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Enantioselective construction of a congested quaternary stereogenic center in isoindolinones bearing three aryl groups via an organocatalytic formal Betti reaction
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An efficient enantioselective formal Betti reaction between phenols and diaryl ketimines generated in situ from isoindolinone alcohols is described. In a reaction catalyzed by a chiral phosphoric acid, a broad range of ketimines and phenols afforded isoindolinone derivatives comprising a congested quaternary stereogenic center bearing three aryl groups in high yields, and high regioselectivities and enantioselectivities.
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Introduction
Arylation of benzophenone-derived ketimines is the most effective and straightforward route towards the construction of a quaternary stereogenic center bearing three phenyl rings. The scarcity of reported methodologies stems from the remarkably low reactivity of bis-aromatic ketimines, and from the inherent difficulty for the catalyst to control the enantioselectivity due to the lack of sufficient steric difference between two phenyl rings. Hence, only few notable examples of asymmetric arylations of diaryl ketimines have been reported to date.
In 2012, Hayashi and Nishimura developed an enantioselective arylation of saccharin-derived cyclic ketimines with arylboroxines in the presence of a chiral rhodium complex.1 Following this seminal work, several rhodium2 and palladium3 catalyzed asymmetric arylations of cyclic N-sulfonyl diaryl ketimines have been reported in the literature. In contrast to these elegant examples on transition-metal catalysis, their organocatalytic counterparts are virtually non-existent in the literature. Although asymmetric organocatalytic additions of phenyl-derived nucleophiles to aldimines are well known,4 reports on their additions to ketimines are rather scarce in the literature.5 Reported strategies usually employ naphthol derivatives as nucleophiles, and isatine-derived ketimines as electrophiles (Scheme 1).6
In this context, seminal report by Pedro describes quinine-thiourea catalyzed addition of naphthols and electron-rich phenols to isatin derived ketimines.6a The same type of nucleophile was utilized in the quinine-squaramide catalyzed addition to quinazoline-type cyclic trifluoromethyl ketimines reported by Wang and Xie.6d In 2020, Li developed regio- and enantioselective addition of electron-rich phenols to isatin-derived ketimines.7 However, to the best of our knowledge, there are no reports on the asymmetric organocatalytic methodologies for the construction of quaternary centers of chirality bearing three phenyl rings.



Scheme 1. Enantioselective organocatalytic additions of phenol derivatives to ketimines for the generation of tetrasubstituted stereogenic centers.
On the other hand, 3,3-disubstituted isoindolinones are core structural skeletons embedded in many natural products and biologically active compounds (Scheme 2).8 Their biological activities are greatly influenced by the type of substituents and absolute configuration on this position. Hence, it is not surprising that the stereoselective synthesis of chiral isoindolinone derivatives – particularly the ones possessing quaternary stereogenic center – has received a lot of attention in the past decade. 



Scheme 2. Examples of biologically active 3,3-disubstituted isoindolinones.
Developed methodologies for the synthesis of such derivatives include asymmetric aza-Friedel-Crafts reactions,9 and additions of heteroatoms10 and non-aromatic carbon nucleophiles.11 However, there are still no reports on organocatalytic protocols for the installation of the third phenyl ring on the isoindolinone C3 position in an enantioselective fashion. The development of such protocols would expand the chemical space of isoindolinone derivatives comprising quaternary stereogenic centers, and add a new dimension to the existing methods.
Results and discussion
Herein, we report a chiral phosphoric acid-catalyzed formal Betti reaction between phenols and N-acyl diaryl ketimines generated in situ from 3-hydroxyisoindolinones.
We started our investigations by combining 3-phenyl 3-hydroxyisoindolinone Is-1 with 2,6-dimethylphenol in the presence of various chiral phosphoric acids in chloroform (0.1M solution) at 40 °C (Table 1). Our initial attempt with 9-phenanthrenyl-substituted chiral phosphoric acid BA1 led to the complete conversion to the desired product 1 after 14 days, with promising levels of enantioselectivity of 85:15 e.r. (entry 1). When 9-anthracenyl was placed on the phenyl ring of the acid (BA2), the reaction maintained its effectiveness with increased enantiomeric purity (entry 2). The introduction of bulkier substituents on the catalyst resulted in substantially lower enantiomeric ratios (entries 3 and 4). By positioning triphenylsilyl group as a flanking substituent of the chiral phosphoric acid, the product was isolated in a low yield and virtually as a racemate (entry 5). The efficiency of the SPINOL-derived catalysts was also explored. Placing p-methoxyphenyl and trimethylsilyl substituents on the SPINOL backbone resulted in moderate yields with no induction of enantiomeric purity in the products (entries 6 and 7).
After identifying BA2 as the optimal catalyst for the transformation, the influence of solvent, temperature, additives, and concentration was investigated. By conducting the reaction in other commonly used solvents, the reaction time was shortened to 10 days (entries 8–10). Performing the reaction at 50 °C demonstrated an improved reaction rate, but at the expense of enantioselectivity (entry 11). Similar results were observed when a drying agent was added to the reaction mixture (entry 12). Next, we investigated the influence of the reaction concentration, and discovered that the reaction time was shortened to 48 hours when the concentration was doubled, accompanied by substantially higher enantiomeric ratio in the product (entry 13).12 Conducting the reaction at room temperature, as well as lowering the amount of phenol did not further improve reaction outcomes (entries 14 and 15).  
Hence, the chosen reaction conditions included diaryl ketimine precursor (1.0 eq), phenol (5.0 eq), and catalyst BA2 (10 mol%) in toluene (0.2M suspension) at 40 °C (entry 13). 
Table 1. Enantioselective reaction optimization.


