluted fresh water the concentrations of metals 

are usually higher (around 10 times) so maximum deployment time could be 10 times 

shorter, it is around 3 months. Due to the high accumulation deployment time is not often 

limiting factor.  

 

2.5.2.2. Diffusion coefficients of trace metals in hydrogel 

To interpret DGT measurements quantitatively, in terms of the species present in solution, 

it is important to know the diffusion coefficient of each species within the gel. Diffusion 
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coefficients that were provide with DGT instructions were determined by DGT Research 

Ltd. in the laboratory at different temperatures according to equation:  

𝑙𝑜𝑔 𝐷 =
1.37023(𝑇−25)+8.36∗10−4(𝑇−25)2

109+𝑇
+ 𝑙𝑜𝑔

𝐷25(273+𝑇)

298
  (10) 

D and D25 are the diffusion coefficients of the deployment temperature and at 25°C. 

However these values only apply to free ions (the true dissolved species). DGT hydrogel 

consists of ~10% cross-linked polymer that limits permeability of the gel. This lowers 

effective diffusion coefficients as the gel becomes tighter. On the rate of diffusion great 

influence has ionic strength, composition of solution and pH. In natural waters metals could 

be bound to larger molecules to a large extent like fulvic acid. According to Scally et al. 

(2006) diffusion of complex of fulvic acid and metal ions are slower due to higher molecular 

weight and larger size in comparison to non complexed metal ions. That is why coefficients 

for non-complexed species leads to errors in calculation of concentrations.  

On the other hand in natural water it is not easy to know all species so operational value, 

called DGT labile is in use. Diffusion coefficients could be determined by use of two 

independent methods: by diffusion cell (Chang et al., 1998; Osterlund et al., 2010; Zhang 

and Davison, 1999) and by direct uptake to DGT device in solution with known 

concentrations.  

 

Determination by diffusion cell. The diffusion cell consists of two compartments that are 

separated by a rubber spacer and clamped together (Fig. 2.12). Compartments are connected 

through a hole (diameter 15 mm) in which disc of diffusion gels (diameter - 2.5 cm and 

thickness of 0.82 mm) and protective membrane filter (thickness 0.14 mm) are mounted. 

The filter is exposed to compartment A. During the equilibration period both compartments 

should be filled with 0.01 M NaNO3 solution. In the compartment A solution should be 

spiked with standard solution of metals and on that way it will contain the diffusing ions of 

interest. In the compartment B Mili-Q water and 0.1 M NaOH should be added to 

compensate pH and change of volume. Stirrer mixes both compartments continuously and 

thermometer in compartment A register the temperature. Samples should be taken on defined 

time during the experiment form compartment B or from both compartments. 

From measured concentrations the mass of analyte that diffuse to compartment B could be 

calculated. Diffusion coefficients, DDC, could be determined from the slope of the graph 

“diffuse mass vs. time” (Zhang and Davison, 1999): 
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𝐷𝐷𝐶 =
𝑠𝑙𝑜𝑝𝑒 ∙ Δ𝑔

𝐶 ∙ 𝐴
     (11) 

 

Δg – thickness of the gel and filter 

C – concentration in the compartment A 

A – exposed area of the diffusive gel 

 

Figure 2.12. Diffusion cell for determination of diffusion coefficients. 

 

Determination by direct uptake. Experiment set up requires three bottles of at least 2L, 

magnetic stirrer and NaNO3 for preparation of solution and NaOH or HNO3 for pH 

adjustment. Osterlund et al. (2010) prepared 5 L solution of 10 µg L-1 of each analyte in 0.01 

M NaNO3. In each bottle 1.5 L of solution was added and pH was adjusted with 1 M NaOH 

or 1.6 M HNO3 to 4, 6 or 8.  After two days of equilibration, 1.25 L of each solution was 

transferred in new bottles with attached DGT devices in duplicate and temperature logger. 

Stirring was adjusted to be similar in all three bottles. Experiment was hold for 24 hours. 

Effective diffusion coefficients (Deff) were calculated from equation: 

𝐷𝑒𝑓𝑓 =
𝑀∙Δ𝑔

𝐶∙𝐴∙𝑡
      (12) 

M – accumulated and eluted mass of analyte; t – time. 
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2.5.2.3. Determination of trace metal concentration by DGT 

After defined deployment time t, binding gel should be retrieved and analysed. Analyte is 

desorbed/eluted from the binding layer and determined with a suitable analytical technique.  

Fick’s first law of diffusion describes the flux, J, through the diffusive layer: 

               𝐽 = 𝐷
𝑑𝐶

𝑑𝑥
     (13) 

D - diffusion coefficient 

C - concentration 

x - distance 

𝑑𝐶

𝑑𝑥
 - concentration gradient 

Mass of accumulated metal, M, could be measured after eluting it from Chelex with acid and 

it is related to the concentration of metal in the solution, C, and the diffusive coefficient of 

the metal through the gel, D. Accumulated mass could be calculated with the following 

equation: 

𝑀 =
𝐶∙𝐷∙𝐴∙𝑡

𝛥𝑔
     (14) 

Δg  - thickness of the diffusion layer 

t - deployment time 

A - area of the exposed gel. 

With calculated M it is possible to calculate the flux through diffusion layer through known 

open window, A, during deployment time: 

𝐽 =
𝑀

𝐴∙𝑡
     (15) 

According to this different effective surface area, equation for calculation CDGT is: 

𝐶𝐷𝐺𝑇 =
𝑀𝐷𝐺𝑇(𝐷𝑤∆𝑔+𝐷𝑤𝑀𝐷𝐿𝛿)

𝑡𝐷𝑊𝐷𝑀𝐷𝐿 𝐴𝑒
    (16) 

 

2.5.2.4. Speciation of trace metals by DGT  

Speciation is possible to determine by using DGT with a different pore sizes of diffusive gel, 

in parallel. It is possible to distinguish labile complexes based on size – small (possibly 

inorganic complexes) and large (labile organic complexes). Accumulation in the binding 

layer is based on size of the pore and lability of complexes. Open pore (OP) DGT have 
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diffusive gel pore diameter around 5 nm so hydrated cations (Zhang and Davison, 1995) and 

small complexes (Scally et al., 2003) can move freely.  

Speciation could be explained by equilibrium reaction of metal ions M, ligands L and the 

complex ML: 

𝑀 + 𝐿 ↔ 𝑀𝐿     (16) 

Metal ions are continually removed by adsorption to the binding layer, so the equilibrium in 

diffusive layer is disturbed so dissociation of the complex is promote.  

For labile complexes (Fig. 2.13A), there is fast reaction between metal ions and complex 

with resin, so concentration on the surface of the resin decrease to virtual 0. As complex 

dissociates, all metal ions that are associated with the complex are adsorbed to the binding 

layer. Inert complex on (Fig. 2.13A) does not dissociate, so analytes from this complex could 

not be measured. It is only possible to measure metal ions. When labile complexes are 

partially labile (Fig. 2.13A) there is decrease of complex concentration near the binding 

surface, but removal is not complete. Concentration gradient occurs with constant diffusion 

flux, metal contents increases with time (Tusseau-Vuillemin et al., 2004).  

 

Figure 2.13. Schematic presentation of the concentration gradient in diffusion layer 

illustrating A) labile complexes, B) inert complexes, C) partially labile complexes. 
 

Dissociation is slow and kinetics control accumulation so concentration is dependent on the 

thickness of the diffusion layer (thicker diffusion layer need longer dissociation time).  

Organic ligands that are present in natural waters are often smaller than 5 nm in size 

(Dahlqvist et al., 2007; Lyvén et al., 2003). Depending on lability, complex of analyte with 

organic ligands contributes to the accumulated mass in DGT. These complexes have lower 

diffusion coefficients than “free” ions, consequently it is possible to underestimate the DGT 

concentration when diffusion coefficients for free metals are used. This is why DGT with 
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restrictive pore (RP) were developed (Zhang and Davison, 1999). With pore size of ~ 1 nm 

their goal is to retard larger complexes to a higher extent than the OP DGT. In comparison 

OP and RP DGT it could be concluded that diffusion of “free” ions and complexes is slower 

in RP DGT (Scally et al., 2006). 

For a known diffusion coefficients for ligands in the sample it is possible to estimate 

speciation of inorganic and organic labile metal concentrations (Zhang and Davison, 2000). 

DGT with different pore size were used for measurement of diffusion coefficients for some 

natural and synthetic organic ligands (Scally et al., 2006; Zhang and Davison, 1999). Mass 

of analyte accumulated in the DGT is sum of organic (MML) and inorganic (MMX) species: 

𝑀𝐷𝐺𝑇 = 𝑀𝑀𝐿 + 𝑀𝑀𝑋    (17) 

 

𝑀𝐷𝐺𝑇 =
(𝐶𝑀𝐿𝐷𝑀𝐿+𝐶𝑀𝑋𝐷𝑀𝑋)∙𝑡∙𝐴

∆𝑔
    (18) 

Experiments have shown that a substantial part of organic complexed metals could pass 

through diffusive gels with restrictive pores. Two types of DGT were used (OP and RP) in 

a river affected by acid mine drainage (Balistrieri et al., 2007). Calculations with biotic 

ligand model have predicted high degree of complexation of Cd and Cu, with the same 

concentrations from OP and RP DGT. This could be partly explained by experiment 

conducted with van der Veeken (van der Veeken et al., 2008) in which evidences was found 

that implying that gel pore sizes are larger than it was estimated. In solution with latex 

particles complexed with Pb, concentrations after equilibration were 30-50% in the OP gel 

and 65% in RP gel.  

 

2.5.2.5. Practical problems associated to DGT measurements  

There is possibility of leakage that occur in the DGT casting from the seal between the piston 

and the cap. Testing was performed by Wagner within his BSc thesis (Wagner, 2004). Series 

of simple experiments were performed, using DGT probes loaded with tissue paper in place 

of the gel assembly. DGT prepared on that way are called “pseudo DGT”. They were placed 

during 8 hours in coloured dye solution. Depth was determined to submerge the seal between 

the base of the piston and the bottom of the cap, so does the top of the device stay above 

solution surface (Fig 2.14). After 8 hours it was visible that the dye solution was able to enter 

in the DGT through the seal between the base of the piston and the bottom of the cap (Fig 

2.15). To determine effect of DGT leakage, they were immersed in solution (20 mM ionic 
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strength) spiked with 100 µg L-1 of Cu, Cd, Zn, Pb and U. During retrieval processes 5 mm 

annular ring was separated from 19 mm diameter internal disc and they were eluted and 

analysed separately.  

 

 

Figure 2.14. Pseudo DGT deployed in dye solution (Wagner, 2004). 
 

 

 

Figure 2.15. Pseudo DGT after 8 hours of deployment in dye solution (Wagner, 2004). 

 

The annular rings from the duplicate DGT devices contained substantial amounts of metals 

that contribute approximately 40% of the total mass accumulated in the whole resin gel. 

From the relative standard deviation it is obvious that the leakage is highly variable between 

different DGT casings. The results also showed that the mass of metals accumulated in the 

internal disc agrees with the expected theoretical mass indicating that the leaked mass of 

metal was essentially contained within the annular ring. It was concluded that removal of the 

annular ring section was sufficient to ensure that only metal ions that enters to the device by 

diffusion processes through exposure window were measured.  
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2.5.3. Metal complexing capacity (MCC) 

Physico-chemical form or speciation is an important characteristic used in an attempt to 

describe and quantify the bio-geochemical cycles of trace metals (Muller et al., 2001). 

According to Campbell (Campbell, 1995) the toxicity of metal ions is far greater than those 

of its complexes with naturally occurring ligands. That is why in situ complexation of trace 

metals by organic ligands is considered as the main control of bioavailability and toxicity of 

trace metals to phytoplankton (Campbell, 1995; Sunda, 1994). Ligands that are present in 

natural waters, such as humic acid, fulvic acids, some colloidal particles (ex. Fe2O3, MnO2, 

etc) and other inorganic ligands could create inert complexes with metals. From their 

concentrations and stability constants with a certain metal it is possible to determine 

speciation of that metal and estimate the amount of free metal and inorganic metal species 

for the total metal present in a solution, which are potentially bioavailable and toxic.  

Total concentration of these ligands, LT, determines metal complexing capacity (MCC) 

(Plavšić et al., 1982; Ružić, 1982, van den Berg, 1982). For a given metal it is possible to 

group together different ligands and describe their overall behaviour towards certain 

"average" of properties with conditional stability constants K'. 

Although different methods and protocols of direct characterization of metal-organic 

complex are reported in the literature (Wiramanaden et al., 2008), due to very low 

concentration of metals in seawater and experimental limitations of separation, extraction 

and measurement of different metal complexes, an alternate indirect approach in 

characterization of metal-organic ligand interactions is usually practiced by marine chemists 

(Bruland et al., 2000; Buck et al., 2012; Campos and Van Den Berg, 1994; Gerringa et al., 

1995; Louis et al., 2009; Monticelli et al., 2010; Omanović et al., 1996; Plavšić et al., 2009; 

Ružić, 1982; van den Berg, 1982). It is based on the titration of the sample by the target 

metal at natural pH as schematically presented in Fig 2.16. Upon addition, metal is 

redistributed between different species, among them one (or group) is an “active” component 

which is measured, whereas the rest is considered to represent undetectable (organic) 

complexes. The most utilized technique for quantification of “active” components are 

electrochemical techniques due to their good sensitivity and selectivity. Basically two 

methods/protocols exist: anodic stripping voltammetry (ASV) and competitive ligand 

exchange adsorptive cathodic stripping voltammetry (CLE-AdCSV). 
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Figure 2.16. Basic experiment leading to metal complexing parameters determination. 

Example of one 1:1 metal-ligand complex. 

 

2.5.3.1. Calculation of complexation parameters – a theory 

When considering determination of metal speciation by common approach using 

electrochemical methods several assumptions and model simplifications should be 

considered. Principally, all calculations are based assuming discrete model of binding 

strengths (one or more ligand classes, Li) with 1:1 metal-ligand stoichiometry. Furthermore, 

full equilibrium should be attained before measurement and measured intensities should 

correspond only to specie(s) predicted by the model. The effect of other competitive 

reactions as a consequence of increased metal concentration, is neglected. 

Metal speciation calculations are based on the mass balance equations of metal (M) and 

ligands (Li): 

[𝑀]𝑇 = [𝑀]𝑓 + ∑ [𝑀𝑋𝑖]𝑖 + ∑ [𝑀𝐿𝑖]𝑖      (19) 

[𝐿𝑖]𝑇 = [𝐿𝑖]𝑓 + ∑ [𝑀𝐿𝑖]𝑖 + (∑ [𝑀𝑗𝐿𝑖]𝑖,𝑗 )    (20) 

where T denotes total dissolved metal/ligand, f -  free metal/ligand, ∑i[MXi]  - sum of all 

inorganic complexes, ∑i[MLi] - sum of all organic complexes with studied metal, and 

∑ [𝑀𝑗𝐿𝑖]𝑖,𝑗  sum of all other complexes of L with other cations (usually omitted in mass 

balance equations).  
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Stability constant (K’) of metal complex with L, valid for a given solution composition, is 

given by: 

𝐾𝑀𝐿
′ =  

[𝑀𝐿]

[𝑀]𝑓[𝐿′]
     (21) 

where [L’] is the concentration of ligand non-bound to the metal. 

In practice the sum of free metal concentration and its inorganic species is denoted as M’, 

which is related to free metal concentrations via inorganic side reaction coefficient, αIN = 

[M]’/[M]f. Conditional stability constants of formed metal complexes are expressed either 

against [M]’ or [M]f so the conversion between the two is αIN.  

For one ligand model (1L) mathematical transformations of above equations provide well-

known Ružić/van den Berg (R/VDB) (22), Scatchard (SC) (23) and Langmuir/Gerringa 

(L/G) (24) transformations (Gerringa et al., 1995; Ružić, 1982; van den Berg, 1982; 

Scatchard, 1949): 

[𝑀]’

[𝑀𝐿]
 =  

[𝑀]’

[𝐿]𝑇
+

1

𝐾′ [𝐿]𝑇
 (22) 

[𝑀𝐿]

[𝑀]′
=  −𝐾′[𝑀𝐿] + 𝐾′[𝐿]𝑇  (23) 

[𝑀𝐿] =
𝐾′[𝐿]𝑇[𝑀]′

1+𝐾′[𝑀]′
 (24) 

While R/VDB and SC transformations produce linear relationship, from which total ligand 

concentration and conditional stability constant could be calculated from the slope and the 

intercept, the L/G relationship produce curvature shape, and non-linear fitting is needed. 

For two or more ligand models, R/VDB (25) and L/G (26) equations could be extended for 

additional members on the right side:  

[𝑀]’

∑ [𝑀𝐿𝑖]𝑖  
 =  1 (

[𝐿1]

[𝑀𝑓]+1/𝐾1
′]

+
[𝐿2]

[𝑀𝑓]+1/𝐾2
′]

+ ⋯ )⁄  (25) 

∑ [𝑀𝐿𝑖] =
𝐾1

′[𝐿1]𝑇[𝑀]′

1+𝐾1
′[𝑀]′

+
𝐾2

′[𝐿2]𝑇[𝑀]′

1+𝐾2
′[𝑀]′𝑖 + ⋯ (26) 

Both transformations produce curvature shape, providing information on number of ligand 

classes present. Estimation of complexing parameters could be performed either by 

separately treating different segments of a titration curve (quasi linear parts) (Bruland et al., 

2000; Wu and Jin, 2009) or by non-linear fitting (Duran and Nieto, 2011; Garnier et al., 
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2004b; Gerringa et al., 1995; Monticelli et al., 2010; Pižeta and Branica, 1997; Voelker and 

Kogut, 2001; Wu and Jin, 2009). An explicit analytical solution for more than one ligand 

model does not exist for Scatchard transformation.  

Above relationships attained wide popularity because of their simplicity and relatively 

straightforward graphical visualization of number of ligand classes, however fitting the data 

in those transformations is not mathematically acceptable as the X and Y axes through the 

transformations became dependent. This problem could be overcome if explicit analytical 

relationships of [M]’ vs. [M]T are used for data fitting. For both, 1L and 2L-models, such 

relationships exist and are used for calculation of complexation parameters in literature 

(Duran and Nieto, 2011; Gerringa et al., 2014; Hudson et al., 2003; Lorenzo et al., 2007). 

For 1L-model the following analytical solution is valid: 

[𝑀]′ =
−𝑎+√𝑎2+4[𝑀]𝑇/𝐾′

2
 (27) 

where a = (-[M]T + [L]T + 1/K’).  Equation (27) is well known solution for roots of quadratic 

equation. Similarly, the explicit solution for 2L-model is the equation for roots of cubic 

equation, however due to its complexity it is not reported here, and authors are guided to the 

literature (Hudson et al., 2003; Pižeta and Branica, 1997). 

The above equations apply directly to the titrations performed by ASV, where measured 

current corresponds directly to [M]’. In CLE-AdCSV method, a competing ligand is added 

in solution and equation (19) is extended for additional member: 

[𝑀]𝑇 = [𝑀]𝑓 + ∑ [𝑀𝑋𝑖]𝑖 + ∑ [𝑀𝐿𝑖] +  ∑ [𝑀(𝐴𝐿)𝑖]𝑖𝑖 , (28) 

where ∑[M(AL)i] is the sum of concentrations of all metal species formed by added ligand, 

each defined by conditional stability constant which has to be known: 

𝐾𝑀𝐴𝐿𝑖

′ =  
[𝑀(𝐴𝐿)𝑖]

[𝑀]𝑓[𝐴𝐿]𝑓
𝑖   (29) 

It is assumed that the concentration of AL is sufficiently high that the inorganic species 

([M]’) could be neglected. In CLE-AdCSV, measured signal is related to the reduction of 

accumulated [MAL]i complex(es). From the equation (29) it follows that  

[𝑀(𝐴𝐿)𝑖] = 𝐾𝑀𝐴𝐿𝑖

′  [𝑀]𝑓[𝐴𝐿]𝑓
𝑖   (30) 

Conditional stability constants of M(AL)i complexes are expressed either against [M]f or 

[M]’ for a given solution composition. Additionally, it is assumed that the unbound 
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concentration of added ligand ([AL]f) is equal to its total concentration ([AL]T), because its 

concentration is much higher than that of metal along the titration curve. 

Like for inorganic side reaction coefficient, the conversion factor between labile ([M]’) or 

free ([M]f) metal and [MAL] is the side reaction coefficient of AL defined as: 

𝛼
𝐴𝐿𝑖

= 𝐾𝑀𝐴𝐿𝑖

′ [𝐴𝐿]𝑇 , or   𝛼′
𝐴𝐿𝑖

= 𝐾
𝑀𝐴𝐿𝑖

′
′ [𝐴𝐿]𝑇 (31) 

In case that more than one complex with M is formed with AL, both should be considered in 

calculation of αAL. Using αAL, measured currents corresponding to [MAL] are transformed 

into [M]’ or [M]f, so that all above equations for calculation of complexation parameters 

could be used for CLE-AdCSV method as well. 

 

2.5.3.2. Design of the experiment 

Choice of deposition potential for ASV type of measurements is important since only free 

metal and metal from labile complexes should be measured. Thus checking of the sample by 

performing a pseudopolarographic type of measurement should be done (Omanović and 

Branica, 2003). Most inorganic metal species are labile - electroactive. The inert metal 

complexes, like complexes with humic and other organic ligands, at the same accumulation 

potential are electroinactive. Using more negative potential of accumulation it is possible to 

achieve reduction of inert complexes. It is therefore important to choose suitable deposition 

potential (that will reduce all free and bound metal-labile, but not inert metal complexes) in 

determining the MCC. Selection of deposition potential is based on recorded 

pseudopolarogram (PP) (Fig. 2.17) (Omanović et al., 1996; Louis et al., 2009). A 

pseudopolarogram shows the dependence of the anodic oxidation peak current of 

accumulated metals in dependence on varying deposition potential. 

In designing of the experiment one should take care of properly distributing metal additions. 

Logarithmic additions based on measuring the ambient metal concentration have been 

adopted as the most useful ones (Garnier et al., 2004a).  Choice of other ASV parameters 

(scanning technique, modulation amplitude, scan rate, etc.) should be done, and optimized 

vis-à-vis each other and the sensitivity of the measuring system. Once it is decided and 

measurements are done, it should result in a titration curve, a data set of signal intensity 

versus added metal as shown in Fig. 2.18. that should be fitted to a chosen model. As mainly 

accepted in the recent literature, and supported by the theory, complexometric titration 

curves should be fitted to models of one or two (exceptionally more) ligands that form 
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complexes with titrated metal ions (in our case with copper(II) ions) (Pižeta et al., 2015. and 

references cited there in). A state-of-the-art software ProMCC was on disposition 

(Omanović et al., 2015), where to few key points attention should be paid, in order to extract 

the most reliable information from the data sets (Fig 2.18). 

 

 

Figure 2.17. Voltammograms of Pb (left) recorded to construct a pseudopolarogram (right). 

Marked areas show the reduction waves of labile (“inorganic”, more positive) and 

inert/strong (“organic”, more negative) metal complexes. 

 

 

Figure 2.18. Snapshot of ProMCC software showing plots of titration curve (top left), 

Langmuir/Gerringa (top right), R/VDB (bottom left) and Scatchard (bottom right) plots. 

Data were fitted applying R/VDB log-log fitting routine (blue curve). 
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3. Experimental part and methodology 

3.1. Study site 

The karstic Krka River that is mainly encompassed within the Krka National Park, is situated 

on the eastern coast of the Adriatic Sea (Croatia). Its catchment area consists of carbonate 

rocks and deposits. The content of calcium ions determined at the mouth of the river is 

0.0024 mol dm-3 (Bilinski et al., 1991) and the pH is about ~ 8.3. The measured flow over 

the last 50 years is between 5 and 450 m3 s-1 with an average annual flow of between 40 and 

60 m3 s-1. The climate in this area is typical for the Mediterranean with hot, dry summers, 

and quite temperate, wet winters. 

The river is characterized by numerous lakes formed by tufa barriers, each finishing with 

waterfalls. After the last and largest waterfall (Skradinski buk) 23 km long, salt-wedge type 

Krka River estuary starts (Fig 3.1). A few small villages are located along the foremost part 

of the estuary shoreline with approximately 4000 permanent inhabitants. The majority of the 

population lives in the lower part of the estuary in Šibenik city (19th km) and surrounding 

area (around 35,000 permanent inhabitants). However, during the summer, the population 

increases several times due to tourism, mainly because the Krka River estuary is a very 

attractive nautical destination. Thus, along with the permanent harbour activities in Šibenik 

town, the nautical tourism (more than 1000 berths) is considered to be a serious periodic 

(seasonal) anthropogenic treat for the estuary ecosystem. Although Krka National Park, with 

over 700,000 visits per year, undergoes high touristic pressure, it is not considered to be a 

potential source of pollution for the estuary, because the activities and waste water 

management within the Park are strictly controlled and processed. For a long time, the waste 

waters from Šibenik were discharged directly into the estuary. Since 2007, the treated waste 

waters has been discharged into the open sea, about 5 km from the coast at a depth of 60 m. 

Numerous aquaculture plants (~20 fields) for mussels farming (Mytilus galloprovincialis) 

are located mainly in the lower part of the estuary (Fig. 3.1 and Fig 3.2). A heavy industry 

is not currently developed along the estuary. For years, the main treat was the factory of 

electrodes and ferroalloys close to Šibenik (Fig. 3.1.) This zone was rehabilitated after 

production stopped in 1995. 
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Figure 3.1. Map of the Krka River estuary with marked transect (open diamonds) and high-

resolution mapping (crosses) sampling sites. Right plot shows horizontal bottom depth 

transect with marked sites and specific regions. 

 

 

Due to the low tidal range and sheltered geography this micro-tidal, salt-wedge estuary is 

permanently vertically stratified. The three separate layers in a vertical profile exist all along 

the estuary and could be easily spotted by scuba diving: the upper brackish layer (river water 

layer), the freshwater - seawater interface (FSI; middle layer) and the bottom seawater layer. 

Halocline with a steep salinity gradient within 1 m range of FSI is usually formed at a depth 

of between 1.5 and 3.5 m, and its shape primarily depends on the location, weather 

conditions (wind, precipitation) and hydrological conditions (Krka River flow). 
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Figure 3.2. Mussel farms in the Krka River estuary 

As a result of seawater entrainment, the salinity in the brackish layer increases from the head 

of the estuary towards its mouth. Tidal influence is low (the average is 20 cm and the 

maximum around 50 cm). Due to the absence of significant anthropogenic sources along the 

lower part of the Krka River, water that enters the estuary is exceptionally clean in terms of 

trace metal concentrations (Cukrov et al., 2008) and biogeochemical markers (Scribe et al., 

1991), and is comparable to pristine world rivers (Elbaz-Poulichet et al., 1991). According 

to Legović (1991), the exchange time of both brackish water and seawater is mainly 

dependent on the Krka River inflow: for brackish water in winter, it is between 6 and 20 

days, and in summer, up to 80 days, whereas for seawater it is between 50 and 100 days in 

winter, and up to 250 days in summer. 

