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Abstract: Unprecedented tandem allylic alkylation/intermolecular Michael addition was used in
the preparation of novel bicyclic azalides. NMR spectroscopy was used not only to unambiguously
determine and characterize the structures of these unexpected products of chemical reaction but also
to investigate the effect the rigid bicyclic modification has on the conformation of the whole molecule.
Thus, some of the macrolides prepared showed antibacterial activity in the range of well-known
antibiotic drug azithromycin.
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1. Introduction

Polyketide macrolides are widely distributed natural products many of which be-
came important medicines in treatment of infectious and neoplastic conditions. In most
cases, these compounds contain polyhydroxy macrocyclic lactone glycosylated with one
or more sugar moieties [1–3]. Erythromycin, a typical representative of this group, was
discovered in the 1950s and quickly became commonly used agent in treatment of respi-
ratory and soft tissue infections (Figure 1). Issues with fast growing bacterial resistance,
acid instability, and gastro-intestinal side effects led to developments of new, improved,
semi-synthetic analogues. Thus, clarithromycin [4] and azithromycin [5] were discovered
in the 1980s, followed by ketolides a decade later [6]. Furthermore, linking two or three
suitably oriented functionalities by a bridge allowed formation of conformationally rigid
condensed polycyclic structures [7] known as bicyclolides [8–11]. Today, the macrolides
are studied, or have already found application, as immunomodulators [12], anti-parasitic
agents [13,14], or even in treatment of COVID-19 [15]. Some of them even found application
in non-medicinal environment, as chiral selectors in liquid chromatography and capillary
electrophoresis [16].

In the course of our search for macrolides with novel biological profiles, we inves-
tigated the possibilities for regioselective introduction of (hetero)aryl moiety at position
9a in azalide molecule via C2-4-spacer. Soon, it became obvious that presence and po-
sition of the heteroatom in the aromatic system had a profound effect on the outcome
of the reaction. Herein, we report unprecedented, highly diastereoselective one-pot-two-
step preparation of bicyclic azalides, which are products of tandem palladium, catalyzed
allylation/intermolecular conjugate addition reaction.
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Figure 1. Overview of important of polyketide macrolides.

2. Results and Discussion

We envisioned activated 3-quinolyl-allyl alcohols as suitable building blocks for our
target molecules, that were to contain quinoline units bound to 9a position of the azalide
via C3-linker. Quinolyl analogues of cinnamic alcohol are easily obtainable and excellent
substrates for palladium catalyzed allylation of amines and alcohols, a method widely used
in total and new chemical entities (NCE) syntheses [17,18]. We started our investigations
with the azalide 1, a precursor in the synthesis of azithromycin and 3-quinolyl-derivative 2,
an intermediate in preparation of cethromycin [19]. The reaction was highly chemo- and
stereoselective, affording 3 in 87% yields as a trans isomer only (Scheme 1).
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Scheme 1. 9a-allylation of compound 1.

Nucleophilic addition of the amine to the π-allyl-palladium complex seems to be
much slower than its π-σ-π-interconversion, thus allowing complete transfer of cis-alkene
geometry of 2 into trans-one in 3 [20].

Allyl carbonates 8a and 8b were prepared as analogues of 2 in a three-step sequence
of Wittig olefination, reduction [21,22], and BoC activation (Scheme 2). Allylation of 1 with
isomeric 8a and 8b proceeded smoothly, and products were isolated in acceptable yields
(Scheme 3).
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Scheme 2. Preparation of allyl carbonates 8a and 8b. Q = 2-quinolyl (4a, 6a, 7a, 8a), Q = 4-quinolyl
(4b, 6b, 7b, 8b).

The NMR analysis, however, showed that the spectra did not match the expected
products 9a and 9b. In the 1H-NMR, instead of olefin signals, two pairs of diastereotopic
protons were observed, as well as the signal at 4.27 ppm, corresponding to a new carbinol
center. More thorough analysis of 2D NMR spectra revealed the formation of the bicyclic
compounds 10a and 10b, evidently products of tandem allylation/conjugated addition
reaction. The formation of a six-membered ring perfectly explains the observed downfield
shifts of ca 5 ppm for C-11 (74.2 ppm in 3 → 78.9 ppm in 10a and 79.0 ppm in 10b), as
well as upfield shifts of ca 5 ppm for C-10 (62.0 ppm in 3→ 56.6 ppm in 10a and 56.7 ppm
in 10b).
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Scheme 3. Allylation of 1 with 8a and 8b.

A possible rationale for such event is the activation of the allyl double bond by the
electron-poor 2- and 4-quinolyl rings. Traces of a base (amines present in the mobile
phase used in the purification step) triggered addition of nucleophilic 11-OH group to
the proximal activated double bond, affording a new morpholine ring. This annulation
was successfully performed in one-pot procedure. Addition of catalytic amounts of DBU
after the completion of allylation process gave 10a and 10b, again in acceptable yields.
Retro-allylation, however, was the main side reaction leading back to 1.

If it is assumed that cyclization process is a conjugated addition, then the presence of
suitably oriented electron-withdrawing group (EWG) in the allyl donor is essential for the
success of cyclization. Both 2-and 4-quinolinyl moieties polarize and activate the allyl dou-
ble bond, thus making it a good acceptor in 1,4 and 1,6-addition, respectively. 3-Quinolyl,
on the other hand, does not activate the double bond. Therefore, 3, as expected, did not
form cyclization product, even after prolonged heating in the presence of 1 equivalent
of DBU.

Since a new chiral center (C-22) is formed in the course of the reaction, NOE and
coupling constant analyses were performed in order to determine its stereochemistry.
Possible impact of the newly formed morpholine ring on the conformation of the macrocycle
and sugar moieties of 10a and 10b (deuterated chloroform) was also investigated. In
both compounds, the stereochemistry at C-22 was determined to be R using strong NOE
interactions between protons H-22/H-11, H-22/6-OH, and 6-OH/H-11 (Figure 2b). Such
NOE interactions are possible only if H-22 and H-11 are both pseudo-axial in a chair
conformation of the newly formed morpholine ring (Figure 2a). This was corroborated by
a large coupling constant between H-22 and H-23ax (10.7 Hz for 10a and 10.8 Hz for 10b),
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as well as small coupling constant between H-22 and H-23eq (2.9 Hz for 10a and 3.7 Hz
for 10b), as seen in Table S1, Supplementary Materials. Downfield chemical shift of 6-OH
(5.7 ppm) indicates a hydrogen bond with the chiral nitrogen at 9a occupying a pseudo-axial
position, as well. Similar observations on 6-OH were reported for other conformationally
restricted bicyclic azalides, where N-9a and O-12 were part of the 1,3-oxazine ring [23].
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Figure 2. (a) NOE contacts observed in the (b) NOESY NMR spectrum of 10b confirming the R
configuration of C-22.

