
ar
X

iv
:2

10
1.

03
10

0v
2 

 [
nu

cl
-e

x]
  2

5 
A

ug
 2

02
1

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN-EP-2020-249
22 December 2020

© 2020 CERN for the benefit of the ALICE Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Production of pions, kaons, (anti-)protons and φ mesons in Xe–Xe

collisions at
√

sNN = 5.44 TeV

ALICE Collaboration*

The first measurement of the production of pions, kaons, (anti-)protons and φ mesons at midrapidity
in Xe–Xe collisions at

√
sNN = 5.44 TeV is presented. Transverse momentum (pT) spectra and pT-

integrated yields are extracted in several centrality intervals bridging from p–Pb to mid-central Pb–Pb
collisions in terms of final-state multiplicity. The study of Xe–Xe and Pb–Pb collisions allows systems
at similar charged-particle multiplicities but with different initial geometrical eccentricities to be inves-
tigated. A detailed comparison of the spectral shapes in the two systems reveals an opposite behaviour
for radial and elliptic flow. In particular, this study shows that the radial flow does not depend on the
colliding system when compared at similar charged-particle multiplicity. In terms of hadron chemistry,
the previously observed smooth evolution of particle ratios with multiplicity from small to large collision
systems is also found to hold in Xe–Xe. In addition, our results confirm that two remarkable features
of particle production at LHC energies are also valid in the collision of medium-sized nuclei: the lower
proton-to-pion ratio with respect to the thermal model expectations and the increase of the φ -to-pion
ratio with increasing final-state multiplicity.
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1 Introduction

In recent years, the production of hadrons consisting of light flavour quarks (u, d, and s) has been ex-
tensively studied in pp, p–Pb and Pb–Pb collisions at LHC energies [1–11] with the aim to explore the
strongly interacting Quark-Gluon Plasma (QGP) produced in heavy-ion collisions. After the formation,
the QGP expands hydrodynamically reaching first a chemical freeze-out, where hadron abundances are
fixed [12, 13], and then a kinetic freeze-out, where the hadron momenta are fixed.
Remarkably, a smooth evolution of the hadron chemistry, i.e. of the relative abundance of hadron species,
was observed across different collision systems as a function of the final-state multiplicity [9]. This be-
haviour was also found to be independent of collision energy [10]. In particular, the relative abundance
of strange particles with respect to the non-strange ones increases continuously from small to large multi-
plicities until a saturation is observed for systems in which about 100 charged particles are produced per
unit of pseudorapidity [8]. This observation suggests a gradual approach to a chemical equilibrium that
is assumed to originate from the same underlying physical mechanisms across different collision sys-
tems [14–16]. The study of the pion, kaon, (anti-)proton, and φ production in the collisions of medium-
sized nuclei such as Xe provides the ultimate test for validating this picture by bridging the gap between
p–Pb and Pb–Pb multiplicities.

In this context, two remarkable features of particle production are of particular interest to be verified
in Xe–Xe collisions: (i) the low value of the p/π ratio with respect to statistical-thermal model esti-
mates [17] and (ii) the rising trend of the φ/π ratio from low to high multiplicities [9]. The first ob-
servation has led to several speculations ranging from the incomplete treatment of resonance feed-down
to a potential difference in chemical freeze-out temperatures among different quark flavours [18–20]
but found its most likely explanation in the inclusion of pion-nucleon phase shifts within the statistical-
thermal model framework [21]. The second effect provides strict constraints for both the canonical
statistical-thermal approach in which no rise is predicted [9, 22, 23] as well as for models with only
partial strangeness equilibration in which a steeper rise is expected similarly to the Ξ baryon [22].

Moreover, the detailed comparison of spectral shapes in Xe–Xe and Pb–Pb collisions at similar multi-
plicities provides the unique opportunity to investigate the hydrodynamic expansion in systems of similar
final state charged particle multiplicity and different geometrical eccentricity. Already existing data on
the elliptic flow coefficient v2 [24] show a large difference in central collisions between the two systems,
as expected from the Glauber and hydrodynamical models. In contrast, the radial flow and consequently
the mean transverse momenta are expected to be comparable between Xe–Xe and Pb–Pb at similar mul-
tiplicities [25]. The test of this hypothesis is one of the subjects of this manuscript. In addition, the
data used in this article were collected with a lower magnetic field, thus allowing us to extend the mea-
surement of pions to lower transverse momenta with respect to previous studies [26]. For this reason,
these data may also be of great relevance for future studies of potential condensation phenomena at low
transverse momenta [27].

This article is organised as follows. Section 2 describes the experimental setup and data analysis as
well as the systematic uncertainties. Results and comparisons with model calculations are discussed in
Section 3. The summary and conclusions are given in Section 4.

