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N. Non-Covalent Binding of

Tripeptides-Containing Tryptophan

to Polynucleotides and

Photochemical Deamination of

Modified Tyrosine to Quinone

Methide Leading to Covalent

Attachment. Molecules 2021, 26, 4315.

https://doi.org/10.3390/molecules

26144315

Academic Editor: Miguel Vázquez

López

Received: 23 June 2021

Accepted: 13 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Organic Chemistry and Biochemistry, Rud̄er Bošković Institute, Bijenička cesta 54,
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Abstract: A series of tripeptides TrpTrpPhe (1), TrpTrpTyr (2), and TrpTrpTyr[CH2N(CH3)2] (3) were
synthesized, and their photophysical properties and non-covalent binding to polynucleotides were
investigated. Fluorescent Trp residues (quantum yield in aqueous solvent ΦF = 0.03–0.06), allowed
for the fluorometric study of non-covalent binding to DNA and RNA. Moreover, high and similar
affinities of 2×HCl and 3×HCl to all studied double stranded (ds)-polynucleotides were found
(logKa = 6.0–6.8). However, the fluorescence spectral responses were strongly dependent on base
pair composition: the GC-containing polynucleotides efficiently quenched Trp emission, at variance
to AT- or AU-polynucleotides, which induced bisignate response. Namely, addition of AT(U) polynu-
cleotides at excess over studied peptide induced the quenching (attributed to aggregation in the
grooves of polynucleotides), whereas at excess of DNA/RNA over peptide the fluorescence increase
of Trp was observed. The thermal denaturation and circular dichroism (CD) experiments supported
peptides binding within the grooves of polynucleotides. The photogenerated quinone methide (QM)
reacts with nucleophiles giving adducts, as demonstrated by the photomethanolysis (quantum yield
ΦR = 0.11–0.13). Furthermore, we have demonstrated photoalkylation of AT oligonucleotides by QM,
at variance to previous reports describing the highest reactivity of QMs with the GC reach regions of
polynucleotides. Our investigations show a proof of principle that QM precursor can be imbedded
into a peptide and used as a photochemical switch to enable alkylation of polynucleotides, enabling
further applications in chemistry and biology.

Keywords: DNA; photodeamination; quinone methide; RNA; tripeptide; tryptophane

1. Introduction

Non-covalent binding of peptides/proteins and DNA or RNA is an important bio-
logical process enabling transcription of DNA and cell replication [1,2]. Understanding
the recognition process between polynucleotides and peptides and being able to affect
these events [3] provide immense scientific advantage, enabling numerous applications in
biochemistry, biology, and medicine. Therefore, binding of peptides to polynucleotides has
been intensively investigated [4,5]. Examples of DNA-binding peptides peptides/proteins
are numerous, for instance zinc finger [6], or leucine zipper motives [7], as well as many
other, even small peptides [4]. Furthermore, a special attention was devoted to syn-
thetic peptides that selectively recognize DNA [8,9] or DNA-binding oligopeptides which
can be modulated by light [10]. Peptide-binding units can easily be functionalized by
fluorophores [11,12], providing facile methods for DNA fluorescent labeling and visualiza-
tion [13].
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Schmuck et al. designed a structurally modified peptide with incorporated aminon-
aphthalimide as a fluorophore, which binds to nucleoside triphosphates [14]. Furthermore,
Schmuck et al. used peptides rich in lysine for the binding to polynucleotides, whereas
fluorescence response was enabled by tryptophan and pyrene [15] or fluorescence reso-
nance energy transfer (FRET) between naphthalene and dansyl [16]. Piantanida et al. have
recently explored the binding of a series of structurally modified fluorophore-peptides
to polynucleotides [17–20]. The polynucleotide-binding units in these molecules were
phenanthridines [19], pyrenes [20], or guanidinocarbonylpyrroles [17,18] connected to
the peptide scaffolds. The binding was characterized by generally high association con-
stants and significant changes in fluorescence intensity. However, canonic amino acids
can also be involved in the polynucleotide recognition, as it is the case in nature. For
example, binding to DNA was demonstrated for tripeptides containing bis-tryptophan
units [21,22]. Owing to tryptophan fluorescence, the binding can also be monitored by
fluorescence spectroscopy.

Quinone methides (QMs) are reactive intermediates in the chemistry and photo-
chemistry of phenols [23], that have received scientific attention due to applications in
synthesis [24,25] and biological activity [26,27]. Particularly appealing for the application
in biological systems is the fact that QMs can be generated in photochemical reactions
under mild conditions [28,29]. The biological effects of QMs were connected to their reac-
tivity with proteins [30–32], nucleobases [33], DNA [34–37], and G-quadruplexes [38–41].
Reversible DNA cross-linking by QMs [42–44] and intracellular formation of QMs followed
by DNA cross-linking is believed to lead to the antiproliferative action of the anticancer
antibiotic mitomycine [45–47]. However, for the efficient DNA alkylation and cross-linking,
it is important to attach to the QM precursor units to groups that can bind to DNA by non-
covalent interactions [35]. In that way, the QM precursor is positioned in the proximity to
DNA making the reactivity with DNA more likely in competition with hydrolysis [48–51].

These findings prompted us to investigate the non-covalent binding to polynucleotides
for a series of tripeptides 1×HCl–3×HCl (Figure 1) containing bis-tryptophan units,
wherein the C-terminus contained Phe, Tyr, or modified Tyr, which is photochemically
reactive [52]. Upon excitation by light, the modified tyrosine undergoes photodeamination
delivering QM [53,54], and if such peptide is non-covalently bound to DNA or RNA,
that would allow QM to react with DNA/RNA and induce permanent covalent damage.
Herein we demonstrate that tripeptides 1–3 bind to DNA by non-covalent interactions.
The additional positive charge in the photoreactive group in 3 increases its solubility in
H2O, and enhances its binding ability with DNA. Furthermore, by employing preparative
irradiations we show that 3 undergoes photodeamination and delivers QMs. Laser flash
photolysis (LFP) was conducted to detect the reactive intermediates in photochemistry of 3,
whereas fluorescence spectroscopy was utilized to characterize photophysical properties of
all tripeptides, which is important for the study of binding to polynucleotides. Although
photogenerated QM from 3 does not react with nucleotides, photoinduced alkylation
of polynucleotides by 3 is feasible, as demonstrated by the reaction of double-stranded
oligonucleotides. Therefore, incorporation of the photoswitchable unit in peptides increases
the ability for DNA binding and can be used in photoinduced attachment of fluorophores
in DNA labeling.
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the use of N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)car-
bodiimide (EDC) [55]. In the first step, N-Boc-L-Trp-OH was activated by EDC and trans-
formed to the succinimide ester N-Boc-L-Trp-OSu, which was isolated (Scheme 1). The 
following coupling with H-L-Trp-OH afforded dipeptide N-Boc-L-Trp-L-Trp-OH in excel-
lent yield. The free carboxylic functional group of the dipeptide was activated again by 
transforming it to a succinimide ester, which was coupled with Phe, Tyr, or modified Tyr, 
prepared according to the literature precedent [52]. The coupling afforded desired pep-
tides 1–3 in moderate yields. For the study with polynucleotides removal of the Boc was 
facilitated by the treatment with HCl dissolved in dry EtOAc, whereupon HCl salts were 
obtained. 
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Figure 1. Investigated tripeptides 1×HCl–3×HCl.