 

3.2. Chemicals and solutions 

The following chemicals were used in this work: 

 Ultra-pure water (UPW), ASTM type I, 18.2 MΩcm (Merck-Millipore) 

 65 % nitric acid (reagent grade and suprapur, Merck/Kemika)  

 AAS standard solutions of metals 1 g L-1 (Zn, Cd, Pb, Cu, Ni and Co;  Fluka/Merck) 

 10-2 M Nioxime solution (1,2-Cyclohexanedione dioxime) (for Ni and Co analysis) 

 Boric acid (suprapur Merck or Trace metal basis, Sigma) 

 Sodium hydroxide, 30% solution (suprapur, Merck) 

 Sodium acetate anhydrous, 99,99 (suprapur, Merck) 

 Liquid Hg (for working electrode) 
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 1 M azide solution (NaN3) (Aldrich) 

 ICP multi-element standard solution (24 elements in dilute HNO3) 

 Indium standard solution (1000 mg L-1) – as internal standard for ICP-MS 

 Pressurised nitrogen (N2) gas, 150-200 bar, 5.0 purity 

 

All solutions were prepared by using MQ water. No additional purification of any solution 

was done. 

 

3.3. Instrumentation, devices and consumables 

 PGSTAT 128N or µAUTOLAB3 potentiostat/galvanostat controlled by GPES (General 

Purpose Electrochemical System) 4.9 software (Utrecht, The Neatherland) 

 High Resolution Inductively Coupled Plasma Mass Spectrometer, HR ICP-MS 

(Element 2, Thermo, Finnigan, Bremen, Germany) 

 Automated dosing system (Cavro XE 1000 or XL 3000 syringe pumps, Tecan, Swiss) 

 Hach Lange multiprobe HQ40D, OTT MiniSonde 4a and DS5 multiprobe,  

 DGT probes (passive samplers) (DGT Research Ltd., Lancaster, United Kingdom)  

 Horizontal water sampler van Dorn type 2.2 L (Wildco)  

 Membrane filters, cellulose-nitrate: 0.45 µm (Sartorious) 

 Syringe-mounted capsule filters: 0.2 μm cellulose-nitrate (Sartorious, Minisart) 

 Glass microfiber filters, 0.7 μm, grade GF/F (Whatman)  

 50 mL Plastic syringe 

 Polycarbonate filter holder (Sartorius, model 16511) 

 10 mL glass tubes with silicon cap 

 24 mL glass tubes with silicon/Teflon septum (Wheaton) 

 High density polyethylene (HDPE) bottles, various volume (NALGENE)  

 Fluorinated ethylene propylene (FEP) and Perfluoroalkoxy (PFA) bottles, various 

volume, (NALGENE) 

 

3.4. Cleaning (washing) procedure  

Trace metal analysis requires an extremely careful and lengthy cleaning process, because 

small amounts of impurities from a variety of sources may contaminate samples. For 

sampling and sample storage, only plasticware was used. Bottles were made of high or low 
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density polyethylene (HDPE, LDPE), fluorinated ethylene propylene (FEP) or 

perfluoroalkoxy (PFA), all by Nalgene. All the plasticware was subjected to a thorough 

cleaning procedure.  

Three major steps were used in the cleaning process: pre-cleaning (weak detergent), reagent 

grade acid cleaning and trace metal grade acid cleaning. For the final rinse, ASTM Type I 

water (labelled here as MQ water, 18.2 MΩ, Millipore, USA) was used. 

After the preliminary pre-cleaning with a weak detergent (only new bottles), plastics (bottles, 

syringes, sampler, DGT holders) were first cleaned with 10% HNO3 (analytical reagent 

grade), rinsed several times with MQ water, then cleaned with a mixture of MQ water and 

1-2% trace metal grade HNO3, rinsed with MQ water and finally filled with MQ water until 

use. Before the final filling, bottles were rinsed with the sample. Filter membranes were 

rinsed by passing through ~250 mL of MQ water. Glass tubes used for DOC analysis were 

cleaned with 10% HNO3 (analytical reagent grade), rinsed with MQ-water, and calcinated 

for 4 hours at 450°C. Before use, the horizontal water sampler and DGT holders were 

conditioned in the ambient water (brackish or seawater) for at least 24 hours. 

Sample handling and preparation of standard solutions were performed using polyethylene 

gloves within a laminar cabinet (HEPA 13) when appropriate in order to avoid contamination 

of solutions and samples. 

 

3.5. Sampling protocols 

Four field campaigns, covering different parts/transects within the estuary (aiming to 

investigate trace metal distribution and behaviour) were conducted: the first and second 

along the whole estuary transect, involving two contrasting periods of the year (July 19th 

2011 and February 28th 2012), covering 15 sites (KE-1 to KE-15); the third, “high-

resolution” mapping, within the Šibenik Bay (July 20th, 2012) covering 40 sites (SB1 to SB 

40); the fourth, a “cross-section” sampling (transversal transect, direction: left to right 

estuary bank, 0.6 km in distance) in Šibenik Bay (August 30th 2013). Sampling locations are 

presented in Fig. 3.1, while details about sampling locations are given in Tables 3.1, 3.2 and 

3.3).   

Additionally, the site in front of the marine station Martinska and the site within nautical 

marina Mandalina were selected for trace metal speciation studies. 
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3.5.1. Sampling along the estuary transect 

During the estuary transect campaigns (July 19th 2011 and February 28th 2012), three samples 

were collected along the vertical profile at each station. An additional freshwater sample was 

collected from the Krka River during the first campaign, which, together with surface samples 

at the first sampling site (KE-1/1) was considered to be a freshwater end-member. The 

seawater sample at the last site (KE-15/1) was considered to be a seawater end-member. 

 

Table 3.1. Sampling locations along the Krka River estuary transect 

 

Vertical profiles of the main physico-chemical parameters (salinity, temperature, pH, and 

dissolved oxygen) were measured in-situ, at each site by multiprobes (OTT Minisonde 4a or 

DS5 and Hach Lange HQ40D), calibrated before each campaign (Fig 3.3).  

 

a)   b)  c)  

Figure 3.3. Multiprobes for measurement of physico-chemical parameters (a) Hach Lange 

HQ40D,  (b) OTT Minisonde 4a and (c) OTT multiprobe DS5 

Site ID 
Distance from 

waterfalls (km) 
Latitude  Longitude 

KE-1 0.1 43.80771 15.96324 

KE-2 3.0 43.82039 15.93794 

KE-3 4.6 43.81401 15.92104 

KE-4 6.9 43.80796 15.89567 

KE-5 9.3 43.80024 15.87167 

KE-6 10.6 43.79008 15.86339 

KE-7 11.4 43.79096 15.85244 

KE-8 13.8 43.77546 15.84437 

KE-9 15.2 43.76353 15.84907 

KE-10 19.1 43.73690 15.87998 

KE-11 20.1 43.72885 15.88138 

KE-12 21.5 43.72557 15.86525 

KE-13 22.7 43.72103 15.85275 

KE-14 24.9 43.70953 15.83010 

KE-15 27.7 43.68997 15.82335 
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At the 15 sites of the estuary transect campaigns, samples were collected using a van Dorn 

type 2.2 L horizontal water sampler (Wildco) at three depths (Fig. 3.4), covering three 

different vertical salinity sections: a brackish, a FSI and a seawater layer.  

   

Figure 3.4. Horizontal water sampler, and the filling of a FEP bottle with a sample taken 

with the horizontal sampler   

 

The brackish layer was sampled at a depth of 0.5 m, while the sampling depths at the 

halocline (FSI) and in the seawater layer were selected according to measured vertical 

salinity profiles and the total water column depth, respectively. Due to the relatively thin 

layer of the FSI layer (e.g. ~30 cm) in the upper estuary, sampling was repeated until a 

representative sample, with the salinity within ±5 range compared to the mean value between 

brackish and seawater layer, was taken. On station KE-1, six samples were taken due to 

anoxic conditions observed in the bottom seawater layer.  

The pre-cleaned FEP bottles were used for sample storage. The FEP bottle was firstly 

thoroughly rinsed with the sample and 1 L of the sample was then taken and stored in a 

portable refrigerator. Sample treatment (filtering and acidification) was performed 

immediately upon arrival at the laboratory. 

 

3.5.2. “Cross-section” (transversal) transect sampling  

A grab sampling technique was used for surface sampling at 10 sites across the transversal 

transect of the estuary: a clean 1 L FEP bottle was mounted at the end of a ~3 m aluminium 

telescopic pole and after rinsing three times with the ambient water, the sample was taken 
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from the boat at a depth of about 0.5 m (Fig 3.5.). Salinity was measured using a 

refractometer once samples were delivered to the laboratory. 

 

Table 3.2. Sampling locations of “cross-section” surface mapping within the Šibenik Bay 

Site ID Latitude  Longitude 

S1 43.738170 15.876634 

S2 43.738546 15.877596 

S3 43.738786 15.878850 

S4 43.739011 15.879680 

S5 43.739347 15.880553 

S6 43.739565 15.881069 

S7 43.739780 15.881642 

S8 43.739973 15.882066 

S9 43.740184 15.882586 

S10 43.740477 15.883197 

 

 

 

Figure 3.5. Grab sampling of the surface layer during “cross-section” and „high-resolution“ 

sampling. 

 

3.5.3. Sampling in the Šibenik Bay 

The same grab sampling technique described previously, was used for “high-resolution” 

surface sampling at 40 sites in the Šibenik Bay. When the wind was causing slight boat 

movement, samples were taken from the “front” side in regards of the direction of the boat 

movement. 

Physico-chemical parameters were recorded for all stations with multiprobes. 
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Table 3.3. Sampling locations of “high-resolution” surface mapping within the Šibenik 

Bay 

Site ID Latitude  Longitude 

SB 1 43.71387 15.84044 

SB 2 43.72070 15.85055 

SB 3 43.72426 15.85688 

SB 4 43.72711 15.86796 

SB 5 43.72859 15.88008 

SB 6 43.73002 15.88397 

SB 7 43.72618 15.88825 

SB 8 43.72274 15.89129 

SB 9 43.71890 15.89210 

SB 10 43.71970 15.89545 

SB 11 43.71630 15.89770 

SB 12 43.71770 15.90040 

SB 13 43.71610 15.90410 

SB 14 43.71870 15.89900 

SB 15 43.72437 15.89366 

SB 16 43.72198 15.90112 

SB 17 43.71991 15.90562 

SB 18 43.72630 15.89676 

SB 19 43.72810 15.89857 

SB 20 43.72944 15.89360 

SB 21 43.72744 15.89053 

SB 22 43.73340 15.88957 

SB 23 43.73153 15.88656 

SB 24 43.73310 15.88097 

SB 25 43.73456 15.88348 

SB 26 43.73657 15.88643 

SB 27 43.73881 15.88713 

SB 28 43.74080 15.88580 

SB 29 43.73953 15.88344 

SB 30 43.73765 15.88040 

SB 31 43.73615 15.87791 

SB 32 43.74131 15.87674 

SB 33 43.74380 15.88050 

SB 34 43.74434 15.87372 

SB 35 43.74727 15.87079 

SB 36 43.75054 15.86636 

SB 37 43.75347 15.86156 

SB 38 43.75610 15.85778 

SB 39 43.75881 15.85333 

SB 40 43.76270 15.84931 
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3.5.4. Sampling and DGT deployment at Martinska (“clean”) and  

nautical marina (“polluted”) sites 

After a general examination of the status of trace metal distribution in the estuary, according 

to measured concentrations of trace metals, two sites were selected to represent “clean” and 

“polluted” estuary regions (Fig. 3.6). Experiments on those sites were conducted three times 

in summer (July 8th to 13th,, 2009; July 19th to 24th, 2010; July 13th to 18th , 2011) and two 

times in winter (January 30th to February 4th, 2010 and March 1st to 6th  2012), over the 

course of four years. 

 

 

Figure 3.6. „Clean” (Martinska station) and “polluted” site (nautical marina Mandalina) 

At these sites, over the course of a few days, vertical profiles of physico-chemical parameters 

were measured every two to three hours from early morning to late in the evening. Figure 

3.7 shows a typical set of temperatures, salinity and dissolved oxygen measurements 

collected during “deployment” days. The selection of depths for DGT deployment was based 

on measured physico-chemical parameters (Table 3.4). 

 

Table 3.4. Sampling and DGT deployment depths for different campaigns (BW – brackish 

water, FSI – freshwater-seawater interface and SW – seawater) 

Layer 2009 07 2010 02 2010 07 2011 07 2012 03 

BW 0.50 0.50 0.50 0.50 0.50 

BW 1.20 1.20 1.30 1.30 1.30 

FSI 2.00 2.00 1.90 1.90 2.10 

FSI 2.50 2.50 2.60 2.50 2.60 

SW 3.50 3.50 3.50 3.50 3.90 

SW 8.00 8.00 8.00 8.00 7.30 
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Figure 3.7. Vertical profiles of physico-chemical parameters at the “clean” Martinska site. 

 

Before the experiment, DGT holders were conditioned in the ambient water (brackish or 

seawater) for at least 24 hours. Before deployment, DGT holders were attached to the rope 

at defined distances from the buoy and sequentially filled with DGT probes (from the bottom 

to the surface) so that holders with DGT-probes were immediately placed back in the water 

(Fig 3.8).  

 

Figure 3.8. Setup of DGT holder positions (depth) and procedure of DGT deployment. 

 

In order to maintain DGT devices at defined depth (salinity range), due to the influence of 

the tide (~50 cm in the Krka River estuary), wind and waves, a “counter-weight” mechanism 

is employed. The rope keeping DGT devices at pre-defined distances from the buoy (Fig. 

3.9a) was over the pulley on the bottom connected to the air-filled bottle (5 L) which served 

as counter-weight (Fig 3.9.b). 
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Figure 3.9. Buoy at the surface to which the rope was attached (left) and shematic 

representation and actual photo of the counter-weight (right) with holder filled with 3-

replicates of OP-DGT and RP-DGT (at 8 m) 

 

Two types of DGT device were used: open pore (OP) and restricted pore (RP). Each time 

DGT devices were deployed in triplicate at each depth (Fig. 3.9). A temperature/depth sensor 

was attached to each DGT holder in order to monitor temperature and to control the 

deployment depth (Fig. 3.9B, yellow object).  

DGT samplers were deployed in water for defined period of time (Table 3.5). During the 

deployment period DGT-probes were constantly moving in the holder due to the influence 

of waves and wind. After the defined period of deployment DGT samplers were taken from 

the water column, washed with MQ water, put away in pre-prepared bags and marked.  

 

Table 3.5. DGT deployment times 

Campaign Hours of deployment 

2009 07 127 

2010 02 118 

2010 07 120 

2011 07 123 

2012 03 119 
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During the deployment time, ~5 days, discrete samples were taken 

by a scuba diver at each DGT depth (see sketch on the right) in 1 L 

FEP bottles, twice per day in summer, and once in winter, while 

physico-chemical parameters in water columns were measured six 

to eight times per day. Samples taken by the scuba diver were 

delivered to the laboratory immediately after sampling, filtering 

and storage  

 

3.6. Sample preparation 

3.6.1. Unfiltered samples 

A subsample of an unfiltered sample was transferred from a 1 L FEP bottle (from estuary 

transect sampling and “two sites”) into a 250 ml FEP/PFA bottle. Composite unfiltered 

samples (collected during the 5 days of DGT deployment) for each DGT-depth were 

prepared by collecting 40 g of sample after the scuba-diver sampling (once in winter and 

twice in summer). Concentrations in unfiltered samples in this study represent acid-leachable 

(quasi-total) metal concentrations, but within the text are referred to as total metal 

concentrations. 

 

3.6.2. Filtration under nitrogen pressure 

Samples were filtered under the nitrogen pressure (~1 bar) through 0.45 μm (47 mm in 

diameter) cellulose-nitrate membrane filters (Sartorius) using Sartorius polycarbonate filter 

holder (model 16511) (Fig. 3.10a). Before filtration of each sample, filter unit and filter were 

firstly rinsed with ~250 mL MQ water, and then with ~250 mL sample, which was partly 

used for rinsing of bottles. After this two-step rinsing, ~250 mL of sample was filtered 

directly into FEP/PFA bottles. Composite samples were prepared in the same way as 

previously described for un-filtered samples.  

Once collected, filtered and unfiltered samples for trace metal analysis were acidified (pH < 

2) by addition of HNO3 (suprapur). Samples for Cu speciation measurements (composite, 

filtered) were left at their natural pH and were preserved with 20 µL of 1 M NaN3 and 

refrigerated at 4°C unit analyses started. 

 

current direction

current direction
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a)  b)  c)  

Figure 3.10. (a) Polycarbonate system for filtration under nitrogen pressure, (b) glass 

system for filtration under vacuum and (c) “on-boar” filtering 

 

3.6.3. Filtration under vacuum 

All tubes, glass filters and glass filtration systems used for dissolved organic/inorganic 

carbon (DOC/DIC) and particulate organic carbon (POC) analyses were previously cleaned 

with 10% HCl (pro analysis, Fisher Scientific) and rinsed with MQ water, then calcinated 

for 4 h at 450°C.  

Around 300 mL was filtered under vacuum using a glass filtration system (Wheaton) with 

glass filters (Whatman GFF, 25 mm, 0.7 µm) (Oursel et al., 2013), while for high-resolution 

surface sampling, an aliquot of an on-board filtered sample was used (Fig 3.10b). 

The bottle containing ~ 300 mL of sample was weighed before filtering, and when the 

sample’s drop rate became very low, the rest of the sample in the bottle was weighed again. 

The difference in mass is the amount of sample which passed through the filter membrane. 

Samples for dissolved organic carbon (DOC) were prepared in this way, and the filter was 

used for POC determination. GF/F filters were saved for POC measurement. Filtered 

samples were stored in 24 mL glass tubes (Wheaton, equipped with Teflon/silicone septa) 

and preserved with 25 µl of 1 M NaN3. 

 

Suspended particulate matter (SPM) was quantified by calculating the difference between 

the mass of the glass filter before and after filtration. Drying to constant mass was performed 

at 40°C. 
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3.6.4. On-board filtration 

During “high-resolution” surface sampling in Šibenik Bay, around 250 mL of sample was 

immediately filtered on-board using 0.2 μm cellulose-nitrate, syringe-mounted, capsule 

filters (Minisart, Sartorius) that were previously cleaned in the laboratory (Fig 3.10c). Both 

filtered and un-filtered samples were collected in 250 mL FEP/PFA bottles and stored in a 

portable refrigerator. 

 

3.6.5. Sample preparation for electrochemical measurement 

All samples for trace metal analyses (filtered and unfiltered) were acidified with ultrapure 

concentrated HNO3 (suprapur Merck or TraceSelect Fluka) to a pH of < 2 (500 µl of acid in 

250 mL of sample) and irradiated directly in the FEP/PFA bottles with UV light (150 W 

mercury lamp, Hanau, Germany) for at least 24 h in order to decompose natural organic 

matter (Omanović et al., 2006). Composite samples for Cu speciation measurements were 

preserved with NaN3 and stored in a refrigerator. 

 

 

3.6.6. DGT resin gel retrieval 

Retrieval of DGT resin gel was performed immediately after collection of DGT devices from 

the water. No biofouling on DGT devices was observed upon retrieval from the water after 

~5 days of deployment (Fig 3.11). DGT-devices removed from the holder were first rinsed 

with MQ water and then stored in properly marked plastic zip bags after removing excess 

MQ water. 

 

 
 

Figure 3.11. Retrieval and pre-treatment of DGT-devices.  
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A plastic-covered screwdriver was used to twist the covering cap. Acid/MQ-cleaned plastic 

forceps were used to remove the membrane filter paper cover and diffusive gel, and to 

transfer resin gel into the pre-cleaned plastic tube (2 mL, Eppendorf) as shown in Fig. 3.12. 

Finally, 1.5 mL of 1 M HNO3 (suprapur) was added to the tube in order to extract metals 

from the resin. The resin gel was taken out of the tube after ~48 h. DGT extracts (eluates) 

were analyzed for metal content within 1-2 months. 

 

 

 

 

Figure 3.12. Retrieval and pre-treatment of DGT resin gel.  
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3.7. Analytical measurement 

3.7.1. Multi-elemental analysis by ICP-MS 

A multi-elemental analysis of DGT-extracts was performed by HR ICP-MS (Element 2, 

Thermo) at the Ruđer Bošković Institute (RBI) at 3× dilution. From a total of a 1.5 mL 

aliquot of the sample, 0.7 mL were used in preparation for measuring the sample. Samples 

were diluted by 2% HNO3 (suprapur). Indium (In) was used as an internal standard (IS). The 

quantification of metal concentrations was performed using external calibrations. 

 

 

3.7.2. Voltammetric analysis of trace metals 

Trace metal concentrations were determined using differential pulse stripping voltammetry: 

anodic (DPASV) for Zn, Cd, Pb, and Cu, and adsorptive cathodic (DPAdCSV) for Ni and 

Co (10-5 M Nioxime was used as a complexing ligand) in the water samples with the 

parameters given in Table 3.6. The parameters used for measurements are adopted from 

Omanović (Omanović  et al., 2006) for DPASV, and from Vega and van den Berg (Vega 

and Van den Berg, 1997) for DPAdCSV. Concentrations of metals were determined using 

the standard addition method. 

 

 

Table 3.6. Parameters for anodic and adsorptive cathodic differential pulse stripping 

voltammetry 

Parameters 
DPASV DPAdCSV 

Cd, Pb, Cu Zn Ni, Co 

Deposition potential (V) -0.8 -1.2 -0.7 

Duration (s) 600 60-120 60-120 

Desorption potential (V) -1.4 0 0 

Duration (s) 2 0 0 

Equilibration time (s) 10 10 10 

Modulation time (s) 0.05 0.05 0.05 

Interval time (s) 0.1 0.1 0.1 

Initial potential (V) -0.75 -1.15 -0.7 

End potential (V) 0.02-0.1 -0.75 -1.2 

Step potential (V) 0.00195 0.00195 0.00195 

Modulation amplitude (V) 0.04005 0.04005 0.04005 
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Measurements were carried out at room temperature (~25°C) on Autolab 

potentiostat/galvanostats (µAutolab3 or PGSTAT128N) controlled by GPES (General 

Purpose Electrochemical System) 4.9 software in a three-electrode cell (663 VA Stand, 

Metrohm) (Fig. 3.13). A glass or Teflon electroanalytical cell with a working volume of 

from 10 to 100 mL was used for measurements. A three electrode system, consisting of: 

1. a platinum wire, serving as the counter electrode  

2. an Ag|AgCl|sat. NaCl electrode, serving as the reference electrode 

3. a hanging mercury drop (HMDE) (0.25 mm2), serving as the working electrode. 

  

 

Figure 3.13. Top row: PGSTAT 128N and µAutolab3 instruments. Bottom row: Metrohm 

VA 663 electrode system and 3-electrode cell compartment: 1 – electroanalytical cell, 2 – 

reference electrode (RE), 3 – counter electrode (CE), 4 – Teflon rotating stirrer, 5 – Nitrogen 

tube (N2), 6 – Working electrode (WE). 

 

The electrode system is computer controlled by instruments, while all other operations 

(sample addition, standard additions, drop formation, stirring, etc.) are automatically 

controlled by a computer or external home-made programs.  

In order to remove dissolved oxygen (interference in voltammetric measurements), the 

sample was initially purged with nitrogen for at least 5 minutes prior to measuring. Between 

separate measurements in the same sample, the purging time was 15-30 s. A nitrogen blanket 

was maintained over the sample during measurements. The speed of stirring was 3000 rpm.  
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Automated analysis. Trace metal analyses were performed using a fully automated system 

assembled in our laboratory consisting of: an instrument, a home-made sample changer, and 

Cavro syringe pumps (Fig 3.14). Samples were added to the electrochemical cell by the 

automated auto-sampler developed in our laboratory, whereas the addition of standards in 

the electrochemical cell was conducted by an automated dosing system (Cavro XE 1000 and 

XL 3000 syringe pumps, Tecan, Swiss). 

 

 

Figure 3.14. Automated voltammetric system for trace metals analysis 

 

Concentrations of trace metals were determined by means of the standard addition method. 

A certified ‘‘Seawater Reference Material for Trace Metals’’ – NASS-5 (NRC CNRC) was 

used to validate the analysis. All determined metal concentrations were within the certified 

limits.  

 

The ESCDSOFT (ElectroChemical Data SOFTware) program developed in our laboratory 

(Omanović and Branica, 1998) was used for the treatment of voltammograms. When the 

automated analyses of trace metal concentrations were performed, a purpose-developed 

software (VoltAA) was used for data handling.  
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3.7.3. Voltammetric determination of Cu complexing capacity (CuCC) 

For the determination of CuCC, the DPASV method was used. The experiments were 

performed using the same electrochemical system as described in the previous section 

(without using the sample changer). In order to diminish the adsorption of Cu into the walls 

of cell compartments, a Teflon cell was used. Before measuring, the pH of the samples was 

adjusted to a pH of 8.2±0.1, by adding a borate buffer (0.01 M), and checked, at the end of 

the experiment. The largest difference recorded was 0.1 units. Three automatic burette 

systems were used to automate Cu titration (Cavro XE 1000 or XL 3000 syringe pumps, 

Tecan, Swiss). The conditions used for the DPASV measurements of electro-labile Cu are 

presented in Table 3.7. 

 

Table 3.7. Parameters for anodic stripping voltammetry used for CuCC measurement. 

Parameters DPASV 

Deposition potential (V) -0.45 or -0.50 

Duration (s) 297 

Desorption potential (V) -1.4 

Duration (s) 3 

Equilibration time (s) 10 

Modulation time (s) 0.05 

Interval time (s) 0.1 

Initial potential (V) -0. 5 

End potential (V) 0.05 

Step potential (V) 0.00195 

Modulation amplitude (V) 0.040 

 

20 ml of each sample was titrated with Cu, ranging from 300 to 500 nM of total Cu 

concentration ([Cu]T) with 15 additions equally distributed in logarithmic scale, i.e. similar 

increments in log[Cu]T (Garnier et al., 2004a; Louis et al., 2008). After each Cu addition, 

DPASV measurements were repeated each ~6 min (corresponding to the minimal time 

needed to perform an analysis) using the above-described procedure for 1.5 to 2 h. In that 

way ~15 voltammograms per addition were obtained; the last 2 were used for the 

construction of a complexometric titration curve.  

Due to methodological/procedural specifications related to the CuCC measurement, a more 

detailed explanation about the applied procedure and data treatment are provided in the 

Results section. 
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3.7.4. Carbon analysis 

A TOC-VCSH analyser (Shimadzu) was used to determine DOC and DIC concentrations. 

Calibration was done with hydrogenophtalate (Shimadzu) and NaHCO3/Na2CO3 standard 

solutions, respectively, with an accuracy of 0.02 mgC L-1 (Louis et al., 2009; Oursel et al., 

2013). A satisfactory accuracy of analyses was validated using certified reference material 

MISSIPPI-03 (Environment Canada). 

The TOC-VCSH analyser coupled with an SSM-5000A module was used to determine POC 

on GFF filters. The filters were dried to a constant weight at 60°C, and exposed to HCl fumes 

for 4 h in order to remove all of the inorganic carbon (Lorrain et al., 2003). POC content was 

determined by the high-temperature (900°C) catalytic oxidation method with CO2 IR 

detection, calibrated with glucose (Analytical reagent grade, Fisher Scientific), with an 

accuracy of 0.1 mgC. 

