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Abstract: We are focused on the idea that observables in quantum physics are a bit more then just
hermitian operators and that this is, in general, a “tricky business”. The origin of this idea comes from
the fact that there is a subtle difference between symmetric, hermitian, and self-adjoint operators
which are of immense importance in formulating Quantum Mechanics. The theory of self-adjoint
extensions is presented through several physical examples and some emphasis is given on the
physical implications and applications.
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1. Introduction

Proper quantization of physical systems requires a correct definition of physical
observables (such as the Hamiltonian, momentum, etc.) as self-adjoint operators in an
appropriate Hilbert space and their spectral analysis. This problem is a much more subtle
issue then the mere prescription of assigning a hermitian operator (or matrix) to a classical
observable. Solution to this problem is not straightforward and goes beyond the finite-
dimensional hermiticity condition when dealing with nontrivial quantum systems such
as systems on manifolds with boundaries or with singular interactions. These nontrivial
quantum systems with singular potentials, both relativistic and non-relativistic, with or
without boundaries, play a very important role in physics, and a consistent and well defined
quantization needs a considerable amount of techniques and results usually found only in
different advanced chapters on functional analysis. However, these advanced functional
analytical methods usually go beyond the scope of the mathematical apparatus usually
presented in standard textbooks on Quantum Mechanics (QM) for physicists e.g., [1–6],
and unfortunately this remains unchanged even in more modern textbooks [7–11]. There
are some exceptions such as [12–19] which are mainly intended for mathematically minded
physicists and mathematician. The aim of this paper is twofold. The first goal is of more
pedagogical nature, namely, to convince the reader-physicist that one must take a lot of
caution when reading standard textbooks on QM for physicists and “blindly” applying the
notions and prescriptions from such textbooks to nontrivial quantum systems. The second
goal is to show the natural appearance (and necessity) of anomalies in QM and to review
some of the recent (and not so recent) applications and bring the reader to the frontier of
some of the latest research where the self-adjoint issues play a crucial role.

The mathematical framework of QM is functional analysis, more precisely, the theory
of linear operators in Hilbert spaces. This is a quite “subtle science” and to completely
master it would take a considerable amount of time. It is for this reason that standard
textbooks on QM for physicists usually just present a rather simplified version of the
relevant parts of functional analysis in the form of brief “rules” (sometimes even called
axioms1) which are then applied to “well behaved systems” (such as harmonic oscillator,
particle in a box, etc.) where many of the mathematical subtleties are then necessarily left
aside or “swept under the rug”. These “rules” are, more or less, based on our experience in
finite-dimensional linear algebra and dealing with algebra of matrices, which can often be
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misleading and lead to some paradoxes when taken too literally. We will outline some of
these paradoxes in Section 2 in order to motivate the reader-physicist.

Observables are usually presented as hermitian operators (matrices). Hermitian ma-
trices have important properties like real eigenvalues, the corresponding eigenvectors are
orthogonal and span the whole finite-dimensional Hilbert space, etc. However, all these
properties are not ensured by the hermiticity condition in general infinite-dimensional
Hilbert space. Hermiticity condition is often just replaced with the symmetricity condi-
tion, which only ensures for the expectation values of observables to be real [20], while
the rest of the properties can only be grasped with imposing a more subtle condition
called self-adjoitness.

A crucial subtlety is that an unbounded2 self-adjoint (SA) operator cannot be defined
in the whole Hilbert space, i.e., it can not act on an arbitrary QM state3, which is often
assumed in most textbooks when presenting operator or canonical quantization. One must
be aware that an operator without its domain of definition is not well defined. An operator
is not only a rule of acting, but also comes with a domain in a Hilbert space to which this
rule is applicable (see [20] for an elaborate discussion). In the case of unbounded operators,
the same rule of acting for different domains might generate different operators with
sometimes completely different properties. The pivotal example comes from examining a
differential equation f

′′
= λ f for different boundary conditions. The differential equation

provides the rule of acting while boundary conditions selects the domain of functions,
and depending on the domain chosen, different values for the parameter λ are allowed
leading to different physical interpretations or regimes. Having this in mind, it is clear that
when provided with a rule of acting, it is only the appropriate choice of a domain for a QM
observable that makes it a SA operator. The main problems and unwanted paradoxes are
related to this point. But only when we understand where and why these problems occur,
can we look to find ways to resolve them.

The theory of SA extensions of unbounded symmetric operators provides the main tool
for dealing with these problems. The theory of SA extensions provides us with all possible,
or better say, allowable domains for a symmetric operator which render it SA. In general,
these extensions are not unique, if they are possible at all. From the physicist point of
view, this implies that upon performing the quantization of a nontrivial system, we are
generally presented with various non-equivalent possibilities for its quantum description.
The general theory of SA extensions provides us with all that mathematics can offer to a
physicist. Of course, the physical interpretation of the available SA extensions is a purely
physical problem. Any extension is a certain prescription for the behavior of a physical
system under consideration near its boundaries or singularities. In a sense, different
extensions classify the types of quantum-mechanically allowable interactions, and is up
to the physicist to investigate all of them and chose the one which fits the experimental
results. It is also believed that each extension can be understood through an appropriate
regularization and a subsequent limit process, although this is a totally new problem that
stands on its own.

Self-adjointness and the theory of SA extensions are known to play important roles in a
variety of physical contexts, including systems with a confined particle [21–23], Aharonov-
Bohm effect [24–27], graphene [28], two and three dimensional delta function potentials [29],
heavy atoms [30–32], singular potentials [33,34], Calogero models [35,36], anyons [37,38],
anomalies [39–41], ζ-function renormalization [42], scattering theory [43], particle statis-
tics [44], black holes [45–49], integrable system [50,51], Klein-Gordon equation [52], renor-
malons in QM [53], quasinormal modes [54], supersymmetric QM [55] and toy models
for strings [56], spectral triple [57], noncommutative field theories [58–60], resolving the
spacetime singularities [61–65] and even plays a very important role in classical physics
since it underlies the conservation of entropy of Hamiltonian systems [66].

The outline of the paper is as follows. In Section 2 we motivate the reader by giving
some paradoxes of conventional QM, and together with the Appendices A–E we establish
the notation and give an overview on the formalism of QM, Hilbert spaces and properties
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of certain operators. In Section 3 we give a pedagogical, step by step introduction to
the subtleties of SA operators and its extensions. This is done by going through simple
examples. In Section 4 we discuss the existence of new bound states, anomalies and give a
simple proof of Pauli’s theorem. In Section 5 we comment on the canonical quantization
in higher dimensions and finally in Section 6 we finish with some remarks. The more
rigorous4 definitions and some discussions are given in the Appendices B–F at the end of
the paper.

2. Motivation

In order to motivate a physicist to learn about the subtleties of functional analysis,
we will present some paradoxes that even appear in simple QM systems5 obtained in
the idealized scheme of operator canonical quantization6. We will see that if one follows
these postulates literally, one can arrive at certain paradoxes, i.e., contradictions with the
well-known statements.

For this purpose, let us first consider a system that consists of a free non-relativistic
particle of mass m moving on a real interval (a, b). Depending on the values of a and b,
the interval can be finite, infinite or semi-finite. Also we can include or not include the
boundary, but that we will specify later. In classical mechanics, this system is modeled by
the phase space P = T∗M = (a, b)×R, that is a strip given by the range of the position
x ∈ (a, b) and momentum p ∈ R of the particle. The Poisson bracket of the position x
and momentum p is {x, p} = 1 and the time evolution is governed by the Hamiltonian
equations. The Hamiltonian for free motion is given by H = p2/2m. Depending on the
values of a and b, that is, if one of them is finite, we are dealing with a phase space which
is a manifold with boundaries. In such situation, the behavior of the particle near that
boundary must be specified by some extra conditions such as elastic/nonelastic/plastic
reflection, delay, trapping or something else. This is more or less all the information we
need to fully characterize our classical system and now we wish to quantize it.

In order to quantize our system we have to use the postulates of QM as they are
presented in Appendix A. In doing so, we may notice that it seams that we don’t encounter
problems with possible boundaries of the classical phase space. Namely, the canonical
observables for the QM system are represented by SA operators x̂ for the position and p̂ for
the momentum of the particle, which satisfy the canonical commutation relations

[x̂, p̂] = ih̄{x, p} = ih̄. (1)

In the so called x-representation of (1) the Hilbert space H of all possible quantum
states is actually the space of functions ψ(x) that are square-integrable7 on the interval (a, b).
This Hilbert space is often denoted by H = L2(a, b). In this representation, the position
operator x̂ is the operator of multiplication by x, namely

x̂ψ(x) = xψ(x) (2)

and its spectrum8 is given by σ(x̂) = (a, b). The momentum operator p̂ can be uniquely
represented using the differentiation operator d

dx via

p̂ = −ih̄
d

dx
, p̂ψ(x) = −ih̄ψ′(x). (3)

Clearly, the canonical commutation relation (1) holds. Other quantum observables
can be constructed from the classical observable f (x, p) using the correspondence principle
and in general they are represented by certain differential operators

f̂ = f (x,−ih̄
d

dx
) + O(h̄). (4)
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In particular the free quantum Hamiltonian is given by

Ĥ =
p̂2

2m
= − h̄2

2m
d2

dx2 . (5)

So far everything seams well defined and unambiguous, since in case the boundaries of
the interval are finite |a|, |b| < ∞ one can consider the Hilbert space L2(a, b) as a subspace of
L2(R) where all the states vanish outside the interval (a, b) (they are compactly supported
functions), while the observables x̂ and p̂ are restrictions of the well-known SA operators
defined on L2(R) to this subspace. Notice that for the finite interval [a, b], the position
operator x̂ becomes a bounded SA operator defined everywhere [71]. Considering the
momentum p̂ and Hamiltonian Ĥ also as SA operators satisfying9

(ϕ, Aψ) = (Aϕ, ψ), A ∈
{

x̂, p̂, Ĥ
}

, ∀ϕ, ψ ∈ H (6)

and the commutation relations

[x̂, p̂] = ih̄, [x̂, Ĥ] = 0 (7)

finishes the canonical quantization procedure.
In what follows we will apply the above procedure to certain situations and soon

realize that it might lead to certain inconsistencies, i.e., paradoxes.

2.1. Paradox 1

Let ψp be a normalized eigenvector of the SA operator, p̂ψp = pψp. Since the operators
p̂ and x̂ are SA, i.e., satisfy (6) , we can calculate the following

(ψp, [x̂, p̂]ψp) = (ψp, x̂ p̂ψp)− (ψp, p̂x̂ψp)

= p(ψp, x̂ψp)− ( p̂ψp, x̂ψp)

= p
[
(ψp, x̂ψp)− (ψp, x̂ψp)

]
= 0,

(8)

where we used the definition of the commutator [A, B] = AB− BA and the self-adjointness
of p̂. On the other hand, if we first use (1) we get

(ψp, [x̂, p̂]ψp) = ih̄(ψp, ψp) = ih̄ 6= 0, (9)

arriving at a contradiction.
In addition, the canonical commutation relations, due to Cauchy-Schwarz-Bunyakovski

inequality, imply the famous Heisenberg uncertainty relation

∆x̂∆ p̂ ≥ h̄
2

, (10)

where ∆x̂ =
√
〈x̂2〉ψ − 〈x̂〉

2
ψ and ∆ p̂ =

√
〈 p̂2〉ψ − 〈 p̂〉

2
ψ are the dispersions of the position

and momentum for any state ψ of a particle. However, when dealing with the finite interval
[a, b] and for ψ = ψp (the eigenvector of momentum), we get ∆x̂ ≤ b− a, ∆ p̂ = 0, which
leads to ∆x̂∆ p̂ = 0, and that is in a contradiction with (10).

The resolution of these apparent paradoxes is different for different types of interval.
Namely, depending on the type of the interval (finite, semi-finite or infinite), either a SA
momentum operator does not exist, or it exists but has no eigenvectors, or even if such
vectors exist, they do not belong to the domain of the operator p̂x̂. Therefore, in order to
encounter aforementioned paradoxes, the knowledge about the domain of the operators is
crucial and unavoidable in practical calculations. In addition, one can easily see that for
the case of a semi-finite or finite interval, the canonical commutation relation (1) and the
uncertainty principle (10) are in contradiction. Actually the origin of the problem is that we
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are dealing with unbounded operators and the very concept of calculating commutation
relations for unbounded operators is not well defined [20].

2.2. Paradox 2

Observe that the canonical commutation relation (1) cannot be realized for observables
x̂ and p̂ acting as operators (matrices) on a non-trivial finite-dimensional Hilbert spaceH
if the Planck’s constant h̄ is different from zero [72]. To see this let us assume that x̂ and
p̂ are SA linear operators x̂, p̂ : H → H such that (1) holds. Now we take the trace of (1)
and calculate

Tr([x̂, p̂]) = Tr(ih̄I)

Tr(x̂ p̂)− Tr( p̂x̂) = ih̄Tr(I)

0 = ih̄× dim(H),

(11)

where we used the cyclicitiy of the trace Tr(AB) = Tr(BA), I is the identity operator and
dim(H) is the dimension of the Hilbert space. The conclusion is that either h̄ = 0 or we have
to abandon the idea of having a finite-dimensional Hilbert space and accept the fact that at
least one of the operators in question is unbounded and that the issue of trace-classness
emerges too.

2.3. Paradox 3

Let us now consider a free particle moving on a finite interval [0, a]. We can treat this
motion as the one governed by the Hamiltonian (5) containing an infinite rectangular po-
tential well. In doing so, we get that the eigenvalues of the Hamiltonian and corresponding
eigenfunctions are (as can be found in any QM textbook):

Ĥψn = Enψn, En =
h̄2π2

2ma2 n2, ψn(x) =

√
2
a

sin
(nπ

a
x
)

, n ∈ N. (12)

Note that the set10 {ψn}∞
1 of the eigenfunctions is indeed an orthonormal basis in

L2[0, a], which confirms the self-adjointness of the Hamiltonian11.
As we pointed out before, the claim that two commuting SA operators have common

eigenvectors is often assumed by physicists. If this is so, and if the spectrum of the
commuting SA operators are nondegenerate, then its eigenvectors must be eigenvectors of
another SA operator. In the case of the free particle on a finite interval, the two commuting
SA operators are the momentum p̂ and Hamiltonian Ĥ, and since the spectrum of Ĥ is
nondegenerate the eigenfunctions of Ĥ must be eigenfunctions of p̂ also. But we can check
that by calculating

p̂ψn = −ih̄

√
2
a

nπ

a
cos
(nπ

a
x
)
6= pnψn (13)

for any n, and immediately see that it contradicts the above assertion.
This paradox is again a consequence of the ill defined assumption that p̂ and Ĥ

commute. Each of these operators has its own domain, and the commutator can not
be defined in general. In particular, also the naïve belief that the Hamiltonian can be
represented just as Ĥ = p̂2/2m, that is, as a simple composition of the operator p̂ without
referring to both of its domains, could lead to this type of paradoxes.

