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Abstract: In this work, we report the effect of the addition of modifiers and network formers on the
polaronic transport in iron phosphate glasses (IPG) in two systems of HfO2–B2O3–Fe2O3–P2O5, to
which up to 8 mol% boron and hafnium are added. The addition of oxides significantly changes the
Fe2+/Fetotal ratio, thus directly affecting the polaron number density and consequently controlling
DC conductivity trends for both series studied by impedance spectroscopy. Moreover, we found that
short-range polaron dynamics are also under the influence of structural changes. Therefore, we have
studied them in detail using model-free scaling procedures, Summerfield and Sidebottom scaling.
An attempt to construct a super-master curve revealed that in addition to change in polaron number
density, also the polaron hopping lengths change, and Sidebottom scaling yields a super-master curve.
The spatial extent of the localized motion of polarons is correlated with polaron number density and
two distinct regions are observed. A strong increase in the spatial extent of the polaron hopping
jump could be related either to the structural changes due to the addition of HfO2 and B2O3 and their
effects on the formation of polarons or to an inherent property of polaron transport in IP glasses with
low polaron number density.

Keywords: iron phosphate glass; small polaron hopping; impedance spectroscopy; scaling proce-
dures; model-free; conductivity and permittivity spectra

1. Introduction

The great compositional flexibility of phosphate glasses (PG) along with properties
such as low melting and transition temperatures, high thermal expansions coefficients, and
ultraviolet transmission, and electrical conductivity, makes this family of glasses excellent
candidates for the study of a variety of applications [1–7]. Modification of PG expands their
applicability as their properties are altered. Generally, the existence of slightly hydrated
P–O–P bridges leads to their corrosion, which is triggered by water molecules [8]. Replacing
these P–O-P–bonds with more moisture-resistant bonds such as P–O–Fe or even P–O–Al
with the addition of Fe2O3 and Al2O3 could improve the glass properties [9–13]. Therefore,
the incorporation of modifier ions into phosphate glasses is a step forward in optimizing
the target properties. Iron, as a transition metal (TM), can occur in phosphate glasses
as both, Fe2+ and Fe3+ [14,15], which strongly depends on the preparation conditions
such as melting temperature, time, quenching method, composition, and affects the glass
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properties [16,17]. It has been shown that increasing the iron content in iron phosphate
glasses (IPG) leads to an increase in the Fe2+ content, as well as a systematic evolution of
the phosphate network (from meta- to orthophosphate structure) which further leads to a
strengthening of the glass network [18]. The best chemical durability for binary IPG was
found for an approximate composition of 40Fe2O3–60P2O5 (mol%), melted under oxidation
conditions [11,16,17]. Controlled crystallization (i.e., fabrication of glass-ceramics) of glasses
in general, could improve the electrical and magnetic properties [18–25]. It is well known
that nanomaterials usually have different properties than the corresponding bulk materials.
The formation of nanocrystals in an amorphous environment leads to superior properties
which depend on the nature, size, and distribution of crystalline phases in the glassy or
other amorphous matrices [26–28].

The study of electrical transport in binary IPG began in 1965 [29], and since then the
interest in this glass family has been growing steadily [30]. The reason for the continued
study of electrical properties could be the fact that the addition of various oxides affects
electrical properties. For example, the presence of alkali oxide leads to mixed ion-polaron
conductivity [13,30–32], while the presence of additional TMO (e.g., MoO3, V2O5, WO3)
causes a mixed TMO effect [31,33]. Moreover, the addition of rare earth metals in IP glasses
leads to materials that can be used in lasers and optoelectronic devices [34,35]. In particular,
the addition of other oxides can affect the glass structure as modifiers or network formers,
or even influence the redox properties of iron during melting and consequently have a
prevailing effect on electrical conductivity properties.

In general, IPG exhibits electronic conduction with a polaronic conduction mecha-
nism [30,36–40]. Thus, conduction occurs through thermally activated hopping of small
polarons (from Fe2+ to Fe3+). The polaron transport strongly depends on the final iron
oxide content and the fraction of TM ions in different valence states, as well as the average
distance between them. The electrical conductivity of these glasses can vary by several
orders of magnitude depending on the aforementioned parameters.

The IPGs are also known to be candidates for the vitrification of certain nuclear wastes.
Due to the difficulty of working with real nuclear waste (i.e., Pu2+, Pu4+), various rare
earths are used as actinide surrogates such as Ce4+, Hf4+, Nd3+, etc. The addition of rare
elements to borosilicate and iron phosphate glasses has been shown to affect the glass
properties [41–45]. Moreover, the incorporation of boron ions into various PGs leads to an
increase in thermal and radiation stability and long-term storage due to its high neutron
absorption cross-section [46–50]. The addition of modifiers and/or network-forming
oxides [44–50] influences also the glass structure, which in turn has a significant effect
on the transport properties [51–53]. It has been shown that in iron borophosphate (IBP)
glasses [50,51] DC conductivity is directly affected by the polaron number density which is
determined by the total amount of Fe2O3 and is not directly related to B2O3. On the other
hand, the addition of HfO2 [44], and CeO2 [45] to I(B)P-based glasses, leads to an increase
of the Fe2+ content up to 60%, which was of great interest for the study of the polaronic
conduction in these glass-(ceramics) [53]. On the other hand, the dependence of the values
for the spatial extent of the localized polaron motions on the polaron number density for
IBP glasses [51,52] complements well the dependence observed for IP glasses with HfO2
and CeO2 with larger polaron number density [53].