 

3.7.5. Determination of effective diffusion coefficients for OP and RP DGT gels 

The DGT diffusion coefficients needed to calculate DGT-labile metal concentrations, were 

supplied by the DGT device manufacturer (DGT Research), and experimentally obtained in 

0.01 M NaNO3. This ionic strength is not representative of brackish/seawater (Garmo et al., 

2003; Scally et al., 2006). Although the DGT-labile concentration is within “operational” 

value, due to the problems associated with the use of diffusion coefficients in solutions of 

different ionic strength (Scally et al., 2006), we decided to estimate an effective diffusion 

coefficient of trace metals using the “direct uptake” method (deployment of DGT devices in 

controlled conditions). 

For this experiment, three 7 L bottles (the nominal volume of the PET drinking water bottle) 

were used. End members (10 L of freshwater and 10 L of seawater) were used to prepare 

working samples at three salinities. Water was first filtered under nitrogen pressure as was 

previously described and then exposed to UV light in order to decompose organic matter. 

Bottles were cut on the bottom and put upside down on a magnetic stirrer with a magnet in 

the cap of the bottle (Fig 3.15). In each bottle, 5 L of sample were added in the following 

way: 

1) S = 0: 5 L of freshwater 

2) S = 19: 2.5 L of freshwater and 2.5 L of seawater 

3) S = 38: 5 L of seawater 
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Figure 3.15. Preparation of sample for DGT diffusive coefficient determination 

 

The concentrations for each metal used in the study are listed in Table 3.8. Each 

concentration is selected to be at least 100× higher than ambient metal concentration. pH of 

samples was adjusted to be between 7.8 and 8.2 by addition of borate buffer. Under these 

conditions, model calculations using Visual MINTEQ 3.0 showed that precipitation of any 

metal is not likely to occur. Prepared samples were left overnight to stabilize under stirred 

conditions. Temperature of samples during the experiment was kept stable at 26 °C. 

 

Table 3.8. Concentrations of metals (in nM) used for the determination of DGT diffusion 

coefficients 

Metal Final conc. (nM) 

Cd 100 

Pb 100 

Cu 500 

Zn 1000 

Ni 500 

Co 100 

 

Five DGT samplers with open pores (OP), and five with restrictive pores (RP) were mounted 

on (previously cleaned) prepared plastic holders, and deployed in each of the stirred 

solutions for six hours. Before deployment, DGTs were rinsed by immersing the DGTs, 

mounted on holders, for a few seconds, in the corresponding washing solution (unspiked 
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with metals) with the same salinity as the working sample. Fig 3.16 presents the setup of 

DGT probes in holders and in measuring containers. Five mL of sample was taken from each 

of these bottles at the beginning, after fifteen minutes, after one hour, after two hours, after 

four hours, and after six hours. These samples were used to check the concentration of the 

added metals during the experiment. The temperature was controlled during sub-sample 

retrieval. After six hours, the DGTs were taken out, rinsed with MQ water, and the resin gels 

were retrieved as previously described. 

 

 
 

Figure 3.16. Set up for DGT “diffusion coefficient” experiment 
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CHAPTER I 

 

“Evidencing the natural and anthropogenic processes 

controlling trace metals dynamic in the Krka River estuary” 

 

4.1. Hydrological conditions of the Krka River  

The Krka River flow (measured at the Skradinski Buk) for the period of January 2008 to 

December 2013 is presented in Fig. 4.1a. In addition, Fig. 4.1b shows the extracted flow for 

the period of our three sampling campaigns. Discharge of the Krka River is generally 

characterized by high variability, mainly related to weather conditions, i.e. rain 

periods/events. The calculated average flow for the 13-year period (2001-2013; data 

collected up to the time of writing) is 48.9 m3 s-1, with a maximum of 327 m3 s-1 and a 

minimum of 7.1 m3 s-1 The inset graph representing the monthly average flows during this 

period, shows that the highest average flow was during winter (80-90 m3 s-1), whereas in 

summer, the average flow dropped to <10 m3 s-1. If compared to other years, a relatively low 

flow (never surpassing 100 m3 s-1) was concluded to be a general characteristic of our 

sampling period (July 2011-July 2012; see red arrows in Fig. 4.1a). Thus, there is a 

possibility that some particular trace metal behaviours common for high discharges are 

omitted from our work. 

 

Figure 4.1a. Krka River flow from 2008 to 2013.  
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Figure 4.1b. Krka River flow covering the period of our sampling campaigns, with dates 

indicated by red arrows. Inset: average monthly flow of the Krka River for the period of 13 

years (2001-2013). 

 

4.2. Estuarine major physico-chemical parameters 

4.2.1 Suspended particulate matter (SPM) 

Fig. 4.2 (upper row) shows the distribution of SPM in relation to salinity and distance (from 

the head of the estuary) for the winter period. Although the level of SPM in the estuary is 

extremely low and consequently its measurement is susceptible to a relatively high level of 

uncertainty, well-separated trends for all three layers are evident. While the SPM in the 

surface layer is increasing seaward from ~0.4 mgL-1 to ~3 mgL-1, the level of SPM in the 

seawater is further increasing, but in the opposite, landward, direction (from ~3 mgL-1, up 

to ~6 mgL-1), as a consequence of the progressive enrichment in seawater because of its 

longer residence time (100 to 250 days, depending on the season (Legović, 1991c). In the 

halocline, the SPM lies between these two trends, showing that the upward transport from 

the seawater layer is regulating the vertical profile of the SPM along the estuary, as projected 

by the above described transport model.  

The flow of the Krka River during the winter campaign (44 m3 s-1) was below its average 

value for this period (70 m3 s-1) (Fig. 4.1b). Weak erosion of the karstic area, associated with 

the SPM removal at the waterfalls (Cukrov et al., 2008), caused an extremely low input of 

SPM by the river, providing proof of the peculiar biogeochemical processes affecting TM, 
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organic carbon behaviour and fate, not overrode by the large SPM load usually encountered 

in classical estuaries. The less-defined relationships of SPM with salinity were obtained for 

the summer campaign (Fig. 4.2, lower row) probably due to the non-negligible contribution 

of biogenic particles to the overall SPM concentration. In relation to distance, two separate 

decreasing sections, split at the 15th km, could be perceived for each layer. Intensive mussel 

farming in this region, associated with the increased phytoplankton productivity (high O2 

saturation was observed in this region, see Fig. 3C) may serve as a possible source of SPM. 

 

Figure 4.2. Distribution of SPM in relation to salinity and distance (from the head of the 

estuary) for the three layers, in winter and in summer. Arrows indicate the direction of water 

mass flow for the brackish and seawater layers. 
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4.2.2. Salinity, temperature and dissolved oxygen 

Figs. 4.3A-C shows contour plot profiles of temperature, salinity and dissolved oxygen along 

the estuarine transect at fifteen sites recorded in the winter of 2012 and in the summer of 

2011. As expected, in winter 2012, generally low temperatures and salinities were observed 

in the upper brackish layer due to the low atmospheric temperature. While the surface layer 

temperature was maintained between 5 and 7.5 °C along the 23 kilometer-long transect, an 

increase in salinity (up to twenty) was recorded for the same horizontal profile as a 

consequence of progressive freshwater and seawater mixing. The surface layer temperature 

and salinity reached sea-values only at the last sampling site (in the “open” sea), having a 

quasi-constant depth profile for both parameters. At all other sites, depth profiles showed 

well-defined salinity stratification of the water column. A clear segmentation of the three 

separate layers with a sharp halocline (FSI layer) encompassed the first half of the estuary. 

Maintained at a depth of between two and three meters, the thickness of the halocline 

(spanning an increasingly small salinity range) increased seaward and progressively (from 

~0.4 to ~2 m). 

In the summer 2011 campaign, although the temperature of Krka River was high (26°C), a 

slight increase in temperature at the surface layer (up to 28 °C) was observed for the 

approximately the first 10 kilometres due to solar irradiation, while more intensive mixing 

with colder seawater at more downstream sites led to a decrease in surface temperature 

(linear relationship with the salinity). 

Depth profiles showed the occurrence of the temperature maxima in the FSI layer (halocline) 

in the upper estuary region and in the downstream estuary segment (the Šibenik bay) during 

the mapping campaign (July, 2012; data not shown). The occurrence and the intensity of the 

temperature maxima is regulated by a combination of atmospheric temperature (solar 

irradiation) and entrainment of seawater (mixing), and is periodic behaviour over the course 

of several days (Legović et al., 1991b) and also within one day (unpublished results).  

Due to the low Krka River flow (~10 m3 s-1, Fig. 4.1b) in the summer of 2011, a clear 

separation of the three layers with a strong salinity gradient in the halocline was maintained 

only for the first five kilometres. However, regardless of the period, it is clear that vertical 

salinity stratification is pronounced along the whole estuary transect, even if the depth of the 

halocline and its thickness varied. Our fifteen site profiles of salinity and temperature 
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generally correspond with the results and predictions of previous studies performed at a few 

selected locations in the Krka River estuary (Legović, 1991; Legović et al., 1991b).  

  

Figure 4.3. Two-dimensional distributions of temperature (A), salinity (B) and dissolved 

oxygen (C) in the Krka River estuary in winter 2012 and in summer 2011.  

 

Relatively homogenous depth profiles of dissolved oxygen corresponding to 100-110% 

saturation were observed along the estuary in the winter period. However, oversaturation by 

oxygen (140-180%) at a depth just below the FSI (Fig. 4.3C ) was registered in summer 

campaigns for the most upstream estuary segment and for the Šibenik bay as a result of the 
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high biological activities (Cetinić et al., 2006; Legović et al., 1991d; Legović et al., 1994). 

Namely, freshwater phytoplankton produced in the Visovac Lake (the Krka River) sinks and 

decomposes at a higher salinity, producing nutrients which favour blooms of marine 

phytoplankton at the lower edge of the halocline (Legović et al., 1991d). The observed 

temperature maxima additionally contributed to the high bloom development. 

As a consequence of bloom decomposition, hypoxia in autumn in the Prokljan Lake was 

observed in previous studies (Legović et al., 1991c). Although in our case such hypoxia was 

not observed (as the campaign was conducted in summer), a clear decrease in oxygen 

saturation, down to 90% in the bottom seawater layer, was measured, which signifies a 

decreasing trend, potentially leading to hypoxia in autumn. However, as an isolated case, 

localized hypoxic conditions (<2% O2 saturation) were found in summer in the bottom 

seawater layer at the uppermost site (KE-1). This site is characterized by a specific cuvette 

(bottom depth ~7.5 m, Fig. 4.3, right and 3C), in which the seawater residence time is longer 

compared to the adjacent seawater, enhancing the effect of bacterial mineralization of settled 

(and accumulated) biogenic material (e.g. lysed freshwater phytoplankton), which causes a 

decrease in oxygen. The effect of low oxygen at this location was found to influence the 

vertical distribution of trace metal concentrations, which is discussed later in the text. 

 

4.2.3. Dissolved inorganic carbon (DIC) and pH 

DIC. In karstic rivers, DIC is mainly derived from carbonate dissolution, which controls the 

water pH. The well-defined relationships between DIC and salinity (plotted with all three 

layers) for both the summer and winter period are presented in Fig. 4.4. If the relationship is 

examined, including freshwater and seawater end-members, the conservative behaviour is 

not apparent, even if a clear decreasing linear trend is obvious for salinities higher than ~5. 

An increase in the DIC value in the surface layer for both periods in the first few kilometres 

is likely due to the reestablishment of the carbonate equilibria, i.e. uptake of CO2, which was 

previously degassed at the waterfalls. It is higher in winter than in summer due to the better 

solubility of CO2 in colder water. The range of DIC values along the estuary/salinity gradient 

agrees well with the previous study (Cauwet, 1991), with the difference that in the previous 

study a linear relationship of DIC versus salinity was estimated, but no separation of DIC by 

season was examined. 
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Figure 4.4. Distribution of dissolved inorganic carbon (DIC) in relation to salinity and 

distance for the three layers, in winter (white symbols) and summer period (grey symbols). 

 

The pH measured in the estuary transect in both seasons ranged between 8.7 in the surface 

layer at the head of the estuary and 8.1 at the seawater end member (Fig. 4.5). Relatively 

high pH values (up to 8.5) were already recorded along the Krka River at locations after the 

waterfalls (Cukrov et al., 2008) as a consequence of the CO2 removal (degasing) from the 

water (Vukosav et al., 2014). This is also the reason of the high pH value at the first site 

(KE-1) in the estuary, since its position is ~500 m downstream from the last and largest 

waterfall of the Krka River. As no clear relationship between pH and salinity was perceived, 

pH was plotted in relation to distance, where a few trends for each layer are distinguishable 

(Fig. 4.5).  

 

Figure 4.5. Spatial distribution of pH for the three layers in winter and summer period. 
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In winter, the decrease of pH in the surface layer at the beginning of the estuary (first ~6 km) 

is consistent with the DIC increase (Fig. 4.3), and could be a consequence of the partial 

acidification by the CO2 uptake, as the buffering capacity of freshwater is not high. For the 

strong decrease in all three layers observed after the fifteenth kilometre, we do not currently 

have an explanation, i.e. it could not be unambiguously explained by the variation in any of 

the other measured parameters. Comparing the two periods, the winter period pH values in 

the surface layer were higher than in bottom seawater layer (with a few exceptions), while 

in the summer period, an opposite relation was observed. Aside from the above mentioned 

strong oxygen depletion in the cuvette, the mineralization of organic matter also led to 

evident drop of pH to 7.8. Longitudinal distribution of pH within the halocline lies generally 

between those of brackish and seawater layer, except in winter for the upper region (up to 

15th km), where the lowest pH values were measured. 

 

4.2.4. Dissolved and particulate organic carbon (DOC/POC) 

DOC. Although previous studies reported that DOC concentration in the Krka River is 

relatively constant throughout the year (mean value of 1.18 mgC L-1, (Cauwet, 1991), our 

measurements performed at contrasting periods clearly evidence a difference in DOC 

between winter (0.42 mgC L-1) and summer (1.35 mgC L-1). Compared to European rivers 

like the Rhine (~ 2.9 mgC L-1), Loire (~3.9 mgC L-1), Elbe (~ 4.6 mgC L-1), Thames (~ 5.8 

mgC L-1) (Abril et al., 2002) or Gironde (~ 3.1 mgC L-1) (Veyssy et al., 1998) concentrations 

of DOC measured in the Krka River are extremely low. Comparing the two end-members 

for the winter and summer period, lower DOC was measured in freshwater in winter (0.4 

mgC L-1 vs. 0.72 mgC L-1) and higher in summer period (1.35 mgC L-1 vs. 1.0 mgC L-1). 

Higher DOC during summer period in freshwater part is the consequence of the enhanced 

biological activity in the Visovac Lake (freshwater part) (Petricioli et al., 1996; Svensen et 

al., 2007). Fig. 4.6 presents the distribution of DOC in a function of salinity for all three 

layers.  

Although it is obvious that the linear relationship was not established for none of the 

sampling period, the non-conservative behaviour is more pronounced in the summer 

campaign. The range of DOC values and its distribution along the estuary is in agreement 

with studies performed more than 20 years earlier (Cauwet, 1991; Sempere and Cauwet, 

1995), showing a persistency of the pristine/oligotrophic nature of the Krka River and its 

estuary. Contrary to our records, a conservative behaviour was found in various 
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freshwater/seawater mixing zones such as the Huveaune and the Jarret Rivers plume (Oursel 

et al., 2013), the Rhône Estuary (Dai et al., 1995), the Mississippi River plume (Guo et al., 

2009), the bay of Saint Louis  (Cai et al., 2012), or the Humber Estuary (Alvarez-Salgado 

and Miller, 1998). However, due to the difference in nature (e.g. water residence time, 

estuary morphology, freshwater DOC concentration discharge), a direct comparison 

between these aquatic systems is not straightforward. More insight into the DOC distribution 

and behaviour in the estuary could be extracted if values for each layer would be plotted 

separately in relation to distance (Fig. 4.6).  

 

Figure 4.6. Distribution of dissolved organic carbon (DOC) in relation to salinity and 

distance for the three layers, during the winter and summer period. 
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farms are located downstream of the 13th km (Fig. 3.1), and as it was found that mussel 

farming does not increase DOC (La Rosa et al., 2002). Detailed surface mapping of the 

Šibenik bay (Fig. 4.7) showed a slight change of DOC within the bay (Min/Max = 1.47/1.64 

mgC L-1, N = 36) suggesting no evidence of urban input from the town or harbour/nautical 

marina. Thus, biological processes (e.g. lysis of freshwater phytoplankton cells in seawater 

(Morris et al., 1978)) could be identified as the main sources of DOC within the first 15 km, 

while, although of small total amount, a partial desorption of organic carbon from the 

suspended particulate matter (SPM) could contribute. 

At more downstream sites (>15 km), DOC maintained a quasi-constant level for all three 

layers in the winter period, whereas a linear (conservative) decrease was observed for the 

surface and the FSI layer in the summer period, as an result of dilution with seawater 

containing a lower DOC concentration. A landward increase of DOC in seawater (with a 

much more pronounced increase in summer compared to winter) is a clear consequence of 

the sinking of organic detritus decomposition from the surface layers, combined with the 

slow entrainment of seawater (residence time of seawater increases in the upstream 

direction). In the FSI layer (halocline), DOC exhibited variable trends for the summer and 

winter period, but generally spanned the range of values between the surface and the 

seawater layers.  

 

Figure 4.7. Distribution of dissolved organic carbon (DOC) in the surface layer of the 

Šibenik bay. Survey conducted in July, 2012. 
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POC. By examining all samples along the estuary transect, a higher average POC value was 

obtained in the summer compared to the winter period (0.33 mg L-1 and 0.13 mg L-1, 

respectively; Fig. 4.8). These values are extremely low if compared to other estuaries: the 

Scheldt estuary (~18.3 mgC L-1), the  Loire estuary (~6.3 mgC L-1), the Gironde estuary 

(~2.6 mgC L-1) or the Elbe estuary (~1.6 mgC L-1) (all values from (Abril et al., 2002)). A 

general decreasing trend of POC with increasing distance were obtained for the winter and 

summer campaigns in all three layers (Fig. 4.8). However, while for the winter campaign a 

lower average value and a better expressed decreasing trend of POC in the surface layer was 

depicted, a higher average POC with more scattered values was observed in summer.  

The increase of POC in winter halocline samples (compared to the other two layers) 

observed in the upper estuary segment could be explained by the accumulation of dead 

freshwater phytoplankton and possible flocculation of terrestrial particulate organic matter. 

 

 

Figure 4.8. Distribution of particulate organic carbon (POC) concentration in relation to 

salinity and distance for the three layers, in winter and summer period. 
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When normalized on SPM, a well-defined decreasing trend of POC content, with separated 

segments for each layer in the winter period in relation to salinity, was obtained (Fig. 4.9). 

The content of the POC fraction decreased considerably in the surface layer at salinities up 

to ~15, following the conservative line. Contrarily, points at salinities higher than ~15 are 

below this line. The release of organic matter (OM) associated with SPM due to the 

competitive effect at increased salinities (considering the prevailing terrigenous, inorganic 

nature of SPM supplied by the Krka River) and/or the prevailing biogenic material in 

freshwater, could explain the observed POC content trend. In either case, the release of OM 

could not be reflected on the DOC concentration in the surface layer due to the relatively 

small total quantity of organic matter bound to SPM (surface layer). A slightly higher POC 

content in the FSI layer, than was predicted by the conservative line, could be explained by 

the accumulation of biogenic material (Cauwet, 1991; Sempere and Cauwet, 1995; Žutić and 

Legović, 1987). Almost no change was obtained for the seawater layer. 

 

Figure 4.9. Distribution of particulate organic carbon (POC) content in relation to salinity 

and distance for the three layers, in the winter and summer periods. 
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In the summer period, higher POC concentrations were found in all layers as a result of the 

increased phytoplankton productivity. For all three layers, POC content is above the 

theoretical conservative line, which denotes a higher biogenic production of SPM. Although 

phytoplankton productivity in summer did not cause a strong increase of the average SPM, 

the organic fraction in particles from the FSI and the seawater layer was increased (compared 

to winter). A similar increase of the POC content as well as the concentration at the lower 

edge of the halocline, compared to the overlying and underlying water, was already 

registered in previous studies in the Krka River (Cauwet, 1991; Sempere and Cauwet, 1995).  

 

4.3.  Distribution of trace metals  

4.3.1. End-members 

There are only two publications up to now that report concentrations of trace metals in the 

freshwater end-member, the Krka River (Table 4.2). Our results confirm persistency of the 

Krka River’s pristine nature over the period of more than 20 years, which is quite atypical. 

For our campaign, a surface sample at the first estuary point (KE-1/1, S<0.5) showed 

systematically lower concentrations for all studied metals compared to sites upstream of 

waterfalls, and thus, this site was considered the end-member. The decrease in 

concentrations of trace metals is probably caused by their removal along the waterfalls 

preceding the estuary (46 m of total height) with 17 tufa barriers serving as traps (Cukrov et 

al., 2008a). In addition, the removal of metals is enhanced by the formed surface-active foam 

rich in organic matter and particles (Schilling and Zessner, 2011). Namely, due to higher 

biological activity in the upstream Visovac Lake during the summer season, water enriched 

with the surface active compounds favours the foam formation that accumulates metals 

(Schilling and Zessner, 2011; Zhang et al., 2009), similarly to that described for the sea-

surface microlayer (Hunter, 1997; Truesdale et al., 2012). Compared to other Mediterranean 

rivers (Table 4.2), concentrations of trace metals in the Krka River are much lower (Dorten 

et al., 1991; Ollivier et al., 2011; Oursel et al., 2013). 

For the seawater end-member (KE-15), there is no difference between winter and summer 

concentrations for Zn, Cd, Pb and Cu, while for Ni and Co, slightly higher values were 

measured in summer than in winter. Although this site is located within the coastal region, 

measured concentrations are very similar to those measured in the open parts of the Adriatic 

or the Mediterranean (Annibaldi et al., 2011; Tankere and Statham, 1996). This suggests that 
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the general contribution of metal inputs from the land to the sea is insufficient to cause a 

permanent increase of trace metal concentrations. 

 

Table 4.1. Concentrations of trace metals in the Krka River (freshwater end-member), 

selected Mediterranean rivers, and the open Mediterranean Sea, as well as ranges (all 

depths) across the estuary transect sites for the winter and summer periods and in the 

Šibenik bay (high resolution mapping; summer), obtained in this study. 

 Dissolved (total ) metal concentrations  (in nM) 

 Zn Cd Pb Cu Ni Co 

Elbaz-Poulichet 

et al. (1991) – 

Krka 

- 0.044 0.08 1.78 2.47 - 

Cukrov et al. 

(2006) – Krka 

4.51 

(4.63) 

0.018 

(0.025) 

0.037 

(0.166) 

1.47  

(2.52) 
- - 

Krka – this study 3.25 

(8.06) 

0.015 

(0.020) 

0.03  

(0.14) 

4.44  

(6.51) 

2.09 

 (2.96) 

0.31 

(0.6) 

KE1-1 (S<0.5) 2.03 

(2.78) 

0.008  

(0.10) 

0.02  

(0.09) 

2.45  

(3.23) 

1.86  

(2.85) 

0.24  

(0.36) 

KE-15 (S=38) 4.5  

(5.2) 

0.067 

(0.069) 

0.070 

(0.101) 

3.2  

(3.6) 

7.0 

(7.45) 

0.36  

(0.36) 

Range winter 2.0-14.9 0.02-0.16 0.01-0.22 1.76-7.29 1.76-7.29 0.20-0.66 

Range summer 2.0-15.3 0.01-0.10 0.02-0.29 2.45-20.2 1.86-10.3 0.24-1.22 

Šibenik bay 7.1-101.0 0.05-0.21 0.04-1.11 6.42-68.7 5.11-10.70 0.26-0.51 

River       

Rhone1 41.3  0.33 32.7 16.7  

Huveaunne2 52.0 0.07 0.64 27.0 43.0 6.9 

Jarret2 73.0 0.07 0.37 28.0 29.0 4.1 

Po3 57.7  0.58  0.72  25.7  - - 

Ebro3 42  1.07  0.75  15.3  - - 

Arno3 30.6 0.89  1.01  27.5  - - 

World average 

river2 
9.2 0.71 0.38 23 14 2.5 

South. Adriatic4 2.71 0.076 - 2.95 5.27 - 

Central Adriatic5 - 0.12 0.19 6.3 - - 

Mediterranean4 2.7 0.062 - 1.7 2.4 - 
1(Ollivier et al., 2011), 2(Oursel et al., 2013), 3(Dorten et al., 1991), 4(Tankere and Statham, 1996), 5(Annibaldi 

et al., 2011) 

 

 

4.3.2. Distribution of trace metals within the Šibenik bay 

Among the potential point-source contamination locations, which could affect the 

distribution of trace metal concentrations in both a horizontal and vertical direction, the area 

of the Šibenik town (the Šibenik bay) was identified as the most critical. While previously 

the primary source of contaminants was waste water (WW) discharged within the bay, after 

the WW output was displaced (in 2007), activities in the harbour, nautical marina and mussel 



4. Results 

103 

farming remained as the main threats. Thus, a detailed mapping of the Šibenik bay (40 sites, 

Fig. 3.1) was performed in order to identify locations and quantify contamination sources. 

Distributions of dissolved (filtered) and total (unfiltered) Zn, Cd, Pb, Cu, Ni and Co in 

surface layer are presented as contour plots in Figs.  4.10a and 4.10b. 

 

 
 

Figure 4.10a. Distribution of dissolved (left) and total (right) concentrations of Zn, Cd and 

Pb in the surface layer of the Šibenik bay. Mapping conducted in July 2012. 
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Figure 4.10b. Distribution of dissolved (left) and total (right) concentrations of Cu, Ni and 

Co in the surface layer of the Šibenik bay. Mapping conducted in July 2012. 

 

As expected, the harbour and the nautical marina exhibited the highest concentrations for 

most of the metals. Compared to the low levels found within the bay (which are already high 

compared to the end-members) an increase of all metals occurred at particular locations. 

While increased Zn (~10× compared to low levels within the bay; see Table 4.1: Šibenik 

bay) was found mainly in the nautical marina and harbour (with sharp concentration decline 

away from the source), an increase in Cu (up to ~4×) concentrations were registered 

additionally along the Šibenik coastal line due to the numerous small boats. The location at 

the phosphate ore transhipment (unloading) showed the highest concentrations of Cd (up to 
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~3×), while the location near the ship overhaul (in the marina area) was enriched with Pb 

(up to ~5×). Ni was found increased only at one isolated site (up to ~2×). No clear 

distribution/enhancement was observed for Co concentrations.  

Despite “micro”-locations responsible for the highest observed concentrations separately for 

each metal, correlation coefficients higher than 0.8 obtained for Zn, Cd, Pb and Cu (Table 

4.2), point to the same/similar sources considering the whole bay.  