2. Results and Discussion
2.1. Synthesis

The synthetic protocol for the preparation of tripeptides 1–3 was based on the standard
Boc-chemistry in solution where the activation of carboxylic acids was achieved by the
use of N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC) [55]. In the first step, N-Boc-L-Trp-OH was activated by EDC and transformed to
the succinimide ester N-Boc-L-Trp-OSu, which was isolated (Scheme 1). The following
coupling with H-L-Trp-OH afforded dipeptide N-Boc-L-Trp-L-Trp-OH in excellent yield.
The free carboxylic functional group of the dipeptide was activated again by transforming
it to a succinimide ester, which was coupled with Phe, Tyr, or modified Tyr, prepared
according to the literature precedent [52]. The coupling afforded desired peptides 1–3 in
moderate yields. For the study with polynucleotides removal of the Boc was facilitated by
the treatment with HCl dissolved in dry EtOAc, whereupon HCl salts were obtained.
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2.2. Photophysical Properties

Photophysical properties of 1–3, and the corresponding HCl salts, are important
for the study of their binding to polynucleotides, as well as for deeper understanding
of the photochemical reactivity of 3. Absorption and fluorescence spectra for 1–3 were
measured in CH3CN (Figures S1–S8 in the SI), whereas assays with biomacromolecules for
the corresponding salts were conducted in aqueous cacodylate buffer (pH = 7, 50 mM), to
which some DMSO was added to assure solubility. Absorption spectra of 1–3 are shown in
Figure 2. In the low energy region, the absorption band with a maximum at 280 nm and a
shoulder at 290 nm dominate for all tripeptides, the typical for tryptophan. The third amino
acid, Phe, Tyr, or Tyr[CH2N(CH3)2], has only a minor influence on the absorption spectra,
with 1 and 2 showing higher absorptivity than H-Trp-Trp-OH, and 3 lower (Figures S2, S5
and S7 in the SI). The finding suggests that there is some electronic interaction between
the chromophores in the ground state. Due to large aromatic residues, it is plausible that
tripeptides 1–3 form α-helix where the first and the third amino acid are positioned in the
proximity to interact, leading to the hyperchromic effect with 1 and 2, and hypochromic
effect with 3.
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Figure 2. Absorption (a) and normalized emission spectra (b, λex = 280 nm) of 1–3 in CH3CN. Emission properties of 1–3
are dominated by Trp fluorescence, whereas the third amino acid has minor effect on the absorption spectra only.

Fluorescence spectra of 1–3 in CH3CN are characterized by one band with a maximum
at 358 nm for 2 and 3, and 366 nm for 1, the typical for Trp. The position of the maxima and
the shape of the spectra do not depend on the excitation wavelength, indicating that the
emission originates from Trp only. However, fluorescence spectra of 1 in cacodylate buffer
at higher concentration (2 mM) exhibit bathochromic shifts of 10 nm (Figure S3 in the SI),
suggesting aggregation of the molecules. Such an aggregation was not observed for 2 and 3.
Fluorescence spectra of 3 exhibit solvatochromic properties (Figure S8, left, in the SI), which
are in accordance with reports on Trp photophysics [56]. Thus, 3 in CH3CN and 3×HCl
in CH3CN-H2O (1:9), show difference of 23 nm between the maxima of emission spectra,
which is due to different spectral properties of Trp derivatives in solvents of different
polarity and proticity [57]. Understanding spectral and photophysical properties, which
are dependent on solvent polarity and proticity, is important for the study of non-covalent
binding of these peptides to macrobiomolecules including polynucleotides.

Quantum yields of fluorescence (Φf) were measured for 1–3 in CH3CN, and for the
corresponding salts Φf was measured in aqueous solution CH3CN-H2O (1:9), containing
sodium cacodylate buffer (pH = 7.0, 50 mM), (Table 1). N-acetyltryptophanamide (NATA)
in H2O was used as a reference (Φf = 0.14) [58]. Note that Φf for multichromophoric systems
1–3 depends on the excitation wavelength, and we report the average value. However, for
aqueous and non-aqueous solution, Φf is similar for 1 and 2, and about double than Φf for
3, presumably due to photochemical deactivation delivering QMs from 3.
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Table 1. Quantum yields of fluorescence Φf and fluorescence decay times (τf).

Compound Φf (CH3CN) 1 τf (CH3CN) 2/ns Compound Φf (CH3CN-H2O) 3 τf (CH3CN-H2O)/ns

1 0.11 ± 0.03 0.12 ± 0.03 (4%)
3.49 ± 0.06 (96%) 1×HCl 0.06 ± 0.01 -

2 0.11 ± 0.02 0.14 ± 0.03 (5%)
2.69 ± 0.06 (95%) 2×HCl 0.06 ± 0.01 0.36 ± 0.03 (7%)

2.63 ± 0.07 (93%)

3 0.06 ± 0.01 0.24 ± 0.03 (7%)
2.37 ± 0.06 (93%) 3×HCl 0.03 ± 0.01

≈0.03 (11%)
1.62 ± 0.05 (60%)
2.9 ± 0.1 (29%)

1 Quantum yield of fluorescence was measured using NATA in mQ-H2O (Φf = 0.14) [58]. The fluorescence spectra were measured by
exciting at 280, 290, and 300 nm, and the average values of the quantum yields (Equation (S1) in the SI) were calculated. The associated
errors correspond to the maximum absolute deviation. 2 Decay times were measured by TC-SPC. Fluorescence decays were obtained by
exciting samples at 280 nm and detecting fluorescence at 370 nm. Relative contribution of decay components is given in parenthesis. The
associated errors correspond to maximal standard deviations obtained from the fitting. 3 CH3CN-H2O (1:9), containing sodium cacodylate
buffer (pH = 7.0, 50 mM).

Decays of fluorescence for 1–3 in CH3CN, as well as for 2×HCl and 3×HCl in
CH3CN-H2O (1:9) were measured by time-correlated single-photon counting (TC-SPC)
upon excitation at 280 nm (Table 1 and Figures S9 and S10 in the SI). None of the flu-
orescence decays could be fit to single exponential function, which is anticipated for
multichromophoric systems. Furthermore, it is known that Trp derivatives often do not
exhibit single exponential decay due to the presence of two excited states, La and Lb [59].