2.4. Paradox 4

Observables are linear SA operators in Hilbert space. When the Hilbert space in
question is finite, these operators are Hermitian matrices, but when dealing with square
integrable functions as our quantum states then we are dealing with infinite-dimensional
Hilbert spaces and the analog of matrix elements of (unbounded) operators are not well
defined. However, in most standard QM textbooks it is claimed that the matrix elements
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Amn = (em, Âen) of an operator Â with respect to an orthonormal basis {en}∞
1 completely

determine the operator Â. This is justified by the following reasoning

∀ψ ∈ H =⇒ ψ =
∞

∑
n=1

ψnen, ψn = (en, ψ), Âen =
∞

∑
m=1

Amnem,

Âψ =
∞

∑
n=1

ψn Âen =
∞

∑
m=1

(
∞

∑
n=1

Amnψn

)
em.

(14)

Then the adjoint Â† of Â could be defined as an operator whose matrix elements are
given by (

Â†
)

mn
=
(

em, Â†en

)
=
(

Âem, en
)
=
(
en, Âem

)
= Anm. (15)

In other words, a SA operator Â† = Â is defined as an operator whose matrix is
hermitian, i.e., Amn = Anm.

If the above is true, let us apply it to some simple example. To this matter we can
look at a matrix pnm = (en, p̂em) that corresponds to the momentum operator in the Hilbert
space L2[0, l] with respect to some orthonormal basis {en}∞

0 . Let us use a particular basis
defined by

en(x) =

√
2
l

cos
(nπ

l
x
)

, ∀n ∈ N+. (16)

A straightforward check of the hermiticity condition for pmn yields

pnm = pmn + [em(l)en(l)− em(0)en(0)] 6= pmn, m + n = 2k + 1, (17)

where we used partial integration. It is obvius that the matrix pmn is not hermitian, leading
to jet another paradox. This paradox is related to the fact that the orthonormal basis (16)
does not belong to the domain of any SA operator p̂ from the whole family of admissible
momentum operators.

2.5. Paradox 5

Let us consider a particle confined on a circle. The obvious Hilbert space is given by
the square integrable periodic functions12, i.e.,

H =

{
ψ | ψ(θ + 2π) = ψ(θ);

∫ 2π

0
dθ|ψ|2 < ∞

}
. (18)

The position operator of the particle is given by the multiplication by the angle
coordinate

x̂ψ(θ) = θψ(θ), (19)

while the momentum operator is the multiplicative of the derivative with respect to θ

p̂ψ(θ) = −ih̄
∂ψ

∂θ
(20)

in order to satisfy (1). With such defined x̂ and p̂ it is easy to see that they are SA (in the
sense that they satisfy (6)). The normalized eigenvectors of the momentum operator p̂ and
its spectrum are given by

ψn =
einθ

√
2

, σ( p̂) = nπ, n ∈ Z. (21)

The {ψn}∞
−∞ form a complete orthonormal basis for the Hilbert space L2[0, 2π]. Notice

that x̂ is a bounded operator since θ ∈ [0, 2π〉, thereby when calculating the uncertainty ∆x̂
in the state ψn one gets a finite value, while for the corresponding momentum uncertainty
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we get ∆ p̂ = 0, again a contradiction with (1). The reason for this paradox is that the states
ψn are not in the domain of the p̂x̂ operator. Namely, when calculating p̂x̂ψn = p̂(x̂ψn) one
sees that the state x̂ψn is not periodic and not an element ofH, let alone in the domain of p̂,
rendering the canonical commutation relation (1) ill defined.

The number of these type of paradoxes can be extended [20,67–70,73–75].

3. Basic Ideas and Results on SA Operators

We have seen that it is crucial to think of an operator as acting on some domain.
The domain is encoded in the boundary conditions. For better understanding this issue we
shall derive the basic definitions and results, which are going to be illustrated through very
simple examples, step by step. The purpose of these section is to illustrate the procedure of
von Neumann in simple terms using various examples from physics. Here we have mostly
used [67–70] from which we have freely borrowed.

In order to solve a differential equation, we need to impose some boundary conditions.
We know that the solution of this differential equation highly depends on these imposed
boundary conditions. Each boundary condition corresponds to some physically different
situation, that is, nature of the interaction is encoded in the boundary condition. So, we can
ask ourselves a natural question: “What are the possible choices of boundary conditions
for a given operator representing an observable in QM?”. Before we address this question
we must remember that observables in QM must have real eigenvalues. These operators
are called hermitian or SA, although as we shall see below, these two concepts are not
quite the same. Having this in mind, we can thus ask the following question: “What are
the possible boundary conditions that can be imposed on an operator in QM such that it
is SA?”. The answer to this question can be obtained from the pioneering work of von
Neumann on SA extensions of operators in QM (see [67–70] and Appendix F).

3.1. The Momentum Operator on a Finite Interval

To order to obtain the spectrum13 of an observables such as momentum or Hamiltonian,
physicist often wants to determine it by solving some differential eigen-equation and for
that reason one has to impose some suitable boundary conditions. For a generic observable
we denote its corresponding operator by T that acts on some Hilbert spaceH (actually the
completion of the space of square integrable functions that we often call wave functions).
However, this operator T is usually a differential operator and when trying to solve the
corresponding eigen-equation one needs to impose some boundary conditions. The very
existence of such boundary conditions implies that T acts only on some subset14 D(T) ⊂ H,
and not on all of H. The subset D(T) is called the domain of T. Elements of D(T) are
defined as elements of the Hilbert space that obey the imposed boundary condition and it is
immediately clear that D(T) is not the whole Hilbert spaceH, since there will, in general, be
various elements inH which may not obey the imposed boundary condition. The domain
D(T) of T is an integral part of the definition of the operator T, and one should think
of an operator as the rule of acting T together with its domain D(T), because different
domains can render different properties of the operator T (like spectrum, boundlessness,
self-adjointness, etc.). To illustrate the aforementioned, let us consider the example of a
momentum operator given by15

p̂ = −i
d

dx
(22)

on a finite interval, and for simplicity we choose x ∈ [0, 1]. To define the domain of p̂ we
assume that the Hilbert space should consist of square integrable functions on the finite
interval and that the boundary condition should reflect the physical intuition that the wave
function describing the particle should vanish on the boundaries. Therefore we define the
domain of p̂ as16

D( p̂) =
{

ψ | ψ(0) = ψ(1) = 0, ψ absolutely continuous and ψ ∈ L2[0, 1]
}

, (23)
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where17 L2[0, 1] is the Hilbert space of (the completion) of square integrable functions on
the finite interval [0, 1]. In what follows, whenever speaking about the momentum operator
p̂ we have the domain (23) in mind.

Apart from the domain of the operator, we are interested in some special properties.
Sort of generalizations, or better to say refinements, of the hermiticitiy condition in finite-
dimensional Hilbert spaces. For this purpose we give few definitions that will be of much
use later. The Hilbert space is equipped with a sesquilinear inner product18 and for any
two elements ξ, η ∈ H it is denoted by (ξ, η). An operator T with a domain D(T) ⊂ H is
said to be symmetric if the relation19

(ξ, Tη) = (Tξ, η) (24)

holds ∀ξ, η ∈ D(T). Note that only this relation is often used to define SA operators in
elementary QM, and the domain issues are left aside. Strictly speaking this condition only
defines a symmetric operator and we shall soon see the difference between this relation
and the condition for self-adjointness.

Now, let T† denotes the operator adjoint of T. In order to fully specify the operator
T†, we need to define its domain D(T†) also. Since we are not interested in any operator20,
but rather special ones (hermitian, symetric, self-adjoint) we will define the adjoint of a
symmetric operator. For that, let as consider a symmetric operator T and let ξ ∈ D(T).
The adjoint T† satisfies

T†ξ = Tξ (25)

and its domain D(T†) is defined as

D(T†) =
{

ψ ∈ H | ∃η = T†ξ ∈ H ∀ξ ∈ D(T) such that (ψ, Tξ) = (η, ξ)
}

(26)

It is important to note that D(T†) is in general different from D(T) and by construction
we have

(T†η, ξ) = (η, Tξ) and (ξ, T†η) = (Aξ, η) ∀ξ ∈ D(T) and η ∈ D(T†) (27)

Finally, an operator is called self-adjoint iff

T = T†, D(T) = D(T†). (28)

Let us now illustrate the above concepts using the example of the momentum operator
p̂ with domain D( p̂). We ask ourselves three important questions:

1. Is the momentum operator p̂, D( p̂) symmetric?
2. What is its adjoint, more importantly what is D( p̂†)?
3. Is the momentum operator p̂ self-adjoint, i.e., is D( p̂) = D( p̂†) fulfilled?

To answer this questions it is very convenient to define the following quantity

δp̂ := (ξ, p̂η)− ( p̂ξ, η) = −i
(∫ 1

0
ξ∗

dη

dx
dx−

∫ 1

0

dξ∗

dx
ηdx

)
= −i[ξ∗(1)η(1)− ξ∗(0)η(0)],

(29)

where ξ, η are arbitrary absolutely continuous elements of the Hilbert space L2[0, 1].
To check whether p̂ is a symmetric operator in the domain D( p̂) it is sufficient to evaluate
(29) for ξ, η ∈ D( p̂). Since (23) defines the domain, this implies ξ(1) = ξ(0) = η(1) =
η(0) = 0 and we have

δp̂ = −i[ξ∗(1)η(1)− ξ∗(0)η(0)] = 0, ∀ξ, η ∈ D( p̂), (30)

and we conclude that p̂ is symmetric in D( p̂).
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The second question is to determine the adjoint, i.e., we have to find what is the
domain of the adjoint operator D( p̂†). In doing so, let as consider η ∈ D( p̂) and ask what
are all possible ξ such that δp̂ = 0. Since η ∈ D( p̂) implies η(1) = η(0) = 0, it is easy to see
that δp̂ = 0 will be satisfied for any η ∈ D( p̂) without any particular condition on ξ, apart
from being an absolute continuous element of the Hilbert space. This means

D( p̂†) =
{

ψ|ψ absolutely continuous and ψ ∈ L2[0, 1]
}

. (31)

We now address the third question. Is the momentum operator p̂ on the domain D( p̂)
self-adjoint, i.e., is D( p̂) = D( p̂†)? We immediately see that by comparing (23) and (31) the
answer is negative, and furthermore we see that D( p̂) ⊂ D( p̂†) as subsets of the Hilbert
spaceH. The conclusion is that the momentum operator defined by (22) and (23) is not a SA
operator! An immediate consequence of this statement can be seen in its spectrum. Namely,
let us recall that if an operator is SA, then it must have a real spectrum. It is straightforward
to verify that the eigenvalue equation for our momentum operator, i.e.,

p̂ψ = pψ, ψ(1) = ψ(0) = 0, (32)

has no real solutions for the eigenvalue p, illustrating the fact that p̂, D( p̂) is not a self-
adjoint operator.

The above discussion shows that the momentum operator p̂ with the simple domain
(23) is not a SA operator. This happens due to the fact that the domain of the adjoint
operator turns out to be much bigger that the domain of the operator itself. The natural
next question to ask is if there exists some other domain in which p̂ could be self-adjoint?
In order to investigate this question more, let us, for a moment, consider another domain
for p̂, namely let us define a new domain

Dθ( p̂) =
{

ψ(1) = eiθψ(0), ψ absolutely continuous and ψ ∈ L2[0, 1]
}

, (33)

where θ ∈ R mod 2π. We also assume ψ(0) 6= 0, otherwise (33) could reduce to (23). We are
again in a position to ask the three questions about symetricity, adjoint and self-adjointness
for the momentum operator in the domain Dθ( p̂).

In order to check whether p̂ is symmetric in Dθ( p̂), we consider ξ, η ∈ Dθ( p̂) in (29).
We get

δp̂ = −i[ξ∗(1)η(1)− ξ∗(0)η(0)] = −i
[
e−iθξ∗(0)eiθη(0)− ξ∗(0)η(0)

]
= 0, ∀ξ, η ∈ Dθ( p̂), (34)

concluding that p̂ is symmetric in ξ, η ∈ Dθ( p̂).

Now we want to find the domain of the adjoint. To do so, we have to consider
η ∈ Dθ( p̂) and find all the possible ξ so that δp̂ = 0. Therefore in order to find the domain
of the adjoint we have to find all ξ ∈ H by solving the equation

δp̂ = −i[ξ∗(1)η(1)− ξ∗(0)η(0)] = 0. (35)

Since η ∈ Dθ( p̂) implies η(1) = eiθη(0) we get

η(0)
[
ξ∗(1)eiθ − ξ∗(0)

]
= 0 ⇒ ξ(1) = eiθξ(0) as η(0) 6= 0. (36)

Namely, we have for the domain of the adjoint

Dθ( p̂†) =
{

ψ(1) = eiθψ(0), ψ absolutely continuous and ψ ∈ L2[0, 1]
}

. (37)

It is now obvious that Dθ( p̂†) = Dθ( p̂) and this answers the third question concluding
that p̂ is indeed SA in the domain Dθ( p̂).
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We can also look at the eigenvalue equation for p̂, Dθ( p̂)

p̂ψ = pψ, ψ(1) = eiθψ(0), (38)

and find square integrable solutions

ψn(x) =
eipx
√

2
, p = 2nπ + θ, (39)

where n ∈ Z and {ψn}+∞
−∞ form an orthonormal basis in L2[0, 1]. Notice that for each value

of the parameter θ, the spectrum is different, that is, we have a one parameter family of
inequivalent quantizations of the momentum operator on a finite interval.