 

Table 4.2. Pearson’s correlation coefficients (level of significance 95%) between dissolved 

trace metal concentrations within the Šibenik bay (sites SB1-SB4 excluded from analysis 

as they are out of the Šibenik Bay) 

Element Zn Cd Pb Cu Ni Co 

Zn 1      

Cd 0.876 1     

Pb 0.928 0.895 1    

Cu 0.902 0.814 0.901 1   

Ni 0.577 0.536 0.647 0.568 1  

Co 0.059 -0.048 0.079 -0.022 0.569 1 

 

 

A small but steady upstream increase of DOC (Δ = 0.15 mg L-1) towards mussels farming 

locations was registered (Fig. 4.7). However, the increase should not be connected to the 

farming activity, as it was found that DOC is not increased in such areas (La Rosa et al., 

2002). Overall, with the exception of Ni and Co, the detailed mapping revealed that the 

harbour and nautical marina could be considered the main sources of trace metals within the 

estuary. If compared to seawater/freshwater end-members, the following “enrichment” 

factors were obtained: 22/50 for Zn, 3/20 for Cd, 16/55 for Pb, 22/27 for Cu, 1.5/6 for Ni 

and 1.4/2 for Co. It is likely that the levels of contamination fluctuate depending on the 

activities within the harbour and the nautical marina, and thus, the measured values could be 

used only as merits of contamination sources and general levels when considering the 

distribution of metals for the overall estuary transect performed at different periods. One of 

the main questions is the space and time domain in which increased concentrations influence 

the trace metal distribution along the horizontal and vertical profile within the “whole” 

estuary. In this study, we focused only on the space domain. 

The dynamic nature of the estuary, especially within the Šibenik bay, was additionally 

examined by measuring trace metals in the surface layer across the transversal transect 
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(direction: left>right of the estuary bank, 0.6 km distance). Fig. 4.11 shows the obtained 

results for the dissolved and total metal concentrations, as well as a corresponding profile of 

salinity. Much higher concentrations at the left (north) side of the estuary (closer to the 

Šibenik town) were measured, showing a non-homogenous structure of the surface layer. 

 

Figure 4.11. Distribution of dissolved and total trace metals in the surface layer along the 

transversal transect (left-right bank) of the estuary within the Šibenik Bay. 

 

The observed distribution is mainly related to the hydrodynamics (movements of surface 

water masses) and the dilution effect. Knowing that point-sources of trace metals are located 

mainly on the side of Šibenik town, this distribution is not unexpected. The cleaner brackish 

water flowing more on the right side of the estuary, and the “polluted” water from the other 

[Z
n
] 

(n
M

)

0

5

10

15

20

25

30

35

20

25

30

35

dissolved

total

salinity

[C
d

] 
(n

M
)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

20

25

30

35

[C
u

] 
(n

M
)

0

5

10

15

20

25

30

35

20

25

30

35

[P
b

] 
(n

M
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20

25

30

35

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

[C
o

] 
(n

M
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

20

25

30

35

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

[N
i]
 (

n
M

)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

20

25

30

35



4. Results 

107 

side, are, in a way, separated, which is clearly visible in the salinity profile. However, such 

a large difference in trace metal concentrations between two sides were not observed during 

high-resolution mapping (only 4 points), probably due to different hydrodynamic conditions 

at the time of sampling. This profile clearly demonstrates a scenario of highly variable 

conditions that occur within the estuary even at a very short distance (0.6 km). Thus, any 

interpretation of the variability of trace metals distribution within the estuary should take 

into account possible non-homogeneous distributions. 

 

4.3.3. Distribution of trace metals along the salinity gradient 

Fig. 4.12 summarises the distributions of dissolved concentrations of Zn, Cd, Pb, Cu, Ni and 

Co along the 15 measured sites in the Krka River estuary within three, vertically separated 

layers. A general observation for all metals is that the concentrations increase downstream 

in the surface brackish layer (Fig. 4.12, black circles), but also upstream-landward in the 

seawater layer (Fig. 4.12, grey squares). In most cases, the concentrations in the FSI layer 

for all metals were between those measured in the two adjacent layers (Fig. 4.12, triangles). 

Overall, the average trace metal concentrations in all three layers were higher in summer 

samples than in winter. This is particularly evident for Cu, for which ~3× higher average 

concentrations were found in the surface layer in summer, indicating additional input, 

primarily as a consequence of increased nautical activities (Omanović et al., 2006). 

Considering the vertical profile distributions, the average concentration of trace metals 

increases with depth, with the exception of Cu in summer. The highest difference along the 

vertical profile was observed for Pb, pointing to sediments as a potential source of Pb, along 

with its accumulation in the seawater layer.  

 

A more detailed description and elaboration of the longitudinal and vertical profiles, as well 

as the behaviour/fate of trace metals is provided in the Discussion section.  
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Figure 4.12. Distribution of dissolved trace metals in the brackish, FSI and seawater layers 

along the estuary transect in the winter and summer period. 
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CHAPTER II 
 

“In-situ speciation of trace metals in a vertical salinity 

gradient of the Krka River estuary using Diffusive 

Gradient in Thin Films (DGT) technique” 
 

In order to evaluate the Diffusive Gradients in Thin Films (DGT) technique for (operational) 

speciation of trace metals across the salinity gradient and additionally to assess its use as a 

potential methodology in estimating trace metal bioavailability/toxicity for regulatory 

monitoring purposes (as suggested by the Water Framework Directive, WFD, 2013), a site 

in front of the marine station Martinska was selected as a site representative of the whole 

estuary, exemplifying a relatively “clean” sub-region. The close vicinity of the site was 

beneficial to this study because it allowed a numerous (7-10 times/day), “high-frequency” 

measurements of physico-chemical parameters at the positions of DGT device deployments 

during the deployment period of ca. 5 days. A 5-day period was found as an optimal period, 

balancing in between a preferred longer deployment due to the low TM concentrations and 

capability of everyday discrete sampling by a diver, because in addition to DGT deployment, 

two (summer) or one (winter) discrete samples were collected by a diver at each DGT depth 

each day in order to prepare a composite sample (composed of 6 or 12 sub-samples). It was 

assumed that composite sample, in which the dissolved/total metal concentrations of trace 

metals and dissolved organic carbon (DOC) were measured, is representative for the 

deployment period.  

An additional comparative site with increased concentrations of trace metals (representing 

the “polluted” site) was located within the nautical marina “Mandalina”. 

 

4.4. Hydrographic conditions 

An overview of the hydrographic conditions of the Krka River for the period of the DGT-

deployment campaigns is presented in Fig. 4.13. A previous detailed study performed by 

Legović (1991) revealed that the salinity of the surface layer and the depth of the halocline 

along the estuary is greatly influenced by the Krka River flow. However, strong weather 

conditions (wind/rain) could have a large influence on both the surface salinity and the short-

term change of the halocline depth. Our measurements confirm previous observations (inset 



4. Results 

110 

in Fig. 4.13). Among 5 separate DGT-campaigns, only one was conducted in the period of 

relatively high Krka River flow (winter, 2010).  

 

Figure 4.13. Krka River flow covering the period of our DGT-campaigns, with red 

diamonds indicating the dates of each separate campaign. Inset: dependence of the surface 

salinity on Krka River flow at the position of DGT-deployment (Martinska). 

 

4.5. Major physico-chemical parameters during the deployment period 

4.5.1. Salinity 

As previously shown, the vertical profile of the water column along the Krka River estuary 

is characterised by pronounced salinity stratification with the halocline positioned at a depth 

of 2-3 m (Martinska site), which is dependent on the Krka River flow, and weather 

conditions (mainly wind). In Fig. 4.14, vertical profiles of average salinity (for each DGT-

depth) at the DGT-deployment site (Martinska) for all five sampling events were plotted. 

For each campaign, a well-developed halocline at a depth of between 1.5 and 3 m was formed 

for all but the winter 2010 campaign, for which halocline was 1 meter deeper. Positions and 

thicknesses of the haloclines were in accordance with the Krka River flow before and at the 

time of the DGT-campaign. While the salinity was relatively stable in the surface and 

seawater layer during the deployment periods, the same could not be said for other depths. 

Fig. 4.15 clearly illustrates the two contrasting cases: while in the summer of 2009 the 
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halocline was stable over the deployment time, a quite variable depth of halocline was 

registered in the winter of 2010. For that campaign, depths for the three deepest DGT 

positions were changed (moved up) in order to maintain the DGT-probes within the adequate 

range of salinity.  

 

Figure 4.14. Vertical profiles of salinity at the positions of DGT-deployment depths 

(Martinska) for five DGT-campaigns. Red symbols correspond to the summer (S) and blue 

to the winter (W) period. 

 

  

Figure 4.15. Examples of salinity variation during two DGT-campaigns: summer 2009 and 

winter 2012. The shaded areas represent DGT-deployment depths. 

 

Salinities measured in the surface layer during the period of DGT-deployments (Fig.4.14) 

do not show a “typical” summer/winter pattern and exemplify contrasting conditions which 
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occur in the estuary. While salinity in the summer of 2009 was low, a relatively high salinity 

was measured in the winter of 2012.  

In nautical marina “Mandalina” (Šibenik harbour, “polluted” site), the general trend of 

salinity changing with depth was in agreement with the one observed in front of marine 

station Martinska (the “clean” site). However, a much higher variability was observed on a 

day-to-day basis in the halocline region.  

 

Figure 4.16. Salinity depth-time variation during the DGT-campaign in summer 2009 at the 

location of nautical marina “Mandalina”. The shaded areas represent DGT-deployment 

depths. 

 

 

4.5.2. Temperature 

One of the most important parameters for the DGT-technique is temperature. Indeed, the 

diffusion coefficient of trace metal species used in the calculations of DGT-labile 

concentrations is highly dependent on temperature. Fig. 4.17 shows vertical profiles of the 

average temperature at the Martinska site. As expected, a clear seasonal pattern of the 

temperature distribution within the vertical profile was recorded: a higher surface 

temperature in summer with thermocline, which agrees well with the depth of the halocline, 

and a temperature inversion in winter. Vertical profiles of the average temperature at the 

position of the “polluted” site in the nautical marina “Mandalina” agree well with those 

recorded at the “clean” site (Martinska). In addition, Fig. 4.18 shows two examples of 
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temperature variations during the DGT-deployment period. While in the summer of 2011, 

the temperature was stable during the time of deployment, in the winter of 2012 a high 

variability (as was observed of salinity) was recorded.  

 

Figure 4.17. Vertical profiles of the average temperature at the position of the DGT-

deployment site (Martinska) for five DGT-campaigns. Red symbols correspond to the 

summer (S) and blue to the winter (W) period. 

 

   

Figure 4.18. Examples of temperature variation during two DGT-campaigns: summer 2011 

and winter 2012. The shaded areas represent the range of DGT-deployment depths, and the 

lines on the left plot represent the actual variations of the DGT- deployment depths. 
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the average temperature) were sufficient enough to “balance” the variation in actual 

diffusion coefficients of trace metals. 

In addition to temperature, the left plot in Fig. 4.18 shows the variation of each DGT-depth 

during deployment time. Thanks to the “counter-weight” mechanism (described in the 

Experimental section), the absolute variation in depth was within 20 cm (the 

temperature/depth data loggers were installed at each DGT-depth). In that way, DGT probes 

were maintained at a quasi-constant depth (especially in the FSI layer, i.e. halocline) 

regardless of the tide, waves or wind influence. 

 

4.5.3. Dissolved oxygen 

Although dissolved oxygen by itself is not an important parameter for the calculation of 

DGT-labile metal concentrations, it provides a good overview of overall conditions 

(chemical and biological) within the water column, which could be of benefit while 

interpreting the observed DGT profiles. Generally, in the winter period, oxygen saturation 

was around 100-110%, while in the summer period, oversaturation (130-140%) was 

measured at the surface and FSI layer, indicating increased biological activities (Cetinić et 

al., 2006; Legović et al., 1994). 

 

4.5.4 Dissolved organic carbon (DOC) 

The DOC concentration in front of the Martinska station confirms the results of DOC 

measured along the Krka River estuary (Cindrić et al., 2015). This concentration is lower in 

winter (0.5-0.8 mgC L-1) and higher in summer (1.0-1.4 mgC L-1) in the upper layer (Fig. 

4.19). The summer of 2009 showed behaviour similar to that in winter, due to the larger 

influence of freshwater.  Higher summer concentrations of DOC at the interface layer are 

connected with enhanced biological activity. 
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Figure 4.19. Vertical profiles of dissolved organic carbon (DOC) at the positions of DGT-

deployment depths (Martinska) for five DGT-campaigns. 

 

4.6. Determination of diffusion coefficients of metals 

As it was previously mentioned, the DGT-technique provides an operationally defined 

measure of the DGT-labile (bioavailable) fraction so interferences can be made with respect 

to metal toxicity. It was assumed that DGT-labile concentrations represent the sum of the 

mainly inorganic fraction and the weak and kinetically-labile organic complexes of trace 

metals. Diffusion coefficients of metals, which are supplied by the DGT-Research company, 

are determined in a 0.1 M NaNO3 solution at a pH of ~ 5 using diffusive cell methodology. 

Under these conditions, metals are present primarily as free aqua ions and inorganic species 

(mainly hydroxides and carbonates). Generally it was assumed that diffusion coefficients of 

different inorganic complexes are the same, however some metal-organic complexes have 

diffusion coefficients much lower than inorganic species (Zhang and Davison, 2001). 

Consequently, DGT-labile concentrations of trace metals measured in real experiments 

correspond to the equivalents of inorganic species, and thus are considered operational 

values, meaning “technique/condition-dependent”.  

The two types of diffusion gels (open and restricted pore) used in our work differ in pore 

size. According to theory and expectations, these two types “see” different fractions of metal 

species. Concentrations of DGT-labile metals determined by restricted pore DGT should be 
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lower than those determined by open pore DGT probes. This is due to the fact that larger 

molecules (e.g. organic complexes) could/should not pass through the small pores (~1-2 nm). 

According to DGT-Research, diffusion coefficients determined for open pore DGT-probes 

should be multiplied by a unified factor of 0.7 if restricted pore DGT is used.  In practice, 

several problems related to the use of the diffusion coefficient were identified while using 

the DGT technique (see Literature overview section). Accomplishing our first field DGT-

study, we faced the problem that, for some cases (metals/depths), concentrations of DGT-

labile metals determined by open pore DGT were almost the same or smaller than the 

corresponding ones determined by restricted pore DGT. Different “explanations” could be 

“developed” for such observations, however, before developing any “theories” as to the 

unusual behaviour, we wanted to re-measure the diffusion coefficients for both open and 

restricted pore DGT in real samples. In this way, the determined diffusion coefficients are 

called “effective diffusion coefficients” (Deff).  Any additional influence of the sample 

composition (e.g. ionic strength, inorganic speciation change) or even mechanical/structural 

imperfections on the production of DGT-devices are therefore “expressed” via Deff.  

For each metal of interest, effective diffusion coefficients were experimentally determined 

(the detailed protocol is described in the Experimental section) for all three water layers: 

brackish (S < 2), FSI layer (S = 19) and seawater (S = 38). Experimentally estimated Deff 

values for Zn, Cd, Pb, Cu, Ni, Co, Mn and U are presented in Table 4.3. A slightly lower pH 

of working samples (UV digested, buffered and spiked with all metals at high concentration) 

adjusted to 7.9±0.15 was not expected to change inorganic speciation of metals to the extent 

of influencing the diffusion coefficients estimates. All samples were kept at a temperature 

of 25.5±0.3 °C. Small variations during the 6h experiment were assumed to have only a 

small influence on the final result.  

Based on the “official” diffusion coefficients, during the 6h deployment period, the 

calculated decrease in metal concentrations (due to the continuous uptake by DGT devices; 

10 pcs in total in each bottle) was expected to be below 5%. Seven separate samples from 

each bottle were taken at defined periods of time in order to monitor possible decreases in 

metal concentrations due to the continuous uptake. The concentrations of metals in these 

samples analysed by HR-ICPMS were within 5% of the expected concentrations (recovery 

was 100±5%), i.e. on the level of prepared/spiked (see Table 3.8). No obvious decreasing 

trend for any studied metal with the deployment time was observed. Thus, prepared/spiked 

concentrations were used to calculate the diffusion coefficients.  
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One of the important parameters in DGT technique calculations is the “diffusive boundary 

layer” (DBL). This corresponds to the diffusion layer positioned on the side of the solution 

(outside of the probe) that is dependent on hydrodynamic conditions, i.e. on the strength of 

the stirring/mixing. In calm waters, such as lakes or seawater, DBL could significantly 

influence the calculated concentrations. Although our measurements were performed in 

seawater, due to the wind and waves, the DGT-holders were constantly moving left to right, 

eliminating in this way stationary conditions not appropriate for DGT (formation of a “large” 

DBL). As described in the Experimental section, five (5) DGT devices were positioned in 

two columns (3+2) facing each other (both for OP and RP). Mixing of the solution was 

controlled by a magnetic Teflon bar stirrer at the bottom of the bottle (see Fig. 3.15 in the 

Experimental section). In this way, a slightly different mixing strength was established along 

the vertical profile within the bottle, which allowed us to check whether the influence of a 

different DBL was possible to determine in real conditions. Based on 30 separate results (15 

OP and 15 RP), no clear difference was found between DGT devices positioned at the surface 

and those positioned deeper in the bottle. Thus, it was concluded that under experimental 

conditions, the stirring strength did not have a noticeable influence on the DBL. Based on 

this artificial experiment, it was decided that DBL will not be considered as a factor (zero 

value assigned) in calculations of DGT-labile metal concentrations in real experiments. In 

addition, although DBL exists in all DGT-experiments, in our calculations it is “included” 

via effective diffusion coefficients (Deff). 

The experimentally determined average of Deff (five replicates) for open pore and restricted 

pore DGT, is presented in Fig. 4.20. In addition, Table 4.3 lists some values of characteristic 

parameters and extracted results compared with published values. Average values for Deff 

for examined trace metals (with the exception of Cu) and for both diffusive gel types, do not 

show any systematic trends (increasing or decreasing) in regards to the chemical 

composition of water (SW, MIX and FW). Thus, it is assumed that under the given 

conditions of the solution compositions, the change in inorganic speciation of trace metals 

does not have a measurable influence on the diffusion coefficients. The only systematic 

decrease obtained was for Cu. As this trend was not expected, and as currently there is no 

reasonable explanation, we decided to avoid the use of Deff for Cu in our calculations, and 

instead, we used the value provided by DGT-research with the 0.7 R-factor applied for RP. 

An additional reason to not use the experimentally derived value for Cu is that the conversion 

factor between OP and RP diffusion coefficients for Cu was 0.5, which is rather too low.  
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Figure 4.20. Effective diffusion coefficients for trace metals for open pore (OP) and 

restricted pore (RP) diffusive gels and as determined in samples of different composition of 

major ions: seawater (SW), mixed seawater-freshwater (MIX) and freshwater (FW) at an 

average temperature of 25.5±0.3 °C under stirred conditions 

 

Table 4.3. Concentrations of metals used in experiment, average percentage of DGT-blank 

(non-exposed probes), determined effective diffusion coefficients (Deff / cm2 s-1), 

“official” diffusion coefficient recommended by DGT-Research Company (DDGT-Research), 

difference between the two values and average factor of the diffusion coefficient 

conversion for restricted pore gels (R-factor).  

 Cd Pb Cu Zn Ni Co 

conc. (nM) 100 100 500 1000 500 100 

% blank 0.1 0.3 2.2 34 0.1 0.4 
aDeff ×106  6.18 6.22 5.77 5.68 5.84 6.17 

aDDGT-Res ×106 6.09 8.03 6.23 6.08 5.77 5.94 

% difference 1.4 -23 -7.4 -6.5 1.1 3.8 

AVG R-factor 0.73±0.04 0.75±0.05 0.5±0.05 0.82±0.32 0.71±0.05 0.71±0.04 
a – diffusion coefficients @ T = 25 °C 
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Results obtained for Zn showed a strong influence of high DGT-blank concentrations (non-

exposed DGT). Although a fairly high concentration of Zn (1 uM) was used in the 

experiment, the average DGT-blank concentration was higher than 30% (blank was 26% for 

OP , and 42% for RP). Consequently, high standard deviations were obtained, leading to 

uncertain values of Deff for Zn. Although the difference between our Deff and the “official” 

value is not large (-6 %), due to the high and uncertain value of the R-factor (0.82±0.32) we 

decided to use the “official” diffusion coefficient in calculations (as in the case of Cu).  

Generally a very good agreement between the effective diffusion coefficients and the 

published (official) data was obtained for most metals. The “exception” was Pb for which 

Deff was 22% underestimated. Contrarily, Garmo et al. (2003) obtained around 20% higher 

values in their experiment. The difference between the experimental setup and solution 

composition (pH 4.7- 6 and 0.01 M NaNO3 in the case of Garmo et al.) may be one of the 

reasons for such contrasted values. As different values of diffusion coefficients “operate” in 

literature, we decided to use the values obtained in our experiment. 

Taking into account uncertainty, estimated R-factors (correction of diffusion coefficients for 

RP DGT) for all metals (with the exception of Cu) agreed with the recommended value of 

0.7 provided by the DGT-Research Company. No systematic trend in the R-factor was 

observed in relation to the three types of samples, and thus, average values were calculated 

and assigned as “true” ones for further calculations. 

 

4.7. Vertical distributions of dissolved and DGT-labile concentrations of trace metals 

at Martinska (“clean”) site 

 

As explained in the Experimental section, during the DGT deployment time (ca. 5 days) 

discrete samples were taken each day (once in winter and twice in summer – 

morning/afternoon) in order to build a composite sample representative of the time of DGT 

exposure. These samples were used to determine the dissolved and total metal concentrations 

(UV digested and acidified) as well as for the Cu speciation analysis using the 

electrochemical method - determination of Cu complexation parameters (described in 

Chapter III).  
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4.7.1. Zinc (Zn) 

Vertical profiles of dissolved and DGT-labile concentrations of Zn for each sampling 

campaign are presented in Fig. 4.21. While all vertical profiles of dissolved Zn 

concentrations showed well-defined trends, only one acceptable profile (having low 

uncertainty) of DGT-labile Zn concentrations was obtained: in the summer of 2011. 

Although quite comparable vertical trends of DGT-labile and dissolved concentrations were 

obtained in the summer of 2009, results for this season are only “conditionally” acceptable 

because in the surface layer, DGT-labile concentrations of Zn (with a slightly higher 

uncertainty) exceed those of dissolved Zn. Other seasons showed very scattered vertical 

distributions (with high uncertainties), without the expected coherent vertical trends of OP 

and RP profiles. In most of these cases, concentrations of OP and/or RP DGT-labile 

surpassed those of dissolved Zn. Such results clearly indicate contamination issues (which 

were already discussed previously) and thus, hinder the appropriate assessment of 

operational chemical speciation of Zn based on the DGT technique. It should be pointed out 

that the contamination is related to the production of DGT-probes (gels, probably not 

sufficiently clean chemicals, or the production process) and not to our DGT handling. This 

conclusion is supported by the simple fact that Zn concentrations measured in DGT extracts 

(diluted 3 times) are more than 10 times higher than in discrete samples analysed for 

dissolved Zn, for which a well-defined trend, with low uncertainty, was obtained for all 

campaigns. Note that in both cases, the same chemicals (MQ water and acid) and the same 

“clean” protocol of handling was utilised. In addition, vertical profiles of dissolved and total 

(not plotted on graphs) Zn concentrations showed the same trends, confirming the absence 

of contamination issues in applied electrochemical methodology.  

With the exception of the winter of 2012 in which higher concentrations were determined in 

the surface layer, for all other campaigns, the vertical profiles showed generally similar 

trends: an increase in concentration down to the FSI layer and then a decrease in the seawater 

layer. The concentration of Zn in the seawater layer was relatively uniform (8.5±1.6 nM), 

while in the surface layer, almost double this difference was measured between two 

campaigns (6.3 nM in the winter of 2010 and 13.2 nm in the winter of 2012). Taking into 

account that both values correspond to the winter period, it could be concluded that the level 

of Zn is not seasonally dependent. The same conclusion was drawn for this region of estuary 

which is elaborated upon in more detail in the Discussion section regarding Chapter I. 

However, a different salinity in the surface layer could explain the observed results: a lower 
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salinity was measured in the winter of 2010 (S = 10.8) than in the winter of 2012 (S = 16.7). 

As the concentration of Zn in Krka River is on the level of 2-3 nM (see table 4.1), a higher 

flow (lower salinity) caused lower Zn concentrations in the winter of 2010. This explanation 

is also supported by the low Zn concentration in the summer of 2009 (6.9 nM) which is also 

characterized by low salinity.  

 

Figure 4.21. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Zn for five sampling campaigns at Martinska (“clean”) site. 

 

4.7.2. Cadmium (Cd) 

Cadmium is generally considered to be a “problem-free” metal for analysis. Usually, there 

is no contamination issue, regardless of the applied analysis methodology. Accordingly, very 

consistent results of vertical profiles of both DGT-labile and dissolved Cd concentrations 

were obtained, as presented in Fig. 4.22. If examined according to depth, it is clear that for 

summer 2009 and winter 2010 campaigns, a very good correlation of DGT-labile (CC = 

0.986) and dissolved (CC = 0.952) Cd concentrations with salinity were obtained, suggesting 

simple mixing of vertically separated water bodies (theoretical “dilution”). Both of these 

campaigns were characterized by low salinity in the surface water layer, and the two lowest 

measured Cd concentrations (the same as observed for Zn). Such conservative behaviour of 

Cd with salinity agrees well with the longitudinal profiles of Cd in the surface layer along 

the whole estuary transect presented in Fig 4.12, i.e. the concentration of Cd is increasing 

with salinity (Cd concentration is primarily regulated by the mixing of freshwater and 
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seawater). The concentration of Cd in the seawater layer (at 3.5 and 8 m depths) was fairly 

stable (~0.080 nM), with variation within only ~2 pM. With the exception of the winter of 

2010, all vertical profiles of DGT-labile Cd showed a small, but evident increase in 

concentration within the FSI layer. Such an increase was already evidenced in the Krka 

estuary and is related to the accumulation of particles, organic matter and trace metals in the 

FSI layer (Žutić and Legović, 1987). 

 

Figure 4.22. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Cd for five sampling campaigns at Martinska (“clean”) site. 

 

The range of dissolved Cd concentrations within vertical profiles lower than 0.04 nM, with 

an average uncertainty of 0.009 nM, demonstrates the importance of obtaining high quality 

data from analytical measurements, and at the same time, validates our electroanalytical 

procedure. Thus, a very good correlation of DGT-labile and dissolved Cd concentrations 

was obtained for all campaigns (see Table 4.4). As expected, in most cases, the dissolved Cd 

concentration was higher than the DGT-labile concentration. However, no difference was 

found between open pore (OP) and restricted pore (RP) DGT-labile concentrations. 

In addition, a good agreement between dissolved and DGT-labile Cd vertical profiles 

confirms that a composite sample, compiled from 6 or 12 subsamples, satisfactorily 

represented the average dissolved Cd concentration during deployment period (ca. 5 days). 
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Table 4.4. Pearson’s Correlation Coefficients (CC; p = 0.05) between dissolved Cd, open 

pore (OP) and restricted pore (RP) DGT-labile Cd concentrations (all samples). 