2 Experimental apparatus, data sample and analysis

The measurements reported in this article are obtained with the ALICE central barrel which has full
azimuthal coverage around midrapidity in |η | < 0.8 [28]. A detailed description of the full ALICE
apparatus can be found in [29]. In October 2017, for the first time at the LHC, Xe–Xe collisions at√

sNN = 5.44 TeV were recorded by the ALICE experiment at an average instantaneous luminosity of
about 2×10−25 cm−2s−1 and a hadronic interaction rate of 80−150 Hz. In total, the Xe–Xe data sam-
ple consists of about 1.1×106 minimum bias (MB) events passing the event selection described below.
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The MB interaction trigger is provided by two arrays of forward scintillators, named V0 detectors, with
a pseudorapidity coverage of 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C) [30]. The V0 signal
is proportional to the charged-particle multiplicity and is used to divide the Xe–Xe sample in centrality
classes defined in percentiles of the hadronic cross section [31–33]. The analysis is carried out in the cen-
trality classes 0−5%, 5−10%, 10−20%, 20−30%, 30−40%, 40−50%, 50−60%, 60−70%, 70−90%.
In order to reduce the statistical uncertainty, the φ measurements are obtained in wider centrality classes
0−10%, 10−20%, 20−30%, 30−40%, 40−50%, 50−70%, 70−90%. The most central (peripheral)
collisions are considered in the 0−5% (70−90%) class. The 90−100% centrality bin is not included in
the analysis since it is affected by the contamination of electromagnetic processes (≈ 20%). In addition,
as described in [26, 34], an offline selection of the events is applied to remove the beam-background
events. It combines the V0 timing information and the correlation between the sum and the difference
of times measured in each of the Zero Degree Calorimeters (ZDCs) positioned at ± 112.5 m from the
interaction point [29]. Due to the low instantaneous luminosity (with an average collision probability per
bunch crossing of µ ≈ 0.0005), the probability of having more than two events per collision trigger was
sufficiently low that the so-called event pileup is considered negligible.

The central barrel detectors are located inside a solenoidal magnet providing a maximum magnetic field
(B) of 0.5 T. A magnetic field of 0.2 T can be set when operating the magnet in its low B field con-
figuration. The central barrel detectors are used to reconstruct tracks and measure their momenta, as
well as to perform particle identification (PID). Those exploited in this analysis are (from the interaction
point outwards) the Inner Tracking System (ITS) [28], the Time Projection Chamber (TPC) [35] and the
Time Of Flight (TOF) detector [36]. With respect to previous analyses [26], the low amount of collected
data makes it impracticable to perform PID with the High Momentum Particle IDentification detector
(HMPID) [37].

The ITS is equipped with six layers of silicon detectors made of three different technologies: Silicon
Pixel Detectors (SPD, first two layers from the interaction point), Silicon Drift Detectors (SDD, two
middle layers) and Silicon Strip Detectors (SSD, two outermost layers). It allows the reconstruction
of the collision vertex, the reconstruction of tracks and the identification of particles at low momentum
(p < 1 GeV/c) via the measurement of their specific energy loss (dE/dx). An ITS-only analysis can be
performed by using a dedicated algorithm to treat the ITS as a standalone tracker, enabling the recon-
struction and identification of low-momentum particles that do not reach the TPC. The TPC, a cylindrical
gas detector equipped with Multi-Wire Proportional Chambers (MWPC), constitutes the main central-
barrel tracking detector and is also used for PID through the dE/dx measurements in the gas. The
dE/dx measurements obtained with the ITS and TPC detectors are shown in Fig. 1. The time-of-flight
measured with the TOF, a large area cylindrical detector based on Multigap Resistive Plate Chamber
(MRPC) technology, combined with the momentum information measured in the TPC, is employed to
identify particles at low and intermediate momenta (. 5 GeV/c).

The events analysed in this article are chosen according to the selection criteria described in [26]. The
primary vertex is determined from tracks, including the track segments reconstructed in the SPD. The
position along the beam axis (z) of the vertex reconstructed with the SPD segments and of the one
reconstructed from tracks are required to be compatible within 0.5 cm with a resolution of the SPD one
better than 0.25 cm. The position of the primary vertex along z is required to be within 10 cm from
the nominal interaction point. These criteria ensure a uniform acceptance in the pseudorapidity region
|η |< 0.8.

The results presented in this work refer to primary particles, defined as particles with a mean proper life-
time of τ > 1 cm/c that are either produced directly in the interaction or from decays of particles with
τ < 1 cm/c, restricted to decay chains leading to the interaction point [38]. To reduce the contamination
from secondary particles from weak decays and interactions in the detector material, as well as tracks
with wrongly associated hits, similar selection criteria as described in [26, 34] are used and are sum-
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Figure 1: Distribution of the dE/dx measured in the ITS (left) and TPC (right) detectors as a function of the
reconstructed track momentum in Xe–Xe collisions at

√
sNN = 5.44 TeV. The bands corresponding to the signals

of π±, K±, p and p are well separated in the relevant momentum ranges. The good separation power obtained at
low momentum is one of the key features for the measurements reported in this article.

marised below. Tracks reconstructed with both the TPC and the ITS are required to cross at least 70 TPC
readout rows out of a maximum of 159 with a χ2 normalised to the number of TPC space points (“clus-
ters”), χ2/cluster, lower than 4. The ratio between the number of clusters and the number of crossed
rows in the TPC has to be larger than 0.8. An additional cut on the track geometrical length in the TPC
fiducial volume is used as in [34]. Tracks are also required to have at least two hits in the ITS detector
out of which at least one has to be in the SPD. In addition, for the ITS-only analysis, the tracks must have
at least three hits in the SDD + SSD layers. The χ2/cluster is also recalculated constraining the track
to pass by the primary vertex and it is required to be lower than 36. The same selection is also applied
on the ITS points of the track: χ2

ITS/Nhits
ITS < 36. For the ITS-only analysis, this selection is restricted to

χ2
ITS/Nhits

ITS < 2.5. Finally, the tracks are required to have a distance of closest approach (DCA) to the
primary vertex along the beam axis lower than 2 cm. A pT-dependent selection is then applied to the
DCA in the transverse plane (DCAxy): |DCAxy|< 7σDCAxy

where σDCAxy
is the resolution on the DCAxy

in each pT interval. Furthermore, the tracks associated with decay products of weakly decaying kaons
(“kinks”) are rejected. This selection is not applied for kaons studied via their kink decay topology. The
track selection criteria for kaons and pions from kinks will be described in the next paragraph.