3.2. The von Neumann’s Method: Self-Adjoint Extensions of a Symmetric Operator

In the previous subsection we saw that the momentum operator is not SA on the
domain (23), but with a suitable choice of domain, that is (33), it can be made SA. However,
the domain (33) was introduced without any specific physical or mathematical motivation.
In this subsection we will introduce the method of SA extensions (a method due to von
Neumann) and show that the domain (33) is indeed the SA extension of (23).

Let us start with a given symmetric operator T with a domain D(T) and pose the
following questions:

1. Is the symmetric operator T self-adjoint in D(T)?
2. If it is not SA, can it be made self-adjoint?
3. If it can be made SA, what is the suitable domain of self-adjointness?

To answer these questions, we shall not give the derivation or proofs21 of the results
on the SA extension method, but rather use the theorems and illustrate them on examples.

Some further definitions are needed before we can better capture the notion of self-
adjlointness and its failure. Given a symetric operator T, let us consider the following
equations22

T†ψ± = ±iψ±, ψ± ∈ D(T†) (40)

and let the natural number n± denote the number of linearly independent square integrable
solution of (40). The pair of natural numbers (n+, n−) are called deficiency indices for
the operator T. The deficiency indices are a measure of the deviation of operator T from
self-adjointness. Namely, notice that for a truly SA operator, the deficiency indices should
be equal to zero, because the spectrum of such an operator consists only of real numbers.
This notion is used to classify operators in terms of their deficiency indices. In general,
there can be three classes of operators:

1. T is (essentially) SA iff (n+, n−) = (0, 0), or we say that it has a unique SA extension.
2. If n+ = n−, then the operator T is not SA but admits SA extensions.
3. In case that n+ 6= n−, then the operator T is not SA and has no SA extensions.

Let us see what this all means for our momentum operators from the previous subsec-
tion. First we look at the operator p̂ with the domain D( p̂). We showed that D( p̂†) is given
by (31). To determine the deficiency indices, we need to solve the equations

− i
dψ±
dx

= ±iψ±, ψ±(x) ∈ D( p̂†). (41)

The square integrable solutions (in the interval [0, 1]) of the above equations are given
by

ψ+(x) = C+e−x, ⇒ n+ = 1,

ψ−(x) = C−ex, ⇒ n− = 1,
(42)
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where C± are normalization constants. This means that for the deficiency indices we have
n+ = n− = 1, which agrees with the fact that p̂ is not SA in D( p̂) but now it has SA
extensions. On the other hand, what are the deficiency indices for the momentum operator
p̂ on the domain Dθ( p̂) as in (33)? Now, we have Dθ( p̂) = Dθ( p̂†) and the deficiency
indices are obtained by solving the equations

− i
dψ±
dx

= ±iψ±, ψ±(1) = eiθψ±(0). (43)

These equations have no square integrable solutions for real values of the parameter θ,
implying that n+ = n− = 0, i.e., p̂ is essentially SA in Dθ( p̂). This also agrees with what
we concluded earlier.

We are now interested in analyzing the second type of operators, namely, symmetric
operator T in a domain D(T) with deficiency indices n+ = n− = n. Such T is not SA but
admits SA extensions. Therefore, there exist a suitable domain, or better to say, a suitable
extension of its domain that would render the operator in question SA. This is the main
result of the von Neumann’s method23. Here we state the final result of the method, i.e., the
domain of self-adjoitness for a symmetric operator T is given by24

DU(T) = {ψ + ψ+ + Uψ−| ψ ∈ D(T) and U is an n× n unitary matrix}. (44)

Now let us go back to our momentum operators and show that (33) is indeed the SA
extension of (23). For the case of momentum operator, let ξ(x) denote an arbitrary element
of the domain in (44). Our task now is to show that ξ(x) constructed from the above
prescription (44) obeys the boundary condition ξ(1) = eiθξ(0), where θ ∈ R mod 2π. This
would illustrate the above claim about the domain of self-adjointness, as we have already
seen that for wavefunctions obeying such boundary conditions the momentum operator is
indeed SA. In order to proceed, we first rewrite (42) with normalizations given explicitly:

ψ+ =

√
2e√

e2 − 1
e−x, ψ− =

√
2√

e2 − 1
ex. (45)

Now note that in our case of the momentum operator, U is a 1× 1 matrix, i.e., it is a
phase eiγ, where γ ∈ R. Now if ξ(x) is an arbitrary element of the domain Dγ( p̂), then
from (44) we have

ξ(x) = ψ(x) + ψ+(x) + eiγψ−(x), (46)

where ψ(x) ∈ D( p̂), i.e., ψ(1) = ψ(0) = 0 and ψ± are given by (45). Using this we find that

ξ(1) = ψ+(1) + eiγψ−(1),

ξ(0) = ψ+(0) + eiγψ−(0).
(47)

Using (45) and (47) we get

ξ(1)
ξ(0)

=
1 + βe
e + β

, β = eiγ, |β|2 = 1 (48)

and taking the modulus yields∣∣∣∣ ξ(1)ξ(0)

∣∣∣∣2 = 1 ⇒ ξ(1) = eiθξ(0), (49)

where θ ∈ R mod 2π. This illustrates the claim (44).

3.3. Motion of a Free Particle on [0,+∞)

It is easy to see that the momentum operator defined on a whole half line R+ = [0,+∞)
with the boundary condition ψ(0) = 0 and ψ ∈ L2(R+) has unequal deficiency indices.
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Namely, solve (40) and we get for ψ± exactly (42) again, but since we are looking for square
integrable solution on R+ we get n+ = 1 and n− = 0. By the von Neumann theorem, this
implies that the momentum operator on the half line can never be realized as a SA operator
in QM25!

Even though the momentum operator fails to be an observable of the free particle on a
half line, this is not the case for the Hamiltonian. Namely, let us consider the Hamiltonian
for a free particle26 on a half-line x ∈ R+ as

H = − d2

dx2 . (50)

We also need a domain to properly define an operator in Hilbert space and for that
matter we consider a subset d(H) of the Hilbert spaceH given by

d(H) =
{

ψ | ψ ∈ L2(R+), Hψ ∈ L2(R+), ψ′ absolutely continuous
}

(51)

and using it we define the domain of the Hamiltonian H as

D(H) =
{

ψ | ψ ∈ d(H), ψ(0) = ψ′(0) = 0
}

. (52)

From the physical stand-point, the domain (52) looks natural since it reflects the fact
that at zero we have an impenetrable wall.

But now, as we did for the momentum operator before, we have to answer the follow-
ing three questions:

1. Is the Hamilton operator H symmetric in D(H)?
2. What is the domain of its adjoint D(H†)?
3. Is the operator H SA in the domain D(H)?

Again, it is convenient to examine the following quantity

δH := (ξ, Hη)− (Hξ, η) = −
∫ ∞

0

(
ξ∗

d2η

dx2 −
d2ξ

dx2 η

)
dx

= ξ∗(0)
dη(0)

dx
− dξ∗(0)

dx
η(0),

(53)

where ξ, η are, at the moment, general elements of the Hilbert space H which vanish at
infinity, i.e., they are square integrable. To see whether H is symmetric or not in D(H), we
have to consider ξ, η ∈ D(H). In doing so, using (52), i.e., ξ(0) = ξ ′(0) = η(0) = η′(0) = 0,
we obtain

δH = ξ∗(0)
dη(0)

dx
− dξ∗(0)

dx
η(0) = 0, ∀ξ, η ∈ D(H), (54)

and we conclude that the operator H is symmetric in D(H).
Now we proceed to determine the domain of the adjoint D(H†). In order to do

so, we have to consider η ∈ D(H) and find all possible ξ such that δH = 0. Since
η ∈ D(H), η(0) = η′(0) = 0, we see that δH = 0 is satisfied for any η ∈ D(H) without
any particular condition on ξ. We conclude that the domain of the adjoint is defined by

D(H†) = {ξ | ξ ∈ d(H)}. (55)

Note that, as in the case of the momentum operator on a finite interval, here also
D(H) ⊂ D(H†) as subsets ofH, implying that the operator H is not SA in D(H).

It is now indicative that the failure of self-adjointness, leading to D(H†) ⊃ D(H)
is a consequence of defining the domain D(H) too restrictively. We may expect that
changing the boundary conditions, in order to enlarge D(H) may render the operator H
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self-adjoint. With this in mind, let us examine the domain where we have a Robin-type
boundary condition

Dα(H) =
{

ψ | ψ ∈ d(H), ψ′(0) = αψ(0)
}

, (56)

where α ∈ R. It is straightforward to see that for this domain we have the following properties:

1. Operator H is symmetric in Dα(H).
2. Dα(H†) = Dα(H).
3. Concluding that H is SA in Dα(H).

This shows that by enlarging the domain of H has reduced the domain of H† in such a
way that they are now equal and the operator is SA.

Let us now go back to our Hamiltonian defined on a domain D(H) and proceed with
the method of von Neumann. First, we need to find the deficiency indices. In order to do
so, we have to find square integrable solutions of the equations

− d2ψ±
dx2 = ±iψ±, ∀ψ± ∈ D(H†). (57)

The normalized solutions are given by

ψ+ = 21/4exp
(
(i− 1)√

2
x
)

=⇒ n+ = 1

ψ− = 21/4exp
(
−(i + 1)√

2
x
)

=⇒ n− = 1
(58)

Using the prescription (44) of von Neumann, we can find the domain of self-adjointness
of H. From (44) we expect that the SA domain of H is

Dβ(H) = {ξ | ξ = ψ + ψ+ + βψ−}, (59)

where ψ ∈ D(H), ψ± are given in (58) and β = eiγ is a unitary 1× 1 matrix, i.e., a pure
phase. It can be shown that if ξ ∈ Dβ(H), then∣∣∣∣ ξ ′(0)ξ(0)

∣∣∣∣2 =
1− sin γ

1 + cos γ
=⇒ ξ ′(0) = αξ(0) (60)

where27 α ∈ R, which is the same as the condition on the wavefunction as given by (56),
i.e., the domains given by (56) and (59) are identical. Thus we again have an illustration of
the prescription (44) of von Neumann. Again, we can conclude that a quantum free particle
on a half line is described by a one parameter family of inequivalent Hamiltonians. It is up
to physics, that is experiment, to “choose” the description, i.e., for which parameter α we
have the best agreement with experimental data.

From now on, we shall no longer illustrate (44) but shall assume its validity and shall
obtain the domain of self-adjointness using it as a rule. For more illustrative examples
see [74,75].

4. Some Physical Applications
4.1. New Bound States

In this subsection let us calculate and investigate the properties of solutions of the
stationary Schrödinger equation Hψ = Eψ for the case of a free particle moving on the
semi-interval R+. The Hamiltonian for this system is given in (50) and the Schrödinger
equation is

− d2ψ

dx2 = Eψ, ψ′(0) = αψ(0). (61)
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Now, the solutions of the Equation (61) highly depend on the sign28 of the energy
eigenvalue E. Let us first consider the case of positive energy, i.e., E := k2 > 0. The most
general solution in this case is given by29

ψ = Ce−ikx + Deikx, (62)

where C, D are constants that are jet to be determined. After imposing the boundary
condition (61) we obtain

D
C

=
ik + α

ik− α
(63)

and the solution can be written in the following form

ψ = C
(

e−ikx +
ik + α

ik− α
eikx
)

. (64)

Since (64) are not elements of the Hilbert space L2(R+) we do not normalize them to
1, but rather interpret them as “stream” of particles. Therefore we have streams of particles
with momentum k and −k both with their corresponding amplitude. Therefore, we can
define the so called reflection coefficient as R := ik+α

ik−α , and it is easy to see that it satisfies
RR∗ = 1, i.e., the reflection coefficient is a pure phase and we can write it as R = e−iθ(α).
Here θ(α) is the phase of the reflected wave that depends on the parameter α that controls
the allowable types of interaction on the boundary. The solutions (64) are often called
scattering states. This is often the case in physics. Namely, when solving the Schrodinger
equation for some localized potential it is often the case that one has a set of solutions
for positive energy (often this is the continuous part of the spectrum) and another set of
solutions for negative energies (often the point spectrum). The positive energy solutions
are generalizations of plane waves, they are not elements of the Hilbert space in question
(not square integrable), but rather distributions and represent the scattering states of the
system, while the negative energy solutions are elements of the Hilbert space and are often
called bound states.

We now consider the negative energy solutions, i.e., we take E := −E , E > 0 and
look for square integrable solutions of Schrödinger’s Equation (61). In doing so, we use
an ansatz

ψ = Deλx, λ, D ∈ R. (65)

The Equation (65) together with (61) and E := −E lead to,

E = λ2 =⇒ λ1,2 = ±
√
E =⇒ ψ = D1e

√
Ex + D2e−

√
Ex, (66)

where D1 = 0 due to square-integrability. Imposing the boundary condition (61) on the
wavefunction (66) we obtain

α = −
√
E . (67)

Since E > 0 implies α < 0, this insures the square integrability of our solution,
i.e., bound state. Finally, the complete solution of the bound state eigenvalue problem can
be written in the following way

ψ(x) =
√

2|α|eαx, α < 0, E = −α2. (68)

At this stage we pause and ask the question how is it possible for a free particle to
admit a bound state. Namely, for a bound state to exist, one needs some scale, which
is not apparent in the free Hamiltonian. Since there is no scale in the Hamiltonian, it
should be scale invariant and all the solutions could be scaled to zero momentum k, namely
illustrating that the Hamiltonian in question just has the continuous part of the spectrum.
However, the scale is hidden in the domain of the SA Hamiltonian, i.e., the boundary
condition (61) which defines the domain of self-adjointness supplies the necessary scale.
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Notice that the parameter α in (61) has dimensions of inverse length and is the relevant
dimensionful parameter related to the bound state energy (68). One might be puzzled by the
question on how does a dimensionful scale appear in the general method of von Neumann.
In order to answer this, note that Equation (57) for ψ± must have a constant with dimension
length squared on the right side, whose value has conveniently been set equal to unity.
Therefore, the dimensionful constant actually enters the very definition of the domain,
i.e., the boundary condition through (57). The existence of such a dimensionful constant
breaks the scale invariance of the system in question and in our case produces the bound
state when α < 0. This is perhaps the simplest example of quantum mechanical breakdown
of scale invariance, i.e., the manifestation of the so called scale anomaly. Examples that
have this exact feature are the systems with the δ-function potential and inverse-square
potential [79].

