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Abstract

We calculate the instanton contribution to the proton
strangeness in the MIT bag enriched by the presence of
a dilute instanton liquid. The evaluation is based on ex-
pressing the nucleon matrix elements of bilinear strange
quark operators in terms of a model valence nucleon state
and interactions producing quark-antiquark fluctuations
on top of that valence state. Our method combines the
usage of the evolution operator containing a strangeness
source, and the Feynman-Hellmann theorem. It enables
one to evaluate the strangeness in different Lorentz chan-
nels in, essentially, the same way. Only the scalar channel
is found to be affected by the interaction induced by the
random instanton liquid.

1 Introduction

Despite the accumulated evidence for the nucleon stran-
geness, there has been as yet no balanced understand-
ing of its various appearances. By a particular nucleon
strangeness we understand the value of the nucleon ma-
trix element 〈N |Os(Γ)|N〉, where the bilinear Os(Γ) =
s̄Γs might represent the scalar, pseudoscalar, vector, ax-
ial vector and tensor strange current densities (Γ =
1, γ5, γµ, γµγ5, σµν). Thus, any interaction LI that in-
duces ss̄ pairs in the nucleon state |N〉 potentially leads
to various types of nucleon strangeness. The imagin-
able interactions LI , which are related to QCD-vacuum
fluctuations, might prefer some of the strangeness chan-
nels. In particular, there is a conjecture [1] that a non-
trivial QCD-vacuum structure selects the pseudoscalar
and scalar channels, which experience the axial and trace
anomaly, respectively. In the present paper we focus on
QCD-vacuum fluctuations as given by the instanton-
liquid model [2, 3, 4], i. e. we take LI → Linst. Such
an interaction generates an s-quark loop (schematically
shown in Fig. 1) to which an external probe can couple.
It is important that this interaction can be treated per-
turbatively and enables us to compare its relative contri-
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Figure 1: Instanton-induced local strangeness repre-
sented by the effective one-, two- and three-body op-
erators. Non-strange quarks are denoted by solid lines,
and strange ones by dashed lines.

butions to different strangeness channels. The relatively
complicated interaction LI = Linst [given by Eqs. (22)–
(24) below] is conveniently split into three pieces:

LI = L1 + L2 + L3 , (1)

where the parts illustrated in Fig. 1 refer to the one-,
two- and three-body operators. These operators change
the known valence (model) state |N0〉 to the state |N〉
containing the ss̄ pairs. Then, we provide an expression
(Eq. (19)) suitable for computing the strange matrix el-
ement of the full nucleon state, 〈N | : s̄Γs : |N〉.

The current evidence for the strangeness content of
the proton comes from the external probe both at low-
and at high-momentum transfers. The analysis of the
term σπN in low-energy πN scattering reveals compara-
ble light and strange quark nucleon matrix elements [1]
(N means the proton throughout this paper):

〈N |ūu|N〉 ≃ 4.8 ,

〈N |d̄d|N〉 ≃ 4.1 ,

〈N |s̄s|N〉 ≃ 2.8 , (2)

i.e., the unexpectedly large scalar strangeness. A poste-
riori, it is found to be in accordance with QCD-vacuum
characteristics [1], as represented, for example, by the
(naive) bag-model relation [5]

〈N |s̄s|N〉 = −〈0|s̄s|0〉V (3)

or the QCD sum-rules result [6]

〈N |s̄s|N〉 ≃ 2.4 . (4)
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Figure 2: Non-vanishing nucleon strangeness due to a
response of the valence nucleon state to a strangeness
source at Γ (denoted by ×), i.e. to a probe coupled to
strange quarks through Γ. More precisely, this graph
is that part of the nucleon response which arises only
through one interaction LI .

The other piece of evidence for the strangeness con-
tent of the proton comes from the polarized lepton-
nucleon scattering at relatively high-momentum trans-
fer, higher than the scales pertinent for our considera-
tions. The analysis [7] of new data supports the original
EMC findings [8, 9] — it reveals a non-vanishing frac-
tion ∆s = −0.11± 0.06 of the proton spin Sµ carried by
the s quark. This is not negligible in comparison with
∆u = 0.82 ± 0.06 and ∆d = −0.44 ± 0.06. ∆s is re-
lated to the axial strangeness of the proton defined as
〈N |s̄γµγ5s|N〉 = ∆s Sµ.

The vector strangeness, described by the Dirac and
the Pauli form factors as

〈N |s̄γµs|N〉 = ūN (p′)

[
F s

1 (q2)γµ + F s
2 (q2)

iσµνqν

2MN

]
uN(p),

(5)
can be related to the analogous flavour singlet (0)

and the hypercharge (8) form factors for 〈N |V (0,8)
µ |N〉

through

s̄γµs = V (0)
µ − 2V (8)

µ ,

V (0)
µ =

1

3
q̄γµq , V (8)

µ =
1√
3
q̄γµ

λ8

2
q . (6)

Although F s
1 (0) = 0 as the net nucleon strangeness, its

momentum dependence determines the strangeness ra-
dius

r2
s = 6

d

dq2
F s

1 (q2)

∣∣∣∣∣
q2=0

, (7)

while the strange magnetic moment is given by

µs = F s
2 (0) . (8)

Note the relation F s
2 = F

(0)
2 − 2√

3
F

(8)
2 , where the last

term is constrained by 2√
3
F

(8)
2 = κp + κn = −0.12.

Knowledge of the F
(0)
2 flavour singlet term would also

enable one to determine the baryomagnetic moment

µ(0)
p = F

(0)
1 (0) + F

(0)
2 (0) = (1 + F

(0)
2 ) n. m. (9)

There are many various model-dependent calcula-
tions [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
of the quantities listed above. By deriving Eqs. (19)–
(20) in the next section, we provide a framework which
is rather general in that it can be applied to different
quark models and flavor-mixing interactions LI . We il-
lustrate its usage on the example of the MIT bag model
and instanton-induced interaction. At least in principle,
this framework also treats all Lorentz channels on an
equal footing, depending on which Γ is plugged in Eqs.
(19)–(20).

