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Abstract: The traditional voltammetric method at the mercury electrode, and an acidification step
developed for the determination of reduced sulfur species (RSS) in natural waters, was for the first
time used for the quantification of RSS in the water-soluble fraction of fine marine aerosols collected
at the Middle Adriatic location (Rogoznica Lake). The evidence of two types of non-volatile RSS that
have different interaction with the Hg electrode was confirmed: mercapto-type which complexes
Hg as RS–Hg and sulfide/S0-like compounds which deposits HgS. The analytical protocol that was
used for RSS determination in aerosol samples is based on separate voltammetric studies of a methyl
3-mercaptopropionate (3-MPA) as a representative of mercapto-type compounds and sulfide as
a representative of inorganic RSS. Our preliminary study indicates the presence of mainly RS–Hg
compounds in spring samples, ranging from 2.60–15.40 ng m−3, while both, the mercapto-type
(0.48–2.23 ng m−3) and sulfide and/or S0-like compounds (0.02–0.26 ng m−3) were detected in early
autumn samples. More expressed and defined RS–Hg peaks recorded in the spring potentially
indicate their association with biological activity in the area. Those samples were also characterized by
a higher water-soluble organic carbon content and a more abundant surface-active fraction, pointing
to enhanced solubility and stabilization of RSS in the aqueous atmospheric phase.

Keywords: reduced sulfur species; marine aerosols; water-soluble fraction; voltammetry; mercapto-type
compounds; Rogoznica Lake

1. Introduction

In different aquatic ecosystems, electrochemical methods have been widely used for the
characterization and determination of different sulfur (S) species, comprising dissolved and/or
particulate inorganic and organic S compounds, including thiols ([1–12] and references therein). Strong
interaction between mercury electrode (Hg) and S species is a background for their electroanalytical
determination and speciation at the Hg electrode. The methodology is based on the tendency of
inorganic and organic reduced S species (RSS) to deposit a HgS layer [1–5,13–15] and/or RS–Hg
complexes [9,10,15] (term “complex” refers to a different type of interaction between the analyte and
the Hg electrode) during an accumulation step at the deposition potential (Ed) around −0.2 V vs.
the reference electrode (Ag/AgCl). In solutions containing sulfide anions, an insoluble HgS layer is
formed during the deposition step at the Hg surface by the reversible process of a two-electron-transfer
oxidation of Hg at potentials more positive than −0.5 V vs. the reference electrode (Ag/AgCl)
(Equation (1)) [1–15]:

HS− + Hg0 →← HgS(s) + H+ + 2e−. (1)
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The same process occurs during the interaction of Hg with some other organic (thiourea, thiols,
oxines, thioanions) and inorganic S species (polysulfides, dissolved and colloidal S, labile chalcogenides,
i.e., CuS, PbS, HgS, FeS, Ag2S). During the potential scan toward negative values, layers of HgS and
adsorbable RS–Hg complexes (in the case of DMS, DMDS, cysteine, glutathione) are reduced between
−0.45 and −0.70 V (vs. Ag/AgCl) with facilitated reduction of the RS–Hg complexes at a more positive
potential than −0.68 V (vs. Ag/AgCl) where HgS reduction occurs [2,9,10,15,16].

Natural cycling of S compounds through the environment has taken on a new significance due
to their involvement in the formation of atmospheric aerosol particles and their influence on global
environmental processes and human health [17–19]. Atmospheric S contributes the most to atmospheric
acid deposition being detrimental to ecosystems, harming aquatic biota, as well as to a wide range
of terrestrial plant life [20]. Moreover, S-rich atmospheric particulate matter (PM) can serve as cloud
condensation nuclei and participate in the cloud formation processes, which can ultimately affect the
radiative balance of the atmosphere and the Earth’s climate [21,22]. The main anthropogenic sources
of atmospheric S are coal and oil combustion, oil refining, and smelting of copper ores ([23,24] and
references therein). The widespread combustion of fossil fuels has greatly increased S emissions into
the atmosphere, with the anthropogenic component now substantially greater than natural emissions
on a global basis [25]. The main natural sources are oceanic phytoplankton [21], volcanoes [26,27],
and geothermal fields [28]. Production of marine S compounds is mostly related to eutrophication
phenomena and spreading of hypoxic–anoxic dead zones in the marine environment. A significant
fraction of natural S emission occurs in the form of dimethylsulfide (DMS), produced by phytoplankton
and zooplankton grazing, which is released from the ocean into the atmosphere, where it undergoes
oxidation to form sulfur dioxide (SO2), dimethylsulfoxide, dimethylsulfone, methanesulfonic acid
(MSA), and sulfate (SO4