2.3. Photochemistry

Photodeamination of aminomethylphenoles in aqueous CH3OH leads to photomethan
olysis products via QM intermediates [52,53]. To demonstrate that photometahnolysis of
tripeptide 3 also takes place, we performed preparative irradiation of the fully protected
compound (bearing Boc and Bn) to make the photoproduct isolation easier. The irradiations
were conducted in CH3OH solutions at 300 nm and the composition of the solutions was
analyzed by HPLC. Methanolysis of 3 run to the conversion of 65% gave methyl ether
3-OMe, which was isolated in 22% yield (Scheme 2). In addition, photomethanolysis of
salt 3×HCl was conducted, but it was analyzed by HPLC only. It gave cleanly only one
photoproduct, presumably the photomethanolysis ether.
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Efficiency of the photomethanolysis reaction (ΦR) was measured by the use of a
primary actinometer, KI/KIO3 (Φ254 = 0.74) [58,60], and the samples were excited at
254 nm. The efficiency was measured for 3 and 3×HCl, providing similar values of
ΦR = 0.13 ± 0.01 and ΦR = 0.11 ± 0.02, respectively. Relative efficient formation of the
photomethanolysis product is highly indicative that deamination takes place via a QM
intermediate, as reported in the literature precedent [52,53].

2.4. Laser Flash Photolysis (LFP)

To detect QM intermediates and other plausible intermediates in the photochemistry
of tripeptide 3, LFP was used. The samples were excited with a Nd:YAG laser at 266 nm.
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The measurements were performed in N2 and O2-purged CH3CN solution, where O2
was expected to quench triplets and radicals, but not QMs. Moreover, the spectra and
decay kinetics were measured in CH3CN and CH3CN-H2O (1:1) where the difference was
expected due to excited state proton transfer (ESPT) pathways, possible in aqueous solvent
only [61–64] (for all transient absorption spectra and the associated decay kinetics see
Figures S11–S37).

In Ar-purged CH3CN solution of 3 we detected two transients absorbing over the
whole spectrum with a maximum at ≈350 nm. The lifetimes of the transients were
200 ± 50 ns, probably corresponding to the triplet excited state or some radical (assignment
based on the quenching by O2), and 450 ± 100 µs tentatively assigned to QM-3 since in
the O2-purged solution it has a similar lifetime, ≈400 µs. The spectra show additional
transient absorbing at ≈350 nm and ≈550 nm that is not quenched by O2. It may corre-
spond to species generated from Trp, such as indolyl radical-cation and N-radical [65–67].
In the aqueous Ar-purged solution of 3 two transients were detected with the lifetimes of
10–30 ns, probably corresponding to the triplet excited state or some radical and the one
with the lifetime 190 ± 10 µs, tentatively assigned to the QM since it is not quenched by O2.
In O2-purged solution the longest-lived transient has a similar lifetime, ≈150–200 µs.

In the LFP experiments for the salt 3×HCl, in Ar-purged solution we detected three
transients with the lifetimes of ≈10 ns, probably corresponding to the triplet excited state
or some radical, 10.6 ± 0.6 µs, not assigned and 1.3 ± 0.6 ms, tentatively assigned to the
QM. In O2-purged solution we detected a similar long-lived transient with the lifetime,
≈0.5–10 ms whose precise determination of decay kinetics was difficult due to very low
intensity and long decay time.

Since the very low intensity of the transient (∆A < 10−3) that was tentatively assigned
to QM-precluded quenching experiments, we performed control LFP experiments for 2,
where the formation of QM is not possible. Figure 3 shows transient absorption spectra
of 2 and 3 recorded after a delay of 27 µs after the laser pulse, revealing some difference
at 300–400 nm, which may be assigned to the presence of QM based on the position of
the anticipated maximum in the absorption spectra [52,53]. This long-lived transient with
the lifetime of ≈400 µs was seen from 3 (but not from 2), we therefore assigned to QM-3.
Interestingly, in the aqueous solution, a difference between the transient absorption spectra
between 2 and 3 was not observed, presumably due to pronounced formation of N-Trp
radicals from both peptides, in the process that involves photoionization to radical cation
and its deprotonation [65–67].
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Figure 3. Transient absorption spectra of optically matched (A266 = 0.30) O2-purged solution of 3 in 
CH3CN (c = 6.1 × 10−5 M) and 2 in CH3CN (c = 2.95 × 10−5 M). The spectra were measured 27 μs after the 
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photochemically nonreactive compound 2 and reactive 3 were assigned to the presence of QM. 

Figure 3. Transient absorption spectra of optically matched (A266 = 0.30) O2-purged solution of 3 in
CH3CN (c = 6.1 × 10−5 M) and 2 in CH3CN (c = 2.95 × 10−5 M). The spectra were measured 27 µs
after the laser pulse at 266 nm, laser power ≈19 mJ/pulse. The difference in the transient absorption
spectra of photochemically nonreactive compound 2 and reactive 3 were assigned to the presence
of QM.
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2.5. Non-Covalent Binding to Polynucleotides
2.5.1. Fluorescence Titrations

The moderate fluorescence of the studied 1×HCl–3×HCl allowed fluorescence titra-
tions with various double stranded (ds)-DNA/RNA, whereby we used for excitation
λexc = 295 nm (selective for tryptophan) to avoid absorbing the light by increasing the
amounts of DNA/RNA (for all data see Figures S38–S54 in the SI).

For 1×HCl, 20% DMSO had to be added to the solution to increase the solubility of
the peptide in H2O and for that reason only preliminary titration with calf thymus-DNA (ct-
DNA) was performed (Figure S38). For better solubility 2×HCl and 3×HCl titrations were
performed with all DNA/RNA, resulting in quite different emission response. Namely,
addition of guanine-containing DNAs (ct-DNA and GC-DNA) exclusively quenched emis-
sion of both, 2×HCl (Figure S39) and 3×HCl (Figure 4). At variance, addition of AT-DNA
caused either very small changes (2×HCl, Figure S40) or bisignate changes: (a) quenching
of emission of 3×HCl (Figure 4) at excess of dye (r[dye]/[DNA] > 0.5) followed by (b)
emission increase at an excess of DNA (r < 0.5). The addition of AU-RNA yielded also
biphasic changes with much more pronounced emission increase (3×HCl Figure 3 and
2×HCl Figure S42).
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Further, we processed the titration data collected at excess of DNA/RNA-binding
sites over dye (r[dye]/[DNA] > 0.25) by nonlinear regression analysis according to the
Scatchard model (McGhee, von Hippel formalism) [68], to calculate the binding constants
(Table 2). The affinities of 2×HCl, 3×HCl to all studied ds-polynucleotides were simi-
lar (logKa = 6.0–6.8), thus suggesting that the observed difference in emission response
(Figure 4b, Table 2) is not a result of the binding strength, but more likely the result of fine
differences in positioning of the fluorophore within the DNA/RNA-binding site, affecting
the Trp photophysical properties.