2 Nucleon strangeness induced

on top of the valence quark

state

It is not very surprising in non-perturbative QCD, in
the light of its non-vanishing quark scalar condensates,
that some matrix elements 〈N |sΓs|N〉 can be markedly
different from zero. The vacuum expectation value of
s̄s is actually approximately as large as for non-strange
quarks: 〈0|s̄s|0〉 ≈ 〈0|ūu|0〉 = 〈0|d̄d|0〉, i.e. roughly equal
to or even more negative than (−200MeV)3. The MIT
bag model provides a good illustration how this leads to
a large 〈N |s̄s|N〉 [5]. However, there may also be ss̄-pairs
other than those from the QCD-vacuum condensate, so
that normal-ordered strange operators can, in principle,
also have non-vanishing nucleon matrix elements.

Since we are interested in the ss̄-pairs that may exist
in addition to those from the (non-perturbative-)vacuum
channel, it is convenient to define the normal ordering
with respect to the non-perturbative vacuum |0〉:

: q̄Γq : = q̄Γq − 〈0|q̄Γq|0〉 . (10)

Ideally, this referent vacuum state |0〉 would be the true
non-perturbative vacuum of QCD, but since in this pa-
per we are concerned with quark models imitating QCD,
Eq. (10) will in practice mean that the normal ordering is
taken with respect to a model vacuum state. By this we
mean the ground nucleon state from which the valence
quarks are removed (for example, the “empty bag” in
the case of the MIT bag model). For the strange quarks,
the normal ordering with respect to this referent vac-
uum state |0〉 is equivalent to the normal ordering with
respect to the model nucleon ground state |N0〉 com-
posed of the non-strange valence quarks only. Of course,
such a definition of normal ordering is then necessarily
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tied to the characteristic hadronic scale of ∼ 1 GeV, at
which the non-perturbative QCD effects dominate and
at which, and below which, quark models provide a rea-
sonable description of the nucleon bound state.

Figure 2 illustrates how a non-vanishing value not
only of 〈N |s̄Γs|N〉, but also of the normal-ordered 〈N | :
s̄Γs : |N〉 can then come about: at the instant t = t0
the composite nucleon is hit by an external probe (e.g.
a neutrino [23]) with the coupling Γ to strange quarks.
Owing to an interaction capable of producing ss̄ fluc-
tuations, the nucleon state |N〉 at the time slice t = t0
obviously contains not only the valence quarks uud, but
also the s-quark loop to which the external probe can
also couple.

Let us schematically write down the full nucleon (pro-
ton) state, which is also coupled to the strangeness-sen-
sitive probe:

|N〉 =
1

N

( ∞∑

X=0

CX |uudX〉+

∞∑

X=0

Css̄X |uud ss̄X〉
)

≡ 1

N (|N0〉 + |δN〉) . (11)

Here, X (starting from X = |0〉, the complicated
non-perturbative QCD vacuum) symbolizes any number
of various perturbative and non-perturbative gluon and
quark configurations including quark-antiquark pairs
and, in particular, strange pairs which escaped detection
by this probe. These complicated configurations “dress”
quarks (q = u, d, s, ...) into their effective counterparts
— constituent quarks Q = U , D, S, ... . In terms
of the constituent quarks, this part, unperturbed by
the strangeness-sensitive probe, is just the valence
part |N0〉 = |UUD〉 when the nucleon is a proton.
It is obvious in terms of the constituent quarks that
〈N0| : s̄Γs : |N0〉 = 0. The one strange pair detected at
Γ has been explicitly denoted by ss̄ in the |δN〉-part of
the nucleon state perturbed by the probe. |δN〉 can be
viewed as the response of |N0〉 to the weakly coupled
strangeness-sensitive probe. The coefficients CX , Css̄X

denote the amplitudes of states with various admixtures
X or ss̄ X. N is the normalization. This response
makes possible that the total nucleon Γ–strangeness
〈N |s̄Γs|N〉 also receives a non-vanishing contribution
from the non-vacuum channel 〈N | : s̄Γs : |N〉.

However, the question is how to get the nucleon state
in sufficiently specific terms in order to have a calculable
expression for 〈N | : sΓs : |N〉. A viable approach is to
resort to a constituent model of hadrons. The idea of a
constituent model is that all the mess of fluctuations X
is by some model parameterization lumped into dressing
of constituent quarks Q, as well as into effective model
interactions, or a mean field they feel. The valence pro-
ton state |N0〉 would then be identified with the model
ground eigenstate |UUD〉 built up only of non-strange ef-
fective quarks (so that 〈N0| :sΓs : |N0〉 = 0, even though
possibly 〈N0|sΓs|N0〉 6= 0, at least for Γ = 1, owing to

the strange vacuum condensate). Let us denote all pos-
sible higher eigenstates of some model Hamiltonian H0

by |k〉:

H0|N0〉 = EN0
|N0〉, H0|k〉 = Ek|k〉, Ek > EN0

.
(12)

The Hamiltonian H0 is responsible for the formation of
(model) hadron states composed of definite, fixed num-
bers of quarks. In the simplest case, we can imagine H0 as
consisting of a sum of one-body quark operators, say typ-
ically of the effective quark kinetic energy operator and
the mean, or self-consistent, field in which the dressed
valence quarks would move. For example, H0 could be
the static bag-model Hamiltonian. |N0〉 would then be
the bag-model nucleon in its ground state, and |k〉 all
higher bag states with a definite number of constituents.
In any case, H0 defines the nucleon model — possibly to-
gether with some other ingredients (such as the confining
boundary condition in bag models).

What H0 cannot do is to produce ss̄ fluctuating pairs.
To produce such pairs, we have to supplement H0 defin-
ing the model one starts from, by some Hamiltonian HI

(corresponding to the Lagrangian density LI) which can
produce ss̄ excitations on top of |N0〉. This means that
LI , and thus also HI , contains strange quark field op-
erators bilinearly, so that it can connect |N0〉 with |δN〉
containing ss̄ pairs.

