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Abstract: The aberrant overexpression of alpha satellite DNA is characteristic of many human cancers
including prostate cancer; however, it is not known whether the change in the alpha satellite RNA
amount occurs in the peripheral tissues of cancer patients, such as blood. Here, we analyse the
level of intracellular alpha satellite RNA in the whole blood of cancer prostate patients at different
stages of disease and compare it with the levels found in healthy controls. Our results reveal a
significantly increased level of intracellular alpha satellite RNA in the blood of metastatic cancers
patients, particularly those with metastatic castration-resistant prostate cancer relative to controls.
In the blood of patients with localised tumour, no significant change relative to the controls was
detected. Our results show a link between prostate cancer pathogenesis and blood intracellular alpha
satellite RNA levels. We discuss the possible mechanism which could lead to the increased level of
blood intracellular alpha satellite RNA at a specific metastatic stage of prostate cancer. Additionally,
we analyse the clinically accepted prostate cancer biomarker PSA in all samples and discuss the
possibility that alpha satellite RNA can serve as a novel prostate cancer diagnostic blood biomarker.

Keywords: alpha satellite DNA; transcription; alpha satellite RNA; prostate cancer; blood biomarker

1. Introduction

Satellite DNAs are tandemly repeated sequences predominantly located within con-
stitutive heterochromatin which is positioned in the (peri)centromeric and subtelomeric
regions of chromosomes. Alpha satellite DNA is the major human satellite DNA that makes
up 3–5% of each human chromosome and is composed of basic units based on divergent,
171 bp-long monomers [1]. Alpha satellite DNA contributes to essential chromosomal
functions such as the formation of the centromere/kinetochore as well as of constitutive
heterochromatin [2]. The heterochromatin structure is defined by epigenetic modifica-
tions, in particular by H3K9me3, which is catalysed by the histone methyltransferase
SUV39H1 [3]. Of particular importance is the role of alpha satellite DNA transcripts whose
interaction with the enzyme SUV39H1 is necessary for the proper formation and regulation
of heterochromatin not only in the pericentromeric regions [4], but also at alpha satellite
repeats dispersed within euchromatin [5].

Numerous diseases including cancers can result from deregulated epigenetic mech-
anisms, which also affect the structure of pericentromeric heterochromatin and the ex-
pression of sequences located therein. For instance, the lysine-specific demethylase 2A
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(KDM2A)—which is specific for H3K36—is a tumour suppressor and is downregulated in
prostate cancer [6]. The lower the level of KDM2A expression, the higher pericentromeric
heterochromatin transcription and the more severe the tumour grade in prostate cancer [6].
The aberrant overexpression of sequences within pericentromeric heterochromatin in which
the satellite DNAs including alpha satellite predominate is not only characteristic of prostate
cancer but also of many other epithelial cancers such as those of the pancreas, lung, kid-
ney, and colon [7]. The expression of satellite DNA in tumours can also occur due to a
deficiency of other tumour suppressors such as p53 or BRCA1 which disrupts the integrity
of constitutive heterochromatin and results in an extremely high expression of satellite
DNAs [8,9]. Increased levels of satellite RNA destabilise the replication fork and genome
integrity and further promote tumour transformation [10]. It should be mentioned that the
overexpression of human satellite DNAs is not only characteristic of tumours but has also
been observed in replicative senescence and aging correlating with the loss of H3K9me3
at the pericentromeric heterochromatin [11,12]. In addition, the strong upregulation of
satellite DNA expression occurs upon heat stress [5,13–16].

Although the aberrant overexpression of alpha satellite DNA in many human cancers
including prostate cancer has been described, it is not known whether changes in alpha
satellite RNA amounts occur in the peripheral tissues of cancer patients, such as blood,
and whether they could be used as potential cancer biomarkers. For the diagnosis of
prostate cancer, the most clinically accepted biomarker is prostate-specific antigen (PSA).
PSA is a kallikrein-related serine protease produced by prostate epithelial cells, whose
levels are usually elevated in prostate cancer patients. The introduction of PSA testing in
asymptomatic men has resulted in the earlier detection of the disease, with a reduction
in the percentage of men with metastatic prostate cancer. PSA also allows for the early
detection of latent prostate cancer that often does not develop into a significant disease
and is often elevated under benign conditions such as inflammation or hyperplasia, and
this lack of PSA specificity results in over-diagnosis [17]. PSA is also used to monitor the
development of the disease, although often its level, especially in patients with metastatic
prostate cancer, neither closely correlates with the stage of the disease nor with hormone-
sensitivity. Due to the insufficient specificity of PSA as a diagnostic and prognostic marker,
additional efforts are being made to find alternative biomarkers for prostate cancer [18].