Comparison of fluorescence responses of synthetic DNA/RNAs can be correlated to
the corresponding secondary structures. Namely, AT-DNA minor groove size and shape is
excellently suited for small molecule binding [69,70], allowing also the insertion of dimeric
species at excess of dye over DNA-binding sites (r[dye]/[DNA] > 0.5) [71], which can at
excess of DNA (r < 0.25) de-aggregate and each molecule binds to individual binding site.
At contrast to AT-DNA, GC-DNA is characterized by guanine amino groups protruding into
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minor groove, which sterically allows insertion of only single molecules. Moreover, guanine
is the nucleobase with the lowest oxidation potential [72], allowing for photoinduced
electron transfer (PET) between the peptide and guanine and leading exclusively to the
fluorescence quenching. PET has been also documented for some 4,9-pyrene and acridine
derivatives, which showed guanine-induced quenching of emission [73]. Finally, AU-RNA
is well-known for narrow and deep, exceedingly hydrophobic major groove, which can
bind small molecules, and due to efficient H2O exclusion yield strong emission increase of
hydration-sensitive fluorophores (like Trp in this case).

Table 2. Binding constants and spectroscopic properties of complexes (log Ka
1/Int 2) of 1–3×HCl

with ds-polynucleotides, calculated by processing fluorometric titrations (c = 3× 10−6 M), at pH = 7.0,
sodium cacodylate buffer 50 mM.

ct-DNA p(dAdT) 1 p(dGdC) 2 pApU

1×HCl 5.7/0.62 3 - - -
2×HCl 6.8/0.69 - 4 6.5/0.3 5.0/3 5

3×HCl 6.5/0.24 5.9/1.02 6.4/0.48 6.0/1.48
1 Processing of the titration data by Scatchard equation gave values of ratio n[bound dye]/[polynucleotide]
= 0.2 and 0.4, for easier comparison all log Ka values were re-calculated for fixed n = 0.3. Thus, the error of
binding constant value varies within the half order of magnitude, and only differences of at least one order of
magnitude can be considered as significant. Correlation coefficients were >0.98 for all calculated Ka. Minimally
two fluorescence titrations were performed (see details in the experimental). 2 Int—ratio of fluorescence intensity
of the dye/polynucleotide complex calculated by Scatchard equation, divided by fluorescence intensity of the
dye. 3 Performed in 20% DMSO/buffer, and therefore, not comparable to other values obtained in buffer. 4 Too
small emission changes for accurate processing of data. 5 Almost linear increase of emission allowed only
approximation of logKa and Int.

2.5.2. Thermal Denaturation

The thermal denaturation experiments provide information about the ds- polynu-
cleotide helix thermal stability as a function of interaction with added small molecules [74].
The difference between the Tm value of free ds-polynucleotide and a complex with a small
molecule (∆Tm value) is an important factor in the characterization of small molecule/ds-
polynucleotide interactions. For instance, moderate to strong stabilization (∆Tm > 5 ◦C)
supports pronounced intercalative or minor groove-binding interaction [70], whereas weak
or negligible stabilization (∆Tm = 0–5 ◦C) suggests a binding process driven mostly by
hydrophobic effect accompanied by weak H-bonding and/or electrostatic interactions—
usually excluding classical intercalation as a binding mode.

Since only 3×HCl showed measurable interaction with ds-DNA/RNA in fluorescence
titrations, we investigated the impact of 3×HCl on thermal denaturation of ct-DNA. The
compound had only negligible effect to the stability of double helix (Figure S49 and Table S3
in the SI), increasing the melting temperature (Tm) by 0.5 ◦C only, which is within the
experimental error. However, upon irradiation (300 nm, 5 min) of ct-DNA in the presence
of the compound, the thermal stability of ds-DNA decreased (∆Tm = −2.2 ◦C), indicating
destabilization of double helix, which may be due to photochemical alkylation of a single
nucleobase, consequently resulting in steric hindrance of base pair recognition and also
adjacent base pair stacking and thus decreasing the thermal stability of polynucleotide
double helical structure.

2.5.3. CD Experiments

To investigate the mode of binding of peptides 1×HCl–3×HCl to ct-DNA, circular
dichroism (CD) spectroscopy was used. CD spectroscopy is an useful analytical tool in
the binding study of small molecules to chiral macromolecules such as DNA [75] since it
can provide information on the binding mode to polynucleotide, with distinctive spectral
differences for intercalators and groove-binding derivatives [76,77]. Compounds are chiral
and possess CD spectra, and measurable positive signals are located around 235 nm, thus
not interfering with the positive CD bands of DNA/RNA in the 260–290 nm range.
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Thus, the small decrease of ct-DNA positive band at 275 nm caused by the addition of
3×HCl (Figure 5) can be attributed to binding of small molecule to DNA and consequent
unwinding of DNA double helix to accommodate small molecule, resulting in minor loss
of helicity (noted as CD band decrease). Changes in 230–260 nm range are mostly due to
the additive impact of CD of 3×HCl (Figure 5 UP). Analogously, upon addition of 3×HCl
to GC-DNA and AU-RNA minor decrease of positive bands at 260–290 nm range was
observed (Figures S53 and S55 in the SI), while for AT-DNA the change was negligible
(Figure S52 in the SI). Similar trend was observed in the CD spectra of ct-DNA with 1×HCl
(with 20% DMSO) and 2×HCl (Figures S50 and S51 in the SI).
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In summary, CD and fluorescence titration results, as well as thermal denaturation
experiments, support binding of 1–3 into minor groove of DNAs and major groove of
RNA. Sterically more restricted GC-DNA groove allows only binding of single molecules,
at variance to AT-DNA minor and AU-RNA major groove, which also allow binding of
dimers (only at excess of peptide over DNA/RNA-binding sites).

2.6. Covalent Binding to Polynucleotides

Covalent binding of tripeptide 3 (1 mM) to nucleotides was essayed by irradiation
(300 nm) in the presence of the following nucleotides (10 mM): 2′-deoxyadenosine, 2′-
deoxycytidine, 2′-deoxyguanidine, 2′-deoxyadenosine-5′-diphosphate, 2′-deoxycytidine-
5′-monophosphate, and 2′-deoxyguanidine-5′-monophosphate. However, HPLC-MS and
NMR analyses revealed no trace of any adduct to nucleotide. The finding is in accord with
the Rokita’s results that non-covalent binding of the QM precursors was essential for the
alkylation to occur [35]. The affinity of peptides toward mononucleotides was too low to
ensure close contact in the moment of QM generation. Therefore, we investigated aptitude
of photogenerated QM from 3 to alkylate double stranded DNA strains.