Element Dissolved OP RP 

Dissolved 1   

OP 0.886 1  

RP 0.913 0.949 1 

 

4.7.3. Lead (Pb) 

Vertical profiles of dissolved and DGT-labile Pb concentrations for all campaigns are 

presented in Fig. 4.23. The unique characteristic for all profiles is that concentrations of Pb 

increase with salinity/depth. Such behaviour is in accordance with the vertical profiles of Pb 

across the estuary (Fig. 4.12).  

 

Figure 4.23. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Pb for five sampling campaigns at Martinska (“clean”) site. 

 

As noted previously, the Šibenik harbour and the location near the ship overhaul (in the 

nautical marina area) are identified as the main Pb sources. Spreading of Pb occurs in both 

horizontal and vertical directions. If concentrations of Pb in the surface layer are examined 

according to salinity, a clear relationship with a high correlation (CC = 0.934) is obtained, 

suggesting that the level of Pb in the surface layer is regulated mainly by the dilution effect. 

Compared to “open”-clean seawater ([Pb]~0.06 nM), much higher concentrations of Pb 

(average ~0.22 nM) in the seawater layer at the position of the Martinska site were found 
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(this is not the case for other metals). These elevated concentrations of Pb could be partly 

explained by the sinking of particles-associated Pb, its release in the dissolved state, and 

accumulation in seawater due to the competitive effect of major cations. The release of Pb 

from sediment can be not be excluded; however, a more detailed study would be needed in 

order to clarify such trends.  

High correlation (CC > 0.95) between DGT-labile and dissolved Pb concentrations for all 

campaigns were obtained (see Table 4.5). Dissolved Pb concentrations were always higher 

than DGT-labile, meaning that only a fraction of total dissolved Pb was captured by the DGT 

device. A very small or no difference was found between open pore (OP) and restricted pore 

(RP) DGT-labile Pb concentrations. 

 

Table 4.5. Pearson’s Correlation Coefficients (CC; p = 0.05) between dissolved Pb, open 

pore (OP) and restricted pore (RP) DGT-labile Pb concentrations (all samples). 

Element Dissolved OP RP 

Dissolved 1   

OP 0.960 1  

RP 0.955 0.987 1 

 

4.7.4. Copper (Cu) 

Contrary to other trace metals, in most cases, the vertical profiles of both dissolved and DGT-

labile Cu concentrations showed a trend opposite to salinity. Except in the winter of 2010, 

higher concentrations of Cu were measured in the surface and FSI layers than in the seawater 

layer. Such a vertically increasing trend was already documented at several estuary sites 

within Šibenik Bay (see Fig. 4.12). As explained in the previous chapter, higher Cu 

concentrations in the surface layer measured in the summer are linked to intensive nautical 

traffic within the bay, and are derived by a Cu release from antifouling paints that are used 

as a biocide on boats. Due to the high Krka River flow in the winter of 2010 (>100 m3 s-1, 

see Fig. 4.13), a low salinity was recorded in the surface layer at the Martinska site, which 

additionally led to low concentrations of Cu. In a way, this occurrence could be described as 

a “flushing-dilution” effect. Such conditions did not occur in the winter of 2012 due to the 

comparatively low Krka River flow (~40 m3 s-1), producing higher salinity at the study site, 

and consequently showing a vertical profile similar to the summer campaigns. Whether 

separately for each season or mutually for both seasons, the concentration of Cu in the 

surface layer shows a very good correlation with salinity (CCsummer = 0.99; CCwinter = 0.96, 



4. Results 

125 

CCboth = 0.88), indicating that the level of Cu in the surface layer is regulated by a complex 

mechanism of Cu input and hydrodynamic/hydrologic conditions with the estuary.  

In Chapter I it is shown that the transport of metals from the source occurs in both the 

horizontal and vertical direction. Depending on the hydrodynamic conditions (e.g. flushing 

effect), a part of Cu released at the surface is transported downward into deeper layers. 

However, while 4 times difference was measured in the surface layer between the highest 

and the lowest Cu concentration, only a small variability (but related to the concentration at 

surface) was observed in the seawater layer (within ~40%).  

 

Figure 4.24. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Cu for five sampling campaigns at Martinska (“clean”) site. 

 

 

Table 4.6. Pearson’s Correlation Coefficients (CC; p = 0.05) between dissolved Cu, open 

pore (OP) and restricted pore (RP)  DGT-labile Cu concentrations (all samples). 

 

Element Dissolved OP RP 

Dissolved 1   

OP 0.946 1  

RP 0.873 0.992 1 

 

The same trends of vertical profiles of dissolved and DGT-labile Cu concentrations, with 

correlation coefficients higher then 0.87, were obtained for all campaigns, (see Table 4.6). 

Although it was expected for open pore (OP) DGT devices to provide higher concentrations 

of DGT-labile Cu compared to restricted pore (RP) DGT, the obtained differences were 

Cu (nM)

0 4 8 12 16

salinity
0 10 20 30

Cu (nM)

0 4 8 12 16

salinity
0 10 20 30

Cu (nM)

0 4 8 12 16

salinity
0 10 20 30

Cu (nM)

0 4 8 12 16

salinity
0 10 20 30

Cu (nM)

0 4 8 12 16

D
e
p
th

 (
m

)

0

1

2

3

4

5

6

7

8

9

salinity
0 10 20 30

Diss

OP

RP

Sal

2010 022009 07 2010 07 2011 07 2012 03



4. Results 

126 

within the range of measurement uncertainty. As expected, dissolved Cu concentrations were 

much higher than DGT-labile, pointing to the existence of a large Cu fraction (most probably 

organic), not accessible by DGT.  

 

4.7.5. Nickel (Ni) 

Well-defined vertical profiles of dissolved and DGT-labile Ni were obtained for all seasons 

(Fig. 4.25). Concentrations of Ni increase with salinity/depth (correlation coefficient: 0.963; 

all samples) indicating conservative mixing (Fig. 4.26). If examined according to the 

conservative line of freshwater/seawater end-members (dashed line in Fig. 4.26), 

concentrations of Ni at the Martinska site are slightly increased (~1 nM in surface layer) 

pointing to an additional supply of Ni within the bay. As shown previously on contour plots 

of Šibenik bay (Fig. 4.10b), although Ni concentrations are quite uniform within the majority 

of the bay, slightly increased concentrations are registered within the nautical marina area 

and harbour, which caused the mentioned deviation from the ideal conservative line. 

 

Figure 4.25. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Ni for five sampling campaigns at Martinska (“clean”) site. 

 

A very high correlation coefficient between Ni concentrations and salinity in the surface 

layer (CC = 0.967) points to the stable supply of Ni over time. Due to weak supply of Ni, 

the downward transport of Ni is negligible (differences are within experimental error). Thus, 

concentrations of Ni in the seawater layer (average±SD for all campaigns: 6.8±0.2, see top-
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right corner in Fig. 4.26) are the same as those measured in the seawater end-member, i.e. in 

the “open” part of the Adriatic Sea (7.0 nM, see Table 4.1, KE-15). 

 

Figure 4.26. Dependence of dissolved Ni concentration on salinity at “clean”, Martinska site 

(data of all vertical profiles). 

 

For all campaigns, dissolved Ni concentrations were higher than DGT-labile, indicating that 

not all Ni chemical species are accessible by DGT. The same trends of vertical profiles of 

dissolved and DGT-labile Ni concentrations, with correlation coefficients higher then 0.94, 

were obtained for all campaigns (see Table 4.7). As for other metals, there is no regular 

difference in DGT-labile concentrations measured by open pore (OP) and restricted pore 

(RP) DGT probes.  

 

Table 4.7. Pearson’s Correlation Coefficients (CC; p = 0.05) between dissolved Ni, open 

pore (OP) and restricted pore (RP) DGT-labile Ni concentrations (all samples). 

 

Element Dissolved OP RP 

Dissolved 1   

OP 0.941 1  

RP 0.950 0.968 1 

 

4.7.6. Cobalt (Co) 

Compared to other metals, vertical profiles of Co showed the highest variability among the 

campaigns (Fig. 4.27). No consistent common pattern was found among all data for either 

salinity

0 10 20 30 40

[N
i]
 (

n
M

)

2

3

4

5

6

7

8
2009 07

2010 02

2010 07

2011 07

2012 03

regression line

overall conservative line (Krka-Seawater)



4. Results 

128 

dissolved or DGT-labile Co concentrations. However, excluding the summer of 2009, a clear 

decreasing trend of (only) dissolved Co concentrations with salinity was registered (CC = -

0.819). Higher concentrations of Co in the surface layer observed for these campaigns are 

generally in agreement with the vertical profiles observed during the winter and summer 

“transect” campaigns (See Fig. 4.12) for this region. Comparing the horizontal profiles of 

Co along the estuary transect, no consistent behaviour between summer and winter was 

found. All these data show very high dynamics of Co concentrations within the estuary. 

Excluding again the summer of 2009, although a relatively uniform vertical profile was 

obtained for DGT-labile Co concentrations, no correlation with salinity was found. In 

addition, with the exception of the summer of 2009, no similarity between vertical profiles 

of dissolved and DGT-labile Co concentrations was obtained (Table 4.8). 

 

Figure 4.27. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations of Co for five sampling campaigns at Martinska (“clean”) site. 

 

Table 4.8. Pearson’s Correlation Coefficients (CC; p = 0.05) between dissolved Co, open 

pore (OP) and restricted pore (RP) DGT-labile Ni concentrations without summer 2009 

data. In parentheses are provided CC only for summer 2009 data. 

 

Element Dissolved OP RP 

Dissolved 1   

OP 0.120 (0.943) 1  

RP 0.066 (0.960) 0.939 (0.997) 1 
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4.8. Vertical distributions of dissolved and DGT-labile concentrations of trace metals 

at nautical marina (“polluted”) site 

 

A comparative study between “clean” and “polluted” sites was performed only in the 

summer of 2009. The nautical marina “Mandalina” was selected as a site characterized by 

high concentrations of some metals in the water column, but with other parameters similar 

to the “clean” Martinska site. Very comparable vertical profiles of salinity, temperature and 

dissolved organic carbon (DOC) for these two sites were obtained (Fig. 4.28). Even though 

the “polluted” site is not on the main brackish water “stream” flowing out of the Šibenik bay 

(slightly isolated zone), according to the salinity and temperature profiles, the dynamics of 

water exchange are sufficiently “fast” enough to maintain conditions similar to the Martinska 

site (which is located within the brackish water “stream”).  

 

Figure 4.28. Vertical profiles of dissolved organic carbon (DOC) and salinity for the 

summer 2009 campaigns at the “polluted” (red) and “clean” (green) sites. 

 

Although located in an area with a large number of boats and other marina/harbour activities 

close to the sampling site, low concentrations of DOC were rather unexpected. However, 

that was not the case for some trace metals.  
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Comparative vertical profiles of dissolved and DGT-labile concentrations at the nautical 

marina and Martinska sites were presented in Fig. 4.29. Except Ni, concentrations of all trace 

metals measured in the marina were higher in comparison with the concentrations measured 

at the Martinska site. On average, Zn concentrations increased 4 times, with a higher increase 

in the surface than in the seawater layer. Although statistically not significant, a similar trend 

of dissolved Zn concentrations, characterized by the increased concentrations in the FSI 

layer, were obtained at each site. Due to the relatively high concentrations of Zn at the 

nautical marina site, it would be expected that contamination issues related to DGT 

measurements (observed for the Martinska site) would be greatly eliminated; however, 

unfortunately, that was not the case. Even more so, different concentration profiles of OP 

and RP DGTs were also obtained. Again, this makes Zn DGT results not very useful for 

speciation study. Longer deployment times would be of benefit in diminishing the “blank” 

contamination, but a biofouling of DGT devices is another problem in areas of higher 

productivity or high particle (inorganic/organic) content. 

Around 50% higher concentrations of Cd were obtained in the marina site compared to 

Martinska. Although with different absolute values, a relative increase is in agreement with 

the difference obtained during the mapping campaign (surface layer; July, 2012) within 

Šibenik bay (~7 nM at Martinska and ~12 nM in marina). As for the Martinska site, vertical 

profiles of both dissolved and DGT-labile Cd concentrations followed the salinity profile. 

No significant difference was found between dissolved and DGT-labile concentrations. 

Similar vertical profiles, with increasing concentrations of Pb with depth were obtained at 

both sites. At the “polluted” site, Pb concentrations increased from 0.165 nM at surface, to 

1.03 nM at a depth of 8 m. In comparison with the “clean” site, except for the deepest 

position (8 m) for which Pb concentrations increased 3×, at other depths a double increase 

was recorded. While at the “clean” site, the same vertical profiles of dissolved and DGT-

labile Pb concentrations were measured, a deviation for the two points in the seawater layer 

(3.5 and 8 m) at the “polluted“ site was found. 
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Figure 4.29. Vertical profiles of dissolved (Diss), open pore (OP) and restricted pore (RP) 

DGT-labile concentrations for summer 2009 campaigns at nautical marina -“polluted” (grey) 

and Martinska-“clean” (white) sites. 
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The highest increase in concentration at the “polluted” marina site compared to the “clean” 

Martinska site was observed for Cu. The extent of increase diminished with depth and was 

higher for DGT-labile concentrations than for dissolved Cu concentrations (~6× vs 4× at 

surface). Relatively high concentrations of Cu at the surface (32 nM of Cudiss), and low at 

the seawater layer (16 nM of Cudiss) were expected because the site is located in the marina 

area. As discussed previously, increased concentrations of Cu are the consequence of Cu 

leaching from the antifouling paints. Comparable vertical profiles of dissolved and DGT-

labile Cu concentrations were obtained.  

The only metal which retained the same concentrations and same vertical profiles at both 

sites was Ni. Such behaviour is not unexpected taking into account that during the high-

resolution mapping survey in Šibenik bay (summer 2012), Ni showed almost a uniform 

distribution across the bay (Fig. 4.10b). Although a small increase of Ni was observed at a 

location near the ship overhaul close to the sampling site, according to the results, the input 

of Ni was minor during sampling in the summer of 2009.  

The highest difference in vertical distributions between “clean” and “polluted” sites was 

obtained for Co. Contrary to the “clean” site, where concentrations of dissolved Co increased 

with depth (with a pronounced concentration peak at the FSI layer), at the “polluted” site, 

the concentration of dissolved Co decreased from 0.38 nM at the surface to 0.27 nM at a 

depth of 8 m. Vertical profiles of DGT-labile Co concentrations also differ between the two 

sites. A relatively high variability of Co distribution was also observed during the high-

resolution mapping campaign in Šibenik bay (summer 2012; Fig. 4.10b), and thus, the 

“inconsistent” behaviour of the Co vertical profiles is not very surprising.  
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CHAPTER III 
 

“Assessing Cu speciation in the Krka River estuary under 

different environmental and anthropogenic conditions – an 

electrochemical complexometric titration study” 
 

In order to assess the speciation of Cu within the Krka River estuary under various 

environmental and anthropogenic conditions in relation to its bioavailability/toxicity, a 

complementary technique known as the determination of Cu complexing capacity (CuCC), 

based on a complexometric titration experiment using the electrochemical measurement 

technique, was employed. Measurements were performed on composite samples (filtered, 

natural pH) collected during DGT studies. Thus, all major physico-chemical conditions 

described in the DGT study (Chapter II) are also valid for the CuCC study and will not be 

repeated in this section. Altogether, 36 experiments leading to CuCC determinations, were 

performed afterwards. As the determination of CuCC is generally a “tricky” methodology, 

before presenting the final results, the most significant steps of our methodology are first 

elaborated and discussed. 

 

4.9. Setup of critical experimental parameters and data treatment methodology for 

determination CuCC 

4.9.1. Selection of accumulation (deposition) potential 

Anodic stripping voltammetry (ASV) is applied for the speciation of Cu, i.e. for the 

determination of complexation parameters (ligand concentrations, L and conditional stability 

constants, K’) in our study. During the accumulation step in ASV, only a fraction of Cu, 

corresponding primarily to inorganic and weak organic complexes, is reduced at the working 

electrode (Hg drop). The reduction of other strong and inert complexes is supposed to be 

excluded by the proper selection of accumulation (deposition) potential. It was demonstrated 

that pseudopolarographic (PP) measurements could provide useful information on the metal 

speciation, i.e. existence of particularly labile and inert metal complexes (Croot et al., 1999; 

Gibbon-Walsh et al., 2012; Louis et al., 2009a; Omanović and Branica, 2003, 2004; 

Omanović et al., 1996). In our study, we used PP occasionally as a fingerprint method in 

order to get the dependency of the Cu signal over the wide range of accumulation potential 

and to find the optimal potential for the complexometric titration experiment. Fig. 4.30 
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shows a set of pseudopolarograms obtained in the surface sample (summer 2011 campaign) 

at different concentrations of dissolved Cu in the sample (unspiked and spiked). With the 

addition of Cu, a clear evolution of the wave at -0.25 V, corresponding to the labile, mostly 

inorganic Cu fraction is registered. A plateau between -0.5 V and -1.2 V signifies that there 

are no other complexes which are reducible at that range. At potentials more negative than -

1.2 V a second wave was developed, which represents the reduction of strong (inert) Cu 

complexes, or it could be an experimental/methodological issue related to the desorption of 

surface active substances (SAS) from the Hg drop, consequently providing higher sensitivity 

at that very negative range of potential.  

 

Figure 4.30. Pseudopolarograms of Cu at different added concentrations (0, 30, 80 and 180 

nM) recorded in the surface sample (summer 2011 campaign) (tacc = 180 s). The vertical 

grey bar represents the potential of accumulation applied in our complexometric titrations. 

Inset: dependence of peak current on the concentration of Cu in the sample. 

 

Adsorption of SAS is a known problem in voltammetric measurements, and in our study it 

is to a large extent eliminated by applying the “desorption” step as described by Louis et al. 

(2009). Namely, if the accumulation potential is switched to very negative potentials (e.g. -

1.4 V) for a short time (e.g. 3 s), at the end of the main accumulation period (e.g. 300 s), an 

artefact caused by SAS adsorption is greatly eliminated. In our work, we applied this 

modified methodology, for which it was found to provide more reliable results of 
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determination of metal complexation (including pseudopolarography and determination of 

metal complexing capacity).  

The marked area in Fig. 4.30 denotes the accumulation potentials (-0.45 V or -0.50 V) used 

for complexometric titration experiments. As noted previously, the reduction of Cu 

complexes other than labile ones should be avoided. Thus, the selected accumulation 

potentials were located only slightly more negative than the position where the maximum 

intensity of labile Cu complexes reduction was obtained (beginning of plateau).  

 

4.9.2. Equilibration time and titration type 

One of the prerequisites for the proper determination of complexation parameters when 

using complexometric titration data is that the signal intensity is obtained after equilibrium 

of the added metal (Cu in this case) is reached. The complexation of added metals with 

natural organic ligands is not instantaneous, and some time is needed for signal stability. The 

time needed depends on the metal, but also on the sample composition, i.e. other major, 

minor and trace elements. There are two basic approaches in performing the titration 

experiment. The first utilizes separate samples, which are pre-equilibrated “overnight” with 

the spiked metal, while the other approach is based on the sequentially increasing metal 

concentration in the same sample (electrochemical cell). For our study, we applied the latter 

approach as it also allows the possibility of determining the complexation parameters by 

using the kinetic approach (Louis et al., 2009). The equilibration of a sample after the 

addition of Cu was checked by repetitive measurements of the peak current. An example of 

such an equilibration curve is presented in Fig. 4.30. Usually, the last two points, registered 

after 1.5 to 2 hours, were taken into account for obtaining the final titration curve (marked 

with big circles in Fig. 4.31).  

One complexometric titration experiment is composed of 15 Cu additions (+ the 

measurement of the initial Cu concentration), which is in total, more than 23 hours of 

automated experiment. In order to avoid evaporation of the sample over a prolonged time, 

before entering the cell (the nitrogen blanket needs to be kept over the sample solution in 

order to avoid oxygen dissolution), nitrogen gas was passed through MQ water in order to 

be saturated with water vapour. In order to keep the pH of the sample stable over the time 

(pH = 8.2±0.1), a borate buffer (0.01 M) was added. 
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Figure 4.31. Dependence of peak current (ip) on time after the addition of Cu to the sample 

(surface sample, summer 2011). The red dotted line is the regression line of 3rd order. 

 

Table 4.9. Methodology of preparing additions for logarithmic type complexometric 

titration. 

 STD Add Conc LgConc V_tot Conc_add 

 (M) (µL) (nM)  (mL) (nM) 

Initial - - 16.00 -7.80 20.00 - 

Add_01 1.0E-06 70 19.50 -7.71 20.07 3.49 

Add_02 1.0E-06 80 23.50 -7.63 20.15 7.46 

Add_03 1.0E-06 110 28.90 -7.54 20.26 12.90 

Add_04 1.0E-05 10 33.80 -7.47 20.27 17.80 

Add_05 1.0E-05 20 43.70 -7.36 20.29 27.70 

Add_06 1.0E-05 20 53.50 -7.27 20.31 37.50 

Add_07 1.0E-05 20 63.40 -7.20 20.33 47.40 

Add_08 1.0E-05 30 78.10 -7.11 20.36 62.10 

Add_09 1.0E-05 30 92.80 -7.03 20.39 76.80 

Add_10 1.0E-05 40 112.00 -6.95 20.43 96.40 

Add_11 1.0E-05 50 137.00 -6.86 20.48 121.00 

Add_12 1.0E-05 60 166.00 -6.78 20.54 150.00 

Add_13 1.0E-05 80 205.00 -6.69 20.62 189.00 

Add_14 1.0E-05 80 243.00 -6.61 20.70 227.00 

Add_15 1.0E-04 10 292.00 -6.53 20.71 276.00 

STD – concentration of metal in stock solution; Add – volume of stock solution to 

be added (in µL); Conc – total concentration of metal in solution (titration point); 

LgConc – logarithm of total concentration of metal in solution; V_tot – total 

volume of sample (including additions); Conc_add – added metal concentrations 
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The interaction of metals with active sites of natural organic matter is usually described by 

two types of ligands denoted as L1 and L2. Complexes formed with L1 are usually stronger, 

and concentration of these ligands is lower than that of L2. Thus in order to have a sufficient 

number of titration points in the range of dominance of both ligands, a logarithmic type of 

addition was applied (Garnier et al., 2004). For easy handling, a simple program 

(Calc_Log_Conc) was developed and is used to simplify the preparation of the automated 

sequence of Cu additions. As a starting point, the user should define the starting volume of 

the sample, the initial concentration of Cu in the sample, the number of additions, the 

concentration of the highest titration point, and the concentrations of stock solution which 

will be used for additions. The program will then automatically redistribute the additions in 

logarithmic scale and prepare the file which is needed for automation of the titration (Table 

4.9). 

Once the titration is performed, a corresponding set of voltammograms (at least 32), as 

presented in Fig. 4.32 (only one voltammogram per addition is plotted), is obtained. 

Depending on the initial concentration of Cu in the sample, a more or less defined peak is 

obtained (first black line). A 297-second period of accumulation, followed by a 3-second 

“desorption step”, was sufficient to get a measurable peak in all un-spiked samples. 

 

Figure 4.32. An example of 16 voltammograms obtained at increasing Cu concentrations 

during a complexometric titration experiment of a surface sample, summer 2011 (only one 

curve per addition was plotted). Inset: selected set of voltammograms showing an increase 

in the Cu oxidation peak at low additions. 
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4.9.3. Treatment of voltammograms - signal intensity feature determination 

Once the voltammograms are acquired, the next step is to “extract” useful information about 

the signal (peak) intensity, needed to construct the complexometric titration curve from 

which complexation parameters (ligand concentrations and conditional stability constants) 

could be estimated (calculated). Different “measures” could be used to characterize the 

signal. The most utilized is the peak height based on the “tangent fit” method, which 

approximates the baseline using the straight line (green dotted line in Fig. 4.33A). However, 

this method underestimates the peak height (ca. 20% in the presented example), which could 

produce an artefact as an additional non-existing ligand in the analysed sample (Omanović 

et al., 2010). To avoid this problem, a curvature baseline should be drawn and subtracted 

from each voltammogram (see Fig. 4.33A).  

 

Figure 4.33. (A) An example of the baseline approximation methods (green dashed line – 

“tangent fit”; blue line – curvature spline baseline) and (B) baseline-corrected 

voltammogram (red curve in A plot) transformed by 1st Derivative showing the method of 

extraction of signal feature. 

 

However, manual adjustment on a very large number of voltammograms is not practical, and 

thus, a “compromise” solution was employed: a unique curvature baseline (blue curve in Fig 

4.32) was constructed and was subtracted from each voltammogram. As the baseline of each 

separate voltammogram was not always at the same absolute value (see voltammograms in 

Fig 4.32) the peak height was discarded as a signal measure. Thus, in order to “account” for 

the change in the baseline, the transformation of voltammograms by 1st Derivative was 

applied as is presented in Fig. 4.33B. Finally, a difference between the maximum and 

minimum of the 1st Derivatives was used as a signal intensity feature (blue arrow in Fig. 

4.33B) to construct the complexometric titration curve. All of these treatments, including the 
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smoothing of the voltammograms were automatically performed using the ECDOSFT 

program, developed in our laboratory (D. Omanović) specifically for the treatment of 

voltammetric curves. 

 

4.9.4. Treatment of complexometric titration curves – fitting to a model 

As mentioned above, complexometric titration curves are interpreted assuming a discrete 

model which presumes the existence of one, two or more ligand classes (L1, L2,… Ln) with 

sufficiently different binding properties. The most common methods for data treatment i.e. 

determination of complexation parameters (ligand concentrations and conditional stability 

constants) are known as linearizing Ružić-van den Berg (Ružić, 1982; van den Berg, 1982), 

Scatchard (1949) and transforming Langmuir/Gerringa (Gerringa et al., 1995) methods. All 

these methods are incorporated within the ProMCC software which is used as data treatment 

tool (Omanović et al., 2015). Fig. 4.34 shows a snapshot of the graphical user interface of 

the program, with an example of experimental data fitting.  

 

Figure 4.34. Snapshot of the ProMCC program showing an example of fitting experimental 

data (surface sample, summer 2009, “clean” site). Points are experimental data, and blue line 

is fitted curve. 
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On the upper left plot, the signal intensity feature was converted to concentration using the 

estimated sensitivity, and plotted against the total metal concentration. Data were visualized 

in Ružić/van den Berg, Scatchard and Langmuir/Gerringa transformations (lower left, lower 

right, and upper right, respectively). The blue line is obtained from results of fitting to a 

model of two ligands.  

The two major starting steps in preparing data for the fitting are the estimation of the 

sensitivity (needed to convert the signal feature to concentration), and the selection of the 

correct model (number of ligand classes). These two steps are interconnected, i.e. by 

changing the sensitivity in case of the existence of only one ligand class, one can virtually 

obtain two ligand classes if the sensitivity is overestimated. Fig. 4.35 shows a Scatchard plot 

of a simulated (noised) titration curve for a one-ligand model. In case of a one-ligand model 

and the correct adjustment of sensitivity, the Scatchard plot should be linear (left plot in Fig. 

4.35). For a two-ligand model, a curvature shape is expected (see Fig. 4.34); however, a 

similar curvature could be obtained in the case of a one-ligand model if the sensitivity is 

overestimated (in the presented example by only 10%, right plot in Fig. 4.35). Thus, the 

setup of the correct sensitivity is a very important step in obtaining reliable complexation 

parameters. 