Previous conformational studies on macrolides have established that the macrolactone
can adopt two types of conformations (folded-in and folded-out), distinguished by the
outward or inward folding of the C-3 to C-5 region [24,25]. Coupling constants 3JH-2,H-3
in both 10a and 10b have a value of ca 9 Hz, and their NOESY spectra display strong
H-4/H-11 interactions (Supplementary Materials), which establishes that these bicyclic
macrolides in chloroform, unlike monocyclic azithromycin [25], adopt an energetically
more favorable folded-out conformation. Both sugar moieties, on the other hand, adopt the
natural Everett-Tyler chair conformation [24] and keep their usual orientation with respect
to the macrocycle.

In both 10a and 10b, the quinolyl moiety exhibits only one strong non-trivial NOE
contact (H-3 of the heterocycle with H-13 from the macrocycle), suggesting that this group
is positioned above the “western” part of the macrocycle.

We still cannot firmly state what impact double bond geometry in 8 has on the stere-
oselectivity of the cyclization. We assume however, that faster π-σ-π-interconversion of
the π-ally-palladium complex leads to formation of plausible trans intermediates 9a or
9b. Evidently, the annulation is possible in a conformation where the whole side chain



Molecules 2022, 27, 432 6 of 14

is oriented over the “plane” of the macrolide aglycon with double bond and 11-OH in
close proximity. 22R-isomer is obviously thermodynamically more stable with an aromatic
substituent in pseudo-equatorial position.

Expanding the scope of the reaction, we prepared EWG activated allylic carbonates
14a and 14b in a two-step procedure (Scheme 4). Wittig condensation of dimeric hydrox-
yacetaldehyde (11) with commercially available phosphonium ylides 5 and 12 afforded
allyl alcohols 13a [26] and 13b in excellent yields. Their activation with BoC2O afforded
carbonates 14a and 14b in very good yields, as well. It is worth mentioning that, in the case
of 13b, the olefination had low stereoselectivity that reflected in the 2:3 trans/cis mixture
in 14b.
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Scheme 4. Preparation of allyl carbonates 14a and 14b. EWG = CO2Me (5, 13a, 14a), EWG = CN (12,
13b, 14b).

One-pot tandem allylation/Michael addition reaction of these new allyl carbonates
with azalide 1 afforded 15a and 15b in good yields with the same high stereocontrol
(Scheme 5). It is worth noting that, even though 14b was used as a mixture of cis/trans iso-
mers (3:2), no change in reaction stereoselectivity was observed. Fast π-σ-π-interconversion
before N-allylation cannot be excluded (vide supra).
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Literature analysis demonstrated that similar bridging of N-9a and 11-OH group
of the azalides via tandem diallylation of 1 was previously reported [27]. Although the
obtained bicyclic products had the same carbon skeleton as the one reported here, the
stereoselectivity of double allylation was low, giving mixtures of 1:1–1:2 of the possible
diastereoisomers.
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Antibacterial activities of the prepared macrolides were tested against a panel of
relevant Gram-positive (Streptococcus pneumoniae, Streptococcus pyogenes, and Staphylococ-
cus aureus) and Gram-negative (Haemophilus influenzae and Moraxella catarrhalis) bacterial
respiratory tract pathogens that were either sensitive or resistant to macrolide antibiotics.
The results, expressed as minimum inhibitory concentrations (MICs), are shown in Table 1,
alongside azithromycin as a comparator. Quinolyl derivatives 10a and 10b were fully active
against eryS Gram-positive species, while 15a and 15b were not as potent against S. aureus.

Table 1. Antibacterial activities of synthesized macrolides. Bacteria tested are standard strains
available from ATCC collection, as well as clinical isolates that are either sensitive to macrolide
antibiotics, or have well-characterized macrolide resistance mechanisms.

Microorganism MIC (µg/mL)
Azithromycin 3 10a 10b 15a 15b

S. pneumoniae SP030 ery S ≤0.125 ≤0.125 ≤0.125 ≤0.125 ≤0.125 ≤0.125
S. pyogenes 3565 ery S ≤0.125 ≤0.125 ≤0.125 ≤0.125 0.25 0.25

S. aureus ATCC13709 ery S 0.5 0.25 ≤0.125 0.25 4 8
S. pneumoniae Ci137 M 8 8 4 16 32 32
S. pyogenes Finland 2 M 8 4 2 4 16 8

S. aureus PK1 M >64 >64 >64 >64 >64 >64
S. pneumoniae 134 GR-M iMcLS >64 >64 >64 >64 >64 >64

S. pyogenes Finland 11 iMLS 16 2 0.5 4 >64 >64
S. aureus PK2 iMLS >64 >64 >64 >64 >64 >64

M. catarrhalis ATCC 49247 ≤0.125 1 4 4 0.5 1.25
H. influenzae ATCC 23246 1 2 4 4 4 4

These two compounds have similar potency and retain good activity against Gram-
negative bacteria, but their activity against erythromycin resistant pathogens is weak. It
should be noted, however, that EWG present in these molecules (ester in 15a and nitrile in
15b) are excellent handles for further transformations and derivatizations that might lead
to improved antibacterial activities. To summarize, attached quinolyl moiety influences the
antibacterial properties; thus, overall, 10a is the most potent compound, with improved ac-
tivity over Azithromycin, especially regarding iMLS S. pyogenes (MICs of 0.5 µg/mL versus
16 µg/mL). However, activity against M. catarrhalis (4 µg/mL) remains unsatisfactory.