The Xe–Xe data were collected by operating the detector in its low B field configuration (B= 0.2 T). The
lower magnetic field increases the probability of low momentum particles to cross the full detector thus
extending the overall acceptance and reach of the analyses to lower pT. This allowed for the measurement
of pions down to 50 MeV/c for the first time at the LHC with respect to past publications [2, 26] where
the lowest pT reach was to 100 MeV/c. While increasing the particle detection efficiencies at low
momenta with respect to the standard field of 0.5 T, this configuration leads to a pT resolution for ITS-
only tracks that is worse by almost a factor 2 for π±, K±, p and p in their lowest pT bin. As a consequence,
to achieve a reliable PID, an unfolding technique is used for ITS-only tracks to account for the resolution
effects as it will be described in the next section. On the contrary, the time-of-flight resolution and
hence the performance of the TOF detector in terms of PID separation power is unaffected by the lower
magnetic field. Overall, the time-of-flight resolution is about 60 ps in central collisions.
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2.1 Pion, kaon and (anti-)proton analysis

The particle identification for π±, K±, p and p relies on the signals measured in the ITS, TPC and
TOF detectors. This provides a separation between different particle hypotheses using track-by-track
or statistical techniques. In addition, π and K are measured by reconstructing their weak decay (kink)
topology [29]. Each of these identification techniques is best performing in a given pT region, as reported
in Table 1, and all together cover a wide pT interval of up to 5 GeV/c. The final spectra of each particle
species are obtained by combining the single analyses. The identification of π±, K±, p and p with ITS,
TPC and TOF proceeds by evaluating the difference between the measured and expected signal (e.g.
dE/dx, time-of-flight) for a given species i in terms of number-of-sigmas (Nσ ):

Nσ (i) =
SignalMEAS −SignalEXP(i)

σ(i)
(1)

where SignalEXP(i) is the expected signal and σ(i) its expected standard deviation obtained under each
particle mass hypothesis, as described in [29, 36]. A detailed description of such techniques and the
measured separation power between the different particle species is shown for Pb–Pb collisions in [26]
and it is unchanged for this data set.

Table 1: Transverse momentum intervals and the corresponding PID methods for pions, kaons and (anti-)protons.

Technique π± (GeV/c) K± (GeV/c) p and p (GeV/c)

ITS 0.05−0.6 0.2−0.5 0.3−0.6
TPC 0.35−0.6 0.25−0.35 0.55−0.75
TOF 0.45−5.0 0.45− 4.0 0.65−5.0
Kinks 0.3−0.95 0.3−5.0 −

ITS analysis. The ITS can be used as a standalone low-pT PID detector thanks to the particle energy
loss (dE/dx) measured in its four outermost layers [39]. To correct for the detector resolution effects on
the particle identification for p . 1 GeV/c, a Bayesian unfolding technique is employed with the RooUn-
fold package [40]. The unfolding of the momentum distribution in dE/dx slices (1.1 keV/300 µm each)
is performed with a four-iteration procedure where the initial prior probability is taken from the gen-
erated momentum distribution in the Monte Carlo (MC) simulated events with HIJING [41]. A proper
correction for detector inefficiencies and particle contamination is applied following the prescription
in [40]. The unfolded momentum (pTRUE) corresponding to the maximum of the conditional probability
P(pTRUE | pMEAS) for a given measured momentum pMEAS is considered for the evaluation of the ex-
pected signal in the Nσ approach (see Eq. 1). Based on this, the plane (pTRUE; dE/dx) is divided into
identification regions where each point is assigned a unique particle identity. The identity of a track is
assigned based on the difference between the measured dE/dx and the one computed under each mass
hypothesis. The hypothesis which gives the smallest distance is used, thereby removing the sensitivity
to the parameterisation of the dE/dx resolution. A further selection |Nπ

σ |< 2 rejects electrons in the pion
identification.

To calculate the unfolded pT distributions (vs pTRUE
T ), the Bayesian unfolding is also applied to the raw

pMEAS
T distributions of each species. In this case, the initial prior probability for the unfolding is taken

from the generated pT distributions of each species in the MC and the number of iterations is kept to
four so as to minimize the statistical fluctuations (different numbers are considered for the systematic
uncertainty evaluation).

With this method it is possible to identify π±, K±, p and p in the following pT ranges, respectively:
0.05−0.6 GeV/c, 0.2−0.5 GeV/c and 0.3−0.6 GeV/c. This also allows for the reduction of the con-
tamination due to other particle species. For the first time at the LHC, thanks to the low magnetic field
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configuration the pT reach of the pion spectra is extended down to 50 MeV/c with a contamination from
electrons of about 30%. To this purpose, a detailed study in the low momentum region was carried
out in different rapidity intervals to verify the stability of the measurement (as it will be explained in
section 2.3).