 

Figure 4.35. Simulated one-ligand model being shown as a Scatchard plot with the correct 

sensitivity (left plot) and 10% of overestimated sensitivity (right plot). 

 

Recursive and direct fitting methods of automatic adjustment of sensitivity are available 

within ProMCC (see Omanović et al., 2015. for details). While both methods work almost 

perfectly on simulated noised data, real experimental data are much more complex, so 

applying the automated sensitivity adjustment could, in some cases, lead to highly over- and 

under-estimated values. Although both of these methods are utilized in this work as an 
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optional control method, the final decision of the “true” sensitivity was based on the visual 

inspection of all linearized graphs and on the user experience.  

 

4.9.5. Complexometric titration curves 

Fig. 4.36 shows obtained complexometric titration curves for all analysed samples in linear 

(A1) and logarithmic (B1) scale. As it is obvious, different signal intensities were obtained 

for the same total Cu concentration. In part, this is due to the different amount of complexed 

Cu, but mostly it is because of a different measurement setup, i.e. size of the drop, stirring 

conditions, etc., which do not have an influence on the determination of complexation 

parameters or the influence is negligible (stirring intensity).  

 

Figure 4.36. All complexometric titration data (36 sets) presented in linear (A1) and 

logarithmic scales (B1). Complexometric titrations corresponding to surface samples of 

“clean” and “polluted” sites (A2, B2) (summer 2009 campaign). 
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The two bottom plots in Fig. 4.36 show examples of titration curves obtained for the same 

season (summer 2009) but for two different sites (samples): “clean” and “polluted”. As the 

same electrode setup was used for both titrations, the same sensitivity was obtained. Log-

log plot (B2) clearly demonstrates the differences between these two samples in terms of 

distribution of titration points, which have an influence on the determination of complexation 

parameters for these two samples (this will be discussed later on in the text). 

Most of the 36 complexometric titration data sets were fitted into a two-ligand model, 

applying the Langmuir/Gerringa fitting routine in Log-Log mode (Omanović et al., 2015). 

Only four data sets, which correspond to the water samples in the upper layer of the 

“polluted” site (nautical marina), matched the one-ligand model. Free ([Cu2+]) and inorganic 

Cu ([Cuinor]) at its ambient total dissolved concentration ([Cu]T) were calculated (parameters 

related to bioavailability/toxicity of Cu) from the accepted parameters obtained by fitting. In 

order to calculate free Cu concentration, an inorganic side reaction coefficient (αCu’) needs 

to be calculated.  

As the composition of the samples is different depending on the depth/season, this should be 

done for each sample separately. The concentration of major ions (Cl-, SO4
2-, HCO3

-, Br-, F-

, Na2+, Mg2+, Ca2+, K+, Sr2+) is calculated based on the Dittmar law, which assumes the same 

proportions between concentrations of major ions in relation to salinity. Only the 

concentration of carbonate (HCO3
-) was calculated separately based on the dependence of 

dissolved inorganic carbon (DIC) on salinity measured during the “transect” campaign in 

winter and summer (see Fig. 4.4). Once the concentrations were calculated (in Excel), a table 

with input parameters was loaded into the Visual MINTEQ v3.0 program, which was used 

to finally calculate the free Cu concentration at a fixed pH = 8.2. The obtained αCu’, 

graphically presented in Fig. 4.37, clearly shows the difference between summer and winter, 

primarily because of the difference in concentration of carbonates, which is the major 

inorganic ligand for Cu. 

All the obtained results are tabulated in Table 4.10 and will be interpreted and discussed 

together with other parameters of the same samples (season, depth, salinity, content of 

DOC,…) in the Discussion section. 
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Figure 4.37. Dependence of the inorganic side reaction coefficients of Cu (αCu’) on salinity 

calculated for summer (red) and winter (blue) samples. 
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CHAPTER I 

 

“Evidencing the natural and anthropogenic processes 

controlling trace metals dynamic in the Krka River estuary” 

 

5.1. Conceptual hydrodynamic model of element transport 

Principally, in the absence of additional sources within the two end-members, the 

distribution of suspended material and elements within the salinity gradient is regulated by 

the physico-chemical processes (mainly adsorption/desorption), leading (usually, but not 

necessarily) to a positive or negative deviation from the theoretical dilution line 

(conservative behaviour). For estuaries with a relatively homogenous vertical salinity and 

strong currents, the transport of elements is basically considered to be a one-dimensional 

process. However, a characteristic of the salt-wedge estuaries is its strong salinity 

stratification in the surface fresh/brackish and underlying seawater layers flowing in opposite 

directions (see Scheme 1). Between the two layers, a velocity shear is formed, which induces 

a progressive increase in salinity (and transport of elements) of the overlying brackish layer, 

and the movement of the upper edge of seawater toward the sea (Legović, 1991). As the 

energy of water in stratified estuaries is not high, the diffusional and convective upward 

and/or downward vertical transport of elements takes place. This hydrodynamic transport 

model was principally considered in explaining the distributions of measured parameters 

along the vertical and horizontal estuarine transect in the following sections. 

 
Scheme 1. Principal hydrodynamic and transport model of the Krka River estuary. 
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5.2. Behaviour of trace metals along the salinity gradient 

The main characteristic for all measured metals is that the concentrations in the freshwater 

end-member are lower than in seawater (Table 5.1), both dissolved and total. This is the 

opposite of what is true in many other estuaries that are characterized by a high input of 

metals in the sea by the river (Cobelo-Garcia et al., 2004; Elbaz-Poulichet et al., 1984; Hatje 

et al., 2003a; Kraepiel et al., 1997; Oursel et al., 2013; Turner and Millward, 2002; Waeles 

et al., 2007; Waeles et al., 2008a). Due to the low SPM input, the impact of removal 

processes  within estuarine mixing zone is diminished, making the identification of these 

processes (by comparison of the theoretical dilution curve and the actual concentrations) 

much more complicated (Dorten et al., 1991; Elbaz-Poulichet et al., 1991; Fu et al., 2013). 

In line with this, as the particulate fraction is low, the contribution of potentially released 

metals to the dissolved pool is also probably minor. The subsurface maximum within the 

FSI layer previously reported to occur for organic matter and trace metals (Bilinski et al., 

2000; Kniewald et al., 1987; Louis et al., 2009; Žutić and Legović, 1987) was not registered 

in our study mainly due to an insufficient number of points in the vertical profile (only three 

points, from which only one is in the FSI layer). 

  

Table 5.1. Average dissolved metal concentrations (in nM) in each layer for the 

winter/summer period and the average dissolved fraction (DF) (all samples). 

Layer Zn Cd Pb Cu Ni Co 

Brackish 6.7/7.7 0.052/0.060 0.042/0.074 3.9/11.3 3.7/5.5 0.33/0.38 

FSI 7.5/8.5 0.076/0.071 0.055/0.098 4.4/10.2 5.1/6.3 0.36/0.41 

Seawater 7.0/8.6 0.081/0.080 0.108/0.118 4.0/5.7 6.4/7.8 0.30/0.51 

       
DF (%) 87/68 93/91 52/36 90/84 92/91 92/83 

 

Shortly, with the exception of Pb, a general characteristic of all other metals is a very high 

average degree of dissolved fraction (DF; see Table 5.1). The average dissolved fraction was 

slightly smaller in summer than in winter, which is probably more a consequence of the 

different type of SPM (more of biogenic origin), than its concentration. 

 

5.2.1 Zinc (Zn)  

Distributions of dissolved Zn in relation to salinity and distance along the estuary transect 

for the winter and the summer period and for each layer are presented in Fig. 5.1. In the 

surface brackish layer, Zn exhibited a highly positive deviation from the theoretical dilution 
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line for both periods, indicating an additional supply of Zn. As expected, for both sampling 

periods the highest concentrations were measured in samples collected in the Šibenik bay. 

However, observing the same level of Zn in the winter as for the summer period (~15 nM) 

was unexpected, despite the fact that there are decreased activities (touristic) in the winter 

period. This implies that there is a “continuous” supply of Zn in the surface layer. Except 

nautical marina located within the Šibenik bay, “diffusive” inputs of communal waters from 

the town probably take place (despite the fact that the majority of waste water is channelized 

to a new collector). While for the winter campaign (Fig. 6, left plots), Zn concentration 

increased progressively from ~2 nM at the freshwater end-member up to 15 nM at the 

Šibenik bay, and then decreased seaward, reaching ~3 nM at the seawater end-member, in 

the summer period (Fig. 5.1, right plots), an additional increase of Zn was observed at the 

5th km. This increase is attributed to the intensive touristic activities in summer, especially 

related to a large number of boats anchored in front of the Skradin town and entrance to the 

National park. 

 

Figure 5.1. Distribution of dissolved Zn concentrations in relation to salinity and distance 

for the three layers, in the winter and summer period. The dashed line represents the 

theoretical dilution line.  
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Considering the magnitude of the estuary spatial scale, the mentioned Zn supply in the 

surface layer could be considered point-source inputs. A point source contamination input 

in rivers is normally distributed only in the downstream direction. However, although the 

surface layer in the Krka River estuary is flowing downstream, the observed “pyramidal” 

distribution of Zn in the surface layer could only be justified if a two-directional transport 

model (described in section 5.1.) is respected. Thus, considering the point-source supply in 

the Šibenik Bay, Zn is transported in a downward (vertical) and seaward (horizontal) 

direction. In the seaward direction, a near-linear decay with the salinity could be drawn (Fig. 

5.1), indicating quasi-conservative behaviour (considering the seawater end-member). The 

progressive decrease of Zn concentrations was also observed in the upstream direction. 

However, the concentration is decreasing more rapidly as salinity declines, pointing to a 

non-conservative behaviour (regarding the freshwater end-member). The described 

hydrodynamic transport model assumes that the seawater layer is progressively enriched by 

Zn (with a decreasing vertical gradient). An enrichment of the seawater layer is mainly the 

consequence of a vertical transport (i.e. settling) of Zn from the contaminated zone and its 

progressive accumulation, amplified by the longer residence time of the seawater flowing 

upstream. By an upstream seawater flow, a mixing of the two layers leads to an increase in 

Zn in the surface layer, while the concentration in the halocline is generally between these 

two boundaries, i.e. the same behaviour as observed as for SPM. The same trends were also 

obtained for the Zn “concentration peak” observed in the summer at the 5th km. In both cases, 

a sharper decrease of Zn concentration in the upstream direction compared to the the 

downstream direction is logical and is a consequence of the partial Zn removal, as well as 

the dilution within the seawater layer. The vertical transport of Zn supplied in the surface 

layer was reflected along the vertical column, yielding a “concentration peak” in the other 

two layers at the source site (KE-10, KE-11).  

For both campaigns, an upstream increase of Zn was observed in the seawater layer (Fig. 

5.1, grey squares). The intensity and the shape of these spatial distributions are a “net” result 

of several physico-chemical parameters and processes. The residence time of the seawater 

layer increases in the upstream direction, which in combination with a continuous supply 

and a low removal from the water column (low Zn particulate fraction), produces a 

progressive accumulation and an upstream increase of Zn concentration, leading to ~5× 

higher concentration of Zn in the seawater layer than in the freshwater layer at the first 
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sampling point (KE-1). Compared to the seawater end-member, the concentration in the 

seawater layer increased about 3 times for both the winter and the summer period. 

 

5.2.2 Cadmium (Cd)  

Dissolved Cd concentration in the surface brackish layer showed an increasing trend with 

increasing salinity for both periods: from ~0.010 nM in the freshwater, to ~0.070 nM in the 

seawater end-member, respectively (Fig. 5.2). Along the salinity gradient, most of the values 

are above the theoretical dilution line, indicating a non-conservative behaviour. Commonly, 

this behaviour is ascribed to the competitive effect of the chloride ions, i.e. release of 

dissolved Cd from the SPM into solution as a result of the formation of stable chloro-

complexes (Elbaz-Poulichet et al., 1996; Elbaz-Poulichet et al., 1991; Kraepiel et al., 1997; 

Oursel et al., 2013; Waeles et al., 2005). Although such behaviour is consistent with other 

studies, in most of these studies that reported non-conservative Cd behaviour in estuarine 

mixing, the concentration of SPM was much higher than in our case, and the distribution is 

characterised by the “concentration peak” appearing mainly at salinities between 10 and 20  

(Dabrin et al., 2013; Elbaz-Poulichet et al., 1996; Elbaz-Poulichet et al., 1987; Fu et al., 

2013; Hatje et al., 2003a; Kraepiel et al., 1997; Oursel et al., 2013; Oursel et al., 2014; Paucot 

and Wollast, 1997; Waeles et al., 2005; Waeles et al., 2004). As the particulate concentration 

of Cd measured in the freshwater end-member is very low (<10%), the release of Cd from 

SPM is excluded as a main contributor to the observed trends in the Krka River estuary 

(although it can contribute partly to the overall increase). For both the winter and the summer 

period, the highest concentrations of Cd were measured in the Šibenik bay (~20th km), which 

is consistent with the results of high-resolution mapping within the bay (section 4.3.2). Thus, 

the observed non-conservative behaviour of Cd is primarily ascribed to the point-source 

input, and could be explained by the seaward/landward redistribution by the transport 

mechanism previously described for Zn. The similar trend of Cd with salinity obtained in 

previous study with smaller number of sites was defined as “near-conservative” (Elbaz-

Poulichet et al., 1991). 

Compared to Zn, a lower anthropogenic “concentration peak” within the Šibenik bay was 

obtained due to the much lower relative Cd contribution to the system. No significant 

difference between winter and summer Cd spatial distributions in the surface brackish layer 

was found for most of the estuarine transects. This is consistent to the fact that probably most 

of the Cd pollution is related to phosphate ore "production" which is not as seasonal as 
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nautical activities. Slightly higher (~30%) Cd concentrations measured in summer in the 

Šibenik bay are probably a consequence of more intensive activities within the harbour, 

which was identified as the main source. However, this increase is too small to be 

“measurably” reflected at more downstream/upstream locations. 

 

Figure 5.2. Distribution of dissolved Cd concentrations in relation to salinity and distance 

for the three layers, in the winter and summer period. The dashed line represents the 

theoretical dilution line.  

 

As for Zn, an upstream increase of Cd concentration in the seawater layer was registered. 

The shape of the concentration increase follows that of Zn for the majority of transect, 

despite a relatively smaller contribution of anthropogenic Cd from the upper layers. For the 

winter period, a very strong upstream increase (~3×) of Cd, starting upstream of the ~10th 

km (site KE-4) was measured. The same relative increase was found also for Co. Currently, 

we do not have a reasonable physico-chemical explanation/scenario which would lead to 

such a strong increase in concentration of these two metals, other than that the increase is a 

consequence of the progressive accumulation accompanied with the absence of removal 

processes which do not occur in “old” seawater (as is the case for Pb). This scenario might 
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be partly supported by the observed trend in particulate fractions of metals, which is the 

lowest for Cd and Co.  A more detailed study would be needed in order to fully explain this 

observation. 

Contrary to the winter period which is characterised by a strong increase, a drop of Cd in the 

seawater layer in the summer period was recorded at the first sampling site (KE-1). This site 

is characterised by the cuvette, where anoxic conditions occurred. Anoxic conditions favour 

the reduction of sulphate to sulphide (Rigaud et al., 2013), leading to the formation of strong 

metal-sulfide complexes. The same concentration drop is also observed for Cu, while other 

metals showed either an increase (Zn, Co) or no significant (Pb, Ni) change in concentration. 

The formation of CdS precipitates was recently found to control the vertical distribution of 

dissolved Cd in oceans at depths characterized by the oxygen-deficient zones (ODZ) 

(Janssen et al., 2014). In our case, both dissolved and particulate fractions of Cd and Cu 

dropped at this location. As the depth range of the seawater layer at this location is relatively 

thin (~3 m), a potentially formed sulphide precipitate was already removed from the water 

column at the time of sampling, and thus the drop of both concentrations occurred. Another 

possibility which should not be excluded as a possible explanation of the observed 

concentration drop is related to the analytical procedure of metal determination. Namely, the 

determination of dissolved/total metals include acidification to a pH of < 2 and UV-light 

digestion of samples in order to destroy residual organic matter which could interfere with 

the measurement. There is a possibility that the formed CdS and CuS complexes, if not 

dissociated by the acidification, were not transformed to the measurable species by the 

applied electrochemical method and remained “invisible”. Among the measured metals, the 

highest sulphide stability constants in seawater were found for Cd and Cu (Al-Farawati and 

van den Berg, 1999), which could partly justify the second scenario (Jiann et al., 2005). A 

more detailed study is needed in order to explain this observation.  

 

5.2.3 Lead (Pb) 

The same trends of dissolved Pb in the surface brackish layer in relation to salinity and 

distance were observed for the winter and summer period (Fig. 5.3). As for all other metals, 

the concentration of dissolved Pb increased in the seaward direction from ~0.020 to ~0.050 

nM, but showed in general a strong positive deviation from the theoretical dilution line. 

However, if examined by separate segments, almost conservative behaviour for Pb was 

maintained up to the ~15th km for the summer period, whereas a negative decline from the 
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dilution line is obvious for the first ~10 km in the winter period. Although of a very small 

absolute intensity, this decline could be attributed to the removal of Pb, often explained by 

rapid sorption of dissolved Pb onto re-suspended particles and/or co-precipitation with iron 

and manganese oxides (Elbaz-Poulichet et al., 1984; Fu et al., 2013; Ouseph, 1992; Waeles 

et al., 2007; Waeles et al., 2008b). In the summer period this decline was not observed 

probably due to the different average nature of SPM and/or steady state equilibrium between 

the Pb input and removal from the layer. The positive deviation from the dilution line at 

more downstream sites for both periods is primarily caused by the additional anthropogenic 

input of Pb within the Šibenik bay. Similar trends of Pb distribution in the surface layer were 

noticed in the previous study (Elbaz-Poulichet et al., 1991). The shape of the pyramidal Pb 

concentration peak could be generally explained as was for Zn and Cd, and will be not 

repeated here.  

 

Figure 5.3. Distribution of dissolved Pb concentrations in relation to salinity and distance 

for the three layers, in the winter and summer period. The dashed line represents the 

theoretical dilution line. Inset: Relationship of dissolved vs. total Pb for the winter (W, empty 

circles) and summer (S, grey triangles) period. 

 

One of the particularities which characterise Pb distribution is a systematically high 

concentration increase with depth at almost all sites (much more expressed in the winter than 
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in the summer), and an absence of continuous upstream concentration increase in the 

seawater layer, the behaviour observed for all other metals. Compared to other metals, Pb is 

known as the particle-reactive metal. While the dissolved fractions for most of the metals 

were quasi-constant along the estuary in all three layers (>80%), the dissolved fraction of Pb 

varied from ~20% at the most upstream site, to ~80% at the seawater end-member (Fig. 5.4) 

for all three layers. The observed trends could not be ascribed exclusively to the change in 

SPM concentration, but also to the type of SPM (and potentially to the Pb:SPM ratio). This 

could be clearly demonstrated using values obtained at the most upstream sites in winter: 

while similar dissolved fractions in brackish and seawater layers (~30-40%) were found, a 

tenfold difference in SPM concentrations was measured. 

In the study performed by Elbaz-Poulichet et al., the concentration of Pb in the seawater 

layer “continuously” increased in a landward direction (based on 4 locations), reaching the 

highest value at the most upstream site (KE-3 in our case, 5th km). Profiles obtained in our 

study showed completely different behaviour: while an increase of Pb was recorded starting 

from the seawater end-member with the maximum within the Šibenik bay, a decrease in Pb 

concentration was registered thereafter in the landward direction, reaching a Pb 

concentration at the most upstream sites, smaller than those found in the seawater end-

member. This clearly indicates that the removal processes control the content and 

distribution of Pb in more upstream parts, commonly explained by Pb scavenging by Mn 

and Fe oxyhydroxide (Elbaz-Poulichet et al., 1984; Turner and Millward, 2002; Waeles et 

al., 2008b), a process usually observed in open ocean waters. As Mn and Fe concentrations 

were not measured in this study, we cannot confirm that this removal process is dominating. 

However, taking into account that a very high correlation factor (CF = 0.941, n = 13, p = 

95%) between Pb and Mn was found across the estuary transect (Cukrov et al., 2008b) and 

that high concentrations of Mn and Mn-particles were measured in the estuary zone in the 

vicinity of the former ferro-manganese factory (Bilinski et al., 1996; Omanović et al., 2006), 

this assumption seems reasonable in our case as well. The increased Pb concentration in the 

seawater layer is more pronounced and also extended in the winter (up to the 5th km) than in 

the summer period (up to the 10th/15th km), despite the average level of Pb being higher in 

summer. This could be explained by the faster settling rate in summer linked to a different 

nature of suspended particles, which is also supported by the higher particulate fraction in 

summer (see inset in Fig. 5.3), as well as the “energy” of water related to a longer residence 

time (Legović, 1991). An increase in dissolved (and total) Pb with depth is a consequence 
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of the accumulation of Pb that has sunk from the surface layer, while its spatial distribution 

within the seawater layer is a net result of the above mentioned processes affecting 

distribution between the particulate and dissolved phase. However, the sediment should not 

be discarded as a possible additional source of Pb due to numerous biogeochemical processes 

within the sediments and at the sediment/water interface (SWI) (Cobelo-Garcia and Prego, 

2004; Dang et al., 2014; Lourino-Cabana et al., 2011; Martino et al., 2002; Rigaud et al., 

2013). The most recent information from the media (July 2014) is that there is an army 

shipwreck at the entrance of the Šibenik bay (site KE-11), which sank at the end of the 2nd 

world war. As in that time Pb was used as an antifouling paint and as such torpedo-boats 

were equipped with Pb-batteries, there is a possibility that some portion of increased Pb in 

the seawater layer originates from that source. Moreover, an open question remains about 

the contribution of Pb released from the lost Pb fishing-weights deposited at the sediment, 

which was documented by the diver to be heavily spread at the “fishing” locations within 

the bay. 

 

Figure 5.4. Distribution of dissolved Pb fraction in relation to distance for the three layers, 

in the winter and summer period.  

 

5.2.4. Copper (Cu) 

Among the measured metals, the most variable spatio-temporal distributions along the 

estuary transect were found for both dissolved and total Cu concentrations (Fig. 5.5). 

Considering the concentrations of end-members, only slightly higher concentrations (in 

absolute values) were measured in seawater samples (~2.2 nM vs. ~3.3 nM), similar to as 

was previously measured by Louis et al. (2.7 nM vs. 4.0 nM) (Louis et al., 2009a) and Elbaz-

Poulichet et al. (1.8 nM vs. 4.4 nM) (Elbaz-Poulichet et al., 1991). In addition, the difference 

between winter and summer end-member samples was also minor. In contrast to these 
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similarities, the dissolved concentrations exhibited quite different inter-estuarine 

distributions for the winter and summer campaigns, especially pronounced for the surface 

and the FSI layers. With increasing salinity a positive deviation from the conservative line 

was a general characteristic for both periods. The maximal level (~7 nM), and a common 

trend in the winter period, agree with those measured by Elbaz-Poulichet in May of 1988 

(Elbaz-Poulichet et al., 1991). In both studies, the highest concentrations, ascribed to 

“regular” anthropogenic input, were measured in the Šibenik bay. However, while in the 

1988 study the main source of Cu was likely the contaminated untreated waste water 

discharged within the bay, in our study, the increased Cu originates primarily from the 

antifouling paints of the boats, located in the nautical marina, harbour and along the costal 

line of the Šibenik town. About a three-fold increase in the Cu concentration, compared to 

the end-members, was registered (winter period). A direct comparison with other estuaries 

is not as straightforward as both the conservative (Abe et al., 2003; Elbaz-Poulichet et al., 

1996; Fu et al., 2013; Koshikawa et al., 2007; Waeles et al., 2009) and the non-conservative 

(Hatje et al., 2003a; Waeles et al., 2008b) dissolved Cu distributions observed. A non-

conservative behaviour observed in our, but also in many other estuaries, is attributed to 

additional, usually point-source, anthropogenic inputs. As presented for other metals, a 

vertical and horizontal redistribution of supplied Cu takes place in both the seaward and 

landward directions, producing a characteristic “concentration peak” in the brackish and the 

FSI layer (Fig. 5.5).  

A strong increase of dissolved Cu within the inter-estuarine transect was observed in summer 

(Fig. 5.5), as was similarly shown previously for dissolved Zn. The two “hot-spots”, located 

at the 5th km (Skradin village) and the 20th km (Šibenik bay) can be easily distinguished. 

Compared to the winter period, dissolved Cu increased threefold (up to ~20 nM) in the 

Šibenik bay, whereas at a more upstream site (south entrance to the National park) a 

sevenfold (~15 nM) increase occurred. Increased Cu concentrations in the summer period 

are primarily the result of intensive touristic activities, i.e. nautical traffic of 

pleasure/recreational boats. The exact intensity of nautical traffic (number of passing boats) 

is unknown for the period of sampling, however our recent video monitoring survey 

conducted in 2014 (data not shown) showed an exponential increase of boats in the period 

from January to August (approximately a tenfold increase). At the summer season peak 

(July/August), between 500 and 1500 boats (depending on weather conditions) pass across 

the estuary every day. As the majority of boats is protected by antifouling paints containing 
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Cu as an active biocide component, it is not surprising that such a high increase of its 

concentration occurred in surface layer. Due to the unknown number of boats, their average 

size/area and the duration of their stay within the estuary, it is not possible to calculate the 

total amount of Cu released this way.  

 

Figure 5.5. Distribution of dissolved Cu concentrations in relation to salinity and distance 

for the three layers, in winter and summer period. Dashed line represents theoretical dilution 

line.  

 

Although Cu is highlighted as the main biocide component (~300 mg g-1 of Cu), antifouling 

paints also contain high concentrations of Zn (~100 mg g-1 of Zn) (Singh and Turner, 2009b). 

While both Cu and Zn showed two “concentration” peaks in the summer period (at the 5th 

and 20th km), an interesting question is the question of persistency of high Zn concentrations 

in the Šibenik bay. This occurrence could also be expressed as the absence of the additional 

Zn increase in summer at that position. As previously mentioned, the persistency of a high 

Zn concentration could be explained by the high continuous input of Zn throughout the 

whole year, outstripping the input by the boats, while the other hypothesis (expressed as the 
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absence of a Zn increase in summer) could be linked to the chemistry of Zn release in relation 

to salinity. Namely, Sing and Turner (2009a) showed that the release of Cu increases with 

salinity, whereas the dissolution of Zn strongly decreases (Singh and Turner, 2009a). 

Although the observed concentration maximum in our study appeared at much higher 

salinities (20-30) compared to the range of the highest Zn dissolution decrease (0-10), in 

combination with the temperature and concentration of organic matter (Neira et al., 2009; 

Singh and Turner, 2009a), these hypotheses are worth the consideration in potential further 

studies. 

As observed for some other metals, dissolved Cu concentrations in the seawater layer 

increased continuously in the upstream (landward) direction as a result of the progressive 

accumulation of Cu. The higher increase observed in summer (~threefold increase compared 

to the seawater end-member) compared to in winter (twofold) was expected due to the higher 

contribution of Cu from the surface layer by downward vertical transport. A decrease of Cu 

in the cuvette (Fig. 5.5) at the first site (KE-1) in summer, already discussed along with Cd 

behaviour, could be related to the occurrence of anoxic conditions and the likely formation 

of sulphide precipitates.  