3. Experimental Section
3.1. General Methods

All reactions utilizing air- and moisture-sensitive reagents were performed in dried
glassware under an atmosphere of dry argon or nitrogen. Commercially available reagents
and catalysts were purchased from Sigma-Aldrich (Saint Louis, MO, USA), Fluka (Saint
Louis, MO, USA), and Merck (Darmstadt, Germany) and were used without additional
purifications. Anhydrous solvents were purchased in Sure Seal bottles from Aldrich and
used via standard syringe techniques. Compound 1 was purchased from PLIVA as a
hydrate and was azeotropically dried by dissolving in toluene and removal of the solvent
under reduced pressure. Compound.2 1 was prepared as previously described.

All solvents used for chromatography were technical grade. For thin-layer chromatog-
raphy (TLC) analysis, Merck pre-coated glass plates (TLC Silica gel 60 F254) were used.
TLC spots were visualized either under UV light (at 254 or 366 nm) or by spraying with
5% ethanolic sulfuric acid and subsequent charring. SPE purifications were performed on
commercially available cartridges (LC-Silica Packing) and were purchased from Supelco
(Saint Louis, MO, USA). Mixtures of DCM and increasing amounts of 3% methanolic
ammonia were used as mobile phase.

All solvents used for NMR sample preparation were purchased from EurIsotop (Saint-
Aubin, France). NMR spectra were recorded on Bruker Avance III 600, Bruker Avance
DRX500, Bruker Avance AV400, and Bruker Avance DPX300 spectrometers (Billerica, MA,
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USA), equipped with 5 mm diameter broadband inverse and 1H/13C dual detection
probes with z-gradient accessory. The spectra were acquired using standard Bruker pulse
sequences on samples dissolved in deuterated chloroform (CDCl3) with TMS as the internal
standard and at 25 ◦C. NOESY spectra were obtained with the mixing time of 400 ms.

HRMS spectra were acquired as accurate mass centroided data using a Micromass
Q-Tof 2 hybrid quadrupole time-of-flight mass spectrometer, equipped with a Z-spray
interface, over a mass range of 100–1100 Da, with a scan time of 0.9 s and an interscan delay
of 0.1 s. Reserpine was used as the external mass calibrant ([M+H]+ = 609,2812 m/z). The
Q-Tof 2 mass spectrometer was operated in W reflection mode to give a resolution (FWHM)
of 16,000–20,000. Ionization was achieved with a spray voltage of 3.2 kV, a cone voltage of
50 V, with cone and desolvation gas flows of 10–20 and 600 L/h, respectively. The source
block and desolvation temperatures were maintained at 120 ◦C and 250 ◦C, respectively.
The elemental composition was calculated using MassLynx v4.1 for the [M+H]+.

Antimicrobial activity was tested against relevant Gram-positive (S. pneumoniae, S. pyo-
genes, and S. aureus) and Gram-negative (H. influenzae, M. catarrhalis) bacterial respiratory
tract pathogens that were either sensitive or resistant to macrolide antibiotics, due to
expression of efflux pumps (M phenotype) or inducible ribosome methylation (iMLSb
phenotype).

MICs were determined by the broth microdilution method [28], except that, in the
medium used to grow Streptococcus strains, lysed blood was replaced by 5% horse serum.
The compounds were dissolved in dimethyl sulfoxide (DMSO) at a concentration of
5 mg/mL and azithromycin was used as control. Bacteria for inoculum preparation were
grown on appropriate agar plates (Becton Dickinson, Franklin Lakes, NJ, USA): Columbia
agar with 5% sheep blood for Streptococci and M. catarrhalis, chocolate agar for H. influenzae,
and Mueller-Hinton agar for Staphylococci.

3.2. Synthetic Procedures

9-Deoxo-9a-(3-(3-Quinolyl)-2-propenyl)-9a-aza-9a-homoerythromycin A (3)

A flame-dried Schlenk tube was charged under argon with Pd2(dba)3·CHCl3 (5.18 mg,
5.00 µmol), DPPB (4.26 mg, 10.00 µmol), and toluene (5 mL). The reaction mixture was
stirred at ambient temperature for 10 min. Then, 1 (0.367 g, 0.5 mmol) and 2 (0.185 g,
0.65 mmol) were added, and the reaction mixture was stirred at 80 ◦C for 1.5 h. After
cooling to ambient temperature, it was diluted with water (50 mL). pH was lowered to 2,
and layers were separated. pH of the aqueous extract was gently increased to pH 7.4 with
1 pH unit step. An extraction with DCM (30 mL) was performed each time. The combined
fractions containing the title product were evaporated to dryness. Crude product was
purified by SPE. The title product was obtained as pale beige foam (392 mg, 87%).