To clarify that introducing LI does not lead to
double-counting, let us repeat that H0 is just a model
Hamiltonian, the parameters of which should mimic
the effects of full, true non-perturbative QCD as much
as possible. For example, if H0 is the Hamiltonian of
the non-relativistic naive constituent quark model, it
must contain the postulated mass parameter of the con-
stituent quark mass MQ ≈ MN0

/3. The corresponding
quantity in the true theory, the dynamically generated
quark mass, is (in principle) the result of all possible
QCD interactions, so that the interactions related to
HI can, in real QCD, also contribute to this mass by
contributing to the ss̄-fluctuations. The dynamically
generated non-strange quark mass must be close to the
model constituent quark mass parameter MQ sitting
in H0, and only in such implicit, indirect ways are
interactions like HI “present” in H0. However, they are
not present explicitly, and, in fact, H0 cannot produce
any ss̄ fluctuations at all. Therefore, if we want to study
the ss̄ fluctuations, we must introduce HI to enrich the
model nucleon with SS̄-fluctuations on top of |N0〉.

In order to obtain the expression for 〈N | : s̄Γs : |N〉
by utilizing the Feynman-Hellmann theorem [24, 25], let
us define an auxiliary perturbation Hamiltonian H ′ by
adding to HI a source term for the strange operator we
want to calculate in the “full” nucleon state |N〉:

H ′ ≡ HI + λ⊗ < sΓs >, (13)

where < sΓs > is the convenient abbreviation

3



< sΓs >≡
∫

s(x)Γs(x) d3x . (14)

The generic form λ ⊗ Γ can mean any of the cases λ14,
λµγµ, λ5µγµγ5, λµνσµν , etc.

Then we use the auxiliary perturbation Hamiltonian
as the interaction Hamiltonian in the evolution operator
U(t2, t1). The perturbation expansion of this operator is

U(t2, t1) = 1 +

∞∑

n=1

U (n)(t2, t1)

= T̂

{
1 +

∞∑

n=1

in

n!

[ ∫ t2

t1

:Lint(t) : dt
]n}

. (15)

Here, T̂ denotes the time-ordering operator and Lint(t) =∫
Lint(x, t)d3x = −Hint(t) is the interaction Lagrangian

to be replaced with the form containing the strangeness
sources, as in the definition of H ′ (Eq. (13)):

L(t)int → L′(t) = LI(t) − λ⊗ < sΓs(t) >

=

∫
d3x
[
LI(x) − λ ⊗ s(x)Γs(x)

]
.(16)

The Feynman-Hellmann theorem then enables one to
understand the nucleon matrix elements of the strange
current densities, 〈N | : sΓs : |N〉, as the response (to
the strange current source) of the 〈N0(t → +∞)|N0(t →
−∞)〉 transition amplitude of the model ground state
|N0〉. For example, in the case of the second-order term
in Eq. (15), the substitution (16) leads to

U (2)(+∞,−∞)=−1

2
T̂

∫ +∞

−∞
dt

∫ +∞

−∞
dt′
[

:LI(t) : :LI(t
′) :

− λα :< s̄γαs(t) >: :LI(t
′) : − :LI(t) : λβ :< s̄γβs(t′) >:

+ λαλβ :< s̄γαs(t) >: :< s̄γβs(t′) >:

]
. (17)

For definiteness, the above expression for U (2) has been
written for the vector strange current density. The first-
order contribution to the vector nucleon strangeness can
then be obtained by considering

∂

∂λµ

〈N0|U (2)(+∞,−∞)|N0〉
∣∣∣∣∣
λµ=0

. (18)

In general, for any matrix Γ in the spinor space, the
strange nucleon matrix element of the full nucleon state
|N〉 is, to the two lowest orders (due to the U (2) and U (3)

terms), given by

〈N | : sΓs : |N〉 = i

∫ +∞

−∞
dt′ 〈N0|T̂ :< sΓs(t0) >:

× :LI(t
′) : |N0〉 − 1

2

∫ +∞

−∞
dt′
∫ +∞

−∞
dt′′

× 〈N0|T̂ :< sΓs(t0) >: :LI(t
′) : :LI(t

′′) : |N0〉. (19)

Obviously, the non-vanishing contributions to (19)
occur only when the strange quark fields are fully con-
tracted. For example, the integrand of the first term in
(19), written in terms of space integrals over the con-
tracted strange current and Lagrangian densities, is

∫
d3xd3x′〈N0|T̂ : s(x)Γs(x) : : LI(x

′) : |N0〉

=

∫
d3xd3x′〈N0| :

︷ ︸︸ ︷
s(x)Γ s(x)LI︸ ︷︷ ︸(x

′) : |N0〉 , (20)

where the contractions are indicated by over- and un-
derbraces, and t0 ≡ x0 and t′ ≡ x′

0, for consistency
of the notation. So, the first term in (19) corresponds
to Fig. 2, since these contractions, or time-ordered pair-
ings, are, of course, the propagators of strange quarks.
In the second term, the two contractions must connect
the strangeness source at Γ with two different separately
normal-ordered interaction Lagrangian densities which
act as “sinks” for strangeness at two different points
of the valence-quark lines. In any case, there must be
an additional strange-quark contraction between these
two : LI :’s, and this completes the strange-quark loop.
Fig. 3 shows an example of the graphs originating from
the second term of (19), namely the U (3) contribution.
Clearly, in this way, one can generate contributions cor-
responding to kaon-baryon loops in the approaches em-
ploying hadron degrees of freedom. Below, we will use
a strangeness-generating interaction LI which is pertur-
bative, so that we do not expect sizable contributions
to the ss̄-effects from the second order in LI . In addi-
tion to that, there are indications that these contribu-
tions related to strange meson loops, should be rather
small even when one does not restrict oneself to per-
turbative ss̄-generating interactions. Some of these indi-
cations come from model-dependent calculations, e.g. in
the Nambu and Jona-Lasinio (NJL) model [26]. Recently,
however, Geiger and Isgur presented a parameter-free
analysis within a rather general framework consistent
with the many empirical constraints (such as OZI rule),
which shows that a complete set of strong strange meson-
baryon loops, computed in a model consistent with the
OZI rule, gives (after delicate cancellations) only small
observable ss̄ effects. We therefore do not consider the
ss̄-effects from the second order in LI .