2−) [29–31].
The wide range of S oxidation states (from −2 to +6) as well as organic and inorganic forms

present in ambient samples makes the characterization of aerosol S challenging [32]. Sulfur in
aerosols is usually measured in the form of inorganic sulfate ion, and it is often assumed to be
one of the most important forms of aerosol S. However, in addition to sulfate, other S compounds,
even in smaller quantities, are present in ambient aerosols. Among these, the most abundant are
sulfides, organosulfur/sulfate compounds, and polycyclic aromatic sulfur heterocycles (PAHSs) [33–35].
Even though different methodological approaches have been applied to resolve S content in aerosols,
including ion chromatography, X-ray fluorescence, and inductively coupled plasma mass spectrometry,
these cannot determine the oxidation state or directly identify the chemical form of aerosol S. Thus,
there is still a need for accurate and direct method enabling speciation of different S species in
small amounts such as those found within PM2.5 and/or PM10 samples (usually no more than
a few milligrams).

In this work, for the first time the water-soluble (WS) fraction of the fine marine aerosols was
studied by voltammetric methods that are used thus far for RSS characterization in natural waters.
An analytical protocol for the electrochemical RSS characterization in the WS fraction of aerosol samples
is given based on separate voltammetric studies of a methyl 3-mercaptopropionate (3-MPA), and its
mixture with sulfide. Here, 3-MPA is used as a representative for mercapto-type compounds (RS–Hg
type) which gives a more positive reduction peak (around −0.60 V vs. Ag/AgCl at neutral pH) than
standard HgS reduction (around −0.70 V vs. Ag/AgCl) usually considered for RSS quantification in
different natural samples [1–8].

2. Experiments

2.1. Materials and Methods

The chemicals used were of reagent grade. The 3-MPA Me 3-MP stock solutions were prepared by
dissolving 98% methyl 3-mercaptopropionate (Merck, Darmstadt, Germany) in N2 degassed ultra-pure
water (Milli-Q, 18.2 MΩ, total organic carbon (TOC) < 3 ppb). The inorganic sulfide stock solutions
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were prepared by dissolving Na2S crystals (Sigma-Aldrich, Steinheim, Germany) in N2 degassed
solution of 2 × 10−4 M NaOH (Merck, Darmstadt, Germany). Working solutions were prepared by
adding, small volumes of the 3-MPA and/or Na2S stock solutions to the previously N2 degassed
solutions of supporting electrolyte (0.55 M NaCl, pH ≈ 6). The above-mentioned conditions, including
the supporting electrolyte selection, are chosen to be consistent and comparable with our previous
measurements by the same approach [2,7,8,14,16,36]. Nevertheless, we tested the method using the
electrolyte of lower ionic strength to mimic more atmospheric conditions (0.1 M NaCl) and did not
detect any significant difference in the electrochemical response.

2.2. Aerosol Sampling and Preparation

Natural samples of atmospheric PM2.5 were collected by using the low-volume Sequential Sampler
SEQ 47/50 (SEQ47/50) (Sven Leckel, Ingenieuburo GmbH, Berlin, Germany) on a pre-baked (450 ◦C for
4 h) glass fiber filters (GF/F) (Whatman, grade GF/F, d = 47 mm). The sample collection was conducted
at a flow rate of 2.3 m3/h for 48 h.

Sampling was conducted throughout the spring and early autumn in 2016 at the Middle Adriatic
location (next to marine Rogoznica Lake, 43.53◦ N, 15.95◦ E). According to the air-mass backward
trajectory analysis by using the NOAA HYSPLIT model at 10 m above sea level continental air-mass
inflows mostly affected sampling area in winter and autumn, while in spring and summer periods
southern marine pathways had higher impact. From October to March the synoptic wind circulation
was northerly, while from April to September the direction of wind changed to southerly with the
domination of south western wind during the summer.

Collected aerosol samples were stored in Petri slides (Millipore Inc., Darmstadt, Germany) at
−50 ◦C prior to analysis. Approximately 10% of the filter sample was cut in pieces and dissolved in
10–20 mL of ultra-pure water (Milli-Q, 18.2 MΩ, total organic carbon (TOC) < 3 ppb), ultrasonicated
for 20 min, and stored at 4 ◦C overnight. Afterward, the solution was filtrated through GF/F filters of
0.7 µm pore sizes and further treated as WS aerosol fraction. For the electrochemical measurements the
final ion strength of the WS solution was adjusted by adding saturated NaCl solution to correspond to
0.55 M NaCl electrolyte.