This paper presents the relationship between structural and electrical properties in
IPG glass-(ceramics) where up to 8 mol% boron and hafnium oxide are gradually added to
40Fe2O3–60P2O5 (IP) base glass. For this purpose, two series of samples were prepared in
which the simultaneous addition of B2O3 and HfO2 at the expense of (i) Fe2O3 (F–series),
and (ii) both Fe2O3 and P2O5 (S–series) to keep the Fe/P ratio constant (0.67), involving
smaller changes in overall Fe2O3 amount. This work aims to analyze in detail and discuss
the variation of the electrical properties that could arise due to structural differences in
these glass-(ceramics) and to investigate the role of the structure (simultaneous addition of
modifier and network-forming oxide) along with parameters obtained that determine the
resulting polaronic transport.
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2. Materials and Methods

The batch composition of two series of glasses labeled F and S are selected for this study.
Series F glasses have the nominal composition xHfO2–yB2O3–(40 − (x + y))Fe2O3–60P2O5
(x = 2–8; y = 2–6, mol%) while the composition of the glasses of series S is xHfO2–yB2O3–
(100 − (x + y))[40Fe2O3–60P2O5] (x,y = 2–8, mol%). Glasses are prepared by melting ho-
mogeneous mixtures of reagent grade chemicals (HfO2–B2O3–Fe2O3–P2O5) in appropriate
amounts in high-density alumina crucibles at 1200–1250 ◦C in the air for 1–2 h. It is known
that P2O5 and B2O3 loss during melting is negligible for iron phosphate/borophosphate
glasses. The experimental details of the preparation, as well as the structural characteriza-
tion of these glasses, can be found in reference [44].

In the F–series, Fe2O3 is replaced by HfO2 and B2O3, while in the S–series, HfO2 and
B2O3 are simultaneously replaced by Fe2O3 and P2O5. The Fe/P ratio in the initial mixture
is kept constant (0.67) for the S series. The samples are labeled according to the amount
of boron and hafnium oxide in the batch. For instance, the glass F–B2Hf2 belongs to the
F series and contains 2 mol% each of B2O3 and HfO2. The PXRD results of these IPG-
based glasses showed the precipitation of the crystalline phase HfP2O7 in the glass matrix,
but this did not affect the chemical stability of the obtained partially crystallized glasses.
A similar effect, namely surface crystallization, was also observed in I(B)P glasses [46], and
as reported in [51,52] the electrical properties showed only the contribution of the bulk
to the overall conductivity process, without any influence of the crystalline phase(s) or
grain boundary. The batch compositions along with the number of iron ions per volume,
N, calculated from the glass composition and density, and the fraction of ferrous ions,
C = Fe2+/Fetot ratio, determined by Mössbauer spectroscopy, are given for all these glasses
in Tables 1 and 2.

Table 1. Batch compositions and selected properties of studied iron phosphate-based glasses contain-
ing B2O3 and HfO2.

Sample Batch Composition (mol%) a Molar
O/P Ratio

Molar
Fe/P Ratio

N (Fe Ions)
×10−21/cm−3 R = N−1/3/ÅB2O3 HfO2 P2O5 Fe2O3

G–B0Hf0 - - 60 40 3.5 0.67 9.63 b 4.70 b

Series F
F–B2Hf2 2 2 60 36 3.48 0.60 8.89 b 4.83 b

F–B4Hf4 4 4 60 32 3.47 0.53 8.00 5.00
F–B4Hf6 4 6 60 30 3.45 0.50 7.52 5.10
F–B8Hf8 8 8 60 24 3.43 0.40 6.16 5.46

Series S
S–B2Hf2 2 2 57.6 38.4 3.59 0.67 9.16 4.70
S–B4Hf4 4 4 55.2 36.2 3.68 0.67 9.26 4.76
S–B6Hf6 6 6 52.8 35.2 3.78 0.67 8.88 4.83
S–B4Hf8 4 8 52.8 35.2 3.76 0.67 11.64 4.41

a from ref. [44] and b from ref. [53].

57Fe Mössbauer spectra were collected in order to characterize the valence state of iron
ions and to determine relative amounts of Fe2+ and Fe3+ in studied glasses. Measurements
were performed at room temperature (RT) using a constant acceleration method with a
source of 57Co(Rh) having the activity of 925 MBq. For the measurement, a well-pulverized
sample weighing 40 mg was homogeneously dispersed on the transparent adhesive tape in
the diameter of 10 mm. The obtained spectra are presented in the Supporting Information
(see Figure S1) and analyzed in Lorentzian fitting by using Mösswinn 3.0i XP. Isomer shifts
are given relative to α-Fe at RT.