1H-NMR (400 MHz, CDCl3) δ: 8.95 (s, 1H), 8.10 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.76
(d, J = 8.3 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.45–7.54 (m, 1H), 6.65–6.75 (m, 1H), 6.58 (d,
J = 16.1 Hz, 1H), 5.04 (d, J = 4.5 Hz, 1H), 4.69 (d, J = 8.9 Hz, 1H), 4.43 (d, J = 7.3 Hz, 1H),
4.18–4.23 (m, 1H), 4.04–4.14 (m, 1H), 3.97 (dd, J = 13.2, 3.8 Hz, 1H), 3.83 (brs, 1H), 3.68
(d, J = 6.7 Hz, 1H), 3.45–3.54 (m, 1H), 3.41 (dd, J = 14.3, 7.6 Hz, 1H), 3.31 (s, 3H), 3.22 (dd,
J = 9.2, 7.8 Hz, 1H), 3.04 (t, J = 8.7 Hz, 1H), 2.78–2.92 (m, 3H), 2.40–2.52 (m, 1H), 2.35 (d,
J = 15.1 Hz, 1H), 2.28 (s, 6H), 2.19 (d, J = 10.9 Hz, 1H), 1.96–2.16 (m, 3H), 1.80–1.94 (m, 1H),
1.72 (d, J = 14.7 Hz, 1H), 1.65 (d, J = 11.8 Hz, 1H), 1.60 (dd, J = 15.0, 5.2 Hz, 1H), 1.44–1.54
(m, 1H), 1.37–1.43 (m, 1H), 1.34 (d, J = 6.4 Hz, 3H), 1.32 (s, 3H), 1.27–1.30 (m, 1H), 1.23 (s,
3H), 1.21 (d, J = 7.2 Hz, 3H), 1.18 (d, J = 6.2 Hz, 3H), 1.08 (s, 3H), 1.06 (d, J = 5.7 Hz, 3H),
0.89 (t, J = 7.3 Hz, 3H), 0.85 (d, J = 6.9 Hz, 3H); 13C-NMR (101 MHz, CDCl3) δ: 178.2 (C),
149.6 (CH), 147.4 (C), 132.1 (CH), 131.3 (CH), 130.0 (C), 129.1 (CH), 129.0 (CH), 128.6 (CH),
128.1 (C), 127.8 (CH), 126.8 (CH), 103.0 (CH), 95.4 (CH), 83.7 (CH), 78.7 (CH), 78.0 (CH), 77.7
(C), 74.7 (C), 74.4 (CH), 74.2 (C), 72.8 (CH), 70.8 (CH), 68.8 (CH), 65.9 (CH), 65.7 (CH), 65.6
(CH2), 62.0 (CH), 53.8 (CH2), 49.4 (CH3), 45.0 (CH), 41.4 (CH2), 41.0 (CH), 40.3 (2xCH3),
34.9 (CH2), 28.8 (CH2), 28.3 (CH), 27.0 (CH3), 22.1 (CH3), 21.5 (CH3), 21.4 (CH2), 21.3 (CH3),
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18.3 (CH3), 16.3 (CH3), 15.1 (CH3), 11.2 (CH3), 9.4 (CH3), 9.3 (CH3); HRMS (ES+) Calc. for
C49H80N3O12 ([M+H]+): 902.5742; found: 902.5741.

Methyl 3-(2-quinolynyl)-Acrylate (6a)

Compounds 4a (1.1 g, 7 mmol) and 5 (2.34 g, 7 mmol) were suspended in chloroform
(50 mL). The reaction mixture was stirred at ambient temperature overnight. The red
solution was extracted with 1N HCl (2 × 20 mL). The combined aqueous extracts were
washed with EtOAc (20 mL) and neutralized with 10% NaOH. Extraction with EtOAc (3 ×
20 mL) afforded organic solution of the title product that was washed with brine (20 mL),
dried over Na2SO4, and the solvent was evaporated. Thus, the red oil formed was passed
through a plug of SiO2 (50 g) and eluted with Hexanes:EtOAc (10:1). The title product was
obtained as yellowish oil that slowly solidified (1.13 g, 75%).

1H-NMR (300 MHz, CDCl3) δ: 8.18 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.91 (d,
J = 15.9 Hz, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.74 (ddd, J = 8.4, 7.0, 1.4 Hz, 1H), 7.61(d, J = 8.5 Hz,
1H), 7.56 (ddd, J = 7.1, 6.9, 1.1 Hz, 1H), 7.01 (d, J = 15.9 Hz, 1H), 3.84 (s, 3H).

Methyl 3-(4-quinolynyl)-acrylate (6b)

Compounds 4b (785 mg, 5 mmol) and 5 (1.84 g, 5.5 mmol) were suspended in toluene
(15 mL). The reaction mixture was refluxed for two hours until complete conversion
occurred. After cooling to room temperature, the red solution was extracted with 1N
HCl (2 × 20 mL). The combined aqueous extracts were washed with EtOAc (20 mL) and
neutralized with 10% NaOH. Extraction with EtOAc (3 × 20 mL) afforded organic solution
of the title product that was washed with brine (20 mL), dried over Na2SO4, and the solvent
was evaporated. Thus, the red oil formed was passed through a plug of SiO2 (20 g) and
eluted with Hexanes:EtOAc (1:1). The title product was obtained as yellowish oil that
slowly solidified (930 mg, 87%).

1H-NMR (500 MHz, CDCl3) δ: 9.21 (d, J = 4.5 Hz, 1H), 8.42 (d, J = 15.8 Hz, 1H), 8.17
(m, 2H), 7.78 (m, 1H), 7.64 (ddd, J = 7.1, 6.8, 1.3 Hz, 1H), 7.55 (d, J = 4.5 Hz, 1H), 6.66 (d,
J = 15.8 Hz, 1H), 3.87 (s, 3H).

3-(4-Quinolyl)-2-propene-1-ol (7b) [21]

A two-neck-round-bottom flask under argon was charged with compound 6b (610 mg,
2.86 mmol) and toluene (15 mL). The reaction mixture was cooled to −78 ◦C, and DIBAL-H
(6.22 mL, 6.29 mmol) was added via syringe for a period of 10 min. After 30 min, conversion
of the ester was complete. The reaction mixture was warmed to 0 ◦C and quenched with
diethyl ether, water and 15% sodium hydroxide. It was stirred for 15 min at ambient
temperature and MgSO4 was added. Inorganics were filtered off and washed with ether
(2 × 20 mL). Residue obtained after evaporation of the solvent was purified by SPE with
mixtures of DCM 3% methanolic ammonia. The title product was obtained as a off-white
crystaline solid (290 mg, 51%).

1H-NMR (500 MHz, CDCl3) δ: 8.67 (d, J = 4.6 Hz, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.94
(d, J = 8.5 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.3 Hz, 1H), 7.26 (d, J = 4.6 Hz, 1H),
7.22 (d, J = 15.6 Hz, 1H), 6.45 (dt, J = 15.6, 4.9 Hz, 1H), 4.36 (dd, J = 4.9, 1.5 Hz, 2H), 3.11
(brs., 1H); 13C-NMR (126 MHz, CDCl3) δ: 149.9, 148.3, 143.0, 136.2, 129.7, 129.4, 126.5, 126.2,
124.4, 123.6, 117.5, 63.0.

3-(2-Quinolinyl)-2-propene-1-ol (7a) [22].

Compound was prepared analogously to 7b, starting with 6a (770 mg, 3.61 mmol).
Crude product was purified by SPE on and eluted with mixtures of hexane and ethyl
acetate. The product was obtained as a pale green solid (160 mg, 27%).