Models for double stranded (ds) DNA were obtained by annealing complementary
oligonucleotides (dG12 with dC12, or dA10 with dT10). After mixing oligonucleotides
in the appropriate concentrations their solutions were heated to 90 ◦C and allowed to
cool slowly to rt to initiate the annealing. Formation of the ds-dG12-dC12 and dA10-
dT10 was demonstrated by the thermal denaturation experiment (Figure S55 in the SI)
and CD spectroscopy (Figure S56 in the SI). The solutions containing the annealed ds-



Molecules 2021, 26, 4315 10 of 18

oligonucleotides in ammonium acetate buffer were analyzed by HPLC (for details see
Table S4 in the SI and Figures S57–S75), where dG12-dC12 shows up as one peak with
the retention time of 7 min (Figure S57) and dA10-dT10 as two signals with the retention
times of 7 min and 19 min, corresponding to the non-protonated and protonated form,
respectively.

The addition of 3×HCl to the solutions of ds-oligonucleotides affected their retention
times on HPLC due to the non-covalent binding and formation of complexes. Thus, in the
presence of 3×HCl the retention time of dG12-dC12 was retarded by ≈0.3 min (Figure S60),
whereas the effect was opposite for the dA10-dT10 where the signal at 7 min appeared
≈0.5 min earlier (Figure S72). Further, we performed irradiations of the mixtures of 3×HCl
with ds-oligonucleotides (300 nm, 15 or 60 min), and the composition of the irradiated
solutions was analyzed by HPLC. As control experiments we performed irradiation of
3×HCl under the same conditions in the same buffered solutions, as well as irradiations of
ds-oligonucleotides. Interestingly, overlapped HPLC chromatograms after the irradiation
3×HCl and dG12-dC12 do not show any new signal which could be attributed to the
photoinduced alkylation of the oligonucleotides (Figures S61–S64), whereas upon the
irradiation of 3×HCl and dA10-dT10 a new broad signal at ≈16.5 min appeared, not seen
in the control irradiation experiments (Figures S71, S73 and S74). This finding is at variance
to previous reports on alkylation of polynucleotides by o-QMs, where the reaction at the
exocyclic guanine NH2 group predominated [33]. The observed preferable alkylation of AT
may be explained by specific binding of 3×HCl to AT-sequence, probably as an aggregate
inserted deeply within the minor groove, whereupon the adenine residues are the site of
attack by QMs. On the contrary, binding of single molecules 3×HCl to the minor groove
of GC-sequence sterically blocked by protruding amino groups left the peptide much more
exposed to the aqueous environment, which upon exposure to irradiation and formation
of QMs lead primarily to hydrolysis [48,49], instead of the alkylation. The results further
indicate that positioning of the QM-precursor in the proximity of the ds-helices probably
plays more important role than the intrinsic reactivity of the QM.

3. Materials and Methods
3.1. General

1H and 13C NMR spectra were recorded at 300 or 600 MHz at rt, using TMS as a
reference and chemical shifts were reported in ppm. Melting points were determined
using a Mikroheiztisch apparatus and were not corrected. IR spectra were recorded on a
spectrophotometer in KBr and the characteristic peak values were given in cm−1. HRMS
were obtained on a MALDI TOF/TOF instrument. Semipreparative HPLC separations
were performed on a Varian Pro Star instrument equipped with a Phenomenex Jupiter
C18 5µ 300A column, using CH3OH/H2O + TFA as an eluent. Analysis of samples was
performed on a Shimadzu HPLC equipped with a diode-array detector, and a Phenomenex
Luna 3u C18(2) column was used. Mobile phase was CH3OH/H2O + TFA. Analyses of the
solutions containing annealed oligonucleotides and 3×HCl were performed on a HPLC
equipped with a PLRP-S 5 µm column and the mobile phase was CH3CN/ammonium
acetate aqueous buffer. Details on methods for the sample analysis are given in the SI.
Irradiation experiments were performed in a reactor equipped with 8 lamps with the output
at 254 or 300 nm (1 lamp 8 W). Solvents for the irradiations were of HPLC purity. Chemicals
were purchased from the usual commercial sources and were used as received. Solvents for
chromatographic separations were used as they are delivered from supplier (p.a. or HPLC
grade) or purified by distillation (CH2Cl2). Preparation of known compounds, N-Boc-L-Trp-
OSu [78], N-Boc-L-Trp-L-Trp-OH [21], N-Boc-L-Trp-L-Trp-OSu [78], N-Boc-L-Trp-L-Trp-L-
Phe-OBn [21], N-Boc-L-Trp-L-Trp-L-Tyr-OBn [21] are given in the supporting information.
Polynucleotides were purchased as noted: poly A-poly U, poly (dGdC)2, poly dG-poly dC,
poly (dAdT)2, ct-DNA (Sigma, St. Louis, MO, USA). Polynucleotides were dissolved in
Na-cacodylate buffer, I = 0.05 M, pH 7.0. ct-DNA was additionally sonicated and filtered



Molecules 2021, 26, 4315 11 of 18

through a 0.45-mm filter. Polynucleotide concentration was determined spectroscopically
as the concentration of phosphates (nucleobases), as described by producer.

3.2. Preparation of N-Boc-L-Trp-L-Trp-L-Tyr[CH2N(CH3)2]-OBn (3)

A solution of N-Boc-L-Trp-L-Trp-OSu (320 mg, 0.65 mmol) in THF-u (6 mL) was added
slowly to a suspension of the salt TFA×H-Tyr[CH2N(CH3)2]-OBn (315 mg, 0.6 mmol) and
NaHCO3 (252 mg, 3.0 mmol) in a mixture of THF and H2O (1:1, 12 mL). The reaction
mixture was stirred at rt over 3 days. THF was removed on a rotary evaporator and the
aqueous residue was acidified by HCl (0.5 M) to the pH value of 2–3. The extraction with
EtOAc (3 × 50 mL) was carried out and the extracts were dried over anhydrous sodium
sulfate. After filtration, the solvent was removed on a rotary evaporator and the crude
residue was purified on a column of silica gel using CH3OH/CH2Cl2 (1→20%) as eluent
to afford the pure oily product (0.14 g, 29%).