 

5.2.5. Nickel (Ni) 

Among the examined metals, only dissolved Ni concentrations followed nearly-conservative 

behaviour with the salinity (Fig. 5.6). Starting with ~2 nM at the freshwater end-member, 

dissolved Ni increased up to ~6 nM in winter, and ~8 nM in summer, at the seawater end-

member. This concentration range fully agrees with that measured by Elbaz-Poulichet in 

May, 1988 (Elbaz-Poulichet et al., 1991). A good agreement with the theoretical dilution 

line is consistent with the observed stable distribution of Ni concentrations within the 

Šibenik bay, i.e. absence of anthropogenic input. Both conservative (Elbaz-Poulichet et al., 

1996; Elbaz-Poulichet et al., 1991; Fu et al., 2013; Hatje et al., 2003a; Paucot and Wollast, 

1997) and non-conservative behaviour of Ni in the salinity gradient was reported in the 

literature (Koshikawa et al., 2007; Oursel et al., 2013). Vertical concentration profiles of Ni 

follow the horizontal one, i.e. the concentration increases with the depth (salinity). The 

typical upstream increase of metal concentrations in the seawater layer was also observed 

for Ni. 
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Figure 5.6. Distribution of dissolved Ni concentrations in relation to salinity and distance 

for the three layers, in the winter and summer period. The dashed line represents theoretical 

dilution. 

 

5.2.6. Cobalt (Co) 

Horizontal profiles of dissolved Co showed less defined profiles compared to the other 

metals (Fig. 5.7). While in winter, the concentration in the freshwater end-member (~0.3 

nM) was higher than in the seawater end-member (~0.2 nM), a higher level of dissolved Co 

(~0.4 nM) was measured in summer in the seawater end-member. A positive deviation from 

the theoretical dilution line was observed in winter. Release of dissolved Co was also 

observed in mixing zones in studies of other authors (Oursel et al., 2013; Takata et al., 2010). 

However, a positive deviation up to a salinity of 25 in summer was followed by a negative 

one (Fu et al., 2013), showing the complex behaviour of Co. As for Ni, there is no additional 

anthropogenic input of Co in the Šibenik bay.  
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Figure 5.7. Distribution of dissolved Co concentrations in relation to salinity and distance 

for the three layers, in the winter and summer period. The dashed line represents theoretical 

dilution line.  

 

Both the winter and the summer horizontal profiles of dissolved Co in the seawater layer are 

characterized by a strong upstream increase. This increase is most probably associated with 

the combined effect of the release of dissolved Co from the settled particulate matter and 

upstream progressive accumulation in the seawater layer, having a longer residence time 

(longer in summer than in winter). Contrary to Cd and Cu for which a decrease of 

concentration with depth in the “cuvette” at the first site (KE-1) was observed, dissolved Co 

greatly increased. The increase of Co concentration in the “cuvette” is coupled with an 

increase of its dissolved Co fraction (88% average in cuvette vs. 77% average for stations 2 

to 5). Such behaviour could be related to the link between Co and Mn cycles, i.e. 

remobilisation of Co due to the reduction of settled MnO2-containing particles as previously 

reported in hypoxic-anoxic waters (Canavan et al., 2007; Rigaud et al., 2013). Additional 

studies will be required to validate this observation.  
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5.3. Partitioning of trace metals 

With the exception of Pb which was described earlier in the text, concentrations of trace 

metals in particulate fraction are below 20% in most of the samples (Fig. 5.8). Slightly higher 

average particulate fractions obtained in summer samples are mainly the consequence of the 

differences in SPM nature (more biogenic). Due to the relatively low total quantity, any 

release of metals from particles to the dissolved phase in the salinity gradient would hardly 

be noticeable if sample treatment as well as the accuracy and precision of the analytical 

technique were not “ideal”.  

The particle-water distribution coefficients (KD) is an empirical term commonly used to 

describe solid-solution interactions, i.e. in combination with SPM, it explains the role of 

particles in trace element behaviour in the solution: 

𝐾𝐷 =
𝑐𝑝𝑎𝑟𝑡

𝑆𝑃𝑀×𝐶𝑑𝑖𝑠𝑠
 (𝐿 𝑘𝑔−1), 

where cpart and cdiss are metal concentrations in particulate and dissolved form, respectively, 

while SPM is concentration of suspended material. 

As it depends on many factors (e.g. solution and particle composition, speciation, DOC and 

SPM concentration, pH, temperature, salinity), a large variation could be expected in 

systems that undergo different physico-chemical changes, implying that the justification of 

KD variation should be taken with caution (Bourg, 1987; Cobelo-Garcia et al., 2004; Comans 

and Vandijk, 1988; Elbaz-Poulichet et al., 1996; Fu et al., 2013; Hatje et al., 2003b; Turner, 

1996). The direct comparison of results within different studies is thus not always 

straightforward. In addition, differences in KD could also be derived by the applied 

analytical/procedural methodologies (total digestion vs. acid leaching). An acid leachable 

methodology which was applied in the present case was found to better suit the overall 

behaviour of elements in the salinity gradient, because this fraction of metals could be 

considered potentially exchangeable (Elbaz-Poulichet et al., 1996), contrary to the total 

digestion method which extracts metals from the particle lattice.  

At the level of metals measured in the estuary, the uncertainty of applied analytical 

techniques is usually up to 10%. Thus it is reasonable to expect relatively high uncertainties 

in parameters related to particulate fraction, such as the distribution coefficient KD. As was 

already mentioned above, KD depends on various parameters. Consequently, taking into 

account that our data covers two contrasting periods of the year, a large salinity range and 
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different physico-chemical characteristics of each separate layer, the wide range of logKD 

values obtained in our work was in a way expected.  

 

 

Figure 5.8. Relationships of dissolved vs. total metal concentrations for winter (W) and 

summer (S) period (all three depths). 
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Figure 5.9. Percentage of particulate metal fraction (in total) in brackish (triangles) and 

seawater (squares) layer in relation to suspended particulate matter (SPM, log scale) 

concentrations for winter (blue) and summer (red) periods. Grey lines represent theoretical 

values calculated for defined logKD, as indicated on plots.  

 

These differences could be reliably explained if the dominant source/composition of SPM is 

known (Deycard et al., 2014; Oursel et al., 2014b).  The variability of elements partitioning 

related to the fluctuating KD could be perceived by plotting the relationship of particulate 

metal fraction (in %) on SPM concentration along the lines representing theoretically-

expected values for a defined logKD (Deycard et al., 2014; Oursel et al., 2014b). Fig. 5.9 

provides such plots for the brackish and seawater layers for the winter and summer periods. 
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A relatively high dispersion of values shows complexity, but also “sensitivity” of the studied 

estuary, in which even a small change in absolute SPM concentration can be strongly 

reflected in the KD value. It should be noted, that the dispersion of data is partly caused by 

the propagated uncertainty in the parameter estimates due to the very low concentrations of 

metals and SPM.  

If averaged for all samples, the order of logKD values (Pb>Zn>Co~Cu>Ni~Cd) generally 

agrees with those of other authors (Chiffoleau et al., 1994; Fu et al., 2013; Hatje et al., 2003a; 

Munksgaard and Parry, 2001). Compared to results obtained by Fu et al. (2013) for the East 

Hainan estuary having similar levels of metal concentrations and SPM (Table 5.2), our 

values are slightly lower, indicating on average a different composition of SPM. However, 

rather than averaging data, it is more interesting to examine data for possible existing trends 

in relation to other changing parameters (e.g. SPM, salinity). Among the six possible 

“independent” variations of logKD for each metal in relation to various parameters (salinity, 

distance, SPM), only data for the winter campaign and the brackish layer showed a well-

defined tendency for all metals: a decrease of logKD with distance, i.e. with salinity and/or 

an SPM increase (see below). 

 

Table 5.2. Average values of distribution coefficient of metals (logKD). 

 logKD (StdDev) 

Metal 
all samples 

(N=98) 

Winter 

(N=47) 

Summer 

(N=50) 
(Fu et al., 2013) 

Pb 5.69 (0.35) 5.59 (0.47) 5.73 (0.25) 5.7 

Zn 4.93 (0.48 4.74 (0.56) 5.09 (0.25) - 

Co 4.74 (0.48) 4.61 (0.44) 4.84 (0.49) 5.3 

Cu 4.69 (0.36) 4.57 (0.46) 4.78 (0.16) 4.8 

Ni 4.44 (0.43) 4.50 (0.41) 4.38 (0.43) 5.1 

Cd 4.42 (0.42) 4.34 (0.51) 4.46 (0.30) 4.8 

 

 

5.3.1. Distribution of KD in the surface (brackish) layer 

In studies by Turner and Millward (2002) (Turner and Millward, 2002) and Benoit et al. 

(1994) (Benoit et al., 1994), the authors provided empirical equations to describe the 

dependence of KD on salinity (KD=KD
°(S+1)-b) (where KD

° applies for the freshwater end-

member) or on SPM  (logKD=b+m×logSPM) in which data could be fitted in order to extract 



 

5. Discussion 

164 
 

optimized parameters. The decline in KD with an SPM increase observed primarily in 

systems with high SPM is known as the particle concentration effect (PCE) (Benoit et al., 

1994), (Benoit et al., 1994; Jiann et al., 2005; Robert et al., 2004). It is not worthwhile to 

expect that only one parameter controls the observed behaviour, but rather a combination of 

different parameters (for each metal). The fact that salinity and SPM concentrations usually 

covariate makes the individual interpretation of the influence of each variable on the KD 

distribution complicated (Hatje et al., 2003a). Thus, rather than to separately fit data in the 

above two equations, we calculated a theoretical relationship of logKD vs. SPM for each 

metal, presuming a conservative mixing within the salinity gradient, based on the following 

equation: 

𝐾𝐷,𝑖 = (𝑆𝑃𝑀𝐹 ∙
𝑆𝑆𝑊−𝑆𝑖

𝑆𝑆𝑊
∙ 𝐾𝐷,𝐹 + 𝑆𝑃𝑀𝑆𝑊 ∙

𝑆𝑖

𝑆𝑆𝑊
∙ 𝐾𝐷,𝑆𝑊) (𝑆𝑃𝑀𝐹 + 𝑆𝑖 ∙

𝑆𝑃𝑀𝑆𝑊−𝑆𝑃𝑀𝐹

𝑆𝑆𝑊
)⁄ , 

where S is salinity, while subscripts “F” and “SW” denote freshwater and seawater end-

members,  respectively. 

Positive or negative deviation from the expected theoretical curve will allow identification 

of additional factors controlling the partitioning of TM within the salinity gradient, i.e. 

between the two end-members. Fig. 5.10 shows obtained values of logKD in relation to SPM 

(symbols) and calculated theoretical curves (full line). A good agreement between 

experimental and expected logKD values for Pb, Cu and Ni was obtained (Fig. 5.10), 

indicating that the decrease of the logKD with the SPM (e.g. salinity) is a simple result of the 

conservative mixing of the SPM from the two end-members, characterised by different 

properties towards these metals (i.e. different KD) due to their contrast in origin/nature. 

Consequently, even if Cu and Pb are submitted to significant anthropogenic inputs in the 

Krka estuary, their dissolved/particulate partitioning is mainly controlled by the proportion 

and affinity of riverine vs. marine particles and less by the salinity changes. However, for 

Cd, Co and Zn, the majority of experimental points lie below the expected theoretical curve, 

pointing to additional physico-chemical processes influencing the redistribution of metals 

between the dissolved and particulate phase.  
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Figure 5.10. Distribution of the partition coefficient (logKD) in the brackish layer for winter 

(circles) and summer (squares) periods in relation to SPM. Full lines represent the 

theoretically-expected relationship based on the conservative mixing (see text for details). 
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1994) is not assumed to play a significant role in our case due to the low absolute change of 

DOC in the salinity gradient. 

A clear distinction between freshwater- and seawater-derived SPM properties noticed in 

winter (independent of salinity effects) was not observed in the summer samples, which are 

characterized by a scattered distribution of logKD. A slightly higher average logKD within 

the observed range of SPM (Fig. 5.10, squares), implies that a larger biogenic component of 

SPM in summer (due to the higher phytoplankton productivity, as evidenced by POC 

content, Fig. 4.9) increases affinity towards metals. However, a common influence of other 

factors/processes (e.g. analytical performance, biological uptake of metals, temperature, 

etc.) most probably contributed to the observed variability. 

 

5.3.2. Distribution of KD in the bottom (seawater) layer 

Besides the previously mentioned winter trends in the brackish layer, if examined in a view 

of PCE, a completely opposite trend in the seawater layer in both seasons was observed for 

Zn and Pb (an increase of KD with  an SPM increase; data not shown). If examined according 

to distance, particles in the upper estuary region (longer residence time) are characterized by 

stronger affinities toward metals, which is clearly reflected in the partitioning of Pb and Zn. 

Benoit et al. (1994) related the PCE effect to the presence of Fe and Al colloids, which also 

caused the presence of Pb and Zn, largely in a colloidal fraction. A strong positive correlation 

of the particulate Pb and Zn fractions with the Fe colloids were found (Benoit et al., 1994; 

Dassenakis et al., 1997; Fu et al., 2013), while in addition, a positive correlation was found 

between particulate Pb and Mn (Admiraal et al., 1995; Dassenakis et al., 1995). Fe and Mn 

were not measured in our study, but as high concentrations of Mn and Fe were found in the 

estuary sediments (Bilinski et al., 1996; Cukrov et al., 2008b), the formation of colloidal Fe 

and Mn is likely to occur. Progressive accumulation of particles of biogenic origin having a 

larger specific surface could also explain the observed upstream increase of the KD of Zn 

and Pb. 
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Speciation of trace metals in the Krka River estuary 

 

CHAPTERS  II  and  III 
 

“In-situ speciation of trace metals in a vertical salinity 

gradient of the Krka River estuary using Diffusive 

Gradient in Thin Films (DGT) technique” 

 

“Assessing Cu speciation in the Krka River estuary under 

different environmental and anthropogenic conditions – an 

electrochemical complexometric titration study” 
 

 

5.4. Data quality in analytical/speciation measurements - a critical overview 

The majority of studies intended to explain certain processes, behaviours, fate etc. in any of 

the environmental compartments (water, soils, sediments, air) rely primarily on experimental 

results gathered by different analytical techniques. The importance of the quality of “raw” 

measurement data is often underrated, leading to interpretations which do not have a solid 

foundation. It is commonly “accepted” that the uncertainty of analytical results of various 

techniques is up to 10%. However, in environmental studies, the level of analytes is often 

close to the limits of detection or quantification (LOD or LOQ) of the applied technique, 

which consequently increases the uncertainty of an analytical result. An additional aspect 

which should be considered in environmental studies is the meaning of the “representative 

sample”. The classical and recommended approach to coping with these two “problems” is 

to increase the number of repetitive measurements/samplings. However, as analytical 

measurements at trace levels are often time consuming or expensive, and additionally 

increase with the number of repetitive samples, the “repetitive approach” is not often applied 

and thus, the reliability of the collected results rely mostly on the experience and expertise 

(“EE approach”) of researchers in performing sampling and analyses. 

In this work the two approaches were combined. While the “EE approach” was only applied 

for the previously described “estuary transect/mapping” study, in the speciation study the 

“repetitive approach” is also respected. Variation in measured parameters along the 
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vertical/horizontal profiles was expected to be higher than analytical uncertainties, justified 

additionally by the applied “EE approach”. The confidence in data quality of “EE approach”, 

including the representative sample and analytical measurement is “verified” by the obtained 

trends in trace metal distributions within all three layers, obtained for different measurement 

parameters, and supported largely by low analytical uncertainty. However, due to a small 

expected variation in concentration of some trace metals along the vertical profile at sites 

where “speciation study” was performed, and additionally due to the non-consistent blank 

levels of DGT devices, an applied “repetitive approach” consisted of collecting composite 

samples (6-12 subsamples), by deploying triplicate DGT devices at each depth and by 

repeating analytical measurements. Although some problems regarding blank levels 

occurred, in this way, an overall higher confidence in the obtained results was obtained.  

 

5.4.1. Taking into consideration the level of a blank 

The ultra-clean sampling and post-sampling handling is a known issue in the analysis of 

metals at trace level. The most common risks are associated with Zn contamination. The 

operational blank of strictly controlled electroanalytical determination of Zn estimated over 

the period of study is up to 0.5 nM. Taking into account the concentrations of Zn measured 

in this study, this accounted for not more than 10% of the measured concentration in sample, 

which is considered to be insignificant. Blank levels for other measured metals were up to 

~5%. As the real blanks were unknown, in this study, concentrations of metals determined 

by stripping voltammetry (ASV and AdCSV) were not corrected to account for blanks, 

whereas those determined by DGT were corrected, as the exact blanks were measured.  

As already noted in the Results section, the blank levels of Zn in DGT devices (un-deployed) 

were significant in comparison to concentrations found in deployed DGT. Table 5.3. lists 

average percentages of relative blanks (compared to accumulated metal) for open pore (OP) 

and restricted pore (RP) DGT devices for particular campaigns (average for all depths). 

These results validate previously mentioned Zn contamination problems. For the “clean” 

Martinska site, the blank level accounted for at least 30% (2009 07). Relatively low Zn 

blanks (8.3% and 14.3%) were obtained for the “polluted” marina site as a result of a much 

higher Zn level in the water column.  Unfortunately, generally high and variable Zn blanks 

prevented a reliable assessment of Zn speciation and distribution along the vertical profile 

by using DGT technique. However, nevertheless, Zn -DGT profiles were plotted on all 

figures in order to keep the record of obtained Zn distributions. 
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For other metals, in most cases, the level of relative blanks were below 10%.  Higher blanks 

for Pb were observed for 2010 02 and 2010 07 campaigns, and for Cu for two winter 

campaigns (2010 02 and 2012 03) while lower metal concentrations were found across the 

vertical profile. However, these increased levels of Pb and Cu DGT-blanks did not have a 

visible influence on the vertical distribution of DGT-labile concentrations of these metals, 

mainly due to the low variation in absolute blank concentrations (3 replicates), meaning that 

the subtracted blanks represented all other deployed DGT devices quite well. OP blanks were 

lower than RP blanks, however according to vertical profiles, that difference did not cause 

any significant deviation between OP and RP vertical profiles. 

 

Table 5.3. Average percentage (%) of relative blank of open pore (OP) and restricted pore 

(RP) DGT for different campaigns, for “clean”, Martinska site (M) and “polluted”  

nautical marina site (S). 

   average % of relative blank 

Campaign Site DGT type Zn Cd Pb Cu Ni Co Mn 

2009 07 M OP 29.8 3.1 9.8 1.7 2.6 2.7 0.4 

2009 07 M RP 41.5 6.4 13.6 3.2 7.4 2.8 0.4 

2009 07 S OP 8.3 3.8 4.6 0.5 2.3 3.0 1.0 

2009 07 S RP 14.3 4.4 5.5 1.0 6.8 3.2 0.9 

2010 02 M OP 39.9 6.5 30.4 16.7 6.5 6.2 0.8 

2010 02 M RP 73.6 7.9 50.9 22.8 10.4 10.1 1.5 

2010  07 M OP 62.1 4.0 18.9 8.8 7.5 2.0 0.5 

2010 07 M RP 65.0 6.5 33.0 13.8 10.6 3.0 0.6 

2011 07 M OP 49.7 1.9 4.3 5.3 3.0 2.2 2.5 

2012 03 M OP 63.3 5.8 10.4 18. 9 1.7 6.3 0.8 

2012 03 M RP 51.6 4.2 11.8 32.7 0.9 11.2 1.3 

 

5.4.2. Signal intensity (feature) determination in complexometric titrations  

It was shown that the treatment procedure of voltammetric curves, i.e. extraction of signal 

intensity (feature), could have a strong influence on the interpretation of the experimental 

results in voltammetry (Pižeta et al., 1999), as well as on the determination of complexation 

parameters (CuCC) (Omanović et al. 2010). Thus, several methods were tested in this study 

in order to decide which, of the most relevant methodology, would be applied for all 

measurements of CuCC determinations. 

A test was provided on composite sample taken at 2 m depth, from summer 2009 campaign. 

Features used for further calculation of voltammograms registered for complexometric 
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titration on samples of that point were peak height, peak area, the 2nd derivative of peak 

height, the 2nd derivative of peak area, and 1st derivative of peak height after baseline 

subtraction (Fig.4.32 in Results section). The results of different peak treatments for the 

whole series are shown in Fig. 5.11, where the Scatchard transformation shows particular 

differences in the first additions of Cu. The final results of the fitting of those curves, i.e. 

obtained complexometric parameters L1, L2, logK1, logK2 and pCu with corresponding 95% 

confidence intervals are depicted in Fig. 5.12. It is evident that the variability in the first data 

points of the complexometric titration curve is responsible for the high variability of values 

and confidence intervals of L1, the first (stronger) ligand concentration. Variability in 

determination of L2, the second ligand concentration, is considerably smaller. As there are 

no defined guidelines or measures as to which method is the “best”, respecting previously 

“EE approach” it was decided upon to adopt 1st Derivative (green squares in Fig. 5.11) as 

the most suitable signal feature, as a compromise regarding the uncertainties caused by the 

baseline and/or peak width fluctuation in signal height determination. 

 

Figure 5.11. Results of different treatments of voltammograms of the series from July of 

2009 at the Marine station Martinska, from a depth of 2 m – Scatchard linearization of 

original data points 
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Figure 5.12. Results of fitting of complexometric titration curves derived from a different 

treatment of primary voltammetric signals. 

 

5.5. Dynamic DGT speciation analysis of trace metals 

Knowledge of the distribution of (toxic) trace metals in various physicochemical forms in 

natural aquatic systems is important for predictions of their bioavailability and 

environmental impact. The determination of metal speciation in such systems is a very 

demanding task due to the presence of natural ligands, such as humic substances (HS), with 

a range of different complexing properties (heterogeneity). Complexation with organic 

ligands was found to play an important role in “buffering” metal ion concentrations, and thus 

in regulating their toxicity in costal environments (Whitby and van den Berg, 2015; Sander 
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et al, 2015; Buck et al., 2007). This buffering property is related to their characteristic 

heterogeneity in chemical functionality, e.g. number and distribution of functional groups.  

An additional aspect which should be considered in studies of interactions of trace metals 

with heterogeneous natural ligands is their kinetic properties (kinetic heterogeneity) (Town 

et al., 2009). Kinetic heterogeneity is accessible via non-equilibrium techniques applied in 

this work: anodic stripping voltammetry (ASV) and diffusive gradients in thin film (DGT), 

each characterised by its own kinetic window (van Leeuwen et al., 2005). Consequently, the 

fraction of metal complex species that is measurable by a given technique depends on the 

thermodynamic properties (metal-to-ligand ratio), as well as on the operational timescale of 

the chosen technique (kinetic properties) (van Leeuwen et al., 2005; Town et al., 2009; 

Plavšić et al., 1980). Thus the concentration measured by these two techniques is considered 

purely “operational” and termed as DGT-labile or ASV-labile.  

The benefit of applying the DGT technique over ASV is that it provides an in situ measure 

of labile metal species over the period of deployment (time weighted average concentration, 

TWA), while ASV is restricted to analysing discrete sample, but capable of providing more 

information on metal-organic ligand interactions. 

 

5.5.1. Distribution of DGT-labile metals 

Fig. 5.13 presents the vertical profiles of OP DGT-labile fractions (in percentage) of all 

measured metals. As previously mentioned, due to the problem with high Zn blanks, 

inconsistent vertical profiles, and very often exceeding 100% DGT-labile fractions, were 

obtained. No such difficulties were found for other metals. Overall, it is obvious that the 

fraction of DGT-labile metals is metal-dependent and that it slightly varies depending on the 

salinity/depth (depending on the campaign). The DGT-labile fraction is expected to be 

inversely correlated with the portion of metal bound to stronger organic ligands, i.e. a lower 

percentage of DGT-labile is expected for metals existing in water more as stronger 

complexes. Based on this ”principle”, the following order of binding strength/capacity, as 

illustrated in Fig. 3.14, was extracted: Cu>Co>Ni>Pb>Cd. This order is fully “operational” 

and reflects the overall chemical speciation and behaviour of these trace metals in the 

analysed water environments during the deployment period, and does not necessary 

correspond to other aquatic environments, i.e. it is considered to be “site specific”. A low 

Cu and high Cd average percentage of Cu labile were expected due to their known 
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complexation characteristics: the strong complexation of Cu with organic ligands, and the 

predominance of inorganic Cd to complex with chloride. 

 
Figure 5.13. Vertical profiles of DGT-labile metal fractions (in percentage) for all 

campaigns. Note the different x-scale ranges. 

 

No consistent trends in the percentage of DGT-labile metals were obtained among the three 

layers (Fig. 5.14). While Cd and Cu showed higher DGT-labile fractions in the brackish 

water layer (BW), for other metals this fraction was higher in seawater layer (SW). These 

% DGT-labile Zn

0 50 100 150 200

D
e
p

th
 (

m
)

0

1

2

3

4

5

6

7

8

9

% DGT-labile Cd

0 20 40 60 80 100

2009 07
2010 02

2010 07

2011 07 

2012 03 

% DGT-labile Pb

0 20 40 60 80 100

% DGT-labile Cu

0 10 20 30 40 50

D
e
p

th
 (

m
)

0

1

2

3

4

5

6

7

8

9

% DGT-labile Ni

0 20 40 60 80 100

% DGT-labile Co

0 20 40 60 80 100



 

5. Discussion 

174 
 

trends could potentially reflect the difference in metal speciation in relation to complexation 

with organic ligands. However, if the percentage of DGT-labile metal fractions is plotted in 

relation to the dissolved metal (Fig. 5.15), it is obvious that the percentage of DGT-labile 

metals is dependent on the dissolved metal concentration.  

 

Figure 5.14. Average percentage of DGT-labile metals for each separate layer along the 

salinity gradient (data averaged from all campaigns). Number above bars represents the 

overall average percentage (all depths). Uncertainty is expressed as a standard deviation. 
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into account that the dissolved Cd concentration is higher in the seawater layer (SW) than in 
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complexation of Cd with chloride is favoured in SW, this trend suggests that the 

complexation of Cd with organic ligands is more pronounced in SW than in BW. Although 

observed at low absolute difference, the applied DGT technique was able to provide an 
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estuary. 
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was observed. Higher concentrations of Cu and DOC were generally found in BW than in 

SW. However, the concentration and complexation properties toward Cu of existing natural 

ligands were not sufficient to “buffer” increased Cu concentration, i.e. to maintain DGT-
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labile Cu fraction at the level independent of Cu dissolved concentration. If the winter 2010 

campaign, characterised by a higher dissolved Cu concentration in SW than in BW, and by 

a uniform distribution of DOC along with the salinity gradient, is examined separately (red 

triangles in Fig. 5.15), the decreasing trend with an increasing concentration was observed 

as in the case of Cd, also suggesting a stronger complexation of Cu in SW than in BW.  

Applying a similar approach, examination data from Fig. 5.14 and Fig. 5.15 suggests that 

the complexation of Co is stronger in BW than in SW layer, while from the data for Pb and 

Ni, no clear conclusions could be drawn. 