To gain insight into the possible use of alpha satellite RNA as a prostate cancer
biomarker, we analysed the level of intracellular alpha satellite RNA in the blood cells
of cancer prostate patients and compared it with the levels of healthy controls. Our
results reveal that the level of alpha satellite RNA is significantly upregulated in the
blood of patients with metastatic, castration-resistant prostate cancer relative to healthy
controls, indicating a link between prostate cancer pathogenesis and intracellular alpha
satellite RNA levels in blood. In the blood of patients with metastatic hormone-sensitive
prostate cancer, an increase in alpha satellite RNA levels was detected but not statistically
significant. Testing at other stages of disease revealed no significant change of alpha satellite
levels relative to controls. The clinically accepted prostate cancer biomarker PSA was also
determined in all blood samples and obtained values compared to those of alpha satellite
RNA levels. We discuss a possible mechanism which could be related to the increased
level of intracellular alpha satellite RNA in the blood of patients at a specific stage of
prostate cancer as well as the possibility that alpha satellite RNA can serve as an indicator
of a particular pathophysiological state or as a potential novel prostate cancer diagnostic
blood biomarker.

2. Materials and Methods
2.1. Sample Collection

The blood samples of prostate cancer patients were provided and collected by Prof. Dr.
Sc. Ana Fröbe from the University Clinical Hospital Centre (UHC) Sestre Milosrdnice. The
blood samples of healthy controls were provided by the Croatian Institute for Transfusion
Medicine (HZTM). Informed consent was acquired from each participating individual
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before blood collection. Ethical approval was obtained from the Medical Ethical Committees
of the UHC Sestre Milosrdnice and of the Croatian Institute for Transfusion Medicine.

We collected 2.5 mL of blood from each cancer prostate patient and healthy control in
a “PAXgene Blood RNA Tube” (Qiagen) according to the instructions of the manufacturer
which was stored at −20 ◦C. This study comprised a total of 94 patients with prostate
cancer diagnosis and 27 healthy controls. Since 50% of men older than 50 years have
benign prostate hyperplasia [19], which can result in an increased PSA level, we used men
with an average age of 39.4 years as the healthy control group. Enrolled patients belong
to different groups according to the stage of disease: A—metastatic hormone-sensitive;
B—metastatic castration-resistant; and C—localised hormone-sensitive. All patients in
groups A–C received androgen-deprivation therapy by luteinising hormone-releasing
hormone (LHRH) agonists. Group D included patients with newly diagnosed localised
prostate cancer before receiving a hormone or any local treatment.

Control subjects were male blood donors with no personal history of prostate cancer
or any other chronic disease and at the time of blood collection—they were not on a drug
therapy. Other patients’ and controls’ characteristics that were documented included age.
The characteristics of the patients and controls are presented at Table 1.

Table 1. Groups of individuals used in this study with the following characteristics: number of sam-
ples of each group (n); average age of patients (y); and the minimal and maximal age of individuals
of each group.

Group Characteristics

Healthy controls
n 27

average age/y 39.4
age min–max/y 19–59

Group A patients
n 19

average age/y 74.5
age min–max/y 62–85

Group B patients
n 20

average age/y 67.4
age min–max/y 51–87

Group C patients
n 34

average age/y 69.9
age min–max/y 57–83

Group D patients
n 21

average age/y 71.9
age min–max/y 47–83

2.2. RNA Isolation and Reverse Transcription

Intracellular RNA from whole blood collected in the PAXgene Blood RNA Tubes
was isolated using the PAXgene Blood RNA Kit (Qiagen, Hilden, Germany) according to
the instructions of the manufacturer. RNA was quantified with the Quant-IT RNA assay
kit using a Qubit fluorometer (Invitrogen, Waltham, MA, USA)). Approximately 1 µg of
RNA was reverse transcribed using the PrimeScript RT reagent Kit with gDNA Eraser
(Takara, Dalian, China) in 10 µL reaction using the specific primer ALPHrev AATGCA-
CACATCACAAAGAAG. For all samples, negative controls without reverse transcriptase
were used.
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2.3. Quantitative Real-Time PCR (qPCR) Analysis