Electrical and dielectric properties were studied by impedance spectroscopy. Be-
fore performing measurements, annealed bars were cut into disks. For the contacts, thin
gold electrodes were sputtered onto both sides of 1 mm-thick sample disks using a sputter
coater SC7620, Quorum Technologies (Laughton, UK). Complex impedance was measured
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using an impedance analyzer (Novocontrol Alpha-AN Dielectric Spectrometer, Novocon-
trol Technologies GmbH and Co. KG, Montabaur, Germany) over a wide frequency and
temperature range, from 0.01 Hz to 1 MHz at temperatures between 30 ◦C and 240 ◦C.
The temperature was controlled to ±0.2 ◦C. The typical complex impedance plot consists
of a single semicircle with the centers below the real axis. The equivalent circuit that
represents each such depressed semicircle, with the center below the real axis is a parallel
combination of a resistor (R) and constant-phase element (CPE). The CPE is an empirical
impedance function of the type:

Z∗CPE =
1

A(iω)α

where A and α are constants. Experimental data were analyzed by equivalent circuit
modeling using the complex non-linear least-square (CNLLSQ) fitting procedure and the
corresponding parameters were determined with software [54]. This procedure is based on
the fitting of experimental impedance spectra to an appropriate equivalent circuit model.

Table 2. Batch compositions and selected properties of studied iron phosphate-based glasses contain-
ing B2O3 and HfO2.

Samples σDC
a/(Ω cm)−1

± 0.5%
EDC/kJ mol−1

± 0.5%
σ0*/(Ω cm)−1 K
± 0.5% C b exp(−2αR) α/Å−1

G–B0Hf0 1.00 × 10−10 62.4 3.14 0.23 c 0.020 0.42

F–B2Hf2 8.71 × 10−11 62.2 3.08 0.58 c,d 0.013 0.45
F–B4Hf4 5.01 × 10−11 62.9 2.96 0.17 0.017 0.40
F–B4Hf6 4.07 × 10−11 63.3 2.91 0.18 0.015 0.41
F–B8Hf8 1.12 × 10−10 60.0 2.77 0.36 0.008 0.45

S–B2Hf2 7.94 × 10−10 58.3 3.35 0.32 d 0.027 0.38
S–B4Hf4 1.41 × 10−10 61.9 3.18 0.16 c 0.029 0.37
S–B6Hf6 1.32 × 10−9 57.0 3.37 0.39 0.026 0.38
S–B4Hf8 1.35 × 10−9 56.9 3.33 0.38 0.006 0.58

a Values at 30 ◦C, b C = Fe2+/Σ(Fe2+ + Fe3+) as obtained from Mössbauer spectra, c Mössbauer data reported from
ref. [44], d In addition to obtaining Fe2+ concentration from this study, Nv is also calculated based on Mössbauer
data reported in ref. [44], which show slightly higher values.

3. Results and Discussion
3.1. Impedance Spectra and Direct Current (DC) Conductivity

The impedance spectra at different temperatures for F–B4Hf4 sample and their cor-
responding equivalent electric circuit (EEC) are shown in Figure 1a. For all studied
samples, the impedance spectrum contains a single semicircle related to the bulk effects
(see Figure S2 in the Supplementary Materials). This is characteristic of electronic conduc-
tors [30,55,56], so a simplified single parallel RC element in the equivalent circuit is used
for modeling. Preferably, such a semicircular arc passes through the origin of the complex
plot and leads to a low-frequency intersection point on the real axis of the complex plot,
corresponding to the resistance, R, of the sample. From the resistance values obtained from
the fitting procedures, R, and the electrode dimensions (d sample thickness, and A electrode
area) the DC conductivity is calculated, σDC = d/(R × A), and is listed in Table 2. It should
be noted here that the structural study [44] confirms partial crystallization for our glasses.
However, the presence of the crystalline HfP2O7 phase in the amorphous matrix and its
influence on the electrical processes are not detected by impedance spectroscopy (IS). In the
case of classical glass-ceramics, more than one semicircle is usually present in the IS spectra,
which is due to the formation of crystalline phases in a glassy matrix [22–24]. Therefore,
we conclude that the amount and type of crystalline phase in all glass-(ceramics) from this
study, even though confirmed by PXRD, is not significant enough to be detected with IS
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and, more importantly, does not affect the dominant bulk electronic contribution to overall
electrical transport.
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current (DC) conductivity (log(σDCT) vs. 1000/T) for individual samples from (b) F– and (c) S–glass
series. The corresponding equivalent circuit in (a) used for fitting the data is shown in the inset.
Open squares denote experimental values; a solid black line corresponds to the best fit. Solid lines
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Figure 1a shows that the temperature increase results in a decrease of semicircles
size and the corresponding resistance decreases, while the DC conductivity calculated
from the equivalent circuit modeling increases. Austin and Mott proposed a detailed
theoretical approach to the conduction process and activation energy of transition metal
oxide (TMO) glasses with their model [24,25]. As is well known, conduction in IPG-
based glasses at temperatures above RT is considered as phonon-assisted small polaron
hopping (SPH) between local neighboring sites [30,36–38,57,58] and the DC conductivity
exhibits an Arrhenius temperature dependence with characteristic activation energy. The
temperature dependence of DC conductivity, σDC, is usually expressed by the Austin–Mott
relation [36,37,57]:

σDCT = σ∗0
(−EDC/kBT) (1)

where σDC is DC conductivity, σ0* is the pre-exponential factor, EDC is the activation energy
for the DC conductivity, kB the Boltzmann constant, and T the temperature (K). The pre-
exponential factor, σ0*, contains important parameters for polaronic transport according to
the relation:

σ∗0 = (C(1− C)νphe2/RkB)exp(−2αR) (2)

where α is the rate of wave function decay, C is the fraction of Fe2+ ions to total iron
content (Fe2+/Fetot), and R is the average hopping distance between transition metal ions
(R = Nˆ(−1/3)), νph is the phonon frequency (≈1012–1013 Hz), e is the electronic charge.
For the adiabatic hopping conduction, the tunneling term exp(−2αR) in Equation (2) is
approximately 1, by what αR becomes negligible. The DC conductivity variation with
1000/T for all studied compositions is shown in Figure 1b,c. The activation energy, EDC, for
each sample is calculated from the slope of log σDCT vs. 1000/T. Calculated values along
with the values of DC conductivity at 30 ◦C and pre-exponential factor are given in Table 2.
The values of activation energy range from 56.9 to 63.3 kJ/mol, while the DC conductivity
at 30 ◦C is between 1.35 × 10−9 (Ω cm)−1 and 4.07 × 10−11 (Ω cm)−1, both of which agree
well with the values for various IPG-based glasses from the literature [30,39,51,53,56,59,60].

Stepping forward in the analysis of the electrical transport in these glass-(ceramics),
we focus on the changes in the pre-exponential factor and other parameters, see Table 2.
According to the Austin–Mott theory of SPH, the conduction can be characterized by
either adiabatic or non-adiabatic hopping. In adiabatic hopping, the electron is relaxed
at all times and can respond rapidly to the lattice displacement, while in non-adiabatic
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hopping there is a small chance for electron tunneling [36,37,57]. Thus, in adiabatic hopping
conduction αR in Equation (2) becomes negligible. Based on the data available, it was
expected that in the case of IPG-based glasses, the non-adiabatic hopping model is more
suited for describing polaron transport [51]. To verify whether the nature of the hopping
conduction in the samples of this study is adiabatic or non-adiabatic, the plot log(σDCT)
vs. activation energy, EDC, at a fixed experimental temperature T = 180 ◦C is plotted and
presented in Figure 2. The observed slope should be equal to −1/kBT based on the DC
conductivity in the adiabatic regime given by Equation (2). If the temperature obtained
from the slope differs from the experimental temperature, the process is considered non-
adiabatic. The temperature we obtained from the slope is equal to T = 40 ◦C, which is
very different from the chosen temperature of 180 ◦C. This indicates the non-adiabatic
hopping of small polaron and strong electron-phonon coupling in our studied samples and
is supported by previously reported literature data on similar IP-based glasses [51,53,61,62].
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The values of the tunneling factor, α, for each glass are calculated from the obtained
values of pre-exponential factors, the fraction of Fe2+ ions (C values), and based on the
assumption that the size distribution is random, see Table 2. The calculated values are
between 0.37 and 0.58 Å−1 which is in good correlation with those for similar IP-based
glasses reported in the literature [37,60,63,64].

The dependence of DC conductivity for both series upon HfO2 and Fe2O3 content
is shown in Figure 3a,b. Initially, the two series show completely different behavior
concerning each other, without any influence on the type of the content (Fe2O3 or HfO2).
The DC conductivity for the F–series varies from 1.00 × 10−10 to 4.07 × 10−11 (Ω cm)−1 at
30 ◦C with the addition of HfO2 content up to 6 mol%, and increases for sample F–B8Hf8
reaching a value of 1.12 × 10−10 (Ω cm)−1. Otherwise, the S–series shows an opposite
behavior, and the DC conductivity increases by almost an order of magnitude with the
addition of HfO2, from 1.00 × 10−10 to 1.35 × 10−9 (Ω cm)−1 for glasses containing 8 mol%
HfO2, respectively. Interestingly, sample S–B4Hf4 shows a deviation from this trend. It can
also be seen that the variation in the amount of Fe2O3 content is high in the F–series as it
decreases from 40 to 24 mol%, whereas for S–series the range for iron content is narrower,
between 40 and 35 mol%, because B2O3 and HfO2 are added at the expense of Fe2O3 and
P2O5 in the composition. The observed trends suggest that the Fe2O3 content is not the
only key parameter behind polaronic transport in these samples. As can be seen from the
Mössbauer spectra in Figure S1 and shown in Table 2, although the total Fe2O3 content
decreases in these iron phosphate-based glass-(ceramics), the Fe2+ concentration changes
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from 0.16 to 0.58. Based on this observation, we analyzed the polaron number density
parameter and its changes with composition and conductivity trends in more detail.
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It should be noted here that the polaron number density depends not only on the
total amount of Fe2O3 but also on the fraction of Fe2+ and Fe3+ ions and is determined
by the product of number density of the total iron ions and a fraction of ferrous ions (or
Fe2+/Fetot ratio < 0.5). For a ratio value above 0.5, it is determined as a product of the
number density of the total iron ions and the fraction of ferric ions [2,38,53]. The calculated
values of polaron number density for all samples are given in Table 3. DC conductivity
and activation energy for DC conductivity, EDC, as a function of the number density of
polarons, Nv, for both series of samples is shown in Figure 3c. Indeed, for all compositions
studied, a nearly linear trend is observed with an increase of a polaron number density.
In particular, the DC conductivity increases while the EDC decreases. This supports our
conclusion that the polaronic transport in these glass-(ceramics) is not only controlled
by the total iron oxide content but a crucial influence comes from the concentration of
Fe2+ ions, which ultimately affects the polaron number density and governs the trend of
DC conductivity. Moreover, for two compositions, namely F–B4Hf4 and S–B2Hf2, the
Nv was also calculated based on Fe2+ ratio reported in reference [44] which show slightly
higher values. Interestingly, data points also lie on an almost linear dependence of the DC
conductivity versus polaron number density and confirm our results, see a black symbol in
Figure 3c. The only exception could be seen for the glass with Fe2+/Fetot = 0.58 (F–B2Hf2
sample) which shows a value deviating from linearity. In such a ferrous-rich condition an
inhomogeneous distribution of ferrous and ferric ions could be present which means that a
significant fraction of ferrous ions cannot contribute to the polaron transport [52].
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Table 3. Summary of parameters obtained from a detailed analysis of conductivity and permittivity
spectra for all studied iron phosphate-based glasses containing B2O3 and HfO2.