For sulfate (SO4
2−) analysis approximately a quarter of each exposed filter was cut and dissolved

in 10 mL of ultra-pure water (Milli-Q, 18.2 MΩ, total organic carbon (TOC) < 3 ppb), ultrasonicated for
20 min, and stored at 4 ◦C overnight. The solutions were filtrated through 0.22 µm PTFE disk filters
and analyzed by ion chromatography (IC). SO4

2− anions were measured on a Dionex ICS 3000 ion
chromatograph (Thermo Scientific, Sunnyvale, CA, USA) with a conductivity detector.

2.3. Electrochemical Instrumentation and Procedure

The RSS measurements: The RSS measurements were performed with aµ-Autolab (Electrochemical
Instrument Eco Chemie, Metrohm Autolab B.V., Utrecht, Netherlands) electrochemical analyzer
connected to a 663 VA Stand Metrohm mercury electrode. The reference electrode was an Ag/AgCl/3
M KCl (Ag/AgCl electrode connected to the solution with an electrolyte bridge). A platinum electrode
served as the auxiliary electrode. The cell volume was 25 mL.

The applied electrochemical technique was cathodic striping square wave voltammetry (CSSWV).
Determination of the non-volatile RSS compounds in Hg was made by their deposition at positive
electrode potentials (Ed = −0.2 and −0.4 V vs. reference electrode Ag/AgCl) before and after the
acidification step and purging by N2 to remove volatile RSS as already described [2,7,16]. Namely,
non-volatile RSS can be measured by voltammetry after acidification and purging of the sample
with an inert gas to remove all volatile RSS. For the given experimental conditions, purging by N2

was performed between 3 and 5 min. Cathodic scans with and without accumulation (acc. time,
ta = 0–120 s) by stirring at the starting deposition potentials were run with an amplitude (A) of 25 mV
and frequency (f) of 80 Hz. The sensitivity of the measurements with 120 s accumulation time is given
by the limit of detection (LOD) and limit of quantification (LOQ), which for sulfide measurements
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were 0.13 and 0.46 nM, respectively, and for 3-MPA the LOD was 0.66 nM and the LOQ 2.21 nM.
Quantitation of RSS in the studied samples was based on external calibration, by using calibration
curves for sulfide and 3-MPA in 0.55 M NaCl.

The surface-active substance (SAS) measurements: SASs were determined by the electrochemical
method of alternating current (a.c.) voltammetry with out-of-phase mode using a µ-Autolab
(Electrochemical Instrument Eco Chemie, Metrohm Autolab B.V., Utrecht, Netherlands) electrochemical
analyzer connected with 663 VA Stand Metrohm mercury electrode equipped as described above. A.c.
voltammetry is based on the SAS adsorption effects at the hydrophobic surface of Hg (at Ed = −0.6 V)
[2,36 and references therein]. The measurements were performed under following conditions:
accumulation potential Ed = −0.6 V, ta = 30 s, f = 75 Hz, amplitude A = 10 mV, and phase angle =

90◦. The concentration of SAS in each sample was expressed in equivalents (mg L−1) of a model
surfactant Triton-X-100 (T-X-100). The detection limit of SAS determination is 0.02 mg L−1 equivalent of
T-X-100, with LOQ of 0.05 mg L−1. All electrochemical measurements were done at room temperature
(21 ± 1 ◦C).

In addition, water-soluble organic carbon (WSOC) content was determined by the high-
temperature catalytic oxidation (HTCO) method at a TOC-VCPH instrument (Shimadzu, Japan)
as described previously [7,16,36]. The WSOC sample aliquot (15 mL) was acidified with 2 M HCl to
pH ~ 3 in order to eliminate the inorganic carbonates. The concentration of each sample was calculated
as an average of three to five replicates. The quantification limit was 0.228 M for dissolved organic C
with reproducibility of 5%.