3 Strangeness evaluation with a

specified interaction LI

The evaluation of Eq. (19) is in principle straightfor-
ward once one specifies two things. The first is the over-
all description of hadronic structure, which in practice
amounts to choosing the model for the nucleon state |N0〉
— for example, choosing some mean-field Hamiltonian
such as H0 in (12). The second is the choice of the inter-
action (we call it LI) which has the role to generate qq̄
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Figure 3: A response of the valence nucleon state |N0〉
to a strangeness source at Γ through two interactions
LI . This type of contribution can be associated with the
kaon-loop contribution to the nucleon strangeness (a pos-
sible KΛ intermediate state is therefore indicated).

fluctuations on top of the valence nucleon state |N0〉 (the
eigenstate of H0). Specifying H0 also defines the model
single-quark solutions, and we can use them as an ap-
propriate wave-function basis to expand the quark fields
q(x) (q = u, d, s) in terms of creation (U†

K ,D†
K ,S†

K) and
annihilation (UK ,DK ,SK) operators of dressed quarks
and antiquarks:

q(x) =
∑

K

(
QK qK(x)e−iωKt + Qc†

K qc
K(x)eiωKt

)
.

(21)
Here, qK(r) denotes a model wave function of a quark
of flavour q, where K stands for the set of quantum
numbers labelling a model quark state. (For example, in
the next section we will choose to employ the MIT bag
model. Then, qK(r) will be the solution for the quark in
the K-th mode of the MIT bag.)

The field contractions in (19) lead to the sums over
stationary modes of single quarks and antiquarks (such
as the sums (27) and (28), evaluated in the next sec-
tion), or, equivalently, to the bound-state propagators of
these dressed model quarks. The sum over quark modes
should naturally run up only to some typical hadron-
physics low-energy cut-off Λ ∼ 0.6 − 1 GeV. This cut-
off on quark energies is dictated by the fact that non-
perturbative interactions between quarks operate at low
energies, whereas they gradually weaken and go over to
the perturbative regime at higher energies. (In the afore-
mentioned study of ss̄ effects of kaon loops [18], Geiger
and Isgur have shown the importance of high-mass inter-
mediate states in these loops. However, since these are
hadronic, meson–baryon intermediate states, this does
not contradict with cut-off such as Λ ∼ 1 GeV on quark

energies. Namely, the dominant portions of the results
of Ref. [18] are accounted for by states lying below 3–3.5
GeV. For comparison, our cut-off of 1.1 GeV (see Ta-
ble 1) imposed on the energies of one strange quark and
one antiquark fluctuating on top of the valence nucleon
state, corresponds to total energies up to 2Λ + MN ∼

3 GeV as well. This leads us to believe that we have
accounted for the majority of important degrees of free-
dom.) The cut-off values such as ours, are typical of cal-
culations in models of low-energy QCD, e.g., the NJL
model [26]. Obviously, we suppose here that the nucleon
strangeness is the effect of low-energy non-perturbative
QCD. Indeed, this brings us to the question what to use
concretely for LI in Eq. (19) in the explicit calculation
of 〈N | : sΓs : |N〉.

The Lagrangian LI can, of course, be any interac-
tion that can produce fluctuating ss pairs, but the ques-
tion is which interactions can be important in producing
the strangeness of the nucleon. For example, perturba-
tive QCD interactions probed in high-energy deep in-
elastic scattering and revealing the sea of qq pairs, in-
cluding ss, should be relatively unimportant in this re-
gard [27, 28]. A theoretical analysis [29] of the CCFR
data [30] on strange quark distribution functions from
neutrino-nucleon deep inelastic scattering seems to sup-
port this point of view. For example, it finds a very
small upper bound on the strange radius of the nucleon
(|〈r2〉s| ≤ 0.005 fm2) [29]. The possibly enhanced nu-
cleon strangeness is thus expected (see, e.g. [27]) as an
effect of non-perturbative QCD, which, at low energies,
around the nucleon mass scale, is certainly more impor-
tant for hadronic structure than perturbative QCD, and
can lead to ss̄ pairs already at small momentum trans-
fers, i.e. large distances. Non-perturbative QCD is after
all responsible for precisely such effects as forming of
a quark-antiquark condensate 〈0|q̄q|0〉 (q = u, d, s) and
a gluon condensate characterizing the non-perturbative
QCD vacuum. Some investigators (see, e.g. [31], [3, 32],
or, for comprehensive reviews, [33, 34, 35]) have sug-
gested that instantons are among the most important
non-perturbative configurations of the gluon fields. By
now it has been certainly well-established that the effec-
tive interaction between quarks resulting from the pres-
ence of instantons (let us call this interaction Linst) plays
a very important role in the formation of hadron struc-
ture [33, 34], although it is not responsible for confine-
ment [36, 37], as thought previously. (In the present ap-
proach, confinement must anyway be taken care of by the
unperturbed Hamiltonian H0.) In our opinion, this Linst

is therefore worth testing as an important candidate for
the interactions LI generating the strange nucleon ma-
trix elements of some operators. A calculation [26] in the
context of the NJL model seems to be an indication that
Linst is indeed the most important part of LI . The calcu-
lation in [26] found that large strange-pair components
were present in the nucleon only if the instanton-induced
interaction was included in low-energy dynamics.

Here we quote the vacuum-averaged version of the
instanton-induced interaction Linst derived by [4] in the
instanton-liquid approach but transformed to the x-
space. It is convenient to separate it into one-, two- and
three-body pieces (Eq. (1)) L1,L2 and L3, respectively:
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L1 = −n

(
4π2

3
ρ3

){
Fu ūR uL + (u ↔ d) + (u ↔ s)

}

+ (R ↔ L) , (22)

L2 = −n

(
4π2

3
ρ3

)2{
Fu Fd

[
(ūRuL)(d̄RdL)

+
3

32
(ūRλauLd̄RλadL − 3

4
ūRσµνλauLd̄LσµνλadL)

]

+ (u ↔ s) + (d ↔ s)

}
+ (R ↔ L) , (23)

L3 = −n

(
4π2

3
ρ3

)3

Fu Fd Fs

1

3!