Samples Nv (Polarons)
× 10−21/cm−3 rp/Å log (f shift)

(∆ε T)
/K <rLOC

2(∞)>1/2/Å

F40 2.22 a 1.89 a 0 3910 2.25

F–B2Hf2 a 3.73 a 1.94 a +0.06 4564 1.93
F–B4Hf4 1.36 2.02 +0.01 4286 3.00
F–B4Hf6 1.35 2.06 −0.03 4103 2.94
F–B8Hf8 2.22 2.20 +0.03 4177 2.97

S–B2Hf2 3.08 1.90 +0.12 4994 2.15
S–B4Hf4 1.48 1.92 +0.11 5437 3.24
S–B6Hf6 3.46 1.95 +0.14 5742 2.18
S–B4Hf8 4.42 1.78 +0.10 4679 1.96

a from ref. [53].

From a previous structural study of these two systems [44], only a slight difference in
the cross-linking of the IP network is observed. In both series with the addition of B2O3
and HfO2, an increase in Tg value was noticed, slightly higher for F–series where the wider
variety of overall Fe2O3 content is present, and only Fe2O3 is exchanged with Hf and B. This
behavior agrees well with a previous study of IBP glasses modified with boron oxide [46],
where the addition of B2O3 increases thermal stability. It seems likely that in compositions
studied, small changes in the strength and rigidity of the IP network do not affect the
mechanism of polaronic transport. Nevertheless, even though from Mössbauer analysis
both Fe2+ and Fe3+ ions have distorted octahedral coordination in all studied samples
similar to many other iron phosphate systems [11,65], their concentration and Fe2+/Fe3+

ratio are significantly altered by the addition of B2O3 and HfO2 in both series, which again
implies having a dominant effect on the polaron number density and consequently on the
DC conductivity trend.

Additionally, we shift our attention from DC conductivity and long-range transport
features to the frequency-dependent conductivity and examination of the localized motions
of charge carriers.

3.2. Scaling Features of the Conductivity Spectra

The conductivity spectra for F–B8Hf8 and S–B4Hf4 samples from the F– and S–series
are shown in Figure 4a. Each isotherm shows universal properties and exhibits two char-
acteristic features: (i) a plateau at low frequencies corresponding to DC conductivity, and
(ii) a frequency-dependent region (dispersion) at higher frequencies [66]. The conductivity
dispersion, which is visible at lower temperatures, shifts to higher frequencies with temper-
ature increase and gradually leaves the frequency range in our impedance spectroscopy
setup. We study the scaling properties of the conductivity over a wide range of frequencies
and temperatures in order to gain more information about the mechanism(s) of the electrical
transport in these glass-(ceramics). A quite simple, but very useful, means of analyzing the
conductivity spectra is based on the use of various scaling techniques. Here we use one of
the simplest scaling procedures proposed by Summerfield which uses two experimentally
determined parameters: DC conductivity and temperature as scaling parameters [67,68].
Summerfield scaling is expressed by: (σ(ν,T)/(σDCT)) = F(ν/σDCT) and can be understood
as mobility scaling. An indication of it is that the role of temperature is to accelerate or slow
down the charge carrier dynamics without influencing the conduction mechanism. If the
Summerfield procedure of scaling is valid then both axes in a double log-log plot are scaled
by the same factor σDCT. This is equivalent to scaling the isotherms in such a plot along a
line with slope one, which is plotted by marking the onset (initial) frequency value of the
conductivity dispersion, σ′(f 0) = 2σDC, please see Figure 4a,b.
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We could make important and indicative observations based on obtained slope values,
see Figure 4c. The correlation between the validity of Summerfield scaling and the slope of
one has been demonstrated in the literature [53,69]. In our case, for all compositions in this
study, the slope is 1.01 ± 0.01, see Figure 4c, suggesting the validity of Summerfield scaling
which will be shown and discussed in the following parts of the text.

Figure 5a,b shows the result of the Summerfield scaling procedure for base glass
(G–B0Hf0) and F–B4HF6 sample. One can see that the conductivity isotherms perfectly
overlap and form a conductivity master-curve. A similar result is obtained for all other
samples from this study and it shows that the time–temperature superposition (TTS)
is valid for each composition and the conductivity mechanism does not change with
temperature. A behavioral correlation could be undertaken with various oxide glasses
that show polaronic [52,53,59,69] or ionic [66,69,70] conductivity, however, mixed ionic-
polaronic glasses usually show deviation due to the presence of two different thermally
active charge carrier species [69].