qPCR analysis was performed according to the previously published protocol [5,15].
Primers for the expression analysis of human alpha satellite DNA were: ALPHAfw
CACTCTTTTTGTAGAATCTGC and ALPHrev AATGCACACATCACAAAGAAG, which
were constructed according to the alpha satellite consensus sequence [20]. Glucuronidase
β (GUSB) [21] was used as an endogenous control for normalisation in human samples
and the primers used were: GUSfw GAAAATATGTGGTTGGAGAGAGCATT, GUSrev CC-
GAGTGAAGATCCCCTTTTTA. GUSB gene (Gene ID: 2990) was stably expressed without
any variation among samples. The following thermal cycling conditions were used: 50 ◦C
2 min; 95 ◦C 7 min; 95 ◦C 15 s; 60 ◦C 1 min for 40 cycles followed by dissociation stage:
95 ◦C for 15 s; 60 ◦C for 1 min; 95 ◦C for 15 s; and 60 ◦C for 15 s. Amplification specificity
was confirmed by dissociation curve analysis and the specificity of amplified products
was tested on agarose gel. Control without template (NTC) was included in each run.
Post-run data were analysed using LinRegPCR software v.11.1. [22,23] which enables the
calculation of the starting concentration of amplicon (“no value”). No value is expressed in
arbitrary fluorescence units and is calculated by considering PCR efficiency and baseline
fluorescence. “No value” determined for each technical replicate was averaged and the
averaged “no values” were divided by the “no values” of the endogenous control. The
statistical analysis of qPCR data was performed using GraphPad v.6.01.

2.4. Determination of PSA Values in Blood

Peripheral blood samples were collected by the venepuncture of cubital vein in the sit-
ting position punctured by one laboratory staff person, in 6 mL Vaccuete® serum tubes with
clot activator (red cap), (Greiner Bio-One, Kremsmünster, Austria) according to national
recommendations for venous blood sampling. Serum samples were centrifuged within 4 h
and the analyses of PSA were made within 2 h of centrifugation. Blood for serum testing
was centrifuged for 10 min at 2150× g at 4 ◦C on Hettich ROTINA35 centrifuge (Hettich,
Germany). Sera samples were measured on Roche Cobas e601 (Roche Diagnostics GmbH,
Mannheim, Germany) automated immunochemistry analyser with analytical principle of
electrochemiluminescence reaction, using original Roche assays, calibrators, and controls.

2.5. Statistical Analyses

The Shapiro–Wilk test was used to test data normality. Statistical differences in PSA
values as well as in the alpha RNA level in four groups of patients and controls were
tested using Kruskal–Wallis test. The alpha satellite RNA level of patients belonging to
four groups and of the control group were displayed in boxplots and were tested for
statistical significance using the parametric 2-tailed Welch’s t test if the data had normal dis-
tribution (controls, groups A and B) and non-parametric Mann–Whitney test if the data had
non-normal distribution (groups C and D). The correlation between the alpha satellite RNA
and PSA levels was assessed using Spearman’s rank correlation. The diagnostic potential
of the alpha satellite RNA level for distinguishing metastatic prostate cancer patients and
controls were evaluated by computing receiver operating characteristic (ROC) curves and
the results were quantified by the area under the curve (AUC) in the pROC [24] package.
The statistical analyses were performed using R software [25] and graphs were created
using ggplot2 [26] package. p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Alpha Satellite RNAs Level in the Blood of Prostate Cancer Patients—qPCR Analysis

We isolated intracellular RNA from whole blood which was collected from prostate cancer
patients belonging to four groups representing different stages of disease: A—representing
patients with metastatic hormone-sensitive prostate cancer; B—patients with metastatic
castration-resistant cancer; C—patients with localised hormone-sensitive prostate cancer;
and D which included patients with newly diagnosed localised prostate cancer before
receiving hormone or any other treatment. In contrast to group D, patients from groups A–C
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were all under hormone treatment (LHRH agonists). In parallel, we isolated intracellular
RNA from the control groups which included 27 healthy male individuals. The number of
samples of each group, average age as well as age range is shown in Table 1.