1

Nc(N2
c − 1)

× ǫf1f2f3
ǫg1g2g3

{
2Nc + 1

2Nc + 4
(q̄f1

R qg1

L )(q̄f2

R qg2

L )(q̄f3

R qg3

L )

+
3

8(Nc + 2)
(q̄f1

R qg1

L )(q̄f2

R σµνqg2

L )(q̄f3

R σµνqg3

L )

}
.

(24)

Here, n is the instanton density and Ff ’s are the charac-
teristic factors (corresponding to inverse effective quark
masses) composed of current light-quark masses mf (f =
u, d, s), average instanton size ρ ≃ 1/3 fm [38, 3, 32],
and the quark condensate 〈0|qq|0〉. For example, for the
u flavour, Fu ≡ [muρ − (2π2/3)ρ3〈0|uu|0〉]−1, and anal-
ogously for the other flavours. The left (and right) pro-
jected components are defined in the usual way, uL,R =
γ∓u ≡ (1/2)(1 ∓ γ5)u.

In the three-body interaction L3, the indices fi, gi

(i = 1, 2, 3) run over light flavours u, d and s. For ex-
ample, g3 = d means qg3

L = dL. Repeated indices are
summed over. The interaction defined here by L1,L2 and
L3 is actually the same as the well-known one of Shif-
man, Vainshtein and Zakharov (SVZ) [2], although the
present three-body term (24) looks much simpler. In fact,
Nowak [39] simply Fierzed away very complicated colour
structures present in the SVZ interaction [2], reshuffling
them to simple prefactors involving the number of quark
colours Nc.

Although Nowak et al. derived this interaction in the
random instanton liquid model (RILM) with the help of
the mean-field, or quenched, approximation (where the
collective coordinates of instantons and anti-instantons
are randomly distributed, thus neglecting potentially im-
portant correlations) and in the long-wavelength limit,
their version of the interaction induced by small instan-
tons is still considered useful even in the most recent re-
views of instanton physics [35]. Ref. [4] took into account
the delocalization of zero modes and long-wavelength
properties (scales > 1/3 fm), arriving at the interaction
basically corresponding to that of SVZ [2], apart from
the effects of smearing over the average size ρ of a small
instanton, ρ ≃ 1/3 fm [38, 3, 32]. In the limit of no smear-
ing the SVZ instanton-induced interaction is obtained,

that is, the interaction averaged over the small instan-
ton volume is taken to be the local interaction (22)–(24).
In the long-wavelength limit, it should approximate well
the intermediate-range (∼ 1/3 fm) QCD effects, which
are already of non-perturbative origin, but still not re-
sponsible for confinement appearing at still larger scales.

We also note that the average instanton size ρ ≃ 1/3
fm = (600MeV)−1 is consistent with what we have said
above about the typical hadronic cut-off scale Λ ∼ 0.6−1
GeV. Namely, the effective interaction Linst cannot be
operative at energies which would probe distances signif-
icantly smaller than the average size of these extended
objects, instantons, which produce Linst.

Obviously, the two-body term is the one which,
through Eqs. (19) and (20), yields the graph in Fig. 2.
The contribution to the nucleon strangeness due to the
three-body interaction L3 is exemplified by the last loop
in Fig. 1. Such graphs come about when contractions
in (20) are performed with a strange bilinear in L3.
The s̄s bilinear in the one-body term L1 can produce
the strange quark loops disconnected from the valence
quarks.

We should also comment on the consistency of us-
ing the instanton-induced interaction Linst for LI in Eq.
(19), even when we view Eq. (19) as a purely perturba-
tive result.

If we take the perturbative viewpoint, why is Eq.
(19) applicable not only to parts of LI which come from
perturbative interactions such as the perturbative gluon
exchange, but also to Linst (22)-(24) which is of non-
perturbative origin? The point is that the origin of Linst

is non-perturbative, i.e. these effective interactions be-
tween quarks are the consequence of non-perturbative
gluon configurations – instantons. However, Linst itself
contains a small parameter, namely the instanton den-
sity n, and it is so small that a perturbative expan-
sion in its powers is possible. Original estimates [38] —
where n ≈ 1.6 · 109 MeV4 = 1 fm4 — have proved to
be reliable as they have remained essentially unchanged
[34] also in the more recent instanton-liquid calculations.
It is useful to define a “dimensionless instanton den-
sity” ñ by expressing it in units of the average instan-
ton size ρ, n ≡ ñρ−4. The commonly accepted value
is ρ = 1/600 MeV−1 ≃ 1/3 fm [3, 32, 40]. Therefore,
ñ ≃ 12.4 · 10−3 ≃ 1/81, and this dimensionless parame-
ter indicates that the probability of finding an instanton
is small. ñ is obviously small enough to be used as the pa-
rameter of the perturbative expansion. We should also
keep in mind that this is the instanton density in the
true, non-perturbative QCD vacuum, while in some cir-
cumstances the appropriate n can be even smaller. No-
tably, Ref. [41] has found that in the MIT bag model en-
larged with the instanton–induced interaction (22)–(24),
which is used in the next section for the first evaluations
of the nucleon strangeness using formula (19), the in-
stanton density is very strongly depleted with respect to
the true QCD vacuum.
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Of course, this depletion relative to the instanton
density in the true QCD vacuum, is just the way to ex-
press the small probability of penetration of the instan-
ton liquid from the RILM vacuum (modeling the true
QCD vacuum supposedly outside the bag) into parts of
the volume inside the otherwise perturbative bag. If one
wants, this can be visualized as occasional penetration
into the bag (with a small probability), of drops of the
instanton liquid. It is important to note that it is not
a different kind of liquid, with different properties, but
that it must be the same liquid – namely the one giv-
ing rise to the interaction (22)–(24). For that reason, we
use in the instanton–induced interaction LI (22)–(24),
as usual, the empirical value of the condensate 〈0|q̄q|0〉.