It is interesting to investigate the influence of glass composition and structure on
the conductivity dispersion, the frequency-dependent part, by applying a superscaling
procedure where all individual master-curves within these two series are superimposed.
Figure 5c,d shows the result of such superscaling for all the studied samples. As can be
seen, the individual master-curves do not overlap perfectly, and a super-master curve could
not be obtained, which can be seen in the insets in Figure 5c,d. There are two possible
reasons for such a result: either the shape of the conductivity dispersion changes or/and
the individual master curves shift along the x-axis with the changes in the composition.
We shifted the individual master curves along the x-axis and tried to create a super-master
curve for each series, Figure 6a,b. The master-curve of the base glass (F40) is used as
the reference curve in shift calculations. The values of shift required to produce a super-
master curve for specific composition are given in the legend of Figure 6a,b. Looking at
the magnitude and direction of the shift, small values are found, which leads to perfectly
overlapped master-curves when shifted, indicating that the shape of their conductivity
dispersion remains the same no matter what the compositional changes.
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A shift in the super-master conductivity plot is reported in the literature for different
ion-conducting oxide glasses and has been correlated with the alkali content [71–73] as well
as with changes in the typical length of the hop of the ions with their number density [74].
In our recent paper [53] on IP glasses doped with HfO2 and CeO2, similar in composition
but with widely ranging concentration of ferrous ions (0.23 ≤ Fe2+/Fetot ≤ 0.58), the shift
was also observed, but correspondingly in a scattered fashion.

Furthermore, the correlation between log(f shift) and the changes in the number density
of charge carriers, Nv, was studied. The variation of log(σDC) and log(f shift) as a function of
Nv is shown in Figure 6c,d. It can be seen that as charge carrier number density increases,
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the logarithm of DC conductivity increases nearly linearly, except for the F–B2Hf2 sample,
which already exhibited a deviation from linearity probably due to the inhomogeneous
distribution of ferrous and ferric ions in the glass matrix [53].

In the top part, Figure 6c, the logarithm of the shift factor for scaling conductivity
master curves, log(f shift), exhibits scattering rather than a linear trend, suggesting that its
origin is not entirely related to changes in the polaron number density. This prompts us to
consider the alternative scaling procedure proposed by Sidebottom [74,75], which accounts
for both changes in number density and the typical hopping distance of the mobile species.
To this end, we now examine the information available from permittivity spectra.

3.3. Scaling Features of the Permittivity Spectra

The complex permittivity ε* (ν) = 1/(2πνjCoZ*) can be expressed as a complex number:

ε* (ν)′ = ε′ (ν) − jε′′ (ν) (3)

where ε′(ν) and ε′′(ν) are the real and imaginary parts of the complex permittivity. The
frequency dependence of the real part of the complex permittivity, ε′(ν), at different temper-
atures for F–B2Hf2 and S–B6Hf6 samples, is shown in Figure 7a,c. At higher frequencies,
the dielectric permittivity approaches a constant value, ε′∞, resulting from fast polarization
processes that occur in the glasses under the applied field [76]. Therefore, the mobile charge
carriers cannot rotate sufficiently fast, so their oscillation lags behind this field, decreasing
the dielectric permittivity, ε′(ν). On the other hand, with increasing temperature and de-
creasing frequency, ε′(ν) increases and for all the glass-(ceramics) studied, the low-frequency
plateau denoted as the value of the low-frequency static permittivity, εs, is well-developed,
see Figure 7a,c. The observed plateau is related to the polarization effects of long-range
hopping of mobile charge carriers concerning the immobile glass matrix in oxide glasses.
The magnitude of this polarization, called dielectric strength, is given by ∆ε′ = εs − ε′∞,
as proposed by Sidebottom [74,75,77] and represents the rate of permittivity change due
to relaxation. For some disordered glasses, where the electrode polarization is significant,
the experimental data could not determine the static dielectric constant. However, for
the compositions studied in this work, the well-defined low-frequency plateau allows the
determination of the permittivity changes and the correlation effects between successful
hops. Since ε′∞ is only weakly temperature-dependent, the dielectric strength for polaronic
glasses can be determined directly from the temperature-dependent experimental spectra.

Additionally, in the Summerfield scaling analysis of the relaxation mechanisms, the
master curves of the dielectric permittivity spectra for the two compositions mentioned
above are obtained since the scaling properties of the conductivities are reflected in the
scaling properties of the permittivity data [78]. The ε′(ν) on the y-axis is scaled by the
product (ε′(ν) − ε∞) T, while the frequency x-axis is scaled as the product ν/σDCT. The
scaled spectra for samples F–B2Hf2 and S–B6Hf6 are shown in Figure 7b,c. As expected
from the conductivity data, the application of Summerfield scaling results in a common
master curve, and the scaled permittivity data at different temperatures for each sample
from this study collapse into a single master curve. From the scaled data, a parameter
∆ε × T can be extracted, which can be related to the typical spatial extent of localized
motions of polarons, <rLOC

2(∞)>1/2, discussed in the following Section 3.4. In our case,
parameter ∆ε × T is in a range from 3910 to 5742 K and depends on the composition and
level of modification of base glass structure with B2O3 and HfO2 (Table 3).