To measure the level of alpha satellite RNA in the total intracellular RNA isolated
from the whole blood of patients from four different groups (A–D) as well as from healthy
controls, we used quantitative real-time PCR (qPCR) analysis. The obtained qPCR results
(Supplementary File S1) were analysed by Kruskal–Wallis test which is used to analyse
the differences among multiple groups of samples: control and four groups of patients,
and it revealed significant difference (p = 1.4 × 10−4). The 2-tailed Welch’s t test and
Mann–Whitney test were used to see the difference among the pairs of samples and its
statistical significance. The results reveal the increased level of alpha satellite RNA in
two groups of metastatic prostate cancer patients relative to the control group (Figure 1).
An increase of 2.8× with significant statistical support (p = 2.7 × 10−4) is characteristic of
group B—with metastatic castration-resistant prostate cancer—while for group A—with
metastatic hormone-sensitive prostate cancer—the increase is 1.4× but not statistically sig-
nificant (p = 0.11). Within the other two groups of localised prostate cancers, namely C and
D, there is no statistically significant difference in the level of alpha satellite RNA relative
to the control (p > 0.05). The similarity in the alpha satellite RNA levels in groups C and D
suggest that the level is not affected by drug treatment. There is also a significant increase
in alpha satellite RNA level in group B relative to group A—metastatic hormone-sensitive
prostate cancer of 2.0× (p = 4 × 10−3) as well as to groups C and D of 2.9× (p = 4 × 10−6)
and 1.7× (p = 0.017), respectively.
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Figure 2. The diagnostic potential of alpha satellite RNA levels is determined by computing ROC 
curves and quantifying AUC values. The alpha RNA level shows the highest discriminatory power 

Figure 1. The level of intracellular alpha satellite RNA from the whole blood of control healthy
individuals and of prostate cancer patients belonging to groups: A—metastatic hormone-sensitive
on treatment; B—metastatic castration-resistant on treatment; C—localised hormone-sensitive on
treatment; D—localised hormone-sensitive before any treatment. RNA level is obtained by RT-qPCR
and the normalised average no value for each sample was used. Differences are analysed by 2-tailed
Welch’s t test for groups A, B, and the control, and Mann–Whitney for group C and group D; median
values are indicated and error bars represent standard deviations. Statistically significant differences
of group B relative to groups A, C, D, and the controls, respectively, are indicated by stars (*** denotes
p < 10−3, ** p < 10−2, * p < 0.05).



Genes 2022, 13, 383 6 of 12

The results show that the level of alpha satellite RNA can be used to distinguish
between different stages of disease: metastatic castration-resistant relative to the metastatic
castration-sensitive as well as metastatic castration-resistant relative to localised prostate
cancer and to the healthy controls, respectively, and could serve as a potential diagnostic
biomarker of metastatic state, particularly of castration-resistant metastatic prostate cancer.
ROC curves and the calculation of AUC values (Figure 2) reveals that based on alpha
satellite RNA levels, metastatic castration-resistant prostate cancer can be discriminated
with high accuracy from primary localised tumours (AUC 0.85) and controls (AUC 0.85).
Discrimination between metastatic castration-resistant and metastatic hormone-sensitive
prostate cancer (B vs. A) is also acceptable (AUC 0.74).
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Figure 2. The diagnostic potential of alpha satellite RNA levels is determined by computing ROC
curves and quantifying AUC values. The alpha RNA level shows the highest discriminatory power
for distinguishing group B metastatic castration-resistant prostate cancer from: controls (AUC 0.848);
group C (AUC 0.853); group A (AUC 0.744); and group D (AUC 0.717).

3.2. PSA Values in Four Groups of Prostate Cancer Patients

The most clinically accepted biomarker for prostate cancer is prostate-specific antigen
(PSA) which is a kallikrein-related serine protease produced by prostate epithelial cells.
PSA levels are usually elevated in prostate cancer patients. We checked PSA values in
the blood of four groups of patients (A–D) as well as controls and performed statistical
analyses of log PSA values by Kruskal–Wallis test which is used to analyse differences
among multiple groups of samples: control and four groups of patients, and it revealed
significant difference (p = 1.7 × 10−11). The Mann–Whitney test revealed no significant
difference between the PSA level in group B relative to group A (p = 0.9074) and to group
D (p = 0.5063), while the PSA level in the three groups A, B, and D is significantly increased
relative to the control and to group C (p < 10−4). PSA values between control and group C
are not significantly different (p = 0.300; Figure 3).