3. Results and Discussion

3.1. Electrochemical Behavior of 3-MPA

During voltammetric experiments, accumulation of 3-MPA on Hg at Ed = −0.2 V resulted in the
formation of a 3-MPA–Hg complex (Equation (2)), which was then reduced by scanning the potential
toward more negative values. The reduction of the formed complex occurred at around −0.6 V by
giving a reversible and reproducible reduction peak according to process explained by the reverse
of Equation (2) [9,37]:

2RSH + Hg↔ (RS)2Hg(ads) + 2H++2e−. (2)

The RSH stands here for thio-type RSS (DMS, DMDS, cysteine, methanethiol, gluthatione).
In general, the position and the height of the 3-MPA–Hg reduction peak is sensitive to the pH of the
bulk solution as already noted for other RSS studied at the Hg surface [2,3,12,15]. Therefore, in this
study, measurements were done at the same conditions, pH ~ 6. By prolonging the accumulation
time with stirring (ta = 0–120 s) at the starting Ed = −0.2 V the height of the 3-MPA–Hg reduction
peak increases, Ip as shown for the 9 nM 3-MPA solution (Figure 1a). The same effect is obtained
by increasing the 3-MPA bulk concentrations (Figure 1b) used for the preparation of a calibration
curve (Figure 1c).
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Figure 1. Cathodic striping square wave voltammetry (CSSWV) curves showing (a) accumulation
effect in 9 nM methyl 3-mercaptopropionate (3-MPA) electrolyte solution; (b) effect of increasing
concentration of the 3-MPA, and (c) calibration curves for the 3-MPA and Na2S, with insertion of
CSSWV curves for increasing sulfide concentration in electrolyte solution. Experimental conditions: Ed

= −0.2 V, A = 25 mV, f = 80 Hz, ta = 120 s.

The linear relationship between the 3-MPA concentration and Ip which is a direct measure of the
reduction process at the Hg, is obtained for the wide concentration range, between 3.0 and 500 nM for
an accumulation step with stirring (ta = 120 s). For the given experimental conditions at concentration
of 500 nM, saturation of the electrode was achieved. Considering the concentrations of RSS expected in
marine aerosol samples, we focused on the calibration in the lower concentration range, between 2 and
50 nM, as presented in Figure 1c. For comparison, the calibration curve of the Na2S is presented in the
same graph. Typical voltammetric curves for increasing sulfide concentration are given as an insert in
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the same Figure. The height of the standard HgS reduction peak, Ip, increases sharply with increasing
the concentration of Na2S in the bulk solutions, being about four times more sensitive than the Ip of
the same 3-MPA concentrations (Figure 1c), as already documented for thiols, Na2S, and S0 [38,39].
The peak potential of the HgS reduction, if compared with the 3-MPA-Hg reduction, is moving as well
more negatively with the increase of the bulk sulfide concentration, i.e., the amount of the formed HgS
layer [13,14]. Such a difference in sensitivity is used in this study as an advantage in characterization
of mixtures containing organic and inorganic RSS, i.e., the 3-MPA and sulfide.

Variation of the deposition potentials (at the given experimental conditions) from Ed = 0.00 to−0.50
V has been already shown to influence electrochemistry of the organic RSS at the Hg surface [9,10,13,40],
i.e., the appearance and height of the revealed reduction peaks. Such a property of setting the electrode
at the unique deposition potential of maximum response for the selected model compounds was
successfully used in the analytical protocol for thiol characterization in seawater and freshwater
samples [6,9–11,40,41]. Depending on the deposition potential, dimethylarsinyl-ethanol sulfide [13]
and similar labile compounds would be oxidized and deposit the HgS layer at the Hg surface.
The same behavior is also characteristic for thiourea [42] and some other low-molecular-weight thiols
(LMWTs) [9,10] which deposit HgS around 0 V. The observed behavior is caused by the different stability
of the RS–Hg and HgS-type compounds as well as different lability of organic RSS at the studied Hg
electrode potentials. Here, by changing the deposition potential from −0.2 toward −0.4 V, for the
solution containing 3-MPA, the height of the 3-MPA–Hg reduction peak is significantly decreasing by
depositing at more negative potentials (Figure 2). Sulfide and elemental sulfur (S0) in the same range
of deposition potentials would not change their electrochemical behavior [13].

Figure 2. Effect of different deposition potentials, Ed = −0.2 V (red lines), and Ed = −0.4 V (blue
lines) and different accumulation times for electrolyte solution containing 9 nM 3-MPA. Experimental
conditions: A = 25 mV; f = 80 Hz.