As already mentioned above, an alternative scaling procedure for conductivity spectra
is proposed by Sidebottom to account for the simultaneous change in typical charge carrier
hopping distance with the change in their number density [53,73]. Here, the parameters
required from experimental data for scaling the frequency axis are the DC conductivity, the
dielectric strength, and the universal constant, the permittivity of free space. This scaling
procedure is expressed by the form: (σ(ν,T)/(σDCT)) = F((ε0∆ε)/σDC ν). Compared to
the Summerfield procedure, Sidebottom scaling could be more challenging since for ionic
conductive glasses the determination of ∆ε is usually hindered by the electrode polarization
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effect, which is not the case in polaronic glasses. Nonetheless, it can be considered truly
universal since it is applicable whenever scaling is possible, i.e., when the shape of the con-
ductivity dispersion does not change with temperature [79]. As far as we know, Sidebottom
scaling was first applied to scaling conductivity spectra of polaronic glasses in our recent
publications on various IPG–based glasses a few years ago [52,53]. A perfect super-master
curve is obtained for all glass-(ceramics) considered in this study, which is not surprising
because of the universal background of this scaling. We present this behavior separately
for each series, as shown in Figure 8. This feature clearly shows that for our systems, the
charge carrier concentration changes along with the typical length of a polaron hop. At the
same time, obtaining the super master-curve confirms that the shape of dispersion likewise
does not change.
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3.4. Relevant Length Scales to Electrical Transport

With regard to the length scales relevant to electrical transport, it is possible to dis-
tinguish different parameters: those calculated based on composition and density such
as average distance between iron ions, R (see Table 1) and polaron radius, rp [80], and
those obtained from the experimental data and polaron dynamics. At this point, we benefit
from the fact that well-defined permittivity plateaux are visible in our data. To continue in
this direction, we decided to estimate the spatial extent of the localized displacement in a
model-free approach. In the previous section we showed how for each sample, the scaling
of the permittivity spectra yields a parameter ∆ε T that can be related to the typical spatial
extent of localized motions of polarons, <rLOC

2(∞)>1/2 by the relation [53,81]:

< r2
LOC(∞) >

1/2
= 6kBε0∆εT/NVq2 (4)

where kB is the Boltzmann’s constant, ε0 is the permittivity of free space, and Nv is the
number density of polarons. The obtained values of the extent of the localized motions of
polarons are given in Table 3 and shown in Figure 9.
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The dependence of <rLOC
2(∞)>1/2 upon the number density of polarons for studied

F– and S–glass series and correlation with literature data is presented in Figure 9. As can
be seen, the value of <rLOC

2(∞)>1/2 for both series varies in the range between 1.87 Å
to 3.24 Å. Simultaneously, the polaronic number density changes in the range between
1.35 × 10−21 cm−3 and 4.42 × 10−21 cm−3. It is hard to see the trend, but a closer look
reveals useful information. The correlation between <rLOC

2(∞)>1/2 and Nv for all com-
positions exhibits two distinct regions. Region 1 contains samples with higher Nv, above
~2.2 × 10−21 cm−3, whereas the samples with lower NV fall into Region 2. It is indica-
tive that the transition between these regions is not only related to Nv, but also to the
combination of compositions and parameters which have an impact on <rLOC

2(∞)>1/2.
The influence of B2O3 and HfO2 on the Fe2+ concentration could also be observed.

From Table 2 it can be seen that in both series in the first step of modifying IPG glass
structure at lower amounts of modifying oxides, boron has the dominant effect on the
trend as it decreases the Fe2+ concentration with an apparent minimum for compositions
F–B4Hf4 and S–B4Hf4 (16% and 18%, respectively). Additional indications of the dominant
role of boron on the Fe2+ concentration could be seen in sample S–4BHf6 where the content
of hafnium oxide increases, however, the Fe2+/Fetotal ratio is kept low at 18%. In the next
step, with simultaneous modification of the glass network, Fe2+ concentration increases
up to 38% and 36% for samples F–B8Hf8 and S–B4Hf8 and indicates that HfO2 takes
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control and has a positive impact, increasing the Fe2+ concentration. A shift from boron
oxide to HfO2 taking control could further be seen in the fact that for the sample S–B4Hf8,
the amount of boron oxide is kept at 4 mol% while HfO2 is increased to 8 mol%, which
results in a jump of ferrous concentration from 17% to 36%. Also, these results could be
compared with Mössbauer’s result for IPG glass with up to 20 mol% of boron oxide [46,52],
where it is shown that there is no significant variation in Fe2+/Fetot ratio since the fraction
of ferrous ions changes in a narrow range from 0.16 to 0.22. Furthermore, considering
<rLOC

2(∞)>1/2 trends, it should be pointed out that for series S the overall Fe2O3 content is
less under the impact of compositional changes as B2O3 and HfO2 are added at the expense
of both F2O3 and P2O5 content. This results in a narrower range of iron oxide change in the
S–series (40–35 mol%) in comparison to the F–series (40–24 mol%). Both aforementioned
parameters affect the general result and values on Nv and <rLOC

2(∞)>1/2. For example, one
can see that at the shift from the first region to the second, the polaron number density is
~2.2 × 10−21 cm−3 for two extreme compositions, base glass G–B0Hf0 and F–B8Hf8. This
implies that even though the Nv is similar, modification of IPG structure and addition of
B2O3 and HfO2 have an impact on polaron transport. As a result, <rLOC

2(∞)>1/2 increases
suddenly from 2.25 to 3 Å for the sample with a high amount of boron and hafnium oxide.

