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Abstract: Structural, optical and electrical properties of Al+MoO3 and Au+MoO3 thin films pre-
pared by simultaneous magnetron sputtering deposition were investigated. The influence of MoO3

sputtering power on the Al and Au nanoparticle formation and spatial distribution was explored.
We demonstrated the formation of spatially arranged Au nanoparticles in the MoO3 matrix, while
Al incorporates in the MoO3 matrix without nanoparticle formation. The dependence of the Au