4.2. Anomalies in Hamiltonian Formalism

Symmetries of a classical system could be broken in the process of quantization. This
is due to the so called anomalies [80]. This was first realized when studying quantum field
theories in a perturbative approach [81,82]. Since anomalies are usually characterized by
the geometric and topological features of the theory [83], it was soon realized that they
are fundamentally non-perturbative in nature [84,85]. It was exatly this point of view that
ultimately led to a variety of applications of the theory of anomalies in areas ranging from
black hole [86–88] and particle physics [89], all the way to condensed matter physics and
quantum Hall effect [90–92].

In order to understand anomalies one needs to realize that observables (like Hamilto-
nian, momentum etc.) are often unbounded operators [67–70]. To have a well defined un-
bounded operator as an observable in QM one needs to define its domain of self-adjointness
using appropriate boundary conditions. The symmetry of a system is implemented by the
fact that the corresponding generator of symmetry commutes with the Hamiltonian and
preserve its domain. In case that the symmetry generator does not preserve the domain of
the Hamiltonian, we say that the symmetry is broken due to quantization and anomaly
appears. To see this better, let H be the Hamiltonian of some system and A be a generator
of symmetry. Usually in standard textbooks on QM for physicist it is stated that A is a
symmetry iff [H, A] = 0 without any reference to the domain of operators. But the operator
is defined by its rule of acting and domain. So, we have to consider operators as pairs
(H, D(H)) and (A, D(A)) when evaluating the commutator, that is we have to act with the
commutator on some element of Hilbert space

[H, A]ψ = (HA− AH)ψ = H(Aψ)− A(Hψ). (69)

For ψ ∈ D(H) Equation (69) makes sense only if Aψ ∈ D(H) and Hψ ∈ D(A). If this
is not true, then anomaly appears. That is one has to check how the generator of symmetry
A acts on the domain of the Hamiltonian H and see if it leaves it invariant. If yes, we say
that A is a true symmetry, if not then A-symmetry is broken due to quantization and A
is anomalous.

To illustrate this, let us first derive the Heisenberg equation of motion how it is usually
presented in standard QM textbooks, that is by omitting the subtle domain issues. Let A be
an observable represented by a SA operator, ψ ≡ ψ(t) ∈ L2(R) satisfying the Schrödinger
equation

i
∂

∂t
ψ = Hψ. (70)

The expectation value of A in a state ψ is defined by

〈A〉ψ = (ψ, Aψ). (71)
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Now we take the time derivative d
dt of (71) and using (70) we have

d〈A〉ψ
dt

= (
∂ψ

∂t
, Aψ) + (ψ,

∂A
∂t

ψ) + (ψ, A
∂ψ

∂t
)

= (−iHψ, Aψ) +

〈
∂A
∂t

〉
ψ

+ (ψ,−iAHψ)

=

〈
∂A
∂t

〉
ψ

+ i(ψ, HAψ)− i(ψ, AHψ)

=

〈
∂A
∂t

〉
ψ

+ i〈[H, A]〉ψ,

(72)

which represents the Heisenberg equation of motion for the expectation values of A and
often it is assumed that (72) is valid ∀ψ ∈ L2(R) so it can be written as an operator equation

dA
dt

=
∂A
∂t

+ i[H, A]. (73)

If dA
dt = 0 it means that 〈A〉ψ are constant ∀t and A is called a generator of a symmetry.

Often we have situations in which A does not explicitly depend on time, ∂A
∂t = 0, so the

claim [H, A] = 0 is equivalent to saying A generates a symmetry.
However, Equation (73) and conclusions deduced from it are only valid under very

strong assumptions, that were overseen in the above derivation. Namely, already in (70)
one assumes ψ ∈ D(H), in (71) ψ ∈ D(A) is assumed, and when further calculating (72)
and forming the commutator [H, A] one assumes Hψ ∈ D(A) and Aψ ∈ D(H). Also
ψ ∈ D( ∂A

∂t ) is assumed. Actually, the commutator [H, A] and (73) is well defined only if
ψ ∈ T , where T is a subspace of L2(R) which is invariant under the action of H and A.
Namely, T has to be the intersection of all the powers of H and A

T :=
∞⋂

n,m=0
D(Hn Am). (74)

T is called the maximal invariant subspace of the algebra generated by H and A
because AT , HT ⊂ T and on this space all the expectation values, uncertainties etc. are
well defined. Unfortunately, physicists really just need ψ ∈ D(H) (or ψ ∈ D(H) ∩ D(A))
and are interested only in solutions of (70) and therefore encounter possible problems, that
is anomalies when using (72) and (73).

In order to quantify the correction to the Heisenberg equation of motion (73), let

us look carefully at the second line in (72),
d〈A〉ψ

dt =
〈

∂A
∂t

〉
ψ
+ i(Hψ, Aψ) − i(ψ, AHψ)

and concentrate on the last two terms. The term (Hψ, Aψ) is well defined as long as
ψ ∈ D(H) ∩ D(A) while the last term (ψ, AHψ) has a problem if Hψ /∈ D(A). If the
algebraically30 obtained commutator [A, H] is well defined on all L2(R) then we could
write AH = [A, H] + HA to obtain

(Hψ, Aψ)− (ψ, AHψ) = (ψ, [H, A]ψ)− iA (75)

where
A := i((Hψ, Aψ)− (ψ, HAψ)) = i〈(H† − H)A〉ψ. (76)

Taking the above in consideration, we can rewrite the Heisenberg equation of motion
as

d〈A〉ψ
dt

=

〈
∂A
∂t

〉
ψ

+ i〈[H, A]〉ψ +A,

dA
dt

=
∂A
∂t

+ i[H, A] + i(H† − H)A.

(77)



Universe 2022, 8, 129 17 of 40

Of course A is called the anomaly [39,40]. We see that whenever A keeps the domain
D(H) invariant, AD(H) ⊂ D(H) and H† = H on D(H), then the anomaly vanishes A = 0.
But whenever A does not keep the domain D(H) invariant, Aψ /∈ D(H), the extra term in
(77) will produce a non-zero surface contribution responsible for the anomaly. We can con-
clude the following. In the presence of the anomaly, the commutator [H, A] in (73) has two
contributions, the regular and anomalous part, [H, A] = [H, A]reg + [H, A]A. The regular
part is the extension of the algebraically obtained commutator to the whole Hilbert space,
while the anomalous part is (H† − H)A. It can be shown that the anomaly introduced here
is equivalent to the one in the path integral approach [39,40,93,94]. This general approach
to anomalies [29,39–41] can be applied in various systems like integrable models [51,95,96],
condensed matter physics [97], molecular and atomic physics [98,99], and even black hole
physics [46,47]. In [41,100] it is argued that this approach can be adopted in quantum field
theories as well, since the information about the domain of self-adjointness is encoded in
the mode expansion of the fields through appropriate boundary conditions.

Here we will illustrate the occurrence of the anomaly in our simple system of non-
relativistic particle on a half-line (see Sections 3.3 and 4.1). Namely, in classical physics the
Hamiltonian for our system is equal to H = p2 and our system is scale invariant31. To put
it more formally, the system is invariant under rescaling x −→ ax , a ∈ R and the generator
of the scale symmetry is given by the dilatation32 D = tH − 1

2 xp. It is easy to show that

{H, D} = H (78)

which together with the Poisson bracket formalism

dD
dt

=
∂D
∂t

+ {D, H} (79)

gives
dD
dt

= 0, (80)

showing that D is conserved and proving that our system is scale invariant.
Now we want to look the same system on the quantum level. Using our naive

quantization procedure we would promote the classical observables H and D to operators

D −→ D̂ = tĤ − 1
4
(x̂ p̂ + p̂x̂)

H −→ Ĥ = p̂2 = − d2

dx2

(81)

and say that they act on the whole Hilbert space L2(R+) and calculate the Heisenberg
equation of motion (73) and obtain

dD̂
dt

= 0, (82)

where we used i[D̂, Ĥ] = Ĥ. This way, the system would again be scale invariant and
this leads to the conclusion that there cannot exist a normalizable bound state, which
contradicts the result found in previous subsection, namely (68). However, when deducing
the non-existence of bound states we used the assumption (73) which is not valid due to
domain issues of D̂ and Ĥ and the fact that we are missing the anomaly term (76).

In Section 3.3 we have properly defined the Hamiltonian Ĥ as a SA operator on a
domain with suitable boundary conditions (60), namely Ĥ := (H = − d2

dx2 , Dα(H)) and
for that operator we were able to find the bound state (68) since the new scale, the scale
of symmetry breaking or anomaly came through the necessity of the parameter α which
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classified allowable SA boundary conditions (that is types of interaction on the boundary).
Let us now calculate the anomaly (76) for our system. We have

A = i
(
(Ĥψ, D̂ψ)− (ψ, HD̂ψ)

)
, ψ(x) =

√
2|α|eαx, α < 0. (83)

The first term in (83) is given by

(Ĥψ, D̂ψ) = α4t + α2(ψ, Ĝψ) (84)

where Ĥψ = −α2ψ and Ĝ = 1
4 (x̂ p̂ + p̂x̂). Further

(ψ, Ĝψ) =
iα
2

∫ ∞

0
dxeαx

(
x

d
dx

+
d

dx
x
)

eαx =
iα
2

∫ ∞

0
dxe2αx(2αx + 1) (85)

leading to

(Ĥψ, D̂ψ) = α4t +
iα3

2

∫ ∞

0
dxe2αx(2αx + 1), (86)

while for the second term in (83) we have

(ψ, HD̂ψ) = α4t− (ψ, HĜψ), (87)

where

(ψ, HĜψ) = − iα
2

∫ ∞

0
dxeαx d2

dx2

(
x

d
dx

+
d

dx
x
)

eαx = − iα3

2

∫ ∞

0
dxe2αx(2αx + 5) (88)

leading to

(ψ, HD̂ψ) = α4t +
iα3

2

∫ ∞

0
dxe2αx(2αx + 5). (89)

Combining (86), (89) and (83) we finally get

A = 2α3
∫ ∞

0
dxe2αx = −α2 ≡ E, (90)

so the anomaly is exactly equal to the energy of the bound state (68). Similar analysis for
both the bound states and the scale anomaly can be done for the δ-function potential and
1/x2 potential [29,39,40,79]. We see that the anomaly in the equation of motion for the
dilatation is different from zero since the self-adjointness domain (56) of the Hamiltonian is
not dilatation invariant. Namely, if ψ ∈ Dα(H) one can check that Dψ ∈ Dα′(H), α′ 6= α,
namely ψ and Dψ are in different SA exstension of the Hamiltonian H.

4.3. Symmetry and Degeneracy of the Spectrum: Circle vs. Finite Interval

In this subsection we will analyze and confront the properties of apparently two
very similar systems: free particle on a circle vs free particle on a finite interval. We will
look in detail the corresponding momentum and Hamiltonian operators, its domains of
self-adjointness, spectrums and symmetry properties. We will show that, due to domain
subtleties, there is an important difference of these two systems and it is related to the
fact that the system on a circle exhibits a translation symmetry, leading to a degenerate
spectrum, while the system on finite interval has no such property.

First let us take a closer look at the system that consists of a free particle moving
on a circle, i.e., x ∈ [0, L). Therefore the appropriate Hilbert space is L2[0, L] and we are
interested in elements, that is wavefunctions, that are periodic

ψ(x + L) = ψ(x), ψ ∈ L2[0, L], (91)
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since this characterizes the fact that we have a particle on a circle.33 We are interested in
possible momentum operators

p̂ = −i
d

dx
(92)

and by applying the “maximal ignorance” approach we investigate allowable domains.
First of all, we want that p̂ is symmetric, namely

(ψ, p̂ϕ) = ( p̂ψ, ϕ), ∀ψ, ϕ ∈ d( p̂). (93)

This way we define the domain of symmetricity d( p̂). Explicitly, the condition (93)
leads to

ψ∗(L)ϕ(L) = ψ∗(0)ϕ(0), (94)

where we used the inner product and partial integration. In doing so, we tacitly assumed
that ψ, ϕ, ψ′, ϕ′ ∈ L2[0, L] and that they are absolutely continuous. Therefore, the domain
that renders the momentum operator p̂ symmetric is given by

d( p̂) =
{

ψ | ψ, ψ′ ∈ L2[0, L] and |ψ(L)| = |ψ(0)|
}

. (95)

The domain (95) contains a large class of symetric and even SA operators, due to
the fact that the boundary condition (94) can be realized in various ways (for example:
Dirichlet, periodic or twisted periodic conditions). We see that the periodic functions form
a subset of the domain (95), i.e., the periodicity condition (91) is included in (94). Therefore,
we can define a specific symmetric momentum operator by restricting to the domain of
periodic functions, i.e.,

p̂ = −i
d

dx
, D( p̂) = {ψ | ψ ∈ d( p̂), and ψ(x + L) = ψ(x)}. (96)

The domain of its adjoint is determined by all ψ such that

δp̂ = (ψ, p̂ϕ)− ( p̂ψ, ϕ) = 0, ∀ϕ ∈ D( p̂), ψ ∈ L2[0, L]. (97)

This leads to the condition
ψ∗(L) = ψ∗(0), (98)

which for x ∈ [0, L) is equivalent to the periodicity condition (91) and we conclude that

D( p̂†) = D( p̂), (99)

implying that the momentum operator (96) is indeed SA. In order to further illustrate this
let us solve the eigenvalue equation for (96), i.e.,

p̂ψ = pψ, ψ ∈ D( p̂). (100)

Before we start solving the differential equation in question, it could be useful to
know the nature of the eigenvalue p, namely to know if p ∈ R,R+ or C. The symmetricity
ensures that p is real-valed. Namely, act by (ψ, ·) from the left and with (·, ψ) from the right
in order to obtain

(ψ, p̂ψ) = p(ψ, ψ) and ( p̂ψ, ψ) = p∗(ψ, ψ)
(ψ,p̂ψ)=( p̂ψ,ψ,)

=⇒ p∗ = p, ∀ψ ∈ D( p̂). (101)

It is straightforward to show that the eigenvalue equation has the following normalized
solutions

ψn(x) =
eipnx
√

L
, pn =

2nπ

L
, n ∈ Z. (102)
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The set {ψn}+∞
−∞ form an orthonormal basis in L2[0, L]. It is easy to see that the

deficiency indices are n+ = n− = 0 since the eigenvalue Equation (100) has no solutions
for p ∈ iR and ψ ∈ D( p̂†).