	entry
	cat.
	solvent
	time (d)
	yield 
	e.r.

	1
	BA1
	chloroform
	14
	96
	85:15

	2
	BA2
	chloroform
	14
	96
	90:10

	3
	BA3
	chloroform
	14
	96
	72:28

	4
	BA4
	chloroform
	14
	96
	73:27

	5
	BA5
	chloroform
	14
	29
	55:45

	6
	BA6
	chloroform
	14
	48
	46:54

	7
	BA7
	chloroform
	14
	71
	57:43

	8
	BA2
	dichloromethane
	10
	96
	76:24

	9
	BA2
	toluene
	10
	96
	90:10

	10
	BA2
	benzene
	10
	96
	89:11

	11
	BA2
	toluene
	1
	83
	86:14b

	12
	BA2
	toluene
	0.5
	96
	79:21c

	13
	BA2
	toluene
	2
	96
	96.5:4.5d

	14
	BA2
	toluene
	12
	91
	92:8d,e

	15
	BA2
	toluene
	5
	96
	88:12d,f

	16
	BA2
	toluene
	8
	45
	86:14d,g


aReactions conditions: isoindolinone alcohol (0.1 mmol), 2,6-dimethylphenol (0.5 mmol), BA* (0.01 mmol), solvent (1.0 mL). e.r. determined by HPLC with a chiral stationary phase. b50 °C. c3Å molecular sieves (1g/mmol). dToluene (0.5 mL). eRoom temperature. f2,6-dimethylphenol (3.0 eq, 0.3 mmol). gBA2 (5 mol%).
With the optimized reaction conditions in hand, we turned our attention to investigate substrate scope and reaction limitations. Initially, we examined arylation of various 3-aryl 3-hydroxyisoindolinones (Table 2).
Table 2. Substrate scope I: Diaryl ketimines.a


aReactions conditions: isoindolinone alcohol (0.1 mmol), 2,6-dimethylphenol (0.5 mmol), BA2 (0.01 mmol), toluene (0.5 mL). e.r. determined by HPLC with a chiral stationary phase. bIncomplete conversion. 
2,6-Dimethyl phenol reacted efficiently with a range of different diaryl ketimines providing high yields and enantioselectivities. When para substituted 3-aryl groups were placed on the isoindolinone core, the reaction maintained its high efficiency and generally furnished products in excellent yields and enantioselectivities (2–4). The substrate bearing p-chlorine as substituent was also well tolerated, though the conversion was moderate (5, 35% yield, 91:9 e.r.). Introduction of the electron donating methoxy group in the same position resulted in significant drop in the enantioselectivity (6, 96% yield, 84:16 e.r.). On the other hand, when ortho substituent was introduced on the 3-aryl ring, the conversion was significantly suppressed, and the product was isolated in poor enantiomeric ratio (7, 23% yield, 66:34 e.r.). The most probable rationalization for this observation is that the increased steric hindrance around the reaction center hampers the reactivity, and overrides the steric influence of the chiral phosphoric acid catalyst.
Placing methyl substituents in both meta positions on the 3-aryl ring resulted in lower enantiomeric ratio in the product 8, however, placing chlorine and trifluoromethyl groups in the same positions, respectively, resulted in very high enantioselectivities (9, 84% yield, 97:3 e.r. and 10, 75% yield, 98:2 e.r.). Substituents placed on the isoindolinone ring were also well tolerated (11 and 12). It should be noted that some examples required slightly elevated reaction temperature for the transformation to occur.
Furthermore, we turned out attention to investigating substrate scope and limitations of the reaction with various phenols (Table 3).
Table 3. Substrate scope II: Phenols.a