1H-NMR (300 MHz, CDCl3) δ: 8.07 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.75
(d, J = 8.2 Hz, 1H), 7.65-7.72 (m, 1H), 7.43-7.56 (m, 2H), 7.04 (d, J = 16.0 Hz, 1H), 6.91 (dt,
J = 16.0, 4.5 Hz, 1H), 4.48 (dd, J = 4.4, 1.1 Hz, 2H); 13C-NMR (75 MHz, CDCl3) δ: 155.1, 147.0,
135.9, 135.8, 129.5, 129.1, 128.2, 126.8, 126.6, 125.5, 118.3, 62.0.
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3-(4-Quinolyl)-allyl tert-butyl carbonate (8b).

Compound 7b (280 mg, 1.51 mmol) was suspended in DCM (5 mL). Boc2O (0.42 mL,
1.81 mmol) and DMAP (18.47 mg, 0.151 mmol) were added, and the reaction mixture Was
stirred at ambient temperature for 1 h. The reaction was quenched with sat NaHCO3
(10 mL) and stirred for 10 min more. Layers were separated, and the aqueous one was
extracted with diethyl ether (3× 10 mL). Organics were dried over Na2SO4 and evaporated
to dryness. Residue was purified by SPE and eluted with Hex:EtOAc. The title compound
was obtained as colorless oil (340 mg, 71%).

1H-NMR (500 MHz, CDCl3) δ: 8.88 (d, J = 4.5 Hz, 1H), 8.08-8.12 (m. 2H), 7.70-7.75 (m,
1H), 7.55-7.59 (m, 1H), 7.44 (d, J = 4.5 Hz, 1H), 7.38 (dt, J = 15.8, 1.3 Hz, 1H), 6.50 (dt, J = 15.8,
5.5 Hz, 1H), 4.91(dd, J = 5.5, 1.3 Hz, 1H), 1.54 (s, 9H); 13C-NMR (101 MHz, CDCl3) δ: 153.2,
150.2, 148.5, 142.1, 130.1, 130.0, 129.4, 128.3, 126.6, 126.1, 123.5, 117.8, 82.6, 66.8, 27.8 (3C).

3-(2-Quinolyl)-allyl tert-butyl carbonate (8a).

Compound 7a (150 mg, 0.810 mmol) was solved in DCM (5 mL). Boc2O (0.226 mL,
0.972 mmol) and DMAP (9.89 mg, 0.081 mmol) were added, and the reaction mixture was
stirred at ambient temperature for 0.5 h. The reaction was quenched with sat NaHCO3
(10 mL) and stirred for 10 min more. Layers were separated, and the aqueous one was
extracted with diethyl ether (3× 10 mL). Organics were dried over Na2SO4 and evaporated
to dryness. Residue was purified by SPE and eluted with Hex:EtOAc. The title compound
was obtained as colorless oil (153 mg, 66%).

1H-NMR (400 MHz, CDCl3) δ: 8.08 (d, J = 8.5 Hz, 1H), 8.02 (dd, J = 8.3, 0.8 Hz, 1H),
7.75 (dd, J = 8.1, 1.1 Hz, 1H), 7.67 (m, 1H), 7.51 (d, J = 8.7 Hz, 1H), 7.47 (dd, J = 6.9, 1.2 Hz,
1H), 6.95 (dt, J = 16.1, 1.3 Hz, 1H), 6.85 (dt, J = 16.0, 5.5 Hz, 1H), 4.83 (dd, J = 5.6, 1.3 Hz,
2H), 1.50 (s, 9H); 13C-NMR (101 MHz, CDCl3) δ: 154.9, 153.3, 148.0, 136.4, 133.7, 129.7, 129.3,
127.4, 127.0, 126.4, 119.1, 82.4, 66.7, 27.8 (3C).

Methyl 4-hydroxycrotonate (13a) [26]

Compounds 5 (6.68 g, 20 mmol) and 11 (1.2 g, 10 mmol) were suspended in chloroform
(60 mL). The reaction mixture was stirred at ambient temperature for 24 h. The solvent was
removed under reduced pressure, and residue was subjected to bulb-to-bulb distillation
(150 ◦C/1.2 × 10−1 mbarr). The product was obtained as colorless oil (2.1 g, 88%).

1H-NMR (400 MHz, CDCl3) δ: 7.05 (dt, J = 4.0, 15.6 Hz, 1H), 6.15-6.08 (m, 1H), 4.38-4.33
(m, 2H), 3.74 (s, 3H).

4-Hydroxycrotononitrile (13b)

Compound was prepared the same way as 13a, starting with compounds 12 (7.88 g,
26.2 mmol) and 11 (1.57 g, 13.08 mmol). The product was obtained as colorless oil (4:1
trans/cis mixture) after a bulb-to-bulb distillation (120 ◦C/1.5 × 10−1 mbarr). Yield (1.94 g,
89%).

1. H NMR (500 MHz, CDCl3) δ: (trans isomer) 6.84 (dt, J = 16.3, 3.4 Hz, 1H), 5.73 (dt,
J = 16.4, 2.3 Hz, 1H), 4.33 (t, J = 2.9 Hz, 2H); (cis isomer) 6.62 (dt, J = 11.4, 5.8 Hz, 1H), 5.44
(dt, J = 11.3, 1.7 Hz, 1H), 4.47 (dd, J = 5.8, 1.5 Hz, 2H); 13C-NMR (126 MHz, CDCl3) δ: (trans
isomer) 153.6, 117.3, 98.4, 61.5; (cis isomer) 152.9, 117.3, 99.4, 61.2.

Methyl-4-tert-butyloxycarbonyloxy-crotonate (14a)

Compound 13a (6.1 g, 52.5 mmol) was solved in DCM (70 mL). Boc2O (14.64 mL,
63.0 mmol) was added, followed by DMAP (0.321 g, 2.63 mmol). The reaction mixture
was stirred for 2 h at room temperature and then washed with 1N HCl (2 × 50 mL), water
(50 mL), and brine (50 mL). Organic layer was dried over Na2SO4, and the solvent removed
under reduced pressure. The red-brown oily residue was passed through a plug of SiO2
(30 g) and eluted with EtOAc:Hex (1:2). The title product was obtained as yellow oil
(10 g, 88%).
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1H-NMR (600 MHz, CDCl3) δ: 6.90 (td, J = 15.7, 4.7 Hz, 1H), 6.02 (dt, J = 15.9, 1.9 Hz,
1H), 4.68 (dd, J = 4.6, 2.0 Hz, 2H), 3.70 (s, 3H), 1.45 (s, 9H); 13C-NMR (151 MHz, CDCl3) δ:
166.2, 152.9, 141.3, 121.8, 82.7, 64.8, 51.7, 27.7.