Now let us turn our attention to the Hamiltonian of the system. It is an operator
given by34

Ĥ = − d2

dx2 (103)

and we are jet to determine an appropriate domain. First let us find the domain of sym-
metricity. As before, we demand

(ψ, Ĥϕ) = (Ĥψ, ϕ), ∀ψ, ϕ ∈ d(Ĥ) (104)

leading to the condition (
dψ∗

dx
ϕ− ψ∗

dϕ

dx

)L

0
= 0. (105)

Here we had to assume that ψ, ϕ, ψ′, ψ′′, ϕ′, and ϕ′′ ∈ L2[0, L]. Therefore, the domain
of symmetricity is given by

d(Ĥ) =

{
ψ

∣∣∣∣∣ ψ, ψ′, ψ′′ ∈ L2[0, L] and
dψ∗

dx
ψ

∣∣∣∣L
0
= ψ∗

dψ

dx

∣∣∣∣L
0

}
. (106)

The boundary conditions here are very general and we see that periodic functions
form a subset of this domain. Therefore we will restrict ourselves to a specific symmetric
Hamiltonian defined with periodic boundary conditions (91). In this case, the domain
actually coincides with (96), i.e.,

D(Ĥ) =
{

ψ
∣∣ ψ ∈ d(Ĥ), ψ(x) = ψ(x + L)

}
=
{

ψ
∣∣ ψ, ψ′ ∈ D( p̂), ψ(x) = ψ(x + L)

}
= D( p̂). (107)

This is due to the fact that a derivative of a periodic function is again periodic, provided
it exists. It remains to see whether this domain is also the domain of self-adjointness.
To answer this we look at the domain of the adjoint by finding all ψ ∈ L2[0, L] such that

δĤ = (ψ, Ĥϕ)− (Ĥψ, ϕ) = 0, ∀ϕ ∈ D(Ĥ) = D( p̂), ψ ∈ L2[0, L] (108)

leading to

ψ(L) = ψ(0), and
dψ

dx
(L) =

dψ

dx
(0), (109)

meaning that ψ ∈ D(Ĥ†) are also periodic functions, implying

D(Ĥ) = D(Ĥ†) (110)

and concluding that the Hamiltonian in question is indeed a SA operator. Now let us
proceed with analyzing the eigenvalue equation, i.e., the Schrödinger equation

Ĥψ = Eψ, ψ ∈ D(Ĥ). (111)

It is easy to see that E ∈ R simply by acting with (ψ, ·) and (·, ψ). One can also show
that E ∈ R+. Namely, act with (ψ, ·) on (111) and explicitly write the inner product and
use partial integration to get

E =

(
‖ψ′‖
‖ψ‖

)2

> 0, ∀ψ ∈ D(Ĥ). (112)
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Therefore we can define E := p2, p ∈ R and use the ansatz ψ(x) ∝ eipx to solve
(111). After imposing boundary conditions and normalization condition, the solutions are
given by

ψn =
eipnx
√

L
, pn =

2nπ

L
, En = p2

n =
4n2π2

L2 , n ∈ Z. (113)

We see that the operators Ĥ and p̂ have common eigenvectors. Notice an important
property of the spectrum of the Hamiltonian, it is degenerate because the states ψ|n| and
ψ−|n| have the same energy En ∝ n2. Degenerate spectrum is a signature of some symmetry
in the system. Here the symmetry is generated by the momentum operator (96), and since
the Hamiltonian and p̂ are well defined on the same domain, the formal commutator
makes sense35

[Ĥ, p̂] = 0, ψ = D(Ĥ). (114)

We conclude that because we are dealing with properly defined SA operators Ĥ and p̂
on the same domain D(Ĥ) = D( p̂) rendering a well defined commutator (114), we find
no anomalous contribution (76) and this symmetry is reflected in the degeneracy of the
spectrum of the Hamiltonian. There is a physical interpretation of this symmetry if we let
the circle be embedded in the xy-plane. The symmetry connected with the energy spectrum
degeneracy is the rotation invariance around the z-axis, since the rotation generator Lz = p̂
commutes with the Hamiltonian (for another analysis see [101]).

This conclusion will not be valid if we switch from considering a particle on a circle
(periodic boundary condition) to the finite interval (non-periodic conditions). We have
already seen in Sections 3.1 and 3.2 that the momentum operator on a finite interval is
a tricky business and using the von Neumann’s method we found that there is a one-
parameter family of non-equivalent SA momentum operators given by

p̂ = −i
d

dx
, Dθ( p̂) =

{
ψ
∣∣∣ψ, ψ

′ ∈ L2[0, L] and absolutely continuous and, ψ(L) = eiθψ(0), θ ∈ R mod 2π
}

p̂ψθ
n = pnψθ

n, =⇒ ψθ
n =

eipnx
√

L
, pn =

2nπ + θ

L
, n ∈ Z.

(115)

The set
{

ψθ
n
}+∞
−∞ forms an orthonormal basis in L2[0, L].

Now we turn to the Hamiltonian. This problem, the so called particle in a infinite
square-well potential is worked out in all basic textbooks on QM. The only thing missing
there are the details about the domain. So we fill this gap. We immediately define a proper
domain, namely, the SA Hamiltonian is defined by

Ĥ = − d2

dx2 , D(H) =
{

ψ
∣∣∣ψ, ψ

′
, ψ
′′ ∈ L2[0, L] and ψ(0) = ψ(L) = 0

}
. (116)

On such domain our Hamiltonian is SA and one can easily check that

(ψ, Ĥϕ) = (Ĥψ, ϕ), ∀ψ, ϕ ∈ D(H) and D(Ĥ†) = D(Ĥ). (117)

We now turn to solving the eigenvalue equation

Ĥψ = Eψ, ψ ∈ D(Ĥ) (118)

and by the same arguments as for the particle on circle one can see that E ∈ R+, the nor-
malized solutions are given by

ψn =

√
2
L

sin
(nπx

L

)
, En =

n2π2

L2 , n ∈ N, (119)

and {ψn}+∞
1 form an orthonormal basis in L2[0, L]. It is important to note a qualitative

difference between this spectrum and the spectrum obtained for the Hamiltonian of the
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particle on a circle (113). Namely, apart form the 2n → n difference, there is a crucial
difference in the ranges of n. For the particle on a circle we have n ∈ Z, while for the finite
interval n ∈ N. Therefore there is no degeneracy in the spectrum of the Hamiltonian for
the infinite square-well because there is a one-to-one correspondence between each state
ψn and the value of its energy En. This is a consequence of the failure of the translation
symmetry in this case. Namely, a SA momentum operator does not exists for the domain
D(Ĥ) so the use of the naive commutator

[Ĥ, p̂] = 0 (120)

is meaningless. A close inspection shows that the maximal invariant subspace of the algebra
generated by Ĥ defined by (116) and p̂ defined by (115) is

T =
∞⋂

n,m=0
D(Ĥn p̂m) = {∅}, (121)

so there is no domain on which the commutator (120) could even be defined, provided that
the Hamiltonian and momentum are SA operators on a finite interval, and therefore there
is no translation symmetry and no degeneracy of the spectrum of the Hamiltonian.

However, the measurement of both energy and momentum makes sense for both
systems. Namely, one can calculate the momentum of each energy eigenstate, and the
energy of each momentum eigenstate. For example, in the case of the particle on a circle,
the states ψn = 1√

L
ei 2nπ

L are common eigevectors of both p̂ and Ĥ so there is a sharp value

of the momentum pn = 2nπ
L and energy En = p2

n for a given state ψn. In the case of a

particle in a square-well potential, the energy eigenstates are given by ψn =
√

2
L sin

( nπx
L
)

and are not in the domain of the SA momentum operator (115), but since ψn ∈ L2[0, L] it
can be expanded in terms of the eigenvectors ψθ

n of the momentum operator

ψn =
+∞

∑
m=−∞

an
mψθ

m, an
m := (ψθ

m, ψn) =

√
2

π
e−i θ

L
n

n2 − 4m2 (1− (−)n), (122)

so that the measurement of the momentum is not sharp since

p̂ψn =
+∞

∑
m=−∞

an
m p̂ψθ

m =
+∞

∑
m=−∞

an
m

2mπ + θ

L
ψθ

m 6= αnψn, (123)

but rather there is a probability |an
m|

2 to measure the value pm = 2mπ+θ
L . Similarly, the en-

ergy of the eigenstate of the momentum ψθ
n is not a sharp value, but rather there is a

probability |am
n |

2 to measure the energy Em = m2π2

L2 .
Notice that we could arrive at the conclusion of the failure of the translation symmetry

after noticing that the momentum operator on the class of functions which vanish at the end
of the interval is only symmetric (see Section 3.1) and not SA, and therefore it is impossible
to construct a unitary representation of the translation. This means that such translations
would affect the normalization of states (they will not preserve the norm of the states),
apart from not leaving the domain of the Hamiltonian invariant.

4.4. Pauli’s Theorem

Pauli’s theorem states that time t in QM can not be a SA operator conjugate to energy
E, that is, it has to be regarded as an ordinary number, i.e., real parameter. The proof is
an analog of the statement that momentum can not be a SA operator on a half line. If we
demand that the time operator t̂ is conjugate to energy operator Ê, then we impose the
canonical commutation relation

[t̂, Ê] = i. (124)
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We can represent the operators t̂ and Ê as

t̂ := i
d

dE
, Ê := E. (125)

Since the energy of all physical systems has to be bounded from below, that is E ∈
[E0,+∞), we see that the deficiency indices of t̂ are not equal36, which implies that time
cannot be realized as a SA operator conjugated to energy for systems whose energy is
bounded from below.

The earliest proof, to the best of our knowledge, was given by W. Pauli [102]. He stated
that since the eigenvalues for time range in t ∈ (−∞,+∞), time can not be represented as
a hermitian operator (depending only on phase space variables x and p) and satisfy the
commutation relation (124) since in that case energy should also range in E ∈ (−∞,+∞),
which contradicts the experience, that is the existence of a ground state (and point spectrum
in general). He concludes that time has to be an ordinary number, a parameter in the theory.

However, for alternative discussion on how to avoid the Pauli’s theorem see [103].

5. Quantum Mechanics in Dimensions Higher Than 1

In this section we want to point out another subtle problem of defining observables
that occurs when going to dimension higher than 1. So far we have seen that in order to
have well defined SA operators one needs to take care of domains. We will see that in
order to pass from one dimension to two, one needs even more than just functional analysis
to deal with SA, one actually needs the full machinery of differential geometry and fiber
bundles [104]. However, since this goes beyond the scope of this paper I will just illustrate
the problem and motivate the geometrical solution.

To this purpose let us consider QM in d ≥ 1 dimensions. First let us define our
wavefunctions as elements of a Hilbert space ψ ∈ L2(Rd) where

L2 = L2/ ∼=
{
[ψ]|ψ ∈ L2

}
(126)

and

L2 =

{
ψ : Rd → C| <(ψ) and =(ψ) are measurable and

∫
Rd
|ψ|2ddx < ∞

}
(127)

with the inner product (·, ·) : L2 × L2 → C and ([ψ], [ϕ]) 7→
∫
Rd ψ̄ϕddx that induces

the equivalence relation ψ ∼ ϕ ⇔ ‖ψ‖ = ‖ϕ‖ and the integral is Lebesgue. In short,
wavefunctions are square-integrable complex-valued functions. We will later see that
exactly this has to be modified, and wavefunctions are actually sections on some appropriate
bundle, but we will come to that later. Now we want to have our canonical commutation
relation for coordinates qi and momenta pj

[qi, pj] = iδi
j, [qi, qj] = [pi, pj] = 0, i, j = {1, . . . , d} (128)

and realize them as SA operators qi, pj : L2 −→ L2. We can represent them in the coordinate
representation as multiplication operator and partial derivative respectively

(qiψ)(x) := xiψ(x), (piψ)(x) := −i∂iψ(x) (129)

and immediately we encounter various domain and target issues because if ψ ∈ L2(Rd),
in general, such an element ψ will either not lie in the SA domain of the operators, or the
target will leave the space L2(Rd). This problem can be solved, as discussed in previous
sections, by suitable choice of domain. Here one can construct the maximally invariant
subspace T :=

⋂∞
n,m=0 D(qn pm) which is exactly the Schwartz space37 S(Rd) and this

resolves the domain and target issues since now qi, pj : S(Rd) −→ S(Rd) renders the
operators in question essentially SA.
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The new kind of problem (that goes beyond the scope of functional analysis!) occurs
if we want to switch from Cartesian to some other coordinate system. For example, let
us take d = 2 and try to do QM in polar coordinates. Therefore we make a coordinate
transformation38

xi −→ r, φ, pi −→ pr = −i∂r, pφ = −i∂φ (130)

and the commutation relations (128) still hold but we have a problem with self-adjointness
(even worse, the operator pr is not even symmetric!). It is easy to see that xi = {r, φ} are
symmetric, and the same hold for pφ, (ψ, pφ ϕ) = (pφψ, ϕ). But for the pr = −i∂r we have

(ψ, pr ϕ) = −i
∫

rdrdφ ψ̄(r, φ)∂r ϕ(r, φ) = (prψ, ϕ) + i
∫

drdφ ψ̄(r, φ)ϕ(r, φ) (131)

and the last term destroys the symmetry property. Therefore the quantization in coordinates
other than Cartesian is not working at all. Notice that the switch from the Cartesian
coordinates to the polar coordinates “hides” the space translation symmetry since it fixes
the origin as a privileged point, and then, it is not so surprising that pr = −i∂r cannot be a
SA generator of the space translations.