1H NMR (CD3OD, 600 MHz) δ/ppm: 7.52 (d, J = 7.5 Hz, 1H), 7.36–7.29 (m, 5H),
7.29–7.25 (m, 3H), 7.11–7.06 (m, 2H), 7.02–6.98 (m, 1H), 6.94–6.89 (m, 4H), 6.86 (d, J = 7.5
Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 5.06 (s, 2H), 4.58–4.49 (m, 2H), 4.23–4.18 (m, 1H), 3.90 (s,
2H), 3.10–3.03 (m, 3H), 2.95 (dd, J = 6.4, 14.0 Hz, 1H), 2.90 (dd, J = 6.4, 14.7 Hz, 1H), 2.81
(dd, J = 6.7, 14.0 Hz, 1H), 2.50 (s, 6H), 1.27 (s, 9H); 13C NMR (CD3OD, 75 MHz) δ/ppm:
177.0 (s, 1C), 173.5 (s, 1C), 172.0 (s, 1C), 156.9 (s, 1C), 138.1 (s, 1C), 138.0 (s, 1C), 137.0 (s, 1C),
133.5 (d, 1C), 132.8 (d, 1C), 129.60 (d, 2C), 129.58 (d, 2C), 129.4 (d, 1C), 128.8 (s, 2C), 128.7
(d, 1C), 124.9 (d, 1C), 124.8 (d, 1C), 122.56 (d, 1C), 122.54 (d, 1C), 119.96 (d, 1C), 119.95 (d,
1C), 119.4 (d, 1C), 119.2 (d, 1C), 116.5 (d, 1C), 112.4 (d, 2C), 110.6 (s, 1C), 110.2 (s, 1C), 81.0
(s, 1C), 68.0 (t, 1C), 59.1 (t, 1C), 57.5 (d, 1C), 55.6 (d, 1C), 55.2 (d, 1C), 43.6 (q, 2C), 37.2 (t,
1C), 28.7 (t, 1C), 28.5 (q, 3C), 28.2 (t, 1C), two singlets were not seen; HRMS (MALDI-TOF)
m/z [M + H]+ calculated for C46H52N6O7 801.3976; found 801.3989.

3.3. Preparation of HCl×H-L-Trp-L-Trp-L-Tyr[CH2N(CH3)2]-OBn (3×HCl)

N-Boc-L-Trp-L-Trp-L-Tyr[CH2N(CH3)2]-OBn (3, 23 mg, 0.03 mmol) was dissolved
in anhydrous EtOAc to which a saturated solution of HCl in EtOAc was added (5 M,
1 mL). The reaction mixture was stirred 1 h at rt and the solvent was removed in vacuum.
The remaining crystals were washed with Et2O and dried on a rotary evaporator. The
product was purified by preparative TLC on silica gel using 20% MeOH/CH2Cl2 as
eluent to afford the oily product (14 mg, 66%). Alternatively, the product was purified by
semipreparative HPLC.

1H NMR (CD3OD, 600 MHz) δ/ppm: 7.57 (d, J = 8.0 Hz, 1H), 7.38–7.21 (m, 9H),
7.09 (dd, J = 7.0, 14.0 Hz, 2H), 7.05–6.97 (m, 2H), 6.91 (d, J = 7.0 Hz, 1H), 6.89–6.85 (m,
1H), 6.76 (dd, J = 1.8, 7.8 Hz, 1H), 6.68 (d, J = 1.8 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 5.05 (s,
2H), 4.66–4.55 (m, 2H), 3.59–3.49 (m, 3H), 3.07 (dd, J = 5.4, 14.6 Hz, 1H), 3.02 (dd, J = 7.0,
14.6 Hz, 1H), 2.96–2.76 (m, 4H), 2.28 (s, 6H); 13C NMR (CD3OD, 150 MHz) δ/ppm: 177.0,
173.6, 172.3, 157.5, 138.2, 138.0, 137.0, 131.5, 131.1, 129.6 (2C), 129.5 (2C), 129.4, 129.3, 128.3,
128.2, 124.9, 124.8, 122.6, 122.5, 122.4, 119.94, 119.86, 119.6, 119.4, 116.6, 112.42, 112.37, 111.0,
110.3, 68.0, 61.7, 56.4, 55.4, 55.0, 44.4, 37.6, 31.5, 28.7; HRMS (MALDI-TOF) m/z [M + H]+

calculated for C41H44N6O5 701.3451; found 701.3445.

3.4. Irradiation of N-Boc-L-Trp-L-Trp-L-Tyr[CH2N(CH3)2]-OBn (3)

Four quartz test tubes were filled with a solution of 3 (4 × 10 mg, 4 × 0.013 mmol) in
CH3OH (4 × 15 mL). The solutions were purged with N2 for 30 min, sealed and irradiated
in a reactor equipped with 8 lamps with the output at 300 nm over 15 min. The composition
of the irradiated solution was analyzed by HPLC. After the irradiation, the solvent was
removed on a rotary evaporator and the residue was purified by TLC on silica gel using
10% CH3OH/CH2Cl2 as an eluent. The pure photoproduct was isolated in the form of oily
substance (9 mg, 22%), and some starting compound was regenerated (8 mg, 20%).

1H NMR (CDCl3, 600 MHz) δ/ppm: 8.01 (br. s., 1H), 7.93 (br. s., 1H), 7.66 (d, J = 8.5 Hz,
1H), 7.41–7.30 (m, 7H), 7.27 (d, J = 8.2 Hz, 1H), 7.22 (dd (t), J = 7.5 Hz, 2H), 7.13 (dd (t), J
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= 7.5 Hz, 2H), 6.92–6.86 (m, 1H), 6.82 (br. s., 1H), 6.63 (d, J = 8.0 Hz, 1H), 6.58 (d, J = 8.0
Hz, 1H), 6.43 (br. s., 1H), 6.22–6.16 (m, 2H), 5.14 (d, J = 12.6 Hz, 1H), 5.08 (d, J = 12.6 Hz,
1H), 4.70 (dd, J = 6.6, 13.8 Hz, 1H), 4.59 (dd, J = 6.4, 12.3 Hz, 1H), 4.43–4.33 (m, 3H), 3.42 (s,
3H), 3.37–3.29 (m, 1H), 3.16–3.10 (m, 1H), 3.07 (dd, J = 7.7, 14.8 Hz, 1H), 2.88 (dd, J = 5.8,
14.1 Hz, 1H), 2.88–2.76 (m, 1H), 2.73–2.67 (m, 1H), 1.33 (s, 9H), all NH and OH signals were
not seen; 13C NMR (CDCl3, 75 MHz) δ/ppm: 171.6 (s, 1C), 171.1 (s, 1C), 170.7 (s, 1C), 155.1
(s, 1C), 136.4(s, 1C), 136.1 (s, 1C), 130.4 (d, 1C), 129.3 (d, 1C), 128.80 (d, 2C), 128.77 (d, 2C),
128.7 (d, 1C), 127.4 (s, 1C), 127.2 (s, 1C), 123.5 (d, 1C), 123.4 (d, 1C), 122.6 (d, 1C), 122.3 (d,
1C), 122.2 (s, 1C), 120.0 (d, 1C), 119.8 (d, 1C), 119.3 (d, 1C), 118.7 (d, 1C), 116.6 (d, 1C), 111.4
(d, 1C), 111.3 (d, 1C), 110.6 (s, 1C), 109.8 (s, 1C), 73.8 (t, 1C), 67.3 (t, 1C), 58.6 (q, 1C), 55.2 (d,
1C), 53.8 (d, 1C), 53.5 (d, 1C), 36.9 (t, 1C), 28.2 (q, 3C), 27.30 (t, 1C), 27.29 (t, 1C), 3 singlets
were not observed; HRMS (MALDI-TOF) m/z [M + H]+ calculated for C45H49N5O8 + Na+

810.3479; found 810.3480.