The ROC curve analysis of PSA levels revealed discrimination between the controls
and group D corresponding to an AUC value of 0.912 and between controls and two groups
of metastatic cancers A and B with AUC values of 0.8052 and 0.9256, respectively. However,
discrimination between metastatic hormone-sensitive (group A) and metastatic castration-
resistant (group B) was low with an AUC of 0.512, revealing the much better performance
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of alpha satellite RNA (AUC 0.744) than PSA in discriminating two stages of metastatic
prostate cancer. The correlation between alpha satellite RNA level and PSA level was
also assessed in each group of patients (A–D) using Spearman’s rank correlation but no
statistically significant correlation was found in any of the group (group A: r = −0.098,
p = 0.7084; group B: r = 0.3978, p = 0.1602; group C: r = −0.2643, p = 0.1659; group D:
r = −0.1056, p = 0.6968).
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Figure 3. LogPSA values in the blood of control healthy individuals and of prostate cancer patients be-
longing to groups: A—metastatic hormone-sensitive on treatment; B—metastatic castration-resistant
on treatment; C—localised hormone-sensitive on treatment; D—localised hormone-sensitive before
any treatment. Differences between groups are analysed by Mann–Whitney and Kruskal–Wallis
statistical tests, and median values are indicated and error bars represent standard deviations. Statis-
tically significant differences of control relative to groups A, B. and D, respectively, are indicated by
stars (**** denotes p < 10−4, ns means not significant).

4. Discussion

Metastatic castration-resistant prostate cancer (mCRPC) is a clinical state in the tra-
jectory of prostate cancer evolution characterised by disease progression despite patient
castration of testosterone. Fundamentally, prostate cancer cells are exquisitely sensitive to
testosterone suppression achieved by androgen-deprivation therapy via LHRH agonists.
The hormone-sensitive state can last several years even in the presence of metastatic disease
and is characterised by decreased or stable PSA and the resolution of metastatic lesions on
imaging studies. However, castration resistance ultimately emerges as a consequence of
the strong selective pressure of hormonal therapy exerted on prostate cancer cells [27]. In
the spectrum of prostate cancer clinical course, mCRPC represents the final and incurable
stage of disease with a survival rate of less than 3 years despite recent therapeutic break-
throughs. The key underlying mechanism of castration resistance is centred around the
preserved activity of androgen receptor (AR) signalling, a crucial target of novel therapies
for mCRPC. Different means of AR autonomy and therapeutic escape in mCRPC include
AR protein overexpression, gene amplification, and/or AR mutations which all lead to
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the uninterrupted transduction of the AR signal and the intratumoural production of
androgens [28–30].

At the genomics level, there are a number of differences between mCRPC and localised
or hormone-sensitive metastatic prostate cancer. In addition to prevalent AR mutations,
tumour samples from patients with mCRPC are enriched for mutations in TP53, DNA
damage repair genes, RB1 and PTEN, contributing to their loss-of-function and overall
genomic instability [31,32]. Following that path, the discovery of targetable genetic defects
in mCRPC opened a new avenue of targeted treatment, i.e., the use of PARP inhibitors for
BRCA-mutated prostate cancer which is the most prevalent genomic event in mCRPC [33].
Recently, the co-existence of androgen-dependent and androgen-independent pathways
was discovered in mCRPC, explaining the limited therapeutic efficacy of novel androgen
pathway-targeted therapies in the general population of patients with mCRPC [34]. Finally,
mCRPC is characterised by a large number of circulating tumour cells (CTCs) in the
patient’s blood. Conversely, the presence of CTC in localised prostate cancer is considered
to be an exceptional event. A less cohesive microenvironment of metastatic deposits in
mCRPC facilitates the shedding of both individual tumour cells and cell-free DNA in the
blood stream. Similar mechanisms may apply to the identification of alpha satellite RNA in
the blood of patients with mCRPC.