4-tert-Butyloxycarbonyloxy-crotononitrile (14b)

Compound was prepared in a similar way to 14a starting from compound 13b (1.32 g,
15.9 mmol). The title product was obtained as a yellowish oily mixture of trans/cis iso-
mers(4:1) (2.4 g, 78%).

1H-NMR (300 MHz, CDCl3) δ: (trans isomer) 6.68 (dt, J = 16.4, 4.4 Hz, 1H), 5.59 (dt,
J = 16.3, 2.2 Hz, 1H), 4.65 (dd, J = 4.4, 2.1 Hz, 2H), 1.44 (s, 9H); (cis isomer) 6.54 (dt, J = 11.2,
6.2 Hz, 1H), 5.50 (dt, J = 11.2, 1.7 Hz, 1H), 4.84 (dd, J = 6.1, 1.7 Hz, 2H), 1.47 (s, 9H); 13C-NMR
(75 MHz, CDCl3) δ: (trans isomer) 152.5, 147.5, 116.5, 101.1, 83.3, 64.5, 27.6 (3C).

(22R)-9-Deoxo-11-deoxy-11-9a-(epoxyethano)-22-(2-quinolyl)methyl-9a-aza-9a- homoery-
thromycin A (10a)

A flame dried Schlenk tube was charged under argon with compounds 1 (184 mg,
0.25 mmol), 8a (85 mg, 0.27 mmol) and dry toluene (2.5 mL). Pd2(dba)3·CHCl3 (6 mg,
0.005 mmol) and DPPB (5 mg, 0.01 mmol) were added, and the reaction mixture was heated
at 80 ◦C for 1 h. After completion of the reaction, DBU (152 mg, 1 mmol) was added, and
the reaction mixture was heated for another 1 h. The solvent was evaporated under reduced
pressure, and foamy residue was chromatographed on SiO2 (20 g) EtOAc:Hexanes:DEA
(100:100:10) and further on the same amount of silica with DCM:MeOH:NH4OH (90:6:0.5).
The title product was obtained as a white solid (80 mg, 35%).

1H-NMR (500 MHz, CDCl3) δ: 8.12 (d, J = 8.5 Hz, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.78
(dd, J = 8.4, 1.1 Hz, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.63-7.71 (m, 1H), 7.49 (ddd, J = 8.0, 6.9,
1.2 Hz, 1H), 5.94 (s, 1H), 4.97 (dd, J = 4.6, 1.5 Hz, 1H), 4.67 (dd, J = 11.3, 2.1 Hz, 1H), 4.48 (d,
J = 7.3 Hz, 1H), 4.28-4.36 (m, 1H), 4.25 (dd, J = 8.5, 1.8 Hz, 1H), 4.09 (dq, J = 8.7, 6.3 Hz, 1H),
3.77 (d, J = 6.7 Hz, 1H), 3.51-3.60 (m, 1H), 3.35 (d, J = 1.8 Hz, 1H), 3.32 (s, 3H), 3.30-3.34 (m,
1H), 3.27 (dd, J = 15.0, 4.9 Hz, 1H), 3.22 (dd, J = 15.0, 8.2 Hz, 1H), 3.07 (d, J = 8.5 Hz, 1H),
2.87-2.94 (m, 1H), 2.59-2.71 (m, 3H), 2.54 (t, J = 11.0 Hz, 1H), 2.44 (s, 6H), 2.34 (dd, J = 15.0,
1.8 Hz, 1H), 2.29 (dd, J = 12.7, 3.2 Hz, 1H), 1.93-2.04 (m, 2H), 1.82-1.90 (m, 3H), 1.72 (dd,
J = 14.6, 1.8 Hz, 1H), 1.65-1.70 (m, 1H), 1.63 (dd, J = 15.0, 4.9 Hz, 1H), 1.36-1.45 (m, 2H),
1.35 (d, J = 6.4 Hz, 3H), 1.33 (s, 3H), 1.28-1.32 (m, 1H), 1.26 (s, 3H), 1.25 (d, J = 7.3 Hz, 3H),
1.24 (d, J = 6.1 Hz, 3H), 1.07 (d, J = 7.6 Hz, 3H), 1.01 (s, 3H), 0.93 (d, J = 6.4 Hz, 3H), 0.91 (d,
J = 7.0 Hz, 3H), 0.70 (t, J = 7.5 Hz, 3H); 13C-NMR (75 MHz, CDCl3) δ: 175.9 (C), 158.7 (C),
147.6 (C), 136.1 (CH), 129.2 (CH), 128.7 (CH), 127.5 (CH), 127.0 (C), 125.8 (CH), 122.1 (CH),
103.1 (CH), 96.5 (CH), 84.9 (CH), 80.6 (CH), 78.9 (CH), 77.8 (CH), 77.4 (CH), 74.1 (CH), 73.9
(C), 73.1 (C), 72.9 (C), 71.1 (CH), 68.6 (CH), 66.2 (CH), 65.6 (CH), 64.1 (CH2), 56.6 (CH), 49.4
(CH2), 49.4 (CH3), 44.8 (CH), 42.7 (CH2), 41.5 (CH2), 40.4 (2xCH3), 39.6 (CH3), 35.3 (CH2),
29.6 (CH2), 26.6 (C & CH3), 21.6 (CH3), 21.3 (CH3), 21.3 (CH3), 20.2 (CH2), 18.6 (CH3), 16.5
(CH3), 15.3 (CH3), 10.7 (CH3), 9.6 (CH3), 5.4 (CH3); HRMS (ES+) Calc. for C49H80N3O12
([M+H]+): 902.5742; found: 902.5740.