Usually in the adopted electrochemical measurements of the RSS in natural samples, the acidification
and purging step by N2 is used to make a distinction between the volatile and non-volatile fraction of
the RSS [2,3,7,13,16]. Sulfide-type RSS are considered volatile, while elemental sulfur (S0) and S0-like
compounds (including some LMWTs that deposit HgS and are not sensitive to purging in acidic conditions)
are considered non-volatile RSS that mainly contribute to the HgS peak in natural samples. The 3-MPA is
shown to be quite stable in water solution. Experiments with 3-MPA approved its stability in water solution
within several hours. As distinguished from sulfide which disappears completely from acidic solution
(pH = 3–5) in 3–5 min depending on the concentration, the 3-MPA is insensitive to acidification and purging
with nitrogen (see Figure 3). This different behavior of 3-MPA and sulfide in acidic conditions enables their
direct electrochemical determination in the solution.
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3.2. Mixture of Model RSS: 3-MPA and Na2S as Representatives for Organic and Inorganic RSS

Although under some experimental conditions the RS–Hg and HgS reduction peaks merge [9,10,40],
in our case at given experimental conditions: By selecting the 3-MPA as a representative of the organic
RSS; by selecting the deposition potentials at Ed = −0.2 and −0.4 V, and by the different deposition
accumulation times (ta = 0−120 s), separate reduction peaks were clearly revealed as shown in Figure 3.
Different accumulation times at different deposition potentials influence the position and intensities of
the recorded reduction peaks in the mixture of the 3-MPA and Na2S. Deposition at Ed = −0.2 V would
produce only one peak, while deposition at Ed = −0.4 V allows appearance of both the 3-MPA–Hg and
HgS reduction.

Figure 3. CSSWV curves of the solution containing 65.0 nM 3-MPA and 32.5 nM Na2S, recorded at
the different deposition potentials with different accumulation times, as illustrated. Green solid (bold)
line is recorded after purging the mixture solution with N2 when all added sulfide was stripped out.
Experimental conditions: Ed = −0.2 and −0.4 V, ta = 60 and 120 s, A = 25 mV, f = 80 Hz.

Herein, note that with longer accumulation time at Ed = −0.2, only one peak appears. While by
deposition at Ed = −0.4 V, and longer deposition, the HgS reduction is also expressed. The acidification
step assures that all volatile RSS (sulfide here) will be removed from the mixture, and only non-volatile
RSS will remain.

However, the accumulation effect is more expressed in the case of HgS. As already shown, the HgS
reduction is not influenced by changing the deposition potentials from 0 to −0.5 V [13], and the
HgS reduction peak remains the same whether it is accumulated at −0.2 or −0.4 V. In other words,
by selecting these potentials it is possible to make a rough distinction between organic and inorganic
S compounds [2,13,16] since majority of organic RSS would not deposit HgS at Hg.

Furthermore, there is a possibility to further characterize and define recorded peaks separately
by detailed convolution analyses (Autolab GPES and/or ECDSOFT software, [43]; http://gss.srce.hr/
pithos/rest/omanovic@irb.hr/files/Software/.) However, if the acidification and purging step by N2

is additionally applied, it is possible to completely remove sulfide (i.e., all volatile RSS) from the
mixture and detect one reduction peak assigned to 3-MPA–Hg, as shown in Figure 3 by the green,
bold line. Therefore, 3-MPA belongs to a pool of non-volatile and non-acidification-step sensitive RSS,
as already discussed [2].

Based on the above-presented results, we conclude that the mixture characterization should be
done by measuring at deposition potentials of −0.2 and −0.4 V, with variation of accumulation times
(ta = 0–120s). The acidification step (pH = 2–3), and the measurement of the voltammetric peaks before
and after acidification and purging, followed by adjustment to original pH, will indicate the presence
of volatile and/or non-volatile RSS.

http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/
http://gss.srce.hr/pithos/rest/omanovic@irb.hr/files/Software/
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3.3. Electrochemical RSS Responses in WS Fraction of Fine Marine Aerosols

Electrochemical responses recorded in the WS fraction of the fine marine aerosols are shown in
Figure 4. In Figure 4a, the electrochemical response is shown for three consecutive samples from the
spring season (March 29–April 4, 2016), denoted as S1, S2, and S3. Figure 4b shows electrochemical
responses for four early autumn samples denoted as A1, A2, A3, and A6 (October 8–14, 2016 and
October 18–20, 2016, respectively). In spring samples, the presence of mainly RS–Hg reduction was
observed, while both, the RS–Hg and HgS peaks were detected in early autumn samples. Peak
identification was additionally confirmed by considering the standard 3-MPA solution spiked with
Na2S as shown within Figure 4a.