The solution to this problem is to realize that wave functions ψ are not C-valued
functions, but rather sections of a complex line bundle over39 Rd, that is ψ ∈ Γ(E) and E is
an appropriate line bundle E

πE−→ Rd. If so, we could improve our quantization procedure
by replacing the partial derivatives ∂i with covariant derivatives∇i, knowing that covariant
derivative acts differently on different objects, namely

∇i f = ∂i f if f : Rd → C
∇iγ = ∂iγ + ωiγ if γ ∈ Γ(E)

(132)

where ωi is the Yang-Mills field. Therefore, let us propose that ψ ∈ Γ(E) and pi = −i∇i.
For the Cartesian coordinates we have ωi = 0 and everything is ok. In the polar coordinates
we had no problems with pφ so ωφ = 0. For pr = −i∇r in order to have the symmetry
property (ψ, pr ϕ) = (prψ, ϕ) we get a condition on ωr as

2<(ωr) =
1
r

(133)

and it is easy to see that the canonical commutation relations still hold. Also, it is important
to note that this construction works for any dimension d, and even if we move from flat Rd

space to some curved space, i.e., Riemann manifold (M, g). In that case, the analog analysis
generalizes (133) to

2<(ωj) = ∂j(log
√

g), (134)

where g is the determinate of the metric.
This all is justified by the fact that if ψ is a section of a complex line bundle over Rd,

it locally looks like a C-valued function. E
πE−→ Rd is an associated bundle to the frame

bundle LM π−→ Rd and on a frame bundle we can establish a connection that gives rise
to a covariant derivative. Also, sections of an associated bundles can be represented as
C-valued functions on the total space of the principle bundle ψ : LM −→ C, and on the
principle bundle exists an exterior covariant derivative Dψ = dψ + ωψ. The theory of fiber
bundles is one of the most important achievements in modern mathematics and it has
numerous applications in various branches of mathematics and theoretical physics [105],
but its immediate occurrence in QM is quite remarkable [106–109]. Here we stop any
further discussion and end with the conclusion that requiring self-adjointness in higher
dimensions and/or curved spaces leads to a natural appearance of the geometry of fiber
bundles and QM seems to be fundamentally a gauge theory.
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6. Final Remarks

In this paper we have analyzed and discussed some of the subtleties of representing
observables in QM as SA operators. The key thing was to realize that operators in Hilbert
space must be defined on some domain and choosing or finding a domain that renders
the operator in question SA is necessary not only for performing practical calculations,
but also to avoid some apparent paradoxes or some conceptual issues. Most of these issues
steam either from an ill-defined or under-defined operator as being hermitian (avoiding or
suppressing the domains), or from solving the Schrödinger equation and dealing with the
Dirac “bra-ket” notation when it comes to examining the non-square integrable scattering
states and continuous part of the spectrum.

In order to avoid or better to say pin-point some of these issues we suggest that only
few new ingredients are necessary to be implemented in the “standard” exposition of the
theory of QM.

The first is, of course, the existence of domain of an operator. With that said one can
neatly refine the hermiticity in physics as [18]:

A linear operator T : D(T) −→ H is

(i) hermitian if (Tψ, ϕ) = (ψ, Tϕ) ∀ψ, ϕ ∈ D(T);
(ii) symmetric if it is densely defined (D(T) = H) and hermitian40;
(iii) self-adjoint if it is symmetric and T = T†;
(iv) essentially self-adjoint if it is symmetric and (T†)† = T†.

Furthermore, it is important to emphasize that only (essentially)41 SA operators are
the good representatives of observables in physics.

Secondly, one needs to better define the spectrum of an operator. For this purpose it is
convenient to generalize the notion of eigenvalues. Remember that eigenvalues of a linear
operator T : D(T) −→ H are some numbers λ ∈ C determined by the eigenvalue equation
Tψ = λψ, ∀ψ ∈ D(T). This is equivalent to stating that λ’s are such that the operator
(T− λI)−1 does not exist42. In finite dimensional Hilbert space the above statements are
trivial, but in an infinite-dimensional Hilbert space some topological issues arise, namely,
even if (T− λI)−1 exists it could be a bounded or an unbunded operator, also its domain
Im(T − λI) can be dense or not. These are exactly the features that are suitable in order to
generalize the notion of eigenvalues and differentiate between different types of spectra.
For that purpose let us first define the so called resolvent set ρ(T) as:

ρ(T) =
{

λ ∈ C | (T − λI) is injective, Im(T − λI) = H and (T − λI)−1 is bounded
}

. (135)

Then
the spectrum of T is the complement of the resolvent set, i.e., σ(T) := C− ρ(T), and is given

by the union of (pairwise disjoint) parts:

(i) point spectrum σp(T), where (T − λI) is not injective so that σP(T) is actually the
set of all the eigenvalues of T;

(ii) continuous spectrum σc(T), where (T − λI) is injective, Im(T − λI) = H and (T −
λI)−1 is not bounded;

(iii) residual spectrum σr(T), where (T − λI) is injective, Im(T − λI) 6= H.

It immediately follows that ρ(T) is always an open set, meaning that the spectrum
σ(T) is always a closed set, and that for a SA operator σ(T) ∈ R and σr(T) = ∅ [18]. So one
could, in principle, avoid the unfortunate use of the non-square integrable solutions of the
Schrodinger equation when dealing with the continuous spectrum by working with only a
well defined object, the so called resolvent RT(λ) = (T− λI)−1 and this way “stay” within
the Hilbert spaceH. Notice that the Green function is the integral kernel of the resolvent
and solving the differential equation for the Green function makes perfect sense [76,110].

The advantages and pitfalls of the Dirac’s “bra-ket” notation are extensively and
pedagogically discussed in [73] and if one really wants to “save it” one needs to resort not
only to the functional analytic and spectral theory tools but also to a wast machinery of the
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distribution theory as well. This all culminates into defining the so called rigged Hilbert
space or Gelfand triple [111–116]. But the point is that this could be avoided considering
just the resolvent or the so called spectral theorem43, which are the rigorous generalization
and justification of the formal manipulation within the Dirac’s formalism, but without ever
“leaving” the Hilbert space.
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Appendix A. Postulates of QM

Here we will briefly outline the postulates of the so called canonical quantization44.
In general, quantization is a procedure of constructing a quantum theory (QT) for a given
classical system. This procedure is by no means unique and a rigorous approach to it
is still not fully developed [119–122]. There is only two things we require from such a
procedure. One is that the QT must coincide with the predictions of the classical theory
in the formal h̄ → 0 limit45(actually we need a bit more than that, like for an example,
the limit to macroscopic scale(large masses), smooth potentials, large quantum numbers,
etc.). This is the essence of the “correspondence principle”. The second requirement is that
the prediction of the QT are in agreement with the experiments. Experience in quantization
of simplest systems (such as a free particle, a harmonic oscillator, and a non-relativistic
particle in some potential fields) was used to formulate a consistent general scheme of
operator quantization for an arbitrary system with canonical Hamiltonian equations of
motions for phase-space variables. This scheme is called canonical quantization and its
postulates are:

1. For a given physical system we assume the existence of a Hamiltonian formulation
of classical mechanics. States of the system are points in an even-dimensional phase
space P = T∗M and are labeled by canonical generalized coordinates qa and momenta
pa, a = 1, . . . , n, where n is the number of degrees of freedom. Hamilton equations of
motion govern the time evolution of the system

q̇a = {qa, H}, ṗa = {pa, H}, (A1)

where H = H(q, p) is the Hamiltonian of the system and {, } is the canonical Poisson
bracket. The Poisson bracket of two arbitrary functions f and g on the phase space is
given by

{ f , g} = ∑
a

(
∂ f
∂qa

∂g
∂pa
− ∂ f

∂pa

∂g
∂qa

)
, (A2)

and in particular, we have {qa, qb} = {pa, pb} = 0 and {qa, pb} = δab. Classical ob-
servables f : P = T∗M −→ R are local physical quantities described by real functions
of the phase-space variables and they form a real associative commutative algebra.
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2. A state in QM is defined as a vector ψ in a suitable Hilbert spaceH. A scalar product
of such two vectors ψ1 and ψ2 is denoted by (ψ1, ψ2). It is assumed that any state
ψ ∈ H can be realized physically (or at least to a first approximation) and that the
superposition principle holds, that is if states ψ1 and ψ2 are realizable, then the state
ψ = a1ψ1 + a2ψ2 with any a1, a2 ∈ C is also realizable.

3. To an each classical observable f = f (x, p) we uniquely assigned a linear SA operator
f̂ acting in Hilbert space H. The operator f̂ is called a quantum observable. It is
assumed that any operator f̂ is well defined46 on any state ψ, i.e., f̂ ψ ∈ H, ∀ψ ∈ H.
If so, the operator f̂ is uniquely determined by its matrix elements (ψ1, f̂ ψ2), ∀ψ1ψ2 ∈
H, that is by its matrix fmn = (em, f̂ en) with respect to an orthonormal basis47 {en}∞

1
inH. To any such operator f̂ we can assign its adjoint f̂ †(

ψ1, f̂ †ψ2

)
=
(

f̂ †ψ1, ψ2

)
, ∀ψ1, ψ2 ∈ H, (A3)

and thereby the involution (conjugation) f̂ 7→ f̂ † is defined in the algebra of operators
with the properties (

f̂ †
)†

= f̂ ,
(

a f̂
)†

= a∗ f̂ †, ∀a ∈ C(
f̂ + ĝ

)†
= f̂ † + ĝ†,

(
f̂ ĝ
)†

= ĝ† f̂ †.
(A4)

The operator f̂ is SA48 if f̂ = f̂ †, or(
ψ1, f̂ ψ2

)
=
(

f̂ ψ1, ψ2

)
, ∀ψ1, ψ2 ∈ H (A5)

The expectation value
〈

f̂
〉

ψ
of any quantum observable f̂ in a state ψ and the corre-

sponding dispersion ∆ f are defined as

〈
f̂
〉

ψ
=

(
ψ, f̂ ψ

)
(ψ, ψ)

, ∆ f̂ =

√〈
f̂ 2
〉

ψ
−
〈

f̂
〉2

ψ
. (A6)

The observables are assumed to be SA operators because the corresponding eigen-
values are real and the eigenvectors form an orthonormal basis inH. The spectrum
(set of all the eigenvalues) represent all the possible measurements, while the com-
plete orthonormalized set of the eigenstates of the observable provides a probabilistic
interpretation of its measurements.

4. The correspondence principle implies a connection between the Poisson bracket of
classical observables and the commutator of the quantum observables. Namely,

{ f1, f2} →
1
ih̄

[
f̂1, f̂2

]
+ Ô(h̄) (A7)

The position operators q̂a and momentum operators p̂a are postulated to be SA and
satisfy the canonical commutation relations

[q̂a, q̂b] = [ p̂a, p̂b] = 0, [q̂a, pb] = ih̄{qa, pb} = ih̄δab (A8)

The correspondence principle imposes the form of the quantum observable as f̂ =
f (x̂, p̂) + Ô(h̄), where Ô(h̄) is chosen in such a way that it insures the self-adjointness.
Since q̂a and p̂a don’t commute, due to the so-called ordering problem49, there is no
unique construction of f (x̂, p̂) via f (x, p). Any two commuting observables f̂1 and f̂2
can be simultaneously measured because the commutativity implies the existence of
common eigenvectors and joint spectrum. A minimum set of N commuting observ-
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ables f̂k, k = 1, . . . , N, [ f̂k, f̂l ] = 0, ∀k, l whose joint spectrum is nondegenerate and
whose common eigenvectors provide a unique specification of any vector in terms
of the corresponding expansion with respect to these eigenvectors define a complete
set of observables. Complete sets of observables completely specify the quantum
description of a system under consideration.

5. The time evolution of any quantum state ψ(t) is governed by the Schrödinger equation,

ih̄
∂ψ

∂t
= Ĥψ, (A9)

with an initial condition ψ(t0) = ψ0, where the operator Ĥ corresponds to the classical
Hamiltonian H.

This concludes the postulates of canonical quantization which are usually presented
in most standard textbooks on QM. When taken seriously, these postulates will lead to
many paradoxes, some of which we discuss in Section 2.

Appendix B. Bounded Linear Operators

Let (V , ‖·‖V ) be a normed space and (W , ‖·‖W ) a Banach space50. A linear map
T : V −→ W is called a bounded linear operator if

sup
f∈V\{0}

‖T f ‖W
‖ f ‖V

< ∞ (A10)

For a bounded operator one can define the so called operator norm ‖·‖ such that

‖T‖ = sup
f∈V\{0}

‖T f ‖W
‖ f ‖V

(A11)

and there are theorems that state that a linear map is continuous51 if and only if this
map is a bounded operator and that a bounded operator is defined on all of V , that is
D(T) = V . For these operators the naive quantization prescription would work much
better, but unfortunately (or fortunately!) in physics we almost always have to deal with
observables that are unbounded (the operator norm is ill-defined), like the paradoxes in
Section 2 illustrate. Also note that a Hilbert space is always a Banach space since the inner
product (·, ·)H induces a norm ‖·‖H =

√
(·, ·)H. Notice that the set of all continues linear

mappings L : H −→ H form a Banach space (even more, a Banach algebra), which is the
space of all the bounded operators L = B(H) onH.