Returning to two distinct regions in Figure 9a, an interesting feature can be ob-
served. The F–series, where the Fe2+ concentration ranges from 0.16 to 0.58, shows a
much broader Nv region. The increase of polaron number density from 2.2 × 10−21 cm−3

to 4.4 × 10−21 cm−3 has surprisingly no effect on the <rLOC
2(∞)>1/2 which is ~3 Å. For

the last sample of the F–series, F–B8Hf8, an increase in NV is observed which could be
attributed to the increase in ferrous concentration due to the positive effect of high HfO2
content. At the same time, the DC conductivity trend shows a similar behavior and follows
the changes of Nv, see Figure 4. Looking at the changes in <rLOC

2(∞)>1/2, one can see
that, except for the sample F–B2Hf2 [69], the spatial extent of localized motions of polarons
is in the low Nv range (second region) with a value of ~3 Å. Once again, the polaron
concentration is higher in S–series, except for S–B4Hf4, and all samples fall into the first
region, which is characterized by a high Nv value. Discussing a general trend, it should
be pointed out that the polaron number density increases, whereas <rLOC

2(∞)>1/2 slightly
decreases linearly between 1.9–2.3 Å. However, the jump to 3.2 Å for S–B4Hf4 sample
(minimum in Fe2+ concentration, impact of the boron oxide) and transitions from the first
region to the second one are observed.

At this point, it is useful to examine the results from Figure 9a and Table 3 and
compare them with literature data on similar IPG–based glasses, see Figure 9b. First,
the observed trend corroborates that the spatial extent of the localized polaron hopping
decreases with increasing polaron number density and implies a realistic estimate of the
extent of the polaron hop. The magnitude of <rLOC

2(∞)>1/2 is close to polaron radius, rp,
values calculated using the Bogomolov and Mirilin: rp = (1/2) (π/6N)1/3 relation, where N
is the total number of iron ions [80]. On the other hand, the R parameter calculation based
on composition and density shows significantly higher values (see Table 1). The obtained
values for <rLOC

2(∞)>1/2 are in the appropriate range when comparing different IPG
systems, and a good correlation can be drawn. It is interesting to see that the compositions
from this study cover both regions in Figure 9 (low Nv–higher <rLOC

2(∞)>1/2 and vice
versa) due to wide variation in Nv, which was not the case in our previous studies [51–53].
Once again, the change of <rLOC

2(∞)>1/2 with NV is characterized by a larger slope in the
lower polaron number density region, see Figure 9b. Taking all this into consideration,
it can be concluded that the analysis of the correlation between <rLOC

2(∞)>1/2 and NV
allows clear identification of the prevalence and determination of a sharp increase in the
spatial extent of the polaron hopping jump, which consequently has a direct impact on the
DC conductivity trends in the studied samples. This result could be related either to the
structural changes induced by the addition of modifiers or network former oxides and their
effects on the formation of polarons or to the inherent property of the polaron transport in
IPG with low Nv.
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4. Conclusions

In this work, we use solid-state impedance spectroscopy to study in detail the electrical
properties of iron phosphate glasses in which up to 8 mol% boron and hafnium oxide were
added to 40Fe2O3−60P2O5 base glass (G–B0Hf0). Two different series of glasses were
prepared with simultaneous additions of B2O3 and HfO2 at the expense of Fe2O3 (F–series),
or both Fe2O3 and P2O5 (S–series). The observed trends in long-range DC conductivity
show that the key parameter behind polaronic transport in these glasses is not only the
Fe2O3 content. The addition of B2O3 and HfO2 significantly alters the Fe2+ concentration in
both IP glass series, from 0.16 to 0.58, which has a dominant effect on the polaron number
density and consequently on the trend of DC conductivity. As a result, a nearly linear trend
is observed with an increase in the polaron number density.

Furthermore, we investigated the short-range polaron dynamics by applying a model-
free analysis of the conductivity and permittivity spectra of the studied glassy systems
and scaling procedures to gain a better insight into the polaron dynamics. Namely, Sum-
merfield and Sidebottom scaling of the conductivity spectra confirmed the validity of the
time–temperature superposition principle for all compositions. The construction of the
super-master curve reveals an interesting feature. While the shape remains the same, the
Summerfield scaling fails, but the Sidebottom one yields a super-master curve for both
series. This indicates that in addition to change in polaron number density, also the polaron
hopping lengths change. In the next step, we used experimental permittivity spectra to
evaluate the spatial extent of the localized motion of polarons. Its correlation with the
polaron number density reveals two distinct regions, containing samples with low and
high polaron concentrations. Interestingly, the transition between these regions is not only
related to the polaron number density, but also to the combination of sample compositions
and parameters which have an impact on polaron-localized motions. The detailed analysis
allowed clear identification of a sharp increase in the spatial extent of the polaron hopping
jump, which consequently has a direct impact on the DC conductivity trends for both series.
This feature could either be directly related to the structural changes induced by the addi-
tion of modifiers or network forming oxides and their effects on the formation of polarons,
or to the inherent property of polaron transport in IPG with low polaron concentration.
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18. Moguš-Milanković, A.; Rajić, M.; Drašner, A.; Trojko, R.; Day, D.E. Crystallisation of iron phosphate glasses. Phys. Chem. Glasses
1998, 39, 70–75.
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24. Pavić, L.; Sklepić, K.; Skoko, Z.; Tricot, G.; Mošner, P.; Koudelka, L.; Moguš-Milanković, A. Ionic conductivity of lithium
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