(22R)-9-Deoxo-11-deoxy-11-9a-(epoxyethano)-22-(4-quinolyl)methyl-9a-aza-9a- homoery-
thromycin A (10b)

A flame dried Schlenk tube was charged under argon with compounds 1 (184 mg,
0.25 mmol), 8b (77 mg, 0.27 mmol), and dry toluene (3 mL). Pd2(dba)3·CHCl3 (6 mg,
0.005 mmol) and DPPB (5 mg, 0.01 mmol) were added, and the reaction mixture was heated
at 80 ◦C for 1 h. After completion of the reaction, DBU (152 mg, 1 mmol) was added, and
the reaction mixture was heated for another 1 h. The solvent was evaporated under reduced
pressure, and foamy residue was chromatographed on SiO2 (20 g) EtOAc:Hexanes:DEA
(100:100:10) and further on the same amount of silica with DCM:MeOH:NH4OH (90:6:0.5).
The title product was obtained as a white solid (103 mg, 46%).

1H-NMR (500 MHz, CDCl3) δ: 8.84 (d, J = 4.3 Hz, 1H), 8.11 (d, J = 7.9 Hz, 1H), 8.06 (d,
J = 8.1 Hz, 1H), 7.68 (m, 2H), 7.55 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H), 6.58 (s, 1H), 4.94 (dd, J = 4.4,
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2.5 Hz, 1H), 4.60 (dd, J = 11.1, 2.2 Hz, 1H), 4.51 (d, J = 7.2 Hz, 1H), 4.27 (m, 1H), 4.17 (dd,
J = 9.0, 1.6 Hz, 1H), 4.06 (dq, J = 8.2, 6.4 Hz, 1H), 3.78 (d, J = 6.6 Hz, 1H), 3.58 (m, 1H), 3.37
(dd, J = 9.8, 7.6 Hz, 1H), 3.34 (d, J = 1.8 Hz, 1H), 3.31 (s, 3H), 3.30 (d, J = 13.7 Hz, 1H), 3.23
(dd, J = 14.5, Hz, 1H), 3.09 (d, J = 8.1 Hz, 1H), 2.90 (dq, J = 8.9, 7.2 Hz, 1H), 2.87 (m, 1H),
2.65 (s, 6H), 2.64 (m, 2H), 2.52 (d, J = 11.3 Hz, 1H), 2.41 (m, 1H), 2.30 (dd, J = 14.7, 2.3 Hz,
1H), 2.29 (dd, J = 12.7, 3.3 Hz, 1H), 2.24 (s, 1H), 2.02 (m, 3H), 1.89 (m, 1H), 1.68 (dd, J = 14.7,
1.2 Hz, 1H), 1.64 (dd, J = 14.9, 4.6 Hz, 1H), 1.62 (m, 1H), 1.37 (m, 3H), 1.34 (d, J = 7.0 Hz, 3H),
1.31 (s, 3H), 1.25 (d, J = 6.8 Hz, 6H), 1.27 (s, 3H), 1.04 (d, J = 7.5 Hz, 3H), 0.98 (s, 3H), 0.92
(d, J = 7.0 Hz, 3H), 0.75 (t, J = 7.4 Hz, 3H);13C-NMR (75.47 MHz, CDCl3) δ: 174.5 (C), 149.2
(CH), 147.0 (C), 142.5 (C), 129.2 (CH), 127.8 (CH), 127.5 (C), 125.1 (CH), 122.7 (CH), 120.8
(CH), 101.9 (CH), 95.7 (CH), 84.7 (CH), 80.1 (CH), 77.9 (CH), 76.4 (CH), 76.2 (CH), 72.9 (CH),
72.7 (C), 72.0 (C), 72.0 (C), 70.0 (CH), 67.2 (CH), 65.7 (CH), 64.7 (CH), 63.0 (CH2), 55.5 (CH),
48.4 (CH2), 48.3 (CH3), 43.5 (CH), 40.3 (CH2), 39.6 (2xCH3), 37.8 (CH), 34.4 (CH2), 33.7
(CH2), 30.3, (CH2), 25.6 (CH), 25.4 (CH3), 20.5 (CH3), 20.3 (CH3), 20.1 (CH3), 19.1 (CH2),
17.5 (CH3), 15.6 (CH3), 14.1 (CH3), 9.7 (CH3), 8.7 (CH3), 4.1 (CH3); HRMS (ES+) Calc. for
C49H80N3O12 ([M+H]+): 902.5742; found: 902.5753.

(22R)-9-Deoxo-11-deoxy-11-9a-(epoxyethano)-22-(methoxycarbonyl)methyl-9a-aza-9a- ho-
moerythromycin A (15a)

According to the procedure above, starting with compounds 1 (367 mg, 0.5 mmol) and
14a (130 mg, 0.6 mmol). Yield (170 mg, 41%).