The non-vanishing (albeit small) probability for pen-
etration of the droplets of instanton liquid from the true
non-perturbative “instanton vacuum” of QCD into the
“perturbative” MIT bag interior explains why, in the
case of the MIT bag, we should be concerned with the
strangeness coming from the one-body term L1. It is true
that this term does not involve any interaction with va-
lence quarks and one would thus expect that it is already
included in the vacuum contribution. Nevertheless, recall
that in the MIT bag model, Donoghue and Nappi [5] ob-
tained the strangeness of the “perturbative” MIT bag
by subtracting the (negative) non-perturbative vacuum
contribution, since everything is measured with respect
to the true non-perturbative QCD vacuum as the ref-
erent, “zero” level. However, if there is a non-vanishing
probability for penetration of droplets of the random in-
stanton liquid vacuum of QCD, it means that the dif-
ference of the bag interior with respect to the true non-
perturbative QCD vacuum was not so large. Hence, the
over-subtracted strangeness should be put back in, and
this is the reason for the one-body term L1 contributing
to our ss̄-pairs on top of the vacuum.

4 Instanton-induced strangeness

in the MIT bag model

We now turn to the actual calculation of strange nu-
cleon matrix elements in a specific model, and with
the instanton-induced interaction Linst given by Eqs.
(22-24). For definiteness, we quote the results for the
proton—the neutron case is quite similar. Using Eq. (19),
we can write the proton-strangeness matrix element as

〈N | : s̄Γs : |N〉 = i

∫ ∞

−∞
dt′ 〈N0|T̂ :

∫
d3x

× s̄(x, t0)Γs(x, t0) : :

∫
d3y Linst(y, t′) : |N0〉 , (25)

where we have kept only the first term in the perturba-
tion series over low instanton density. We have treated
each of the three parts of Linst (1) separately. The one-
body interaction L1 (22) is the simplest of all. Since no

Table 1: Strange-quark energy levels ωnκ, which can be
excited by the instanton interaction.

n κ ωnκ /MeV

0 -1 514.0
0 -2 726.7
0 1 797.4
1 -1 1104.9

valence quarks take part in this interaction, the only rel-
evant part of L1 is

− n

(
4π

3
ρ3

)
Fs[s̄R(y, t′) sL(y, t′) + s̄L(y, t′) sR(y, t′)] .

(26)
Expanding the strange-quark fields s like in Eq. (21)

and contracting them leads to the following contribution
of the one-body interaction L1 (22) to the matrix element
(25):

〈N | : s̄Γs : |N〉L1
= 4π2nρ3Fs

∑

K,L

1

ωK + ωL

×
{∫

d3x s̄K(x)Γsc
L(x)

∫
d3y s̄c

L(y)sK(y) + (s ↔ sc)

}
.

(27)

We now choose the MIT bag as our concrete model
for the nucleon1. Therefore, the wave functions qK(r)
(q = u, d, s) denote the MIT bag model solutions2, and
K stands for the set {n, κ, j3}, where n is the radial exci-
tation number and the quantum number κ is determined
by the total and orbital angular momenta j and l, respec-
tively. ωK is the energy of the quark in the bag state K.
With all this, the one-body contribution to the nucleon
strangeness is completely specified.

The sum over K = {n, κ, j3} and L = {n′, κ′, j′3}
goes up to the state with n = 1, κ = −1 (correspond-
ing to the cut-off of about 1.1 GeV), encompassing four
lowest-lying strange quark states displayed in Table 1.
The expression for the contribution of the two-body in-
teraction L2 (23) is obtained in the same way as Eq.
(27). However, it is somewhat more complicated, involv-
ing also valence quark wave functions. Luckily, the terms

1 The problem that the MIT bag model has with the breaking
of the chiral symmetry on the bag boundary, is cured in various
versions of the chiral bag model containing the pion fields outside
the bag with quarks, complete with appropriate boundary condi-
tions. In the models where the bag radius is as large as in the
ordinary MIT bag [42], the pion field outside is so weak that it
does not perturb significantly the quark sector where our LI acts,
and cannot influence the strangeness much. Therefore, the results
obtained in such a chirally invariant but more complicated model,
should not be very different from those obtained in the simple MIT
bag model, so that in the next section, we stick to the latter for
concreteness and simplicity.

2We follow the conventions of Ref. [43] for the MIT bag wave
functions. See also our more complete account [44], where we give
technicalities in detail.
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with σµν cancel out, leaving us with the proton matrix
element

〈N | : s̄Γs : |N〉L2
=

16

3
π4nρ6FqFs

∑

K,L,±

1

ωK + ωL

×
{∫

d3x s̄K(x)Γsc
L(x)

∫
d3y s̄c

L(y)γ±sK(y)

×
[
2q̄0,−1, 1

2

(y) γ± q0,−1, 1
2

(y)

+ q̄0,−1,− 1

2

(y) γ± q0,−1,− 1

2

(y)

]

+

∫
d3x s̄c

K(x)ΓsL(x)

∫
d3y s̄L(y)γ±sc

K(y)

×
[
2q̄0,−1, 1

2

(y) γ± q0,−1, 1
2

(y)

+ q̄0,−1,− 1

2

(y) γ± q0,−1,− 1

2

(y)

]}
.(28)

Here, q0,−1,± 1

2

(y) is the wave function for the ground
state of the valence quark in the bag, which we take to
be the same for u and d quarks.

Going now to the three-body interaction L3 (24), ex-
pressions become extremely long and complicated, so we
do not write them down here. As seen below, it turns out
that this contribution is much smaller than the preceding
two, anyway.

After focusing on the scalar (s̄s) and pseudoscalar
(s̄γ5s) strangeness as the channels preferred by the QCD-
vacuum fluctuations [1], we have also checked the vector
(s̄γµs) and the axial-vector (s̄γµγ5s) channels.

The calculation of the contribution of the two-body
L2 and the three-body L3 instanton interactions is te-
dious and in the manipulation of all these formulae we
have relied heavily on Mathematica package [45] for sym-
bolic computer calculations.

To illustrate how our calculations in the MIT bag
model have been performed and in which way such a
model choice influences our results, we briefly sketch the
calculation with the one-body part L1 interaction.

4.1 Scalar and pseudoscalar strangeness

Let us first consider the scalar strange current density s̄s
inside the proton. The expression for the matrix element
can be written as

〈N(p′)|s̄se−iq·x|N(p)〉 = As(q
2)ūN (p′)uN (p) , (29)

where q2 = (p − p′)2, and uN ’s are nucleon spinors.
As(q

2) is the scalar form factor accounting at q2 = 0
for the scalar strangeness of the proton.