TPC and TOF analyses. The identification with the TPC and TOF detectors mostly follows the pro-
cedure developed in [26] with some adaptations. In both cases, the response of the PID signal was tuned
for the lower magnetic field configuration. The raw yield of particles is extracted in each pT interval via
a statistical unfolding. In particular, for the TOF analysis templates obtained with a data-driven approach
are used. An additional template is used to take into account the signal component due to the TPC-
TOF track mismatch. The excellent PID performance achieved with both detectors allowed a continuous
separation of pions from kaons and kaons from (anti-)protons in a wide interval of pT as reported in
Table 1.

Kink analysis. Charged kaons and pions can also be identified by reconstructing their weak decay
topology (kink topology) defined as secondary vertices with two tracks (mother and daughter) having
the same charge. The kink topology is analysed inside the TPC volume within a radius of 110–220 cm.
Details about the kaon identification algorithm based on the kink topology can be found in [5, 26, 29, 42].
In this article, the identification of pions via their kink decay topology is reported for the first time at the
LHC.

The identification of kaons from kink topology and their separation from pion decays is based on the two-
body decay kinematics. The method allows for the extraction of kaon and pion spectra on a track-by-track
basis. Both particles decay into µ +νµ with branching ratios (B.R.) of 63.55% (K) and 99.99% (π) [43].
For this decay channel, the transverse momentum of the charged daughter particle with respect to the
direction of the mother track (qT), has an upper limit of 236 MeV/c for kaons and 30 MeV/c for pions.
Taking into account that the upper limit of qT for the decay K± → π±+π0 (with B.R. = 20.66% [43])
is 205 MeV/c, an effective separation of kaons from pions can be achieved by selecting kinks with
qT > 40 MeV/c. Further selections are applied to reach a purity of kaons higher than 95%: (i) qT > 120
MeV/c in order to discard pion and 3-body kaon decays, (ii) a kink radius in the transverse plane between
110 and 205 cm, (iii) at least 20 TPC clusters for the mother track, (iv) a decay angle greater than 2o in
order to remove fake kinks from particles that are wrongly reconstructed as two separate tracks, and (v)
a kink decay angle, at a given mother momentum, between the maximum decay angle for pion to muon
(µ +νµ decay) and the maximum decay angle of kaon to muon (µ +νµ decay). Finally, identified kaons
from kinks are accepted if the mother track is found to have a dE/dx within 3.5σ around the expected
Bethe-Bloch value for kaons.

The charged pions that are identified via their kink decay topology show a purity higher than 97%.
Similar selection criteria as for kaons are used except for 10 < qT < 40 MeV/c (the most effective cut)
and with the requirement of a decay angle smaller than the maximum decay angle of π → µ +νµ . The
difference in the qT selection for kaon and pion identification is due to their different decay angles to a
muon at equal mother momentum. The maximum decay angle of a kink mother track with momentum
p = 1.5 GeV/c is 2o for the pion to muon decay while 50o for the kaon to muon decay, because of
the mass difference of the mother particles. This feature restricts the pion identification below p =
1.5 GeV/c.

2.1.1 Corrections for efficiency and feed-down

The pT distributions of π±, K±, p and p are obtained by correcting the raw spectra for PID efficiency,
misidentification probability, acceptance and tracking efficiencies as performed in [26] for the ITS, TPC,
TOF and kink analyses. The efficiencies are obtained from Monte Carlo simulated events generated with
HIJING. The propagation of particles through the detector is simulated with the GEANT3 transport
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code [44] where the detector characteristics and data-taking conditions are precisely reproduced. Thanks
to the lower magnetic field of the Xe–Xe data sample, a tracking efficiency of about 2% (2.4%) is reached
at the lowest pT point (pT = 50 MeV/c) for pions in the most central (peripheral) bin compared to an
efficiency lower than 1‰ at full field. It is known [2, 26, 45] that the energy loss of low-pT p in the
detector material and the cross section of low-pT K− are not well reproduced in GEANT3. For this
reason, a correction of the efficiency is estimated using GEANT4 [46] and FLUKA [47], respectively, in
which these processes are reproduced more accurately. The corrections amount to about 10% and 4% for
p and K−, respectively, in the lowest pT bin (see Table 1). The PID efficiency and the misidentification
probability are estimated in the simulation by requiring the simulated data to reproduce the real PID
response for each detector included in this analysis.

The raw distributions are further corrected for the contribution of secondary particles (feed-down) mainly
due to weak decays of K0

S (affecting π±), Λ and Σ+ (affecting p and p). Secondary protons coming from
the detector material are also subtracted from the raw spectrum. The estimation of this correction factor
is data-driven since the event generators underestimate the strangeness production and, as already men-
tioned, the transport codes do not provide a precise description of the interaction of low-pT particles with
the detector material. For each analysis, the reconstructed DCAxy distributions for each particle species
are fitted in each pT interval with three contributions (as templates) extracted from the Monte Carlo
simulation: primary particles, secondary particles from weak decays of strange hadrons and secondary
particles produced in the interaction with the detector material, similarly to what is reported in [2, 26].
Finally, the spectra are normalized to the total number of events analysed in each centrality class. The
spectra in the extended pT range are obtained by combining those obtained with the single identifica-
tion techniques. In the pT intervals where more analyses overlap, the combination is carried out by
performing an averaged mean using the single systematic uncertainties as weights.