Appendix C. Hilbert Spaces

In this appendix, we outline the properties of Hilbert spaces. The shortest way to
define a Hilbert spaceH is that it is a Banach space with respect to a norm induced by the
sesquilinear inner product (·, ·) : H×H −→ C. The norm is ‖·‖ =

√
(·, ·). This is very

concise so let us outline all the properties of Hilbert spaces in more details:

• Hilbert space H is a vector space over the complex numbers. Usually, the elements
(also called vectors or points) of H we denote by Greek letters, while the complex
numbers with Latin letters. The vector space structure is encoded in (H, ·,+) where
· : C×H −→ H is the scalar multiplication and + : H ×H −→ H is the vector
addition satisfying

aψ + bη ∈ H ∀a, b ∈ C and ψ, η ∈ H (A12)

and the vector space axioms52
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• The inner product (·, ·) : H×H −→ C is a positive definite sesquilinear form on
H satisfying

(ξ, η) = (η, ξ); (ξ, ξ) ≥ 0, and (ξ, ξ) = 0 ⇐⇒ ξ = 0;

(ξ, aζ + bη) = a(ξ, ζ) + b(ξ, η)⇒ (aξ + bζ, η) = ā(ξ, η) + b̄(ζ, η).
(A13)

and induces a norm defined by ||ξ|| =
√
(ξ, ξ). The norm ‖·‖ : H −→ R+ satisfies

the triangle inequality
||ξ + η|| ≤ ||ξ||+ ||η|| (A14)

as a corollary of the Cauchy-Schwarz-Bunyakovskii inequality |(ξ, η)| ≤ ||ξ|| ||η||.
The norm induces a metric d(ξ, η) := ‖ξ − η‖ which determines the topology53 in
H. Existance of topology gives meaning to convergence, so for a sequence of vectors
{ξn}∞

1 we say that it converges to a vector ξ if

ξ = lim
n→∞

ξn (A15)

or equivalently limn→∞ ||ξn − ξ|| = 0. Due to (A14) the necessary condition for
convergence is

lim
n→∞

||ξm − ξn|| = 0, (A16)

i.e., the sequence {ξn}∞
1 is a Cauchy sequence. Linear operations inH (like multiplica-

tion of vectors by complex numbers and vector addition) and the scalar product are
continuous in their arguments; for example,

lim
n→∞

||ξm − ξn|| = 0⇒ lim
n→∞

(ξn, η) = (ξ, η), ∀η ∈ H. (A17)

because of the Cauchy-Schwarz-Bunyakovskii inequality. A set M ⊂ H is dense
in H if any vector in H can be approximated by vectors belonging to M with any
desired accuracy, that, if for any ξ ∈ H, there exists a sequence {ξn}∞

1 , ξn ∈ M, so that
ξ = limn→∞ ξn. In other words, the topological closure of M, that is M and all of its
Cauchy sequences, is equal toH, i.e., M = H.

• H is a complete normed space. This means that every Cauchy sequence {ξn}∞
1 inH is

convergent, i.e., it has a limit inH:

lim
n→∞

||ξm − ξn|| = 0 =⇒ ∃ξ ∈ H : lim
n→∞

ξn = ξ. (A18)

Notice that any convergent sequence {ξn}∞
1 is a Cauchy sequence and in a Hilbert

space, the converse also holds54. A pre-Hilbert space is a vector space with an inner
product satisfying (A13). Physicists usually deal with just a pre-Hilbert space, since
there is no difference between pre-Hilbert space and a Hilbert space of finite dimension.
Fortunately, any pre-Hilbert space can be made a complete Hilbert space by adding
the “limits” of all Cauchy sequences. Note that the requirement of completeness is
crucial, and not only technical, for applications of Hilbert spaces to QM.

• A Hilbert space H is called separable if it contains a countable dense set. Separable
Hilbert spaces are sufficient for treating conventional QM. All infinite-dimensional sep-
arable Hilbert spaces are isomorphic to the Hilbert space of complex square summable
sequences l2(N) defined by

l2(N) :=

({
a : N −→ C|

∞

∑
n=0
|an|2 < ∞

}
, (a, b)l2 :=

∞

∑
n=0

a∗nbn

)
(A19)
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• The vector space of all square-integrable functions on a real interval (a, b) is usually
denoted by L2(a, b) and can be made into a Hilbert space

L2(a, b) =
{

ψ(x) :
∫ b

a
dx |ψ(x)|2 < ∞

}
. (A20)

The scalar product in L2(a, b) is defined by

(ψ1, ψ2) =
∫ b

a
dx ψ∗1 (x)ψ2(x). (A21)

It is important to note that here the integrals are Lebesgue integrals, and strictly
speaking, the elements of L2(a, b) are equivalence classes of functions that are equal
almost everywhere55.

Appendix D. Adjoint of an Operator and Its Properties

Definition A1. The adjoint A† of a densely defined linear operator A : D(A) −→ H is defined by

1. D(A†) := {ψ ∈ H|∃η ∈ H : ∀α ∈ D(A) : (ψ, Aα) = (η, α)}
2. A†ψ = η

Definition A2. A densely defined56 linear operator A : D(A) −→ H is called symmetric if
∀α, β ∈ D(A) : (α, Aβ) = (Aα, β).

Lemma A1. If A is symmetric, then A ⊆ A† meaning

1. D(A) ⊆ D(A†)

2. A†ψ = Aψ, ∀ψ ∈ D(A)

Appendix E. Self-Adjoint Operators and Their Properties

Definition A3. Definition. An operator A : DA −→ H defined on a dense domain is called a
self-adjoint operator (SA operator) if it coincides with its adjoint, A = A†. In the language of
maps, this means that A is symmetric, and DA = DA† .

Lemma A2. A symmetric operator A is SA iff φ ∈ DA† ⇒ φ ∈ D f , i.e.,

(φ, Aψ) =
(

A†φ, ψ
)

, ∀ψ ∈ DA ⇒ φ ∈ DA (A22)

To make sure that an operator A is indeed SA, we must first verify that A is symmetric and
then that the criterion of the above Lemma holds. Very often physicist just verify the symetricity
property but omit to check the condition about the domain of the adjoint. However, observables must
be represented by SA operators, because only they have the remarkable property of having a real
spectrum and a complete orthogonal system of (in general “generalized”) eigenvectors corresponding
to this spectrum, which provides the possibility of a probabilistic interpretation of states, observables,
and measurements. Symmetric operators just have real expectation values.

Lemma A3. All expectation values of an SA operator A are real, (ψ, Aψ) = (ψ, Aψ)∗, ∀ψ ∈ DA,
and define a norm of the operator,

‖A‖ = sup
ψ∈DA ,||ψ||=1

|(ψ, Aψ)|. (A23)

Lemma A4. SA operators have the following properties:

• For A = A† and a ∈ R ⇒ aA = (aA)†, DaA = DA.



Universe 2022, 8, 129 31 of 40

• For A = A† and B = B†, with DA ∩ DB = H ⇒ (A + B)† ⊇ A + B.
The sum of two SA operators A + B is just a symmetric operator, in general, but if one of
the operators, for example B, is bounded, then the sum is also an SA operator, i.e., A + B =
(A + B)† with DA+B = DA.

• For A = A† and B = B†, with DAB = H ⇒ (AB)† ⊇ BA.
The product AB of two SA operators is not even symmetric. The product AB is symmetric,
i.e., (AB)† ⊇ AB, if A is bounded, and BA ⊆ AB, that is if A and B commute. The product
AB is SA, i.e., (AB)† = AB, if both operators are bounded, and they commute [A, B] = 0.

These properties are important in constructing observables in QM. The second prop-
erty is vital in constructing Hamiltonians. Namely, if we want to perturb the unbounded
SA Hamiltonian of the free particle Ĥ0 by some bounded SA potential V̂, then the total
Hamiltonian Ĥ = Ĥ0 + V̂ is indeed a SA operator on a domain DĤ = DĤ0

. However,
if V̂ is unbounded, then Ĥ is at most symmetric and we have to deal with the theory of
SA extensions.

Notice that for general unbounded operators the notion of commutativity is ambiguous
due to the domain issues. However, unbounded SA operators allow for the notion of com-
mutativity in terms of corresponding one-parameter families

{
ÛA(α) = exp(iαA), α ∈ R

}
of

mutually commuting unitary operators57

[
ÛA(α), ÛA(β)

]
= 0, ∀α, β ∈ R, (A24)

associated with each SA operators A. We say that SA operators A and B commute, if the
respective families

{
ÛA(α)

}
and

{
ÛB(α)

}
of the associated unitary operators mutually

commute:
[
ÛA(α), ÛB(β)

]
= 0, ∀α, β ∈ R.

For example, the canonical commutation relation [q̂, p̂] = ih̄ for the position operator q̂
and the momentum operator p̂ is properly formulated as the Weyl relation [71]

Ûq(α)Ûp(β) = e−iαβh̄Ûp(β)Ûq(α), ∀α, β ∈ R, (A25)

for the corresponding associated unitary operators Ûq(α) = exp(iαq̂) and Ûp(β) = exp(iβ p̂).

Appendix F. The Von-Neumann’s Theorems

Appendix F.1. The first von Neumann theorem

For any symmetric operator A : DA −→ H the domain of its adjoint A† is given by
the direct sum of subspaces 58 DĀ, Σz∗ and Σz:

DA† = DĀ + Σz∗ + Σz, ∀z ∈ C′, (A26)

such that any vector ξ∗ ∈ DA† is uniquely represented as

ξ∗ = ξ + ξz + ξz∗ , ξ ∈ DĀ, ξz ∈ Σz∗ , ξz∗ ∈ Σz, (A27)

which is known as the first von Neumann formula and

A†ξ∗ = Aξ + zξz + z∗ξz∗ . (A28)

Appendix F.2. The second von Neumann theorem

We say that a symmetric operator A is essentially SA iff its deficiency indices59 are
equal to zero, m± = 0. A symmetric operator f̂ is said to be essentially maximal, that is
it does not allow SA extensions iff one of its deficiency indices is equal to zero, while the
other is nonzero. If both deficient subspaces Σz∗ and Σz of a symmetric operator A are
nonzero, then ther exists a nontrivial symmetric extension of A. Symmetric extensions AU
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of a symmetric operator A are determined by an isometric operator U : DU ⊆ Σz∗ −→
UDU ⊆ Σz. These extensions are given by

DAU = DĀ + (I + U)DU

=
{

ξU : ξU = ξ + ξz,U + Uξz,U ; ∀ξ ∈ DĀ, ∀ξz,U ∈ DU ⊆ Σz∗ ; Uξz,U ∈ UDU ⊆ Σz

}
,

(A29)

and
AUξU = Aξ + zξz,U + z∗Ûξz,U . (A30)

In other words, any isometric operator U : Σz∗ → Σz with the domain DU ⊆ Σz∗ and
the range UDU ⊆ Σz defines a symmetric extensions AU of a symmetric operator A given
by (A29) and (A30). The equality

ξU = ξ + ξz,U + Uξz,U (A31)

in (A29) is usually called the second von Neumann formula.

Appendix F.3. The main theorem

Let A : DA −→ H be a symmetric operator and A† its adjoint, i.e., A ⊆ A†. Let Σz∗

and Σz be the deficient subspaces of A,

Σz = kerA†(z∗) =
{

ξz∗ : A†ξz∗ = z∗ξz∗
}

, Σz∗ = kerA†(z) =
{

ξz : A†ξz = zξz

}
, (A32)

where z ∈ C+ is arbitrary, but fixed, and let m± be the deficiency indices of A, m+ = dimΣz∗

and m− = dimΣz. The symmetric operator A has SA extensions AU = A†
U , A ⊆ AU iff

both its deficient subspaces Σz∗ and Σz are isomorphic, or iff its deficiency indices are
equal, i.e., m± = m. If the deficient subspaces are trivial, that is m± = 0, the operator A
is essentially SA, and its SA extension is given by its closure A = (A†)†, which coincides
with its adjoint, A = (A)† = A†. If its deficient subspaces are nontrivial, i.e., m± = m 6= 0,
there exists an m2-parameter family {AU} of SA extensions that is a unitary group U(m).
Every SA extension AU is determined by an isometric mapping U : Σz∗ → Σz of one of the
deficient subspaces onto another and is given by

DAU = DA + (I + U)Σz∗

=
{

ξU : ξU = ξ + ξz + Ûξz, ∀ξ ∈ DĀ, ∀ξz ∈ Σz∗ , Uξz ∈ Σz

}
,

(A33)

where DA is the domain of the closure A, and

AUξU = Aξ + zξz + z∗Uξz. (A34)

In other words, an isometry U : Σz∗ −→ Σz that establishes an isomorphism between
the deficient subspaces defines an SA extension AU of a symmetric operator A given by
(A33) and (A34). If the deficient subspaces are finite-dimensional, 0 < m < ∞, then SA
extensions AU can be specified in terms of unitary matrices U ∈ U(m). Namely, let

{
ez,k
}m

1
and {ez∗ , l}m

1 be some orthogonal bases in the respective deficient subspaces Σz∗ and Σz.
Then an SA extension AU is given by

AU :

DAU =

{
ξU : ξU = ξ + ∑m

k=1 ckeU,k, ∀ξ ∈ DA,
∀ck ∈ C, eU,k = ez,k + ∑m

l=1 Ulkez∗ ,l ,
,

AUξU = Aξ + ∑m
k=1 ck(zez,k + z∗ ∑m

l=1 Ulkez∗ ,l),

(A35)

where U = ||Ulk|| is a unitary matrix.
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Appendix G. Some Basics of Rigged Hilbert Space

In order to find the full spectrum of an observable by solving a differential equation
one needs to so called rigged Hilbert space [72,76,110–116]. Namely, if one wants to find
the full spectrum of the Hamiltonian by solving the Schrödinger equation

Hψ = Eψ (A36)

then for the continuous E, one needs to “look” for solutions outside the Hilbert space L2(R),
since the solutions in L2(R) exist only for discrete E (point spectrum). The basic idea of
the rigged Hilbert space is to find solutions to (A36) that don’t lie in L2(R), but rather in
the adjoint of a densely defined subspace called the Schwartz space S(R). This was one
constructs a Gelfand triple

S(R) ⊂ L2(R) ⊂ S ′(R). (A37)

The Schwartz space S(R) is the function space of all functions whose derivatives (multi-
plied by any monomial xα) are rapidly decreasing (often called test functions), while S ′(R)
is the dual of S(R), namely the space of all continuous linear functionals S ′(R) : S(R) −→
C (often called distributions or generalized functions).

Note that a rigged Hilbert space is not an extension of physics or QM, but rather
the most natural mathematical structure required to study QM. Rigged Hilbert space is
actually the equipping of a Hilbert space with the theory of distribution, and provides the
full mathematical foundation for the so-called Dirac’s bra-ket notation and well known
Dirac’s δ-function [73,124]. In Dirac’s notation the ket’s |ψ〉 are elements of S(R), while the
bra’s 〈ψ| are elements of the dual S ′(R).