aReactions conditions: isoindolinone alcohol (0.1 mmol), phenol derivative (0.5 mmol), BA2 (0.01 mmol), toluene (0.5 mL) e.r. determined by chiral stationary HPLC. bIncomplete conversion.
The introduction of alkyl groups in both ortho positions on phenol resulted in high yields and enantiomeric ratios (13–15). The reaction also proceeded when reaction center-deactivating methoxy groups were placed in these positions, albeit in slightly lower enantioselectivity (16). It is worth noting that the other regioisomer (addition through meta position with respect to hydroxy group) was not detected in the reaction mixture.
Next, we investigated the reaction outcomes with mono-substituted phenols, where the regioselectivity of the reaction also comes into play. The transformation did not lose its effectiveness, and all employed phenols yielded only one regioisomer (17–22). In several examples the conversion dropped, and slight decreases in enantioselectivities were observed. However, when 2,5-disubstituted phenol was used as a nucleophile, product 23 was isolated in high yield and as a single regioisomer, but practically as a racemate. Most likely the steric hindrance around the reaction center overrides the steric influence of the catalyst, similar as in the case of product 7. The reaction with phenol yielded product 24 in 49% yield and 94:6 e.r. We concluded the substrate scope by performing mix-and-match reactions comprising various diaryl ketimines and phenols, and all products were obtained in high enantioselectivities, ranging from 97:3 e.r. to >99:1 e.r. (25–31).

The absolute configuration of 25 was unambiguously assigned to be (R) by the X-ray structure analysis of its opposite enantiomer ent-25.13 In order to shed light on the origin of the stereochemical induction, density functional theory (DFT) calculations have been performed using the reaction yielding 1 with chiral phosphoric acid BA2 as the model. The optimized structures of the key stereochemically-discriminating transition states are shown in Figure 1. The transition state where the Re face of the ketimine receives the nucleophilic attack of 2,6-dimethylphenol (TS-Re) is more favorable compared with that of the corresponding Si face (TS-Si) by 2.4 kcal/mol. This result in qualitative agreement with the dominant formation of (R)-1 in experiments. Strong steric repulsion between both substrates with the anthracenyl groups of the chiral catalyst can be found in TS-Si, which is believed as the key reason behind the observed enantioselectivity.

[image: ]
Figure 1. B3LYP-D3(BJ)/def2-TZVPP (SMD, toluene)//B3LYP-D3(BJ)/def2-SVP (gas phase) level of theory. The chiral phosphoric acid is presented with VDW model and the substrates are presented in ball-and-stick model. The forming C–C bonds are highlighted using yellow dash lines. The figures in bold are the relative Gibbs free energies (in kcal/mol), and the figures in brown are the bond distances of the forming C–C bonds (in Å).
In order to further elucidate stereochemical induction of the reaction, experiments with N-protected isoindolinone alcohol and O-protected phenol were performed (Scheme 3).



Scheme 3. Control experiments and a postmodification reaction.
In the reaction between N-isopropyl hydroxyisoindolinone Is-2 and 2,6-dimethylphenol, only starting materials were detected in the reaction mixture after 7 days, even after elevating the reaction temperature. On the other hand, the same reaction catalyzed by p-toluenesulfonic acid yielded racemic product rac-32 in 90% yield (see SI for data). These results indicate that the acidity of the catalyst plays a significant role in the activation of N-protected isoindolinone derivatives. We also performed the reaction between Is-1 and 2,6-dimethyl anisole. Under the standard reaction conditions, only starting materials were isolated from the reaction mixture. Employing more acidic catalysts and more elevated reaction temperature did not change the outcomes, indicating that OH is crucial for the nucleophilicity of investigated phenols. Since one of the control experiments showed that the transformation does not proceed with anisole derivatives as nucleophiles, access to these compounds was demonstrated by employing standard O- alkylation (34, 63% yield, 98:2 e.r.).
Conclusions
In conclusion, we have developed a chiral phosphoric acid-catalyzed formal Betti reaction between phenols and in situ generated N-acyl diaryl ketimines. The transformation proceeds smoothly with a broad range of phenols and ketimines to afford isoindolinone derivatives comprising quaternary center of chirality bearing three phenyl rings in high yields, and high enantioselectivities and regioselectivities. The origin of the stereochemistry was supported by DFT calculations. We anticipate that the utility of the developed transformation will be further explored in the construction of more complex structures.

Experimental section
General procedure
A chiral catalyst (0.01 mmol) was added to a suspension of a isoindolinone alcohol (0.1 mmol) in toluene (0.5 mL) at room temperature. Selected phenol derivative (0.5 mmol) was added, and the resulting reaction mixture was stirred at 40 °C until complete consumption of starting material monitored by TLC. The solvent was evaporated, and the residue was directly purified by column chromatography on silica gel.
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