Electrochemical responses recorded in the WS fraction of the fine marine aerosols are shown in
Figure 4. In Figure 4a, the electrochemical response is shown for three consecutive samples from the
spring season (29 March–4 April 2016), denoted as S1, S2, and S3. Figure 4b shows electrochemical
responses for four early autumn samples denoted as A1, A2, A3, and A6 (October 8–14, 2016 and
October 18–20, 2016, respectively). In spring samples, the presence of mainly RS–Hg reduction was
observed, while both, the RS–Hg and HgS peaks were detected in early autumn samples. Peak
identification was additionally confirmed by considering the standard 3-MPA solution spiked with
Na2S as shown within Figure 4a.

Observed RSS peaks in the studied WS aerosol samples were recorded in the same range of
potentials (−0.58 to −0.76 V) as recorded in the model mixtures of the 3-MPA and sulfide. In spring
samples, there was no difference in the peak appearance and its height by measuring at different
(Ed = −0.2 and −0.4 V) deposition potentials, behaving more like the HgS reduction, even the peak
position was more positive than expected for the typical HgS reduction (Figure 4a). However, in autumn
samples, deposition at −0.4 V during ta = 120 s revealed only the HgS peak (Figure 4c). In these
samples, the accumulation effect was also more expressed through increasing of the HgS peak as
observed in the model mixtures. Standard addition of the 3-MPA directly into the electrochemical cell
containing the A1 sample after the acidification and purging step caused an increase of the first more
positive peak, RS–Hg around −0.6 V (Figure 4d), pointing to similar electrochemical behavior to the
3-MPA-Hg electrode process, while the addition of sulfide caused the increase of the more negative
HgS peak. It is important to stress that all recorded RSS peaks (RS–Hg and HgS-type electrode reaction)
were not visible under diffusion-controlled conditions (ta = 0s) and were not sensitive to the purging
and acidification step, indicating the presence of non-volatile RSS.

The appearance of the negative HgS peak in autumn samples could be likely associated with
enhanced release of volatile S compounds during water layer mixing in the nearby marine Rogoznica
Lake [44]. That is, during intense vertical lake water layers mixing, millimolar concentrations of
sulfide present in the anoxic bottom layer reach the surface where it is rapidly oxidized (mainly to
S0) and further lost into the atmosphere. Such a scenario is supported by decreasing the HgS peak
in aerosol samples collected five days and later from October 5/6, when mixing of the water layers
started (Figure 4b and Table 1). In the same WS aerosol samples, the decrease of the RS–Hg peaks was
also noticed.

According to the electrochemical behavior and position of the recorded RSS peaks in the studied
ambient aerosol samples, corresponding to the 3-MPA–Hg and HgS reduction, the detected peaks
presumably can be evidence of non-volatile mercapto-type RSS and sulfide and/or S0 or other
non-volatile and labile RSS-like compounds that deposit HgS at the Hg surface. The existence of
similar compounds has already been proved for the oxic water layers in the North Adriatic as well
as marine Rogoznica Lake [2,7,13]. Similar electrochemical response, implying similar RSS were
reported as well for precipitation samples (the concentration range for detected RSS was between 2
and 5 nM) [16], where mainly volatile RSS were associated with the RS–Hg peak detected at around
−0.55 V (vs. Ag/AgCl).
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Figure 4. CSSWV curves recorded in the WS fraction of (a) three consecutive Spring 2016 aerosol
samples (S1, S2, and S3). Red-solid line corresponds to CSSWV scan of the electrolyte containing
19.8 nM 3-MPA spiked with Na2S; (b) four consecutive Autumn 2016 aerosol samples (A1, A2, A3,
A6); (c) effect of different deposition potential (Ed = −0.4 V) for Autumn samples A1, A2, A3, A6.
ta = 120 s for a–c; (d) addition of the standard 3-MPA in Autumn sample A1, after the acidification
and purging step, ta = 30 s. Please note that pH in this sample was readjusted to 10 after acidification,
which influenced the peak position. The best response in samples S2 and A1 was obtained after 2×
dilution of original WS aerosol fractions. These samples have the highest surface-active substance
(SAS) content. Other experimental conditions: Ed = −0.2 V, A = 25 mV, f = 80 Hz.