2.2 φ meson analysis

The φ meson signal is reconstructed via invariant mass analysis by exploiting the decay channel into
charged kaons, φ → K+K− (B.R. = 0.492 ± 0.005 [43]). The analysis follows a consolidated technique
described extensively in [6, 7, 11]. Candidate kaons are identified based on the variable defined by
Eq. 1 for the dE/dx sampled in the TPC (NTPC

σ ) or the time-of-flight measured by the TOF (NTOF
σ ).

More precisely, a track associated with a hit in the TOF detector is identified as a K if |NTOF
σ | < 3 and

|NTPC
σ | < 5. If a track does not reach the TOF detector and no time-of-flight measurement is available,

only the information of the TPC is used by requiring that |NTPC
σ | < 2 for pT > 0.4 GeV/c, |NTPC

σ | < 3
for 0.3 < pT < 0.4 GeV/c, and |NTPC

σ |< 5 for pT < 0.3 GeV/c. Within each event, identified kaons are
combined in oppositely-charged pairs (“unlike-sign”) to extract the invariant mass (MKK) distribution of
the signal. To estimate the background from uncorrelated pairs, an event mixing technique is used, which
consists in building the invariant mass distribution of K+K− pairs from five different events with similar
centrality (within 5%) and a similar vertex position along the beam axis (within 1 cm). Only same-event
and mixed-event pairs with rapidity |y| < 0.5 are selected. The mixed-event background is normalised
to the integral of the unlike-sign distribution in the invariant mass interval 1.07 ≤ MKK ≤ 1.1 GeV/c2

and then subtracted. The resulting distribution exhibits a clear peak centered at the nominal mass of
φ [43], on top of a low residual background. The φ signal peak is fitted with a Voigtian function (as
in [48]), which is the convolution of a Breit–Wigner, describing the characteristic shape of the resonance
state, and a Gaussian, taking into account the detector resolution. The resonance width is fixed to the
nominal value of Γφ = 4.26 MeV/c2 [43], whereas the mass and the mass resolution σφ are left as free fit
parameters. The mass resulting from the fit is consistent with the nominal value of the φ mass reported
in [43]. The σφ parameter ranges from ≈ 1.5 MeV/c2 at pT = 0.5− 1 GeV/c to ≈ 2.5 MeV/c2 at
pT = 10 GeV/c, and it is consistent with the mass resolution extracted from Monte Carlo simulations of
the full detector setup and reconstruction chain. The residual background is parameterised with a linear
function. The fit is performed in the range 0.994 < MKK < 1.07 GeV/c2. This procedure is repeated for
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each pT and centrality interval.

The pT-differential yields obtained with the described procedure are corrected for efficiency and accep-
tance, as described in [11]. The corrections are obtained from a Monte Carlo simulation where events
are generated with HIJING [41] and particles are transported through a detailed simulation of the ALICE
detector with the GEANT3 transport code [44]. The selection criteria for φ candidates are the same in
Monte Carlo and data.

2.3 Systematic uncertainties

The calculation of the systematic uncertainties follows the procedure performed already for previous
analyses [2, 7, 26, 42, 48]. The main sources of systematic uncertainties for each particle species are
summarised in Table 2 (π±, K±, p and p) and in Table 3 (φ ).

The main sources of systematic uncertainty affecting this analysis are: PID, feed-down correction,
the imperfect description of the material budget in the Monte Carlo simulation, the knowledge of the
hadronic interaction cross section in the detector material [26], the ITS-TPC [34] (accounted twice for
the decay daughters of the φ ) and TPC-TOF matching efficiencies, the track selection, the unfolding
iterations and the rapidity selection for the ITS. The uncertainties for track selection refer to the qual-
ity requirements based on the number of crossed rows in the TPC, the number of clusters in the ITS,
the DCAxy and DCAz, and the χ2/NDF of the reconstructed tracks. To estimate these uncertainties, a
variation of the standard selection criteria is performed and the ratio between the corrected spectra with
modified selection criteria and the ones with standard requirements is calculated, as performed in [26].
For the uncertainty related to the number of iterations in the Bayesian unfolding for the ITS analysis, a
similar approach is followed where the number of iterations is changed from 4 (default) to 3, 5, 7 and 9.
The uncertainties related to PID are evaluated by comparing different techniques (e.g. statistical unfold-
ing versus track-by-track Nσ selection). In addition, for the φ , a detailed study of the yield extraction
procedure was carried out by investigating the effect of variations in the signal shape parameters, the
background shape and the fit range, as performed in [48]. The uncertainties of the detector material bud-
get are estimated by changing the material budget in the simulation with the GEANT3 transport code by
±7% as in [26, 49]. The uncertainty of the hadronic interaction cross section is calculated by comparing
the efficiencies in different transport codes (GEANT3, GEANT4, FLUKA) following the prescription
given in [50]. Finally, the uncertainties on the feed-down are determined by varying the range of the
template fit to the DCAxy distributions.

For the ITS analysis, a systematic uncertainty is introduced to take into account the shift of the cluster
positions caused by the Lorentz force (E ×B effect), as described in [26]. For the kink analysis, the
systematic uncertainties are estimated by comparing the standard spectra with the ones obtained by
varying the selection criteria on the decay product transverse momentum, the minimum number of TPC
clusters and the kink radius.