3.5. Quantum Yield of Methanolysis

Quantum yields for the photomethanolysis reactions for 3 and 3×HCl were deter-
mined by using KI/KIO3 (Φ254 = 0.74) actinometer [58,60], as recently described by us [79].
Solutions of peptides in CH3OH and actinometer were freshly prepared and their concen-
trations were adjusted to have absorbances of 0.4–0.8 at 254 nm. After adjustment of the
concentrations and measurement of the corresponding UV-vis spectra, the solutions were
purged with a stream of N2 (20 min), and then, sealed with a cap. The cells were placed in
a holder which ensured equal distance of all samples from the lamp and were irradiated
at the same time in the reactor with 1 lamp at 254 nm for 10 min. Before and after the
irradiation, the samples were taken from the cells using a syringe and analyzed by HPLC
to determine the photochemical conversions. The conversion did not exceed 30% to avoid
a change of the absorbance, or filtering of the light by the product. From the conversion of
actinometer, irradiance was calculated according to Equations (S1)–(S5) reported in the SI.
The average value of three measurements was reported.

3.6. Irradiation of N-Boc-L-Trp-L-Trp-L-Tyr[CH2N(CH3)2]-OBn (3) in the Presence of Nucleotides

Quartz NMR tubes or fluorescence cells were filled with a solution of 3 (1 mM) in
CD3CN-D2O (1:1, v/v) or CH3CN-H2O (1:1, v/v), which contained different polynucleotide
(10 mM): 2′-deoxyadenosine; 2′-deoxycytidine; 2′-deoxyguanidine, 2′-deoxyadenosine-
5′-diphosphate; 2′-deoxycytidine-5′-monophosphate, and 2′-deoxyguanidine-5′-monoph
osphate. The solutions were irradiated in a Luzchem reactor equipped with 8 lamps with
the maximum output at 300 nm (1 lamp 8W) for 15 min, 30 min, or 45 min, followed by the
analysis by NMR or HPLC and HPLC-MS.

3.7. Absorption and Fluorescence Measurements

Absorption spectra were recorded on a PG T80/T80+ or a Varian Cary 100 Bio spec-
trophotometer at rt. Fluorescence measurements were performed on an Agilent Cary
Eclipse fluorometer by using slits corresponding to the bandpass of 10 nm for the excitation
and the emission. The samples were dissolved in EtOAc, THF, CH3CN, or CH3CN-
H2O (1:9) and the concentrations were adjusted to absorbances of less than 0.1 at the
excitation wavelengths of 280, 290, or 300 nm. Fluorescence quantum yields were deter-
mined by comparison of the integral of the emission bands with the one of NATA in H2O
(Φf = 0.14) [58]. One fluorescence measurement was performed by exciting sample at three
different wavelengths and the average value was calculated (Equation (S5) in the SI). Prior
to the measurements, the solutions were purged with Ar for 15 min. The measurement was
performed at rt (25 ◦C).

TC-SPC measurements were performed on an Edinburgh FS5 spectrometer equipped
with a pulsed LED at 280 nm. The duration of the pulse was ≈800 ps. Fluorescence signals
at 370 nm were monitored over 1023 channels with the time increment of ≈20 ps/channel.
The decays were collected until they reached 3000 counts in the peak channel. A suspension
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of silica gel in H2O was used as a scattering solution to obtain instrument response function
(IRF). Absorbances at 280 nm were 0.07–0.09. Prior to the measurements the solutions were
purged with a stream of nitrogen for 20 min. The measurement was performed at rt (25 ◦C).
Decays of fluorescence were fit to a sum of exponentials according to Equation (S7) in the
SI, using software implemented with the instrument.

3.8. Preparation of the Annealed Double Stranded Oligonucleotides

Stock solutions of dG12, dC12, dA10, and dT10 (c = 1.0 × 10−3 M), were prepared in
ammonium acetate buffer (100 mM, pH 7.0). The solution of dG12 (250 µL) was mixed with
the solution of dC12 (250 µL) in a UV cuvette and their mixture was heated to 90 ◦C for
5 min, and slowly cooled to rt and stored for 24 h at 4 ◦C before the use in experiments.
Analogously, the solution of dA10 (180 µL) was mixed with the solution of dT10 (180 µL) in
a UV cuvette, heated to 90 ◦C for 5 min, slowly cooled to rt and stored for 24 h at 4 ◦C before
using. The solutions of annealed oligonucleotides were used in the thermal denaturation
experiments, CD and photochemical alkylation experiments.

3.9. Thermal Denaturation Experiments

A stock solution of 3×HCl was prepared in mQ H2O (c = 1.74 × 10−3 M), and a
stock solution of ct-DNA c(ct-DNA) = 1.6 × 10−2 M was used. The solution of ct-DNA
was sonicated and filtered (pores 0.45 µm). In the denaturation experiments, the ct-DNA
solution was diluted in a quartz UV-vis cell (with the optical path of 1.0 cm) by cacodylate
buffer to the concentration of c = 3.0 × 10−5 M, and the appropriate amount of the solution
of 3×HCl was added to reach the desired ratio r ([3×HCl]/[ct-DNA]) = 0.3. For the
thermal denaturation experiments of annealed oligonucleotides dG12-dC12 or dA10-dT10
the stock solutions were diluted with ammonium acetate buffer (pH = 7.0, 100 mM) to
concentrations of c = 2.0 × 10−5 M. The dependence of the absorbance at 260 nm as a
function of temperature was measured on a Cary 100 Bio (Agilent Varian, Santa Clara, CA,
USA) UV-vis spectrometer. The temperature was varied from 10 ◦C to 98 ◦C in intervals of
0.5 ◦C. The denaturation temperature Tm values are the midpoints of the transition curves,
determined from the maximum of the first derivative [72]. ∆Tm values were calculated
by subtracting Tm of the free nucleic acid from that of the respective complex with ∆Tm
values (Equation (S7) in the SI) are the average of at least two independent measurements
and the error in ∆Tm is ca. ± 0.5 ◦C.