In the studied spring samples, Ip of non-volatile RS–Hg peaks ranges from 22 to 130 nA,
which corresponds to concentrations of the mercapto-type compounds ranging from 10.0 to 65.0 nM
in analyzed WS filter aliquots (calibrated with the 3-MPA). The concentration of non-volatile RSS,
expressed in relation to the volume of the sampled air, ranges from 2.60 to 15.40 ng m−3 (mean value =

7.40 ng m−3, N = 10). In autumn samples, detected peaks range from 12 to 63 nA, corresponding to
concentrations of the mercapto-type compounds ranging from 6.0 to 30.0 nM, i.e., from 0.48 to 2.23 ng
m−3 (mean value = 1.26 ng m−3, N = 6). The Ip of the second HgS peak in autumn samples calibrated
with the sulfide, ranged from 7 to 117 nA, which correspond to RSS concentration ranging from
0.75–11.89 nM in analyzed WS filter aliquots, i.e., from 0.02 to 0.26 ng m−3 (mean value = 0.07 ng m−3,
N = 6) if expressed in relation to the volume of the sampled air.

In addition, concentration of WSOC and surface-active substances (SAS) was determined for all
aerosol samples discussed above (S1–S3 and A1–A3, A6), and their values are given in Table 1. Relatively
high organic matter content, especially its surface-active fraction that strongly adsorbs on the hydrophobic
Hg surface [2,36,45], could potentially suppress the reduction process of organic RSS [2,12,45] and mask
the real concentration of RSS present in the ambient samples. On the other side, recorded RSS peaks in
solutions with such relatively high SAS presence indicate relatively strong interaction between the present
RSS and Hg. Recently published work on voltammetry of reduced glutathione, in its analytical protocol
recommends a reduction of natural organic matter concentration to at least 1 mg L−1 [12] for getting
the signal for Hg-glutathione reduction, implying that, in the samples studied here, RSS with a stronger
stability constant with Hg than that with Hg-glutathione are possible present.

Presence of SAS is also known to influence the appearance and shape of the HgS peak [45], as was
the case in WS aerosol samples studied here. For example, in samples S2 and A1, the most evident RSS
response was obtained after double dilution of the original WS aerosol fractions. Moreover, it appears
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that the HgS peak is positioned more negatively in WS aerosol and precipitation samples [16] in
comparison with seawater samples, which can be a consequence of more hydrophobic SAS presence
that are blocking electrode redox reaction. Furthermore, the same organic material could have
important role in increasing the solubility of organic compounds as well as stabilization of RSS in the
aqueous phase and could modify the dissolution rate of aerosol particles in the atmosphere. It is worth
noting that higher values of WSOC (0.81–3.45 µg m−3) were recorded in the spring samples when
higher amount of non-volatile mercapto-type RSS (2.5−15.8 ng m−3) was also detected. Such seasonal
difference could be attributed to biological activity, as already shown for the WSOC fraction in the
marine aerosols [46]. The observed seasonal variations of the sulfate concentration shown in Table 1
also lead to the same conclusion.

Results from this work are supportive to studies reporting a significant concentration of
non-sulfate sulfur species in fine aerosols [33–35,47]. Besides organosulfates, additional sulfur
species such as methanesulfonates, hydroxymethanesulfonates, sulfites, sulfides, polycyclic aromatic
sulfur heterocycles, and primary biological particles were reported to contribute to non-sulfate sulfur
species. Depending on location and season, the likely presence of such compounds was reported
for locations dominated by biogenic emissions, such as forested and agricultural regions and marine
environment. As in our case, the signal for such S aerosols was most pronounced during the summer.
In addition, preliminary source apportionment results indicate sulfur-containing organic aerosols as
an important WSOC fraction in the same studied aerosol samples [48]. However, these S species may
also have an anthropogenic source [47].

It is also important to note how the hydrophobic part of WSOC, called humic-like substances
(HULIS) [49,50] as they share similar spectroscopic properties to macromolecular humic substances in
terrestrial and aquatic environments [51], could have electrochemically active sulfur. That is, a high
level of electrochemically active sulfur is confirmed for fulvic and humic material isolated from the
lagoon and marine sediments [7,52]. In the previous paper of Frka et al. [36], a broad voltammetric
peak that was recorded around a potential of −0.70 V in continental, coastal, and urban aerosol samples
as well as in the isolated atmospheric HULIS, could be possibly associated with the presence of RSS.
These RSS contribute to the surfactant activity, since HULIS material, i.e., HULIS concentration can
be regarded as a rough upper-limit estimate of aerosol water-soluble SAS [53]. Moreover, RSS are
an important part of the total S pool in aerosol samples. On the other side, HULIS could contribute to
higher solubility and stabilization of RSS in the atmospheric aqueous phase, similarly to that obtained
for natural organic macromolecules and elemental sulfur in seawater [7].