Finally, the systematic uncertainties on the very low pT region of the spectra are higher compared to
previous analyses [2, 26] because of the lower momentum resolution in the reduced magnetic field.
Nonetheless, the uncertainty on the pion measurement below 100 MeV/c is below 12%. In addition,
the limited statistics of the Xe–Xe data sample restricts the detectors and techniques that can contribute
to the PID at higher momenta, excluding the HMPID detector and the TPC energy loss measurement
in the relativistic rise region. This yields overall larger uncertainties with respect to previous ALICE
measurements in other collision systems. At 3 GeV/c the uncertainties are approximately twice as large
with respect to [26] for π±, K±, p and p.
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Table 2: Main sources and values of the relative systematic uncertainties (expressed in %) of the pT-differential
yields of π±, K±, p and p obtained in the analysis of Xe–Xe collisions. The first section is common to all the
analyses, the analysis specific uncertainties are listed separately. When two values are reported, they correspond
to the lowest and highest pT bin respectively, considering the maximum contribution among the various centrality
classes. If only one value is reported, the systematic uncertainty is not pT-dependent. For certain sources, the
centrality is specified when a larger dependence on centrality is observed. The maximum total systematic uncer-
tainties (among all centrality classes) are shown. The total uncertainty refers to the uncertainty of the combined
results (see text).

Effect π± (%) K± (%) p and p (%)

ITS−TPC matching efficiency (0−5%) 2.2−0.4 2.2−0.4 2.2−0.4
ITS−TPC matching efficiency (40−50%) 3.0−1.2 3.0−1.2 3.0−1.2
ITS−TPC matching efficiency (70−90%) 2.8−0.6 2.8−0.6 2.8−0.6
Material budget 1.6−0.2 1.3−0.4 2.9−0.1
Hadronic interaction cross section 2.5−2.4 2.7−1.8 4.6

ITS analysis
PID 1.4−3.1 1.4−7.7 1.2−0.7
Track selection 4.7−4.4 6.0−6.7 9.8−7.9
E ×B 3.0 3.0 3.0
Unfolding iterations 5.5−2.2 6.1−5.2 13.7−2.3
Rapidity selection 7.0−3.0 3.0 10.0
Feed-down correction 3.2−3.2 3.0−3.0 3.0−3.0
Matching efficiency (0−5%) 1.2 1.2 1.2
Matching efficiency (40−50%) 0.5 0.5 0.5
Matching efficiency (70−90%) 2.0 2.0 2.0
Hadronic interaction cross section (ITS tracks) 3.0−0.3 2.7−1.5 13.3−5.6

TPC analysis
PID (0−5%) 14.−14.4 3.3−15.0 4.3−19.5
PID (40−50%) 5.4−5.3 2.0−7.4 0.8−9.5
PID (70−90%) 3.9−4.6 2.1−6.6 1.0−4.8
Track selection 0.4−1.5 5.0−6.0 3.8−3.0
Feed-down correction 0.5 − 0.8−9.7

TOF analysis
PID 3.0−12.0 3.0−18.0 2.0−20.0
Track selection 1.5 1.5 1.8
Matching efficiency 1.2−5 4.5−5.0 5.3−5.0
Feed-down correction 0.5 − 9.7−0.4

Kink analysis
PID + reconstruction efficiency (0−5%) 2.6 1.7−6.0 −
PID + reconstruction efficiency (40−50%) 2.6 1.0−4.4 −
PID + reconstruction efficiency (70−90%) 1.6 2.7−4.7 −
Contamination (0−5%) 1.0−4.0 0.5−5.3 −
Contamination (40−50%) 1.0−2.0 0.5−3.2 −
Contamination (80−90%) 1.0−2.0 0.5−3.0 −
Total 11.1−21.9 9.0−10.0 22.4−10.5
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Table 3: Main sources and values of the relative systematic uncertainties (expressed in %) of the pT-differential
yields of φ obtained in the analysis of Xe–Xe collisions. When two values are reported, they correspond to the
lowest and highest pT bin respectively, considering the maximum contribution among the various centrality classes.
If only one value is reported, the systematic uncertainty is not pT-dependent. The maximum total systematic
uncertainties (among all centrality classes) are shown.

Effect φ (%)

B.R. 1
ITS−TPC matching efficiency 6.4−11
Track cuts 2.2−4
PID 2−12
Hadronic interaction 2.2−0
Material budget 1.0−0
Yield extraction 5−15

Total 10−20

3 Results and discussion

3.1 Transverse momentum spectra

The π±, K±, p, p and φ pT spectra obtained after all corrections are shown for central and peripheral
collisions in Fig. 2. Each spectrum is individually fitted with a Blast-wave function [51], shown with
dashed lines. The integrated yield 〈dN/dy〉 and the mean transverse momenta 〈pT〉 are calculated from
the measured spectra and the extrapolation of the Blast-wave functions in the unmeasured regions. As
performed in previous analyses [2, 26], the systematic uncertainties for both 〈dN/dy〉 and 〈pT〉 are eval-
uated by shifting the data points up and down within their systematic uncertainty to obtain the softest and
hardest spectra. An additional contribution is given by the extrapolation to pT = 0 GeV/c where different
functions (mT-exponential, Fermi-Dirac, Bose-Einstein, Boltzmann) were used for the calculation. The
uncertainty on the extrapolation for the most central collisions is found to be ∼ 1% for pions and kaons,
∼ 5% for protons and ∼ 2% for φ .