3.10. Fluorescence Titrations

Stock solutions of solution 1×HCl–3×HCl were prepared in DMSO (c = 5× 10−3 M). For
the titrations, the stock solutions were diluted in a fluorescence cell (3 mL) with cacodylate
(pH 7.0, 50 mM) to reach the concentration c = 2.0–6.0 × 10−6 M, thus having <1% DMSO.
Polynucleotide stock solutions were c = 1–2 × 10−4 M. The fluorescence spectra were
measured on a Cary Eclipse (Agilent Technologies, Santa Clara, CA, USA) at 25 ◦C. The
samples were excited at 295 nm, and the emission was recorded in the range 300–600 nm.
The excitation slit was set to the bandpass of 10 nm, and the emission slit to 20 nm. Small
aliquots of the solutions of polynucleotides were added to the solution of 1×HCl–3×HCl
and after an incubation time of 2 min, fluorescence spectra were taken. Data obtained by
fluorescence titrations were processed by nonlinear regression analysis according to the
Scatchard model, McGhee, von Hippel formalism [68]. Each titration with ct-DNA was
performed five times, and with other polynucleotides at least twice.

3.11. Circular Dichroism Spectroscopy

Circular dichroism spectra were measured on a Jasco J-815 spectrometer in quartz
cells with the optical path of 1 cm at 25 ◦C. To the polynucleotide solutions in cells
(c = 3.0 × 10−5 M) in cacodylate buffer (pH = 7.0, 50 mM), aliquots of the solution of
1×HCl–3×HCl in buffer (c = 1.0 × 10−3 M) were added to reach the concentration ratio
r[1×HCl–3×HCl]/[polynucleotide] = 0.1–0.7. For the measurement of CD spectra of
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annealed oligonucleotides dG12-dC12 or dA10-dT10 the stock solutions were diluted with
ammonium acetate buffer (pH = 7.0, 100 mM) to concentrations of c = 2.0 × 10−5 M. The
CD spectra were recorded in the wavelength range 220–400 nm with the scanning rate of
200 nm/min and with two accumulations.

3.12. Photochemical Alkylation ct-DNA and of Oligonucleotides

ct-DNA: A stock solution of 3×HCl (c = 1.0 × 10−2 M) was prepared by dissolving
1.0 mg in DMSO (100 µL), whereas the stock solutions of ct-DNA was prepared in aqueous
cacodylate buffer (pH = 7.0, 50 mM) c(ct-DNA) = 1.6 × 10−2 M. DNA and 3×HCl were
mixed in a UV cuvette as described in the thermal denaturation experiment and exposed
to light (Luzchem reactor equipped with 8 lamps with the output at 300 nm over 15 min),
and thermal denaturation of ds-DNA was performed.

The stock solution of 3×HCl was diluted with ammonium acetate buffer (100 mM,
pH = 7.0) to the concentration of c = 5.0 × 10−3 M. The solution of 3×HCl (100 µL,
c = 5.0 × 10−3 M) was mixed with the annealed solution of dG12-dC12 (340 µL,
c = 5.0 × 10−4 M) in a quartz UV-vis cell (1 mL). In another cell, the solution of 3×HCl
(60 µL, c = 5.0 × 10−3 M) was mixed with the annealed solution of dA10-dT10 (260 µL,
c = 5.0 × 10−4 M). The cells were irradiated in a Luzchem reactor equipped with 8 lamps
with the output at 300 nm over 15 min and 60 min. The composition of the irradiated
solutions was analyzed by HPLC equipped with a PLRP-S 5 µm column and diode ar-
ray detector. Details on the chromatographic method can be found in the SI (Table S4).
Experiments were performed twice.

3.13. Laser Flash Photolysis (LFP)

The measurements were performed on a LP980 Edinburgh Instruments spectropho-
tometer. For the excitation the fourth harmonic of a Q-smart Q450 Quantel YAG laser at
266 nm was used. The energy of the laser pulse at 266 nm was set to 20 mJ and the pulse
duration was 7 ns. Absorbances at the excitation wavelength were set to 0.3–0.4. The
static cells were used and they were frequently exchanged to assure no absorption of light
by photoproducts. At least three decays were collected to determine the decay kinetics,
and the average values were reported, whereas the quoted errors correspond to maximal
standard deviations. The solutions were purged for 15 min with Ar or O2 prior to the
measurements, which were conducted at 25 ◦C.

4. Conclusions

We have demonstrated that photochemically reactive modified tyrosine can be in-
corporated in peptides containing Trp amino acids, where it remains photochemically
reactive (ΦR = 0.11–0.13), whereas the peptide retains the Trp fluorescence (Φf = 0.03–0.06).
The intrinsic fluorescence properties of Trp residues can be used for the study of peptide
interactions with polynucleotides. The affinities of 2×HCl and 3×HCl to all studied ds-
polynucleotides were similar (logKa = 6.0–6.8). However, 3×HCl fluorescence spectral re-
sponses were strongly dependent on the base pair composition: the GC-containing polynu-
cleotides efficiently quenched Trp emission, at variance to AT- or AU-polynucleotides,
which induced bisignate response. Namely, addition of AT(U) polynucleotides at ex-
cess over studied peptide induced emission quenching (attributed to Trp-aggregation
in the grooves of polynucleotides), whereas at excess of DNA/RNA over peptide, Trp-
fluorescence increase was observed. This result suggested that studied peptides bind
into the DNA minor groove, deep inserted into the AT-sequence and much superficially
inserted into the sterically blocked GC-sequence.

Upon UV-irradiation of the photochemically reactive peptide 3×HCl bound to ds-
oligonucleotides, only QM-induced alkylation of dA10-dT10 was detected, whereas no
covalent reaction with dG12-dC12 was observed. This reactivity pattern is not the typical
for QMs, showing that non-covalent binding and positioning of the QM precursor within
the polynucleotide-binding site might be the deciding factor for the QM reactivity. It
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seems that just deep insertion into the AT-DNA minor groove ensured effective alkylation,
at variance to the GC-DNA binding, in which peptide is significantly more exposed to
aqueous environment.

Therefore, our investigations show a proof of principle that QM precursor can be
introduced into a peptide and used as a photochemical switch to enable primarily non-
covalent interaction and consequently light-induced alkylation of ds-DNA, enabling further
applications and important impact in chemistry and biology.

Supplementary Materials: The following are available online, Synthetic procedures for the prepara-
tion of known precursors, fluorescence spectra, LFP data, non-covalent binding to DNA, covalent
binding to oligonucleotides, and copies of 1H and 13C NMR spectra.
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Quinone Methides from Peptides Containing Modified Tyrosine. Org. Biomol. Chem. 2016, 14, 10894–10905. [CrossRef]
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