Calculations inside the bag model can be performed
by making the substitution Γ = 1 and inserting the ap-
propriate quark and antiquark wave functions in (27).

By a simple calculation one can show that the surviving
combination is the one with κ = −1, κ′ = 1 and κ = 1,
κ′ = −1, and (27) reduces to

〈N | : s̄s : |N〉L1
= 4π2nρ3Fs

1∑

n=0

4

ωn,−1 + ω0,1

×
[
N−1(xn,−1)N1(x0,1)

∫
r2dr

× W+(n,−1)W−(0, 1)j0(xn,−1
r

R
)j0(x0,1

r

R
)

+W−(n,−1)W+(0, 1)j1(xn,−1
r

R
)j1(x0,1

r

R
)

]2
.(30)

The normalizations N±1(xn,±1) and the W±–factors, re-
lated to the quark wave functions, are given in Refs. [43]
and [44].

The above equation represents the contribution to
the strange scalar form factor As(q

2 = 0) coming from
the one-body interaction. The remaining contributions
from the L2 and L3 instanton interactions can be calcu-
lated similarly and the results are

〈N | : s̄s : |N〉L1
= 0.035 , (31)

〈N | : s̄s : |N〉L2
= 0.023 , (32)

〈N | : s̄s : |N〉L3
= 2.9 · 10−4 . (33)

Summing them up gives

As(0)Linst
= 0.058. (34)

The evaluation of space-integrals has been performed
numerically using the following values: the bag radius
R= 1/197.3 MeV−1 ≈1 fm, the average instanton size
ρ=1/600 MeV−1 and the instanton density n = 2.66 ·107

MeV4, which is the depleted instanton density in the
MIT bag as found in [41]. Moreover, we have taken the
strange quark mass ms=200 MeV and the valence quark
mass mu = md ≡ mq=8 MeV. The quark condensate
that follows from the Gell-Mann–Oakes–Renner relation
for these quark masses and the empirical meson masses
is 〈0|q̄q|0〉 ≈ (−200MeV)3.

The pseudoscalar strange form factor Bs is defined
as

〈N(p′)|s̄γ5se
−iq·x|N(p)〉 = Bs(q

2)ūN (p′)γ5uN (p) .
(35)

For the pseudoscalar strange current s̄γ5s, Eq. (27) gives
the vanishing one-body contribution

〈N | : s̄γ5s : |N〉L1
= 0 . (36)

Analogously, we obtain the vanishing result for the other
two instanton interactions, i.e. 〈N | : s̄γ5s : |N〉Linst

= 0 .
We thus obtain,

Bs(0)Linst
= 0 , (37)

as the vanishing total instanton contribution to the pseu-
doscalar form factor.
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4.2 Vector and axial-vector strangeness

In Eq. (5) the vector strangeness has been displayed in
terms of the Dirac (F s

1 ) and the Pauli (F s
2 ) form factors.

For comparison with experimental data, the (strange)
Sachs form factors Gs

E (electric) and Gs
M (magnetic) are

widely used:

Gs
E(q2) = F s

1 (q2) +
q2

4M2
N

F s
2 (q2) ,

Gs
M (q2) = F s

1 (q2) + F s
2 (q2) . (38)

By taking the non-relativistic nucleon spinor

uN(p, s) =

√
E + MN

2E

(
χs

σ · p
E + mχs

)
(39)

in the Breit frame defined by

qµ = (q0, q) = (0, qB) ,

p =
qB

2
, p′ = −qB

2
, (40)

the components of the vector current take the form

〈N(p′, s′)|V s
0 |N(p, s)〉 =

m

E
χ†

s′χsG
s
E(−q2

B) , (41)

〈N(p′, s′)|V s|N(p, s)〉 =
1

2E
χ†

s′ i(σ × qB)χsG
s
M (−q2

B)

. (42)

In order to calculate the contribution of the
instanton-induced vector strange current inside the MIT
bag, we have to identify the form factors in (42) with
the Fourier-transformed vector current within the bag:

〈N(p′)| : V s
µ : |N(p)〉Linst

= 〈N(p′)| :

∫
d3r e−iqB ·rs̄(r)γµs(r) : |N(p)〉Linst

,(43)

using the static limit q → 0. The check with the V s
0

component of the vector current gives zero, i.e. Gs
E(q2 =

0)inst = 0, as it should be.
A similar calculation for the space components V s

shows a non-trivial cancellation among the contributions
of quarks in the loop with different spin orientations pro-
ducing the total result

Gs
M (0)Linst

= 0 . (44)

This implies the vanishing strange magnetic moment

µs = F s
2 (0) = 0 , (45)

which is compatible with the recent measurements at
MIT/Bates [46] and even more recent ones at TJNAF
(JLab) [47].

Eq. (9) then implies that the baryomagnetic moment
is

µ(0)
p = 1 + κp + κn = 0.88 n. m. (46)

The estimation of the axial-vector strangeness can
be done along the same lines. The form-factor decom-
position, assuming the G-parity symmetry of the strong
interactions, has the form

〈N(p′)|s̄γµγ5s|N(p)〉

= ūN(p′)

(
γµγ5G

s
1(q

2) +
qµ

2MN

γ5G
s
2(q

2)

)
ūN (p) .(47)

The instanton contribution to such a matrix element
can be calculated as

〈N(p′)| : As
µ : |N(p)〉Linst

= 〈N(p′)| :

∫
d3re−iqB ·rs̄(r)γµγ5s(r) : |N(p)〉Linst

(48)

and should be compared with the axial form factors de-
fined in the Breit frame as

〈N(p′, s′)|As|N(p, s)〉 = Gs
A(0)χ†

s′σχs . (49)

Again, it turns out that the axial-vector strangeness in-
duced by the instanton interaction is vanishing,

Gs
A(0)Linst

= 0 . (50)

5 Discussion and conclusions

This paper deals with strange quarks at very small mo-
mentum transfers Q2, as opposed to the high values of
Q2, where such non–valence components of nucleon are
undisputable, and also treatable using more standard
methods of perturbative QCD and parton models. The
original MIT bag model [48, 49, 50] represents a suitable
starting point in predicting the low-energy properties of
low-mass hadrons. In this model, Rbag imitates the sepa-
rations Rconfining ∼ 1 fm at which confinement effects are
important, corresponding to the confining scale ΛQCD ≃
100 to 300 MeV. Short–distance effects are supposedly
taken care of by the perturbative one–gluon exchange.