1H-NMR (500 MHz, CDCl3) δ: 5.61 (s, 1H), 4.95 (d, J = 4.3 Hz, 1H), 4.88 dd, J = 11.3,
1.8 Hz, 1H), 4.43 (d, J = 7.0 Hz, 1H), 4.23 (dd, J = 8.8, 1.8 Hz, 1H), 3.98–4.14 (m, 2H), 3.75
(d, J = 6.7 Hz, 1H), 3.70 (s, 3H), 3.45–3.57 (m, 1H), 3.35 (d, J = 1.8 Hz, 1H), 3.31 (s, 3H),
3.23 (dd, J = 10.1, 7.3 Hz, 1H), 3.03 (t, J = 8.5 Hz, 1H), 2.88–2.97 (m, 1H), 2.67 (qd, J = 6.4,
1.2 Hz, 1H), 2.60 (dd, J = 15.0, 2.8 Hz, 1H), 2.59 (dd, J = 14.6, 5.2 Hz, 1H), 2.53 (d, J = 11.3 Hz,
1H), 2.48 (dd, J = 14.8, 6.9 Hz, 1H), 2.41–2.46 (m, 1H), 2.36 (d, J = 15.0 Hz, 1H), 2.29 (s, 6H),
2.24–2.27 (m, 2H), 1.97–2.03 (m, 1H), 1.92–1.97 (m, 1H), 1.80–1.92 (m, 2H), 1.76 (dd, J = 14.6,
1.5 Hz, 1H), 1.63–1.69 (m, 1H), 1.60 (dd, J = 15.0, 4.9 Hz, 1H), 1.44–1.49 (m, 1H), 1.41 (dd,
J = 14.8, 4.7 Hz, 1H), 1.33 (s, 3H), 1.32 (d, J = 6.6 Hz, 3H), 1.26–1.31 (m, 1H), 1.24 (s, 3H),
1.23 (d, J = 6.0 Hz, 3H), 1.23 (d, J = 6.1 Hz, 3H), 1.09 (d, J = 7.6 Hz, 3H), 1.04 (s, 3H), 1.00 (d,
J = 6.4 Hz, 3H), 0.92 (d, J = 7.0 Hz, 3H), 0.85 (t, J = 7.9 Hz, 3H); 13C-NMR (126 MHz, CDCl3)
δ: 175.8 (C), 170.9 (C), 103.4 (CH), 96.7 (CH), 84.7 (CH), 80.7 (CH), 79.0 (CH), 78.2 (CH), 77.1
(CH), 74.0 (C), 73.2 (C), 72.9 (C), 72.4 (CH), 71.2 (CH), 68.8 (CH), 65.9 (CH), 65.7 (CH), 64.1
(CH), 56.5 (CH), 51.7 (CH3), 49.5 (CH3), 48.9 (CH2), 44.8 (CH), 41.7 (CH2), 40.5 (2xCH3),
39.7 (CH), 38.7 (CH2), 35.4 (CH2), 29.0 (CH2), 26.8 (CH), 26.7 (CH3), 21.6 (CH3), 21.5 (CH3),
21.4 (CH3), 20.4 (CH2), 18.7 (CH3), 16.7 (CH3), 15.3 (CH3), 10.8 (CH3), 9.7 (CH3), 5.5 (CH3);
HRMS (ES+) Calc. for C42H77N2O14 ([M+H]+): 833.53; found: 833.5382.

(22R)-9-Deoxo-11-deoxy-11-9a-(epoxyethano)-22-(cyano)methyl-9a-aza-9a-homoerythromycin
A (15a)

According to the procedure above, starting with compounds 1 (735 mg, 1 mmol, 14b
(217 mg, 1.18 mmol), yield was 621 mg (69%).

1H-NMR (500 MHz, CDCl3) δ: 5.54 (s, 1H), 4.90–4.98 (m, 2H), 4.41 (d, J = 7.3 Hz,
1H), 4.19 (dd, J = 8.7, 1.4 Hz, 1H), 4.06 (dq, J = 9.2, 6.2 Hz, 1H), 3.90–4.00 (m, 1H), 3.74 (d,
J = 7.6 Hz, 1H), 3.46–3.56 (m, 1H), 3.40 (d, J = 1.53 Hz, 1H), 3.31 (s, 3H), 3.23 (dd, J = 10.1,
7.3 Hz, 1H), 3.03 (d, J = 9.2 Hz, 1H), 2.89–2.99 (m, 1H), 2.79 (dd, J = 17.1, 4.9 Hz, 1H),
2.70–2.74 (m, 1H), 2.65–2.70 (m, 1H), 2.60 (dd, J = 11.6, 3.1 Hz, 1H), 2.51 (dd, J = 17.1, 4.0 Hz,
1H), 2.41–2.48 (m, 1H), 2.36 (d, J = 15.5 Hz, 1H), 2.31–2.33 (m, 1H), 2.29 (s, 6H), 2.03 (t,
J = 12.2 Hz, 1H), 1.82–1.96 (m, 3H), 1.77 (d, J = 15.0 Hz, 1H), 1.63–1.70 (m, 1H), 1.60 (dd,
J = 15.3, 4.9 Hz, 1H), 1.46–1.55 (m, 1H), 1.42 (dd, J = 15.0, 4.9 Hz, 1H), 1.34 (s, 3H), 1.32 (d,
J = 6.1 Hz, 3H), 1.26–1.31 (m, 1H), 1.24 (s, 3H), 1.23 (d, J = 6.4 Hz, 3H), 1.23 (d, J = 6.1 Hz,
3H), 1.10 (d, J = 7.3 Hz, 3H), 1.07 (d, J = 7.0 Hz, 3H), 1.06 (s, 3H), 0.93 (d, J = 7.0 Hz, 3H), 0.88
(t, J = 7.3 Hz, 3H); 13C-NMR (126 MHz, CDCl3) δ: 176.1 (C), 116.5 (C), 103.4 (CH), 96.8 (CH),
84.4 (CH), 80.7 (CH), 79.3 (CH), 78.1 (CH), 77.1 (CH), 74.1 (C), 73.2 (C), 72.8 (C), 71.1 (CH),
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70.1 (CH), 68.8 (CH), 65.8 (CH), 65.6 (CH), 64.0 (CH2), 56.4 (CH), 49.4 (CH3), 48.1 (CH2),
44.8 (CH), 41.7 (CH2), 40.4 (2 × CH3), 39.7 (CH), 35.4 (CH2), 28.9 (CH2), 26.7 (CH), 26.7
(CH3), 22.3 (CH2), 21.6 (CH3), 21.4 (CH3), 21.3 (CH3), 20.3 (CH2), 18.7 (CH3), 16.7 (CH3),
15.3 (CH3), 10.7 (CH3), 9.6 (CH3), 5.7 (CH3); HRMS (ES+) Calc. for C41H74N3O12 ([M+H]+):
800.5273; found: 800.5266.

4. Conclusions

In conclusion, a tandem one-pot palladium catalyzed allylic alkylation/intermolecular
Michael addition procedure was developed. It allowed preparation of a series of bicyclic
azalides that contained a condensed, highly substituted morpholine ring created by bridg-
ing of azalide N-9a and 11-OH group via tandem diallylation. This modification, although
positioned in the western part of the macrocycle, affected the conformation of the whole
molecule, causing the outward folding of the C-3 to C-5 region into a so-called “folded-out”
conformation. Although a similar reaction with similar resulting compound was reported
earlier [19], stereoselectivity of our procedure is unprecedented, yielding only one stereoiso-
mer in all obtained products. Although compounds containing heteroaryl substituents
seem to be potent growth inhibitors of erythromycin sensitive strains, they still have low
activity against resistant strains. Therefore, we suggest employing them as the starting
points for further transformations and optimizations.
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