The increased expression of pericentromeric satellite DNAs such as satellite II and
alpha satellite DNA is characteristic of epithelial cancers including prostate cancer [7,35]
as well as for hematopoietic malignancies [36]. Here, we observe significantly increased
levels of alpha satellite RNA in the blood of patients with metastatic castration-resistant
prostate cancer as well as an increase in patients with metastatic hormone-sensitive prostate
cancer, while in the blood of patients with primary localised prostate cancer, no signifi-
cant change relative to the controls was detected. One of the possible explanations for
the increase in the alpha satellite RNA level in the blood of prostate cancer patients in
metastatic stages of disease might be related to the transfer of alpha satellite RNA from
prostate cancer cells to blood cells mediated by exosomes. The exosomes are a class of
extracellular vesicles released by all cells, often detected in tumour microenvironments,
which remove excess and/or unnecessary constituents from cells including harmful RNA
and DNA [37,38]. Exosomes can transfer RNA or DNA which they contain to other cells,
and in addition they can activate various signalling pathways in cells they fuse or interact
with [38,39]. We propose that excess satellite RNA from prostate cancer can be transferred
and delivered by exosomes to blood cells resulting in an increase in the total RNA level
in blood cells. In addition, the interaction of exosomes with blood cells might activate
some signalling pathways which could affect the heterochromatin structure and expression
of satellite sequences located therein. In addition to the lysine-specific demethylase 2A
(KDM2A) whose downregulation affects chromatin in prostate cancer [6], there are other
(hetero)chromatin modifiers such as sirtuins, a family of NAD+-dependent deacetylases
which coordinate cellular responses to different types of stress and are key players in the
protection and maintenance of genomic integrity [40]. Of particular importance for the
preservation of constitutive heterochromatin structure are the sirtuins SIRT1 and SIRT6
which maintain the epigenetic silencing of repetitive elements [41] by regulating the activity
of the histone methyl-transferase SUV39H1 responsible for the spreading of the silencing
mark H3K9me3 [40,42]. In addition, SIRT6 also deacetylates histone H3K18ac in pericen-
tric heterochromatin and its depletion results in the overexpression of pericentromeric
repeats [43]. It could be proposed that changes in the activation of KDM2A, sirtuins SIRT1
and SIRT6 or of some other (hetero)chromatin modifiers might arise not only in the prostate
cancer cells [44] but possibly mediated by exosomes in the blood of prostate cancer patients
at specific stages, affecting heterochromatin structure and the expression of repeats located
therein. It is also possible that, as mentioned above, circulating tumour cells (CTCs) which
are present in the blood of patients with metastatic prostate cancer [45] could precipitate
with blood cells, contributing to the increased level of alpha satellite RNA, although due to
the low number of CTCs relative to blood cells, this contribution is probably not significant.
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As revealed by our results, the alpha satellite RNA level was able to discriminate
metastatic hormone-sensitive from metastatic castration-resistant prostate cancer (groups
A and B) as well metastatic castration-resistant cancer under treatment (B) from newly
diagnosed localised prostate cancer before receiving a hormone or any local treatment
(group D), from localised prostate cancer under treatment (group C) and from controls.
On the other hand, PSA has high discrimination power for distinguishing controls from
localised cancer before treatment (group D) as well as from metastatic cancers under
treatment but cannot distinguish between metastatic hormone-sensitive and metastatic
castration-resistant prostate cancers (groups A and B). Based on our investigation, the alpha
satellite RNA level can complement PSA as a biomarker for monitoring the progression of
metastatic prostate cancer and for the diagnosis of metastatic castration-resistant stage of
disease. Considering the possible use of satellite RNA as a cancer biomarker, a circulating
satellite RNA level in blood serum quantified by the sensitive method of tandem repeat
amplification by nuclease protection (TRAP) combined with droplet digital PCR (ddPCR)
enabled the discrimination of patients with pancreatic ductal carcinoma (PDAC) from
healthy controls [46]. Increased levels of circulating human satellite II in the plasma of
breast, gastric, lung and bile cancers as well as sarcoma and Hodgkin’s lymphoma was
detected [47]. The present study reveals for the first time that not only serum or plasma-
circulating satellite RNA but also alpha satellite RNA in blood cells could possibly serve as
an indicator of a specific stage of cancer. In all these studies, the satellite RNA was used as
a biomarker because its level is significantly increased in different cancers [7] and can be
tested by quantitative real-time PCR or droplet digital PCR. Considering satellite DNA as a
cancer biomarker, satellite copy number variation is characteristic for some cancers [48];
however, its detection is more complex and often requires a development of new assays [49]
and technologies such as nanoplate-based digital PCR.

Further studies are necessary to explain the observed upregulation of intracellular al-
pha satellite RNA levels in the blood of prostate cancer patients at a specific metastatic stage
and to disclose whether this phenomenon is specific to this pathological condition only.

5. Conclusions

The overexpression of satellite DNA is characteristic of many human cancers; however,
it has not been investigated whether the satellite RNA level is changed in the whole blood
of cancer patients. In this study, we analysed alpha satellite RNA level in the whole
blood of prostate cancer patients at different stages of disease. The results reveal that the
alpha satellite RNA level in the whole blood cells can discriminate castration-resistant
metastatic prostate cancer from localised primary tumours and healthy controls as well
as from metastatic hormone-sensitive prostate cancer with high accuracy. We discuss the
possible mechanism which could result in the increased level of blood intracellular alpha
satellite RNA at a specific metastatic stage of prostate cancer and propose alpha satellite
RNA as a potential prostate cancer diagnostic blood biomarker.
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