As already observed in Pb–Pb and also in small collision systems [1, 9, 26], the 〈pT〉 rises with increasing
centrality and multiplicity (〈dNch/dη〉). This hardening is significantly more pronounced for heavier
particles. For instance, the maximum of the p spectrum shifts from pT ≈ 0.8 GeV/c in peripheral to
pT ≈ 1.4 GeV/c in central collisions, while for pions the shift is much smaller. This feature is generally
considered as a consequence of the radial expansion of the system. The comparison of 〈pT〉 as a function
of charged-particle multiplicity for Pb–Pb and Xe–Xe collisions, shown in Fig. 3, clearly demonstrates
that this effect is entirely driven by the multiplicity and not by the collision geometry. Most notably, the
〈pT〉 values of protons and φ differ in peripheral (low dNch/dη) Xe–Xe and Pb–Pb collisions, but reach
similar values in semi-central and central collisions. This behaviour is expected due to the small mass
difference of these two particles if the spectral shape is more and more dominated by radial flow with
increasing centrality.

The mass-dependent radial flow naturally explains in central collisions the so-called baryon-to-meson
enhancement at low to intermediate pT (. 5 GeV/c) observed in the light-flavour sector [26]. This
effect is seen in Fig. 4 where the p/π ratio shows a maximum at around 3−4 GeV/c. Considering
the most central Xe–Xe collisions, which have a multiplicity similar to 10−20% Pb–Pb collisions at√

sNN = 5.02 TeV [26], the p/π ratio at the peak is enhanced by a factor of about 3 with respect to
pp collisions at the same energy. Instead, in peripheral Pb–Pb collisions the effect of the radial flow is
less evident and a pT-dependence similar to the one found in pp is observed. Therefore, the measure-
ments shown in Fig. 4 for peripheral collisions suggest that this consideration might hold true also in
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Figure 2: pT distributions of π±, K±, p, p, φ as measured in central (left) and peripheral (right) Xe–Xe collisions
at

√
sNN = 5.44 TeV. The statistical and systematic uncertainties are shown as error bars and boxes around the

data points.

Xe–Xe collisions. Another explanation for the baryon-to-meson enhancement advocates quark recom-
bination [52, 53] as the dominant production mechanism for baryons at intermediate momenta. In this
picture, the production of baryons is enhanced at intermediate momenta as it is more likely to combine
three soft quarks (with pT,q = pT/3) into a baryon in order to reach a given momentum pT than to pro-
duce a meson via quark-antiquark pair (each with pT,q = pT/2). However, the p/φ ratio displayed in
Fig. 4 is rather independent of pT as expected in the radial flow picture. Although their quark content is
different, p and φ have similar masses, indicating that this is the main variable in the determination of the
spectral shape. Nevertheless, as discussed in [54], the same model including radial flow and coalescence
plus fragmentation is able to describe both p/π and p/φ in central Pb–Pb collisions showing that both
radial flow and recombination play a role.

A direct comparison of the Xe–Xe with Pb–Pb collisions allows the study of systems with the same
charged particle density and different initial eccentricity: semi central Pb–Pb collisions have the same
multiplicity as central Xe–Xe collisions, however, the initial eccentricity is smaller in the latter case. A
difference in the initial eccentricity affects the hydrodynamic expansion, eventually leading to a different
elliptic flow of the charged particles. This is best illustrated in Fig. 5 which compares the elliptic flow
coefficient v2{2, |∆η | > 2} of charged particles (for details on the definition, see [24, 55]) with the p/π

ratio. Due to the large mass difference between protons and pions this ratio is very sensitive to radial
flow effects. Consequently, a depletion of this ratio at low transverse momenta and an enhancement at
intermediate transverse momenta with increasing particle density is observed. The magnitude of this
effect is not only qualitatively, but also quantitatively, within uncertainties the same in Xe–Xe and Pb–Pb
collisions for similar charged particle densities. In contrast, the v2 coefficient shows large differences
between the two collision systems at similar particle densities, because it is dominantly influenced by the
initial eccentricity.
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systematic uncertainties are shown as error bars and boxes around the data points.

3.2 Hadrochemistry

To investigate the particle chemistry, the pT-integrated particle yields are determined in each centrality
bin with the procedure described above for the 〈pT〉. The resulting 〈dN/dy〉 values are summarised in
Table 4. The ratios of kaons, (anti-)protons, and φ to pions are shown in Fig. 6 and compared with results
from Pb–Pb collisions. Similarly to the spectral shapes, also the particle yield ratios are comparable
between Xe–Xe and Pb–Pb collisions at similar charged-particle multiplicities. The results reinforce two
of the surprising features that were first observed in Pb–Pb collisions at the LHC energies and are now
confirmed in a new heavy-ion collision system. First, the p/π-ratio values are around 0.05, significantly
lower than those predicted before the LHC era [17]. While the overall magnitude is understood as a
consequence of the pion-nucleon phase-shift [21, 56] the decreasing trend with increasing centrality can
be interpreted as a consequence of the antibaryon-baryon annihilation [57]. The results presented in this
article add constraints to the particle production mechanisms proposed to explain this observation. The
data reported in this work suggests that at LHC energies, particle production is not only independent
of collision energy but also of the collision system when studied as a function of multiplicity. Second,
the φ/π ratio shows an increasing trend from peripheral to central collisions with a hint of a decrease
at higher multiplicities. Notably, this increase appears to be slightly stronger for φ/π with respect to
K/π . As shown in Fig. 6, this is not expected in canonical statistical hadronisation models [22, 56],
which predict a constant or slightly decreasing trend since the net strangeness content S of the φ is zero.
This feature is predicted from both models reported in Fig. 6, independent of the fact that the correlation
volume over which the strangeness conservation is imposed is kept fixed in [22] and has a multiplicity
dependence in [56]. Future studies including the measurement of double-strange (S = 2) Ξ baryons in
Xe–Xe collisions can determine across all available collision systems whether the increase for the φ is
closer to S = 1 (such as kaons or lambdas) or S = 2 particles (Ξ). The measurements of φ production in
Pb–Pb collisions [58] indicate that the increase lies in between these two extremes.
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Table 4: 〈dN/dy〉 of pions, kaons, (anti-)protons and φ for different centrality classes as measured at midrapidity
in Xe–Xe collisions at

√
sNN = 5.44 TeV. The uncertainties are reported in the order ± (stat) ± (syst.).