In addition, sulfur-containing compounds in the class of carbohydrates and proteins have been
recently identified in HULIS extracts of aerosols collected in the coastal area of South Korea [54].
Moreover, protein-like components were found dominant in marine aerosols sampled over the
Amundsen Sea as a result of biological activity [55]. Similar compounds are shown to be electroactive
on Hg [56–58]. Likewise, a persistent behavior of the revealed voltammetric peaks, suggest that, in this
study, detected RSS are from secondary processing in the atmosphere and not from primary emissions.

Table 1. Concentrations of reduced sulfur species (RSS), water-soluble organic carbon (WSOC),
surface-active substances (SAS), and sulfate (SO4

2−) in the selected Spring and Autumn 2016 aerosol
samples, whose electrochemical characterization is shown in Figure 4.

Aerosol
Sample

Sampling
Period

WSOC
(µg m−3)

SAS eq. T-X-100
(µg m−3)

RSS
(ng m−3)

Mercapto Type

RSS
(ng m−3)

Inorganic Type

SO42−

(µg m−3)

S1 29.03–31.03.2016. 2.36 0.18 2.62 - 3.00
S2 31.03–02.04.2016. 2.22 0.30 9.42 - 2.33
S3 02.04–04.04.2016. 2.20 0.23 3.68 - 4.22
A1 08.10–10.08.2016. 1.84 0.23 2.23 0.26 2.03
A2 10.10–12.08.2016. 1.18 0.21 1.46 0.05 1.58
A3 12.10–14.10.2016. 0.97 0.21 1.00 0.04 1.77
A6 18.10–20.10.2016. 1.34 0.23 1.02 0.03 1.50
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4. Conclusions

In this work, voltammetric methods have been used for the first time to study the presence
of reduced sulfur species (RSS) in the water-soluble fraction of the fine marine aerosols collected
during spring and early autumn in the area of Rogoznica Lake, a unique anoxic and sulfidic seawater
environment at the Adriatic. Two types of non-volatile RSS peaks were detected and attributed
to the presence of mercapto-type (RS–Hg peak at around −0.6 V and positive, calibrated with
3-MPA) and sulfide/S0-like compounds (HgS peak more negative than −0.6 V, calibrated with sulfide).
In spring samples only, the presence of the mercapto-type compounds was evident and proved by the
addition of the standard 3-MPA, ranging from 2.60 to 15.40 ng m−3, while both, the mercapto-type
(0.48–2.23 ng m−3) and sulfide and/or S0-like compounds (0.02–0.26 ng m−3) were detected in early
autumn samples collected during anoxic holomictic event [44] in the nearby marine lake water column.

Intensity of the RS–Hg peaks in ambient samples varied through the studied seasons with
more expressed and defined peaks recorded in the spring, which possibly indicates their association
with biological activity. It is worth to note that these mercapto-type RSS, show the same seasonal
trend as biogenically derived sulfate and methanesulfonic acid (MSA) recorded in the same aerosol
samples [59], which as the oxidation product of dimethyl sulfide, is widely used as a proxy for
marine biogenic sources [32,46,59]. MSA was shown not to be electrochemically active at the given
experimental conditions.

In this preliminary work, the 3-MPA is used as a representative of LMW reduced organosulfur
compounds that can be usually found in natural aqueous environment, as detected by chromatographic
methods [60–62]. Thus, we do not intend to declare exactly the presence of 3-MPA in the studied
samples, but the presence of similar RSS organic compounds should be considered with regard to
the electrochemical response. This statement is supported by preliminary source apportionment
results indicating sulfur-containing organic aerosols as an important WSOC fraction in the same
aerosol samples [48]. In addition, higher values of WSOC (0.81–3.45 µg m−3) were recorded in the
spring samples when higher amounts of non-volatile mercapto-type RSS (2.60–15.40 ng m−3) were
also detected.

The adopted protocol by selecting appropriate experimental conditions (accumulation at deposition
potentials Ed = −0.2 V and/or −0.4 V vs. Ag/AgCl and the acidification and purging step followed
by adjustment of the pH to the original after purging) confirms that electrochemistry is a fast,
direct, and non-destructive methodology for the analyses of different seawater and freshwater
samples [2,6,9–11,40,41,45] and can be successfully applied for the single-scan characterization of the
electrochemically active sulfur compounds in ambient aerosol samples. Further work is planned to
test other atmospheric RSS-relevant substances and their possible contribution to the detected RSS
peaks with possible optimization of the experimental conditions given here.
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