However, in order to account for the effects at inter-
mediate distances, i.e. at momentum scales Q ∼ ΛχSB ≃
0.6 – 1 GeV, the effective interaction (1),(22)-(24), in-
duced by the liquid of small instantons (of the average
size ρ = 1/3 fm) appears appropriate. Of course, the
effects of the instanton–induced interactions are not in-
cluded in Donoghue and Nappi’s [5] naive bag-model re-
lation (3) for the scalar nucleon strangeness, and the
relative importance of this naive strangeness and the in-
stanton effects is precisely what interests us here.

An advantage of formula (19) is that, at least in prin-
ciple, it treats the scalar, pseudoscalar, vector, axial,
tensor or pseudotensor nucleon strangeness in a unified
manner — one just has to specify what Γ is. Within a
chosen nucleon model, the evaluation of (19) would pro-
ceed in essentially the same way for each Γ, except for
technical details.
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In the scalar case (Γ = 1), the naive bag-model stran-
geness (3) is actually rather large for standard values of
parameters. For our values, given at the end of subsection
4.1, it is

ANbag
s ≡ −〈0|q̄q|0〉Vbag = 4.36 , (51)

which is much larger than the instanton-induced contri-
bution (34), and dominates the summed strangeness

As ≡ ANbag
s + As(0)Linst

= 4.42 . (52)

Owing to using a somewhat smaller value of the
quark condensate, Donoghue and Nappi [5] obtained 3.6
for this naive strangeness, which is still rather large.
ANbag

s depends very strongly on the model size param-
eter Rbag since Vbag = R3

bag4π/3. For example, ANbag
s

would decrease by a factor of 2 if Rbag = 0.8 fm, a nu-
cleon size which may be more acceptable, as the stan-
dard MIT bag value of 1 fm seems too large (e.g., see
[51]). However, since the model dependence on the bag
radius is similar for other presently interesting matrix el-
ements, the model dependence largely cancels out when
one forms ratios. In particular, the instanton-induced
contribution (34) remains small in comparison with the
naive nucleon bag strangeness:

ANbag
s

As(0)Linst

∼ 75 , (53)

for reasonable variations of the radius parameter.
Obviously, the contribution due to the difference

in the condensate with respect to the true, non-
perturbative QCD vacuum, dominates the strangeness
in the nucleon bag. Admittedly, the instanton–induced
contribution of this size would be obtained in the
calculation of Eq. (34) if, inside the MIT bag, the
non-depleted instanton density n = 1.6 · 109 MeV4

were used. However, we consider this merely as a
consistency check, and not as an alternative description
of strangeness in the MIT bag. This is because using the
instanton density appropriate to the non-perturbative
QCD vacuum containing the large quark condensate,
would imply that the non-perturbative QCD vacuum
and the quark condensate were assumed not only
outside, but also inside the bag. This would indeed
enable As(0)Linst

to replace ANbag
s in full, but would

also make the MIT bag description inconsistent [41].
The scalar strangeness is special because of non-va-

nishing scalar q̄q condensates of the QCD vacuum, which
makes it more natural that it is larger than vector, ax-
ial or other kinds of strangeness. This is especially clear
in our approach applied to the MIT bag model. In this
model, the scalar strangeness comes mostly from the dif-
ference of the scalar q̄q condensates in the true QCD vac-
uum and their absence in the perturbative vacuum inside
the cavity [5], while only the relatively small remainder
in the present paper comes from the response of the va-
lence ground state to the strangeness–sensitive probe.

However, such a response is all that exists in the case of
the pseudoscalar, vector, axial, etc., nucleon strangeness,
since there are no pseudoscalar, vector, axial, etc., QCD-
vacuum condensates either inside or outside the cav-
ity. Since such responses tend to be much smaller than
the non-perturbative vacuum contributions, significant
differences in magnitude between the scalar and other
kinds of strangeness are very natural in our approach.
In fact, in the present case of the MIT bag model, we
find the vanishing first–order contribution to the vector
strangeness. The vanishing first–order contributions are
also found for the pseudoscalar and axial strangeness of
the nucleon.

Thus, our results confirm the conjecture of Ref. [1]
for the case of the scalar strangeness.

This makes understandable why the results on the
“non-scalar” strange quantities, such as the strangeness
nucleon magnetic form factor [10, 11, 12, 13, 14, 16, 17,
19, 20, 21, 22] or the strangeness electric mean-square
radius [10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], vary
so much, even by the sign, from one model to another:
the “non-scalar” strange quantities should all be rather
small, and artifacts of various models very easily put it
on either side of the zero.

Our results are also consistent with the most recent
measurements of the strange vector form factors at low

momentum transfer, Q2 <∼ 1 GeV. The experimental
strange magnetic form factor of the nucleon at Q2 = 0.1
(GeV/c)2, Gs

M = 0.23 ± 0.37 ± 0.15 ± 0.19 n.m., ob-
tained at MIT/Bates [46] is consistent with the absence
of strange quarks, but the error bars are large. How-
ever, the results and conclusions of our approach, that
channels other than the scalar one should not be appre-
ciably affected by strange quarks, seems to get support
especially from the most recent and very precise TJNAF
(JLab) measurement [47] yielding the small strange vec-
tor form factors at Q2 = 0.48 (GeV/c)2, Gs

E +0.39Gs
M =

0.023±0.034±0.022±0.026 n.m. Furthermore, HAPPEX
collaboration [47] plans to improve the accuracy of this
result by a factor of two in 1999. Nevertheless, its small
central value, consistent with zero, and small errors, al-
ready exclude some of the more generous predictions
[10, 21] for the strangeness (but not [52, 14] for exam-
ple).
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