Appendix H. Scale Symmetry in Classical Physics

Here let us discuss the scale symmetry for classical systems. First, let us remind
ourselves of the Noether’s theorem. If the Lagrangian L(q, q̇, t) transforms under small
perturbations

t −→ t′ = t + δt, q −→ q′ = q + δq (A38)

so that it leaves the action S =
∫

dtL(q, q̇, t) invariant, then there exist a quantity (or many
of them α = 1, . . . , N)

Aα :=
(

∂L
∂q̇

q̇− L
)

Tα −
∂L
∂q̇

Qα (A39)

that is conserved in time, i.e., constant of motion. Here the resulting perturbations δt and
δq are small and can be written as

δt = ∑
α

εαTα, δq = ∑
α

εαQα (A40)

where εα are infinitesimal, Tα are generators of time evolution and Qα are generators of
generalized coordinates.

Now we turn to scale symmetry. If we want that the action S and the equation of
motions are invariant under change of scale t −→ λt then we can derive the following
transformations for L, q, q̇, H and p

t −→ t′ = λt

L −→ L′ = λ−1L

q −→ q′ = λ
1
2 q

q̇ −→ q̇′ = λ−
1
2 q̇

p −→ p′ = λ−
1
2 p

H −→ H′ = λ−1H

(A41)
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Equations (A41) we call scale transformations and if the action (and equations of
motion) are invariant under them, we say the system is scale invariant. If we assume that
the Lagrangian is given by the difference of kinetic and potential energy, L = T(q̇)−V(q),

then the Hamiltonian is given by H(p, q) =
(

∂L
∂q̇ q̇− L

)
= p2

2m + V(q). In this case, scale
transformations (A41) induce a transformation for the potential energy as

V(q) −→ V′(q) = V(λ
1
2 q) = λ−1V(q) (A42)

Now we want to use the Noether’s theorem and find the conserved quantity (A39).
In order to do so, we need to look at the infinitesimal version of (A41). Since λ is dimen-
sionless we can parametrize it as

λ = eε = 1 + ε + O(ε2) (A43)

which together with (A41) and (A40) leads to

δt = εt, δq = ε
q
2

=⇒ εα = ε, Tα = t, Qα =
q
2

(A44)

and the conserved quantity (A39) is60

Aα = Ht− 1
2

qp ≡ D. (A45)

The constant of motion D is called dilatation and is the generator of scale symmetry.
It is instructive to check that the dilatation D given in (A45) is indeed the constant of

motion. For that purpose we calculate dD
dt using Poisson bracket formalism. Namely,

dD
dt

=
∂D
∂t

+ {D, H}

= H − 1
4m

{
qp, p2

}
− 1

2
{qp, V(q)}

= H − p2

2m
+

q
2

∂V
∂q

= V(q) +
q
2

∂V
∂q

.

(A46)

Now, in order to have scale symmetry, not any potential energy V(q) will provide the
symmetry, but rather special ones that transform according to this symmetry. Remember
that scale transformations (A41) induce the transformation of the potential energy (A42),
which for infinitesimals looks like

V(λ
1
2 q) = λ−1V(q) =⇒ V(q +

ε

2
q) = V(q) + ε

q
2

∂V
∂q

= (1− ε)V(q) =⇒ q
2

∂V
∂q

= −V(q) (A47)

rendering the desired result dD
dt = 0. In other words, systems that have potential energy

V(q) that satisfy the equation
q
2

∂V
∂q

= −V(q) (A48)

are scale invariant. Notice that the Equation (A48) actually says that the potential energy
V(q) has to be a solution of the eigenvalue equation for the operator61 d = q ∂

∂q with the

eigenvalue −2, and the nontrivial solution62 is V(q) ∝ q−2.
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Notes
1 See Appendix A for the usual postulates of QM.
2 See Appendix B for the definition of bounded operators, Appendix C for the details on Hilbert space, Appendix D for the

definition of the adjoint operator and Appendix E for the definition and properties of a SA operator.
3 Here “state” is used in the physical jargon and actually means an element of the Hilbert space H (or an equivalence class of

elements up to a phase). The state of a system is a positive linear map ρ : H −→ H for which Tr(ρ) = 1. States can be pure or
mixed. A state ρψ is called pure if it maps ψ 7−→ (ψ, · )

(ψ,ψ) , ∀ψ ∈ H. Thus, we can associate to each pure state ρψ an element inH.
However, this correspondence is not one-to-one, and one should have this fact in mind. The physicist refer to the operators ρ as
density matrices and often in Dirac notation just write ρ = |ψ〉〈ψ|.

4 Claims like “rigorous definition” or “rigorous proof” are also very often used in the physicist jargon. The thing is that objects
are either well defined or not, or the claim is proven or not. There is no degree of “how much” something is or can be proven,
but when physicist says that something is rigorously done, it just means that “all the necessary” assumptions that deal with
questions of convergence, completeness, domains etc. are assumed to be valid (or better say omitted). Or simply, the nonrigouros
proofs or definitions seems to work well in several cases and one just takes it for granted that the results apply for other
situations also.

5 As they are usually presented in conventional undergraduate or graduate physics courses.
6 See Appendix A for postulates of QM.
7 Here one should be aware of the full details of the construction of the Hilbert space L2. Namely, one needs first a measurable space

(M, Σ, µ) (here M is a set, Σ is the Borel-σ-algebra and µ is a measure) together with an equivalence relation f ∼ g⇔ ‖ f ‖2 = ‖g‖2,
so that

L2(M) := L2/ ∼=
{
[ f ]| f ∈ L2

}
where

L2(M, Σ, µ) :=
{

f : M→ C| <( f ) and =( f ) are measurable and
∫

M
| f |2dµ < ∞

}
with the inner product (·, ·) : L2 × L2 → C and ([ f ], [g]) 7→

∫
M f̄ gdµ.

8 In finite dimensional space the spectrum of an operator is the set of its eigenvalues. In general Hilbert space the spectrum of a SA
operator is much more. It can have the point spectrum part (related to the set of eigenvalues) and the continuous spectrum part
(usually related to generalized eigenfunctions that physicist sometimes call scattering states) [67–70].

9 This is actually just the symmetric condition, which in the final-dimensional case is hermiticity.
10 {an}∞

1 denotes a set of members of the sequence an starting from n = 1 to n = ∞.
11 This claim stands even rigorously, because if for a symmetric operator H its domain D(H) ⊂ H contains the orthonormal basis of

H, then H is SA (see [20]).
12 Actually, this just a dense subspace and its completion is the Hilbert space L2[0, 2π].
13 Physicist often thinks of the spectrum as the set of eigenvalues (point spectrum) which come from solving differential equations

with certain boundary conditions and imposing square integrability of the solutions. However, to grasp the continuous part of the
spectrum (or energy of the scattering states), physicist solves the same differential equation but “drops” the square-integrability
condition and looks for the solution outside the Hilbert space. This at first glance strange procedure is imposed by the Dirac
notation and its justification can be found in the theory of rigged Hilbert spaces (or Gelfand triples). For more details see
Appendix G and [72,76].

14 We also assume that D(T) is dense inH, that is D(T) = H, which means that the topological closure of D(T) is the same asH.
D(T) may not be a complete space, so dense means that the space together with limit vectors of all of its Cauchy sequences is
exactlyH.

15 For simplicity we take the unit mass and h̄ = 1 system of units.
16 From now on we understand that all derivatives are in the weak sense.
17 A function f : [a, b] −→ C is absolutely continuous if it has a derivative f ′ almost everywhere, the derivative is Lebesgue

integrable and

f (x) = f (a) +
∫ x

a
f ′(t)dt, ∀x ∈ [a, b].

18 For more details see Appendix C.
19 This reduces to the hermicity condition in finite-dimensional Hilbert spaces.
20 See Appendix D.
21 For more details see [67–70] and Appendix F.
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22 Actually we should consider T†ψ± = ±iκψ±, where κ ∈ R due to dimensionality reasons (namely [T] = [κ]), but this we omit
here and set κ = 1 as our “natural” choice of units. However the dimensionality of κ is very important and its physical meaning
is that this is the scale of the anomaly, i.e., the breaking of the classical symmetry and it somewhat governs the physically allowed
types of interaction on the boundary.

23 See [67–70] and Appendix F.
24 Here the domain is given a bit wage, since one might ask how a finite dimensional matrix U acts on ψ−. The details are given in

Appendix F, and here our wage definition is good enough since in all of our examples the matrix U will be a pure phase.
25 For a new concept for the quantization of momentum operator in space with boundaries see [77,78].
26 For simplicity we set the mass to be m = 1

2 .
27 And the parametrization α = ± cos(γ/2+π/4)

cos(γ/2) is used.
28 To see this more closely, act on (61) with (ψ, ·) to obtain

E =
α|ψ(0)|2 + ‖ψ′‖2

‖ψ‖2

rendering that the energy is real if α ∈ R and can be positive or negative depending on ψ.
29 There are no square-integrable solutions of this equation for positive energy. Here one actually looks for a solution of a generalized

eigen-equation within the formalism of rigged Hilbert space (see Appendix G for further comments.)
30 This is usually the case, for example the canonical commutation relation [x̂, p̂] = ih̄I, where the right hand side is algebraically

obtained and, as an operator, is well defined on all of L2(R). Algebraically obtained would here mean that we calculated [H, A]
evaluated on T .

31 Actually it is SO(2, 1) invariant and the symmetry is generated by the Hamiltonian H, dilatation D and conformal generator K.
32 For more details on scale symmetry in classical physics see Appendix H.
33 Which is equivalent to a situation where we consider the whole real line, but divide it in segments of length L and demand

periodicity, i.e., identify all the points with respect to R mod L.
34 Where we again take h̄ = 1 and m = 1/2 for simplicity.
35 Here the maximal invariant subspace of the algebra generated by Ĥ and p̂ is T =

⋂∞
n,m=0 D(Ĥn p̂m) = D(Ĥ) = D( p̂).

36 Similarly as for the momentum operator on a half plane.
37 see Appendix G.
38 For the inner product for d = 2 we have (ψ, ϕ) =

∫
dxdy ψ̄(x, y)ϕ(x, y) =

∫
rdrdφ ψ̄(r, φ)ϕ(r, φ).

39 Or over some manifold M in general.
40 This is equivalent to saying that the adjoint T† is the extension of T, i.e., T ⊂ T†, meaning D(T) ⊂ D(T†) and T†ψ = Tψ

∀ψ ∈ D(T).
41 Essentially self-adjoint operators have a unique SA exstension.
42 Notice that we assume that if T : D(T) −→ H is injective then T−1 is the inverse restricted to the image of T, i.e., T−1 : Im(T) −→

D(T).
43 For the details on spectral theorems for unbounded SA operators see for example [71,117]. In order to properly understand these

spectral theorems one needs a bit more then just a formal introduction to functional analysis.
44 There are mainly three well established formulation of QM: 1. Heisenberg’s matrix mechanics (historically first, but of less

practicable use for a working physicist); Scrödinger’s wave mechanics (standard and most used formalism); Feynman’s path
integral (wildly used in relativistic quantum field theories). Actually, in general, one can formulated consistent non-relativistic
QM in (at least) nine independent ways [118]

45 In mathematics, quantization is a quantum deformation of classical structures; the deformation parameter is the Planck constant h̄.
46 To be precise this only holds for finite-dimensional Hilbert spaces and for bounded operators in infinite-dimensional Hilbert

spaces. In physics we are usually dealing with unbounded operators, for which every operator has its domain.
47 {ψn}∞

1 is an infinite sequence of vectors.
48 More precisely see Appendix C.
49 A substantial contribution to the resolution of this problem is due to Berezin [123]
50 A Banach space is a normed and complete space (all Cauchy sequences are convergent in it).
51 with respect to the topologies induced by the respective norms on V andW
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52 For all ψ, η, ξ ∈ H and a, b ∈ C we have

(Commutativity of addition) ψ + η = η + ψ

(Associativity of addition) (ψ + η) + ξ = ψ + (η + ξ)

(Existence of a zero vector) There is a vector o ∈ H with o + ψ = ψ + o = ψ

(Existence of additive inverses) For each ψ, there is − ψ ∈ H such that ψ + (−ψ) = (−ψ) + ψ = o

(Distributivity of scalar multiplication over vector addition) a(ψ + η) = aψ + aη

(Distributivity of scalar addition over scalar multiplication) (a + b)ψ = aψ + bψ

(Associativity of scalar multiplication) (ab)ψ = a(bψ)

(Scalar multiplication with 1 is the identity) 1ψ = ψ

(A49)

53 A Hilbert space is a particular case of a normed and metric space in which a norm and a metric (distance) satisfying standard
requirements are generated by a scalar product; see [117]

54 In short, a Hilbert space is complete with respect to a metric generated by a scalar product.
55 When speaking about some function belonging to L2(a, b) and possessing some additional specific properties like absolute

continuity, we actually mean the representative of the corresponding equivalence class.
56 Densely defined means that the domain D f is dense inH, i.e., D f = H
57 Note that unitary operators are bounded and defined everywhere, and the notion of commutativity for such operators is

unambiguous.
58 Where C′ is a set of complex numbers with nonzero imaginary part, C′ = {z = x + iy, y 6= 0} = C+ ∪ C−. If we define

A(z) = A− zI, then Σz = kerA†(z∗) =
{

ξz∗ ∈ DA† : A†ξz∗ = z∗ξz∗
}

and Σz∗ = kerA†(z) =
{

ξz ∈ DA† : A†ξz = zξz
}

, and Ā is
the closure of A

59 Deficiency index is defined as m(z) = dim kerA†(z∗) = {m+, for z ∈ C+ or m−for z ∈ C−}
60 where we used H(p, q) =

(
∂L
∂q̇ q̇− L

)
=

p2

2m + V(q), L =
mq̇2

2 −V(q) and p = ∂L
∂q̇ = mq̇.

61 This equation can be generalized to higher dimensions by q −→ qi and d = q ∂
∂q −→ qi∇i.

62 Here we have assumed that the potential energy V(q) is of class C1(R), but notice that there are also generalized functions or
distributions that satisfy V(λ

1
2 q) = λ−1V(q).
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