Centrality Class 〈dN/dy〉π++π− 〈dN/dy〉K++K− 〈dN/dy〉p+p 〈dN/dy〉φ

0−5% 1002.67 ± 0.39 ± 57.16 149.37 ± 0.21 ± 14.07 46.21 ± 0.09 ± 4.73
9.27 ± 0.27 ± 0.95

5−10% 808.76 ± 0.41 ± 45.34 123.58 ± 0.22 ± 11.01 37.79 ± 0.09 ± 3.89

10−20% 620.47 ± 0.24 ± 34.71 95.38 ± 0.14 ± 7.94 29.26 ± 0.06 ± 3.02
5.58 ± 0.11 ± 0.64

20−30% 426.77 ± 0.21 ± 24.14 66.15 ± 0.11 ± 5.44 20.74 ± 0.05 ± 2.15

30−40% 287.20 ± 0.16 ± 16.48 44.02 ± 0.09 ± 3.61 14.31 ± 0.04 ± 1.48
2.35 ± 0.07 ± 0.28

40−50% 182.89 ± 0.13 ± 10.87 27.80 ± 0.07 ± 2.25 9.38 ± 0.03 ± 0.98

50−60% 111.05 ± 0.10 ± 6.62 16.25 ± 0.05 ± 1.33 5.82 ± 0.02 ± 0.61
0.84 ± 0.024 ± 0.11

60−70% 61.23 ± 0.07 ± 3.77 8.83 ± 0.04 ± 0.77 3.26 ± 0.02 ± 0.36

70−90% 21.43 ± 0.03 ± 1.39 2.95 ± 0.01 ± 0.26 1.17 ± 0.01 ± 0.14 0.19 ± 0.01 ± 0.02
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4 Conclusion and outlook

In this article, results on the π±, K±, p, p and φ production measured as a function of centrality in Xe–Xe
collisions at

√
sNN = 5.44 TeV are presented. For the first time at the LHC, it was possible to disentangle

with AA collisions the role of the collision region “shape” (eccentricity) and “size” (charged-particle
multiplicity) on the aspects of the particle production. The results show a mass dependent enhancement
of the particle production at intermediate pT and a depletion at low pT. This feature is more prominent
in central collisions and is typically associated with the presence of radial flow. The effect of the radial
flow is reflected in a mass dependent increase of the average momentum for more central collisions.
In light of this interpretation scheme, particles with similar masses receive a similar increase in their
average momentum. This behaviour is confirmed in the comparison of the 〈pT〉 of p and φ as a function
of 〈dNch/dη〉. The effect of the radial flow on the production of particles with different masses is
investigated by comparing the baryon-to-meson (p/π and p/φ ) ratios. A sizable depletion of the low-pT

part of the spectrum is only observed when comparing particles with large mass differences, in agreement
with the expectations from the radial flow. The comparison of particles with similar mass (such as p and
φ ) hints to the fact that the effect is mostly driven by the hadron mass and not by the quark content as one
could expect from the recombination of quarks into baryons and mesons. However, models including
recombination of quarks and radial flow are able to reproduce both p/π and p/φ at intermediate pT

in central Pb–Pb collisions suggesting the importance of both mechanisms [54]. Moreover, it is found
that the results in Xe–Xe and Pb–Pb collisions are in agreement, indicating that radial flow has a similar
magnitude in the two collision systems at LHC energies. The magnitude of the radial flow is compared in
the two systems by using the p/π ratio in the depletion (1 GeV/c) and enhancement (3 GeV/c) regions.
It is found that the amount of depletion and enhancement is similar in both cases, while the v2 exhibits
a clear deviation. This observation corroborates the intuition that the radial flow depends exclusively on
the 〈dNch/dη〉, while anisotropic flow (e.g. v2) depends also on the initial eccentricities of the collision
region.

The hadrochemistry is investigated by studying the integrated particle yield ratios of kaons, (anti-)protons,
and φ to the most abundantly produced pions. Also, in this case, a behaviour that is mostly driven by
〈dNch/dη〉 is observed and thus the intriguing observations from Pb–Pb collisions related to the p/π

ratio and the φ/π ratio are now confirmed in a smaller heavy-ion collision system at LHC energies.

As an outlook, these results also pave the way for the future programme of light nuclei collisions at the
LHC (in particular the proposed extended future programme with nuclear beams lighter than Pb [60])
which is attractive since higher parton luminosities are achievable. Our results suggest that particle
chemistry and radial flow will be driven also in these systems by the final-state charged particle densities.
While Pb–Pb collisions offer the largest dynamic range in this context, it is also clear from our findings
that collisions of small and intermediate nuclei provide an excellent tool to study the hot and strongly-
interacting matter in the range of moderate multiplicities.
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