 

Figure 5.15. Dependence of percentage of open pore (OP) DGT-labile metals on dissolved 

metal concentrations (“clean” site). Red dotted regression line indicate the observed trend. 
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Fig.  5.16 presents an overall percentage of open pore (OP) and restricted pore (RP) DGT-

labile metals for all depths and all campaigns. As noted previously, the difference between 

DGT-labile concentrations determined by OP and RP probes is negligible, i.e. within the 

experimental error. This prevented of getting more insight into the distribution of metal-

organic ligand having different complexation properties. In other words, the differences 

among the heterogeneous metal-organic ligand complexes existing at ambient conditions are 

indistinguishable by the two different applied DGT types.  

 

Figure 5.16. An overall average percentage of open pore (OP) and restricted pore (RP) DGT-

labile metals (all depths, all campaigns). Numbers above bars indicate ratio between OP and 

RP DGT-labile concentrations. Uncertainty is expressed as standard deviation. 

 

A characteristic feature of heterogeneous ligands (e.g. humic substances, HS) is that their 

affinity for metals is a function of the metal-to-ligand ratio (Town et al., 2009). Binding of 

metals by HS, which is common in estuary and coastal waters (Whitby and van den Berg, 

2015; Sander et al, 2015; Buck et al., 2007), could be described by a distribution 

characterised by the average conditional stability constant (K), as a function of the degree of 

the binding site occupation. In order to apprehend the variations in binding sites affinities 

toward metals, a heterogeneity parameter Γ, is introduced. The value of Γ could be obtained 
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from the slope of a plot of metal binding affinity versus the degree of site occupation, i.e. by 

plotting DGT-labile concentrations versus dissolved metal concentrations normalized by 

DOC (Fig. 5.17).  

 

Figure 5.17. DGT-labile Cu concentrations in relation to the dissolved metal concentration 

normalized by DOC (metal-to-ligand ratio). 

 

The published values of Γ for metal binding by HS are 0.3–0.5 for Cu, 0.6–0.8 for Pb, 0.8–

1.0 for Cd, and 0.6 for Ni (Town et al, 2009 and references within the manuscript). Low Γ 

values represent more heterogeneous sites, while Γ = 1 assumes a fully homogeneous 

binding site distribution. Fig. 5.17 presents such a plot from which heterogeneity factors 

were estimated for Cd (1.0*), Cu (0.59) and Pb (0.92). Due to unreliable results of DGT-
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labile Zn, the value was not calculated, while the obtained values for Ni and Co do not make 

sense due to the too-narrow range of measured concentrations. The same problem of the too-

narrow examined range of concentrations was also true for Cd, and the provided value (1.0*) 

was obtained by excluding two winter campaigns. The calculated heterogeneity factor 

reflects not only the distribution of stability constants but also the dissociation rate constants 

of existing metal complexes, which came into significance due to the relatively large 

diffusion layer thickness and consequently longer characteristic “kinetic timescale window”. 

 

5.5.2. Correlation between DGT-labile and predicted dynamic metal concentrations 

Considering the environmental relevance of metals, their spatio-temporal distributions are 

typically examined in relation to their bioavailability and/or toxicity. According to the most 

recent EU directive regarding priority substances in the field of water policy (Directive 

2013/39/EU, 2013), bioavailability is listed as a water quality issue for metals. According to 

this directive, when assessing the monitoring results against the relevant environmental 

quality standards (EQS), the hardness, pH, dissolved organic carbon or other water quality 

parameters that affect the bioavailability of metals, the bioavailable concentrations being 

determined using appropriate bioavailability modelling, may be taken into account. Looking 

from an experimental aspect, the DGT as a dynamic metal speciation technique is widely 

applied for monitoring purposes, providing (potentially) bioavailable concentrations of 

metals analogue to those derived by mathematical modelling. DGT-labile concentrations are 

very often compared to those provided by some of modelling tools (Meylan e al., 2004; 

Unswort et al, 2006; Warnken et al., 2008; Han et al., 2014, Omanović et al., 2015).  While 

in most of the cases a very good correlation between measured and predicted labile 

concentrations was found (matching of trends), agreement in absolute values was very 

variable. In our study, a comparison approach used in work of Han et al. (2014) was 

respected. For the calculation of dynamical concentration of metals (predicted), which is 

compared finally to measured DGT-labile concentrations, the following equation was used: 

𝐶𝑝𝑟𝑒𝑑 = 𝐶𝑓𝑟𝑒𝑒 + 𝐶𝑖𝑛𝑜𝑟 +
𝐶𝐹𝐴𝐷𝐹𝐴

𝐷𝑖𝑛𝑜𝑟
+

𝐶𝐻𝐴𝐷𝐻𝐴

𝐷𝑖𝑛𝑜𝑟
 

CFA, CHA and DFA , DHA are concentrations of metal complexes with fulvic (FA) and humic 

(HA) acids, and corresponding diffusion coefficients, respectively. It should be highlighted 

that for this purpose diffusion coefficients for metal complexes with FA and HA are assumed 

to be the same as for FA and HA itself. These diffusion coefficients are taken from the paper 
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of Zhang (2004). For modelling of chemical speciation, a free program Visual MINTEQ ver. 

3.0 was used. The same major anion and cation concentrations as for calculation of Cu 

inorganic “side reaction coefficient” were used. For each sample, a corresponding DOC 

concentration and dissolved metal concentrations were used. Modelling of interactions of 

metals with organic ligands was performed by Stockholm Humic Model (SHM). It was 

considered that 90% of organic matter is represented by FA, and 10% by HA. No other 

adaptation of default parameters was undertaken. 

Fig. 5.18 presents obtained results for all metals, while in Table 5.4 obtained correlation 

coefficients and the slopes of the linear regression between measured and predicted DGT-

labile concentrations were provided. No consistent performance was obtained among metals. 

In case of Zn, the disagreement is mainly related to problem of contamination already 

discussed previously. For Cd quite well relative (correlation) and absolute (slope around 1) 

agreement between two concentrations was obtained. This agreement is mainly related to 

relatively weak complexation of Cd with organic matter, i.e. existence of Cd primarily in 

inorganic complexes with chloride.  

 

Table 5.4. Pearson's Correlation coefficients and the slopes of the linear regression (in 

parentheses) between measured and predicted DGT-labile concentrations. 

  Zn Cd Pb Cu Ni Co 

all samples 0.76 (0.51) 0.94 (1.03) 0.99 (0.68) 0.95 (0.35) 0.93 (1.19) 0.12 (0.22) 

w/o „polluted“ -0.52 (-0.16) 0.90 (1.07) 0.96 (0.55) 0.94 (0.56) 0.94 (1.20) 0.11 (0.21) 

 

While a high correlation factors for Pb and Cu were obtained, the predicted dynamic (labile) 

concentrations were lower than the DGT-measured (slope << 1). If only inorganic fraction 

of Pb and Cu is considered as dynamic one, the results are even worse (crosses in figures; 

due to the similarities in values, data for “only inorganic M” are not plotted for other metals). 

Based on such modelling approach, it is unquestionable that the part of organic complexes 

is accumulated by DGT. However, the major question is about the “source“ of disagreement 

between DGT-measured and predicted concentrations. As a first, there is no evidence that 

DOC can be represented only by 90% as FA and 10% as HA, i.e. all other partitioning could 

also be possible, especially in an estuarine zone, where other types of organic matter issued 

from estuarine aquatic organisms is present, which most probably differ in complexation 

characteristics from classical terrestrial humic substances. In our calculations it was assumed 

that all metal complexes with FA and HA are labile and accessible to DGT. The only 
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difference compared to inorganic complexes is the applied diffusion coefficient (in our work 

values taken from Zhang (2004) are 1.15×10-6 cm2 s-1 for FA and 0.6×10-6 cm2 s-1 for HA 

metal complexes). However, recently Balch and Guéguen (2015) showed that diffusion 

coefficients for “bulk” dissolved organic matter and HS are 2-3 times higher than values we 

used for calculations. If the operational diffusion coefficients of organic metal complexes 

are increased by factor of 3, an overestimation of dynamic metal fractions of Cu and Pb 

occurred.  

 

Figure 5.18. Comparison between measured DGT-labile and predicted dynamic metal 

concentrations. 

 

Technically, operational diffusion coefficients could be obtained by minimizing the absolute 
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however such “adaptive” approach is purely speculative. In addition to decreased diffusion 

coefficients, there exist strong/inert metal complexes which are not accessible to DGT. 

Predicted dynamic metal concentrations for Ni and Co are higher than DGT-measured, with 

the difference that a high correlation was found only for Ni. A better agreements between 

measured DGT-labile and predicted dynamic metal concentrations were found in studies 

performed in rivers (Meylan e al., 2004; Unswort et al, 2006; Warnken et al., 2008; Han et 

al., 2014, Omanović et al., 2015). This is even expected because the modelling of metal-

organic ligand interactions incorporated in programs are basically developed on the basis of 

data collected primarily in studies performed in freshwater environments.  

Thus, the prediction of metal speciation in estuarine or seawater system is still a challenging 

task, demanding the extensive and more focused studies. 

 

5.6. Voltammetric speciation of Cu – determination of CuCC 

Copper-binding organic ligands make up a subset of natural dissolved organic matter 

(DNOM), which tend to dominate the chemical speciation of dissolved Cu in a range of 

marine environments (Coale and Bruland, 1988; Sedlak et al., 1997; Bruland et al., 2000; 

Buck and Bruland, 2005). In coastal environments, potential sources of these ligands range 

from natural humic and fulvic material to urban discharge carrying anthropogenic ligands 

like EDTA and NTA. In addition, microorganisms sensitive to copper toxicity are known to 

be able to produce copper-binding ligands in a solution themselves, further lowering the 

potential toxic conditions of their surrounding environment (Sunda and Huntsman, 1995; 

Moffett and Brand, 1996; Gordon et al., 2000). Although recent studies have investigated 

the conditional stability constants and the distribution of copper binding organic ligands 

(Wiramanaden et al, 2008), information about their chemical structure or important 

functional groups involved in copper binding is lacking. Instead, these ligands are often 

described using a discrete model, assuming, in most cases, a redistribution to stronger (L1) 

and weaker (L2) ligand classes, representing the averaged affinities of all individual Cu 

ligands with similar complexing characteristics. These affinities are expressed in terms of 

conditional stability constants, K, which describe the distribution of Cu between the CuL 

complexes and the Cu ions (expressed either via free hydrated ions or the sum of inorganic 

species).  

Metal complexation studies are performed in order to determine metal speciation at the 

ambient metal concentration, and to determine metal complexation parameters, which could 



 

5. Discussion 

182 
 

be used to predict the metal speciation at any metal concentration. The main purpose of these 

studies is to estimate the bioavailable metal concentration and to evaluate their toxicity. The 

described speciation “approach” is respected in our work. Results of ligand concentrations 

and conditional stability constants presented in Table 4.10 are plotted in Fig. 5.19. 

 

Figure 5.19. Vertical profiles of the concentration and conditional stability constant for 

stronger ([L1], logK1) and weaker ([L2], logK2) ligands for all experiments. In the first 

column, plot “c” and “p” denote the “clean” and “polluted” site. Uncertainty (error bars) is 

expressed as a 95% confidence interval (CI). 

 

With the exception of the four uppermost points at the “polluted” nautical marine site (2009 

07 campaign), for all other samples, two types of ligand classes, stronger L1 and weaker L2, 

were determined. Concentrations of the stronger L1 ligand, ranged from 2.7 nM in winter, 

up to 28 nM in summer, whereas concentrations of the weaker L2 ligand ranged between 12 

and 131 nM (see Table 5.4). These values are within the previously published ranges for 

various estuary sites (Plavšić et al, 2009), as well as for the location in this study (Louis et 

al., 2009). The stronger ligand class not determined in the work of Plavšić et al. (2009) could 

be due to the shorter accumulation time applied (60 s, compared to 300 s in the other two 

studies), which was found to be insufficient to determine labile Cu at low additions 

(Omanović et al., 2010). 
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Overall, higher total ligand concentrations (L1 + L2) found in the surface layer, compared to 

in the seawater layer, are also consistent with two previous studies (Table 5.5). However, 

while results obtained in the study of Louis et al. (2009) indicated an increasing strength 

(conditional stability constants) with an increase in salinity/depth, our results showed a 

slight, but opposite trend, which could be perceived visually in Fig. 5.19. Although the 

averaged values of the conditional stability constants for each layer show similar behaviour 

(Table 5.6), due to the high variability among the sampling campaigns, expressed as a 

standard deviation (uncertainties (±) in Table 5.6), these averaged values could not be used 

statistically to confirm the observed trends.  

 

Table 5.5. Comparison of Cu complexation parameters in this and previous studies in the 

Krka River estuary. 

 CuT (nM) L1 (nM) L2 (nM) logK1 logK2 

Plavšić et al, 2009. 1.4-29.0 ND 57-179 ND 8.7-9.4 

Louis et al, 2009. 4.7-8.9 6.0-7.1 68-139 11.2-13 8.8-10 

this study 3.7-16.0 2.7-28 12-131 9.6-11.9 8.4-9.1 

 

Table 5.6. Average complexation parameters for stronger (L1) and weaker (L2) ligands for 

the surface brackish layer (BW), freshwater-seawater interface layer (FSI) and seawater 

layer (SW). 

 BW FSI SW 

[L1] (nM) 13.5±5.6 11.7±6.0 12.7±7.5 

[L2] (nM) 76.9±33.0 69.8±30.9 41.7±21.2 

logK1 10.55±0.53 10.68±0.60 10.17±0.55 

logK2 8.81±0.25 8.77±0.14 8.56±0.32 

 

A slightly higher conditional stability constant at a lower salinity could be ascribed to the 

smaller competition effect of major divalent cations for which the concentration is lower in 

the brackish layer. Such trends were described in laboratory conditions by Hamilton-Taylor 

et al. (2002), studying copper speciation in estuarine conditions with humic acid.  

Existence of two ligand classes and a relatively large range of obtained conditional stability 

constants is also in accordance with the heterogeneity of Cu complexes obtained by 

analysing DGT-labile results. On average, the concentrations of both ligand classes is higher 

in summer than in winter (Fig. 5.20). Essentially, an increase in ligand concentration is in 

accordance with the increasing DOC concentration, and could be explained by an increase 

in primary production during the summer period. Excluding the two uppermost points from 
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the L1-plot, statistically significant correlation coefficients between ligand and DOC 

concentrations were obtained. In addition, the range of measured L1 concentrations increases 

with DOC, which potentially signifies an increased range of binding sites at a higher DOC 

concentration. However, a more detailed study should be performed in order to confirm such 

trends.  

 

Figure 5.20. Dependence of the concentration of stronger ([L1]) and weaker ([L2]) ligands 

on the concentration of dissolved organic carbon (DOC). 

 

As mentioned previously, the purpose of complexation studies is to determine the chemical 

speciation of metals, and to estimate the free metal concentration, the form which is 

considered to be the most bioavailable, and in the case of Cu, the most toxic. Using estimated 

complexation parameters for both ligand classes, the concentration of free Cu was calculated 

and plotted in relation to the depth for each sampling campaign (Fig. 5.21). The dashed 

vertical line at a concentration of 10 pM corresponds to the toxicity threshold of Cu as 

estimated for marine phytoplankton by Sunda et al. (1987). Except four points corresponding 

to the winter 2010 campaign (uppermost depths), the threshold value is surpassed, 

suggesting that at these ambient conditions, Cu should be considered potentially toxic. There 

is an accepted opinion that in coastal waters, Cu is bound to strong complexing ligands, 

diminishing its free concentration to below the toxicity level of 10 pM (Buck et al, 2007). It 

is reported that more than 99% of dissolved Cu at its ambient concentration exist in these 

strong complexes. These data are derived primarily through competitive ligand exchange 

adsorptive cathodic stripping voltammetry (CLE-AdCSV), which is known to provide 

higher stability constants than the ASV method. In our study, a much higher degree of labile 

Cu is measured, ranging from 5 to almost 30% (70% to 95% of organically-bound Cu). The 

difference between the two methodologies is that ASV reduces (accumulate) weak organic 
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Cu complexes along with the inorganic Cu. However, the conditional stability constant of 

Cu complexes in the case of ASV is expressed via free Cu ions, which are obtained using 

the side reaction coefficient calculated by only considering inorganic complexes, and not 

weak organic complexes which are reduced along with the inorganic Cu species. This means 

that the conditional stability constants of Cu obtained by ASV are underestimated because 

they do not account for the side reaction coefficient of weak organic complexes. The exact 

side reaction coefficient of these complexes is unknown, but if assumed to be just 10 times 

higher, the free Cu concentration would be estimated to be lower by an order of magnitude, 

and consequently the organic Cu fraction would increase.  

 

Figure 5.21. Vertical distribution of calculated free Cu concentration ([Cu2+]) (left plot) and 

percentage of ASV-labile copper (right plot) for all sampling campaigns. 

 

However, it seems that free or organically bound Cu is strongly dependent on the applied 

methodology, whether CLE-ADCSV or CLE-ASV. Namely, by using EDTA as a 

competitive ligand in ASV mode, in freshwater samples Wang and Chakrabarti (2008) found 

the presence of a very strong copper-binding ligand with a logK~ 20, and a corresponding 

very high concentration (above 100 nM) of the ligand. This is the highest stability constant 

ever reported for Cu in natural waters. Applying the same method of calculation, the 

estimated free ligand concentration would be several orders of magnitude lower than the one 

calculated by CLE-AdCSV. These results put to question the methodology of the calculation 
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of organically bound Cu, and the estimation of its free concentration, and should be further 

checked for consistency and correctness. 

It was mentioned previously that DGT-labile metal concentrations are an operational value, 

dependent on several parameters. The same applies for ASV-labile concentrations, which, 

at the ambient Cu level correspond to sum of inorganic and weakly bound organic fraction. 

Both techniques are considered dynamic techniques, which means that the measured 

concentration depends not only on the thermodynamic properties of existing metal 

complexes but also on kinetic properties (van Leeuwen et al., 2007). The kinetic properties 

are viewed in relation to the so-called kinetic timescale of the technique i.e. kinetic windows, 

i.e. the effective time available for complex species to dissociate within the diffusion layer. 

Both the DGT and ASV technique accumulate metals in the same manner, which is also 

assumed to represent a basic model of the uptake of metals across the biological membrane. 

Thus it is expected that DGT and ASV could provide similar information regarding the 

distribution of labile metal species in a particular water environment. A comparison between 

inorganic Cu estimated by ASV and OP DGT-labile Cu is plotted in Fig. 5.22., while 

separate vertical profiles were presented in Fig. 5.23. A general liner relationship was found 

between the two operationally labile concentrations with a correlation coefficient of 0.964. 

 

Figure 5.22. Relationship between labile Cu estimated by ASV (assumed to represent 

inorganic fraction) and OP DGT-labile Cu for all campaigns. 
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Most of the values are located under the 1:1 line, which means that the determined ASV-

labile concentrations were lower compared to those of DGT, and in average they accounted 

for around 64% of those of DGT-labile. A relatively good agreement between the two 

profiles is even more evident in Fig. 5.23. Only the profiles for the first campaign and, 

slightly for the second, showed an opposite trend, which could be ascribed to specific 

ambient conditions at the site regarding Cu and DOC levels.  A much better agreement 

between vertical profiles for that campaign (2009 07) obtained from the “polluted” nautical 

marine site presented in Fig. 5.24 is mainly the consequence of higher Cu concentrations. 

The smaller labile fraction estimated by ASV was expected because of the shorter kinetic 

window. The effective time of the measurement for the ASV is 0.1 s, with a diffusion layer 

thickness of 10 µm, and a diffusion coefficient of 5×10-6 cm2 s-1, whereas in the DGT device 

the diffusion layer thickness is 0.9 mm and the effective measurement time is 13.5 minutes 

(Zhang and Davison, 2000). The importance of the diffusion layer thickens regarding the 

operational determination of lability of metal complexes and their kinetic contribution to the 

ASV signal, is already discussed in many papers (Plavšić et al., 1980; Lovrić et al., 1984; 

van Leeuwen et al., 2007, Town et al., 2009).  

 

Figure 5.23. Relationship between labile Cu estimated by ASV (assumed to represent the 

inorganic fraction) and OP DGT-labile Cu for all campaigns. 

 

 

Cu (nM)

0 1 2 3 4 5

salinity
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinity
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinity
0 10 20 30

Cu (nM)

0 1 2 3 4 5

salinity
0 10 20 30

Cu (nM)

0 1 2 3 4 5

D
e
p
th

 (
m

)

0

1

2

3

4

5

6

7

8

9

salinity
0 10 20 30

OP DGT

Cu (inorg)

Sal

2010 022009 07 2010 07 2011 07 2012 03



 

5. Discussion 

188 
 

 

Figure 5.24. Relationship between labile Cu estimated by ASV (assumed to represent the 

inorganic fraction) and OP and RP DGT-labile Cu “polluted” site (left plot) and “clean” site 

(right plot). 

 

5.7. Environmental aspects – potential toxicity effects 
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pM) for some marine organisms (Sunda et al., 1987), as shown recently by Louis et al. (2009) 
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(Duran and Beiras, 2013) quote 22 nM of dissolved Cu as the upper limit. This is equal to 

the highest concentrations we measured along the estuary transect (excluding highly elevated 

sites within the Šibenik bay obtained during the mapping survey), warning on caution if the 

intensity of nautical traffic further increases. However, taking into account that dissolved Cu 

concentrations within the Šibenik bay increased up to 68 nM and that the DOC concentration 
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remained at a level of ~1.5 mg L-1, potentially harmful effects are likely to occur for some 

sensitive plankton species, which are commonly adapted to “pristine” environmental 

conditions, as shown by Jean et al. (2012), who found that the zooplankton 

diversity/abundance variation is linked to the pollution gradient. 

Buck at al. (2007) found that dissolved copper concentrations throughout the San Francisco 

Bay also correlate positively with dissolved organic matter, supporting results from 

speciation studies which indicated that organic ligands with high-affinity for binding Cu 

dominate the chemical speciation of dissolved Cu. These organic ligands typically bind 

>99.9% of the dissolved Cu, effectively buffering the system against small changes in 

dissolved copper concentrations, and maintaining free Cu2+ concentrations well below the 

toxicity threshold of ambient aquatic microorganisms. 

In an inorganic system without organic ligands, [Cu2+] can be calculated directly from the 

total dissolved copper concentrations (CuT). For instance, at average pH values in seawater 

(pH 8.1), the inorganic speciation of copper favours CuCO3 as the dominant species, with 

7% of the total dissolved inorganic copper appearing as a free hydrated Cu2+ ion. At  30 nM 

of dissolved Cu, which is the concentration found in Šibenik bay, the concentration of Cu2+ 

in the absence of organic chelation would be approximately between 1 and 2  nM depending 

on the salinity. At these Cu2+ levels the majority of aquatic microorganisms in this 

environment would likely suffer from the effects of copper toxicity. 

The correlation between DOC and dissolved Cu observed in Šibenik bay especially in 

summer periods, despite a high level of dissolved Cu and the absence of any evidence of Cu 

toxicity, suggests that organic complexation is lowering Cu2+ levels to sub-toxic levels, 

although ASV measurements projected higher free Cu levels. 
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6. Conclusions 

 

The Krka River estuary is an atypical estuary characterized by a very low input of trace 

metals (TM), suspended particulate matter (SPM) and organic carbon (OC) by the river. 

From the other side, the adjacent coastal sea features the environment of an open sea. These 

particular characteristics, coupled by the three vertically stratified layers, allowed 

identification of pathways and processes governing horizontal and vertical redistribution of 

TM across the whole estuary, whether they are added in the system by human activity or by 

“in-situ” processes (e.g. remobilisation from the sediment). In addition, the “calm” nature 

and the “sensitivity” of the estuarine system allowed recognition of particular phenomena 

and events which influence the biogeochemistry of TM within the estuary.  

The obtained results could be summarized by a few final remarks: 

 the significant anthropogenic inputs of some TM especially observed in summer can be 

mainly ascribed to nautical activities, as evidenced by the high resolution surface 

mapping, 

 the non-conservative organic carbon behaviour, mostly linked to biogenic production in 

summer which increase both, DOC concentration and POC concentration/content, 

significantly affects TM behaviour and fate, 

 the dissolved/particulate fractionation of TM appears to be mostly controlled by the 

variation of SPM nature along the salinity gradient (winter, surface) and the biogenic 

production of SPM (summer, surface),  

 the significant increase of most of the TM in the seawater layer is result of TM 

scavenging through the FSI coupled with upstream seawater transport and long 

residence time, leading also in increase of particulate TM fraction (e.g. Pb),  

 the specific TM behaviour identified in the cuvette,  a consequence of anoxia conditions 

induced by long water accumulation and settling of organic-rich particles, is a situation 

not only limited to this restricted area but can occur at a larger scale in the estuary, and 

more generally, in many environments submitted to both, strong stratification and 

significant organic carbon load,  

 the significant anthropogenic TM inputs (e.g. Cu leaching from antifouling paints) in 

such a naturally pristine environment may induce harmful effects on sensitive species 

such as phytoplankton not “adapted” to such conditions,  
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 the studies in such a unique environment allow identification of processes which are 

generally overrode by a large load of SPM (and associated elements) from the river and 

homogeneous vertical profiles, 

 very good agreement between the vertical profiles of DGT-labile, and dissolved TM 

concentrations suggests that the DGT technique can be successfully used to determine 

potentially bioavailable TM concentrations in estuarine conditions, 

 the fraction of DGT-labile TM, which reflects their chemical speciation (primarily, their 

binding to natural organic ligands), ranged from > 90% for Cd, to < 20% for Cu, but 

also depends on the concentration ratios of metals and organic ligands, 

 voltammetric speciation of Cu showed the presence of two types of organic ligands that 

form strong (L1, 9.6 < logK1 < 11.9) and weak (L2, 7.8 < logK2 < 9.9) Cu complexes. 

The concentration of weak organic ligands (L2) is correlated with the DOC 

concentration, and is higher in summer, most probably due to the increased biological 

activity, 

 the range of measured total organic ligands concentrations (complexing capacity) is 

similar as ~30 years ago, confirming the status of the estuary in regards to overall 

organic matter content and its characteristics, 

 the concentration of free Cu ions (the most bioavailable form), at ambient conditions, is 

regulated primarily by the complexation with strong ligands (L1), 

 for most of the samples, the calculated free Cu slightly exceeds the toxic threshold of 

10 pM, which can have adverse effects on certain phytoplankton species, especially at 

the marina and anchorage sites. However, these values are the result of applied 

methodology of calculation, and does not necessarily reflect real ambient conditions, 

 this study showed also that the observed range of trace metals in the Krka river remained 

at the same level as 30 years ago, confirming its very pristine status. 

 

A more focused and detailed studies would be needed in order to fully explore and 

understand each of the observed specific TM behaviours and their effect onto TM chemical 

speciation and fate. Based on the summarized observations and findings, it could be 

concluded that the Krka River estuary hosts several particularities which make it a model 

site for studies on behaviour and fate of TM as well as of their biogeochemical cycle, 

representative for much larger coastal pristine aquatic systems, but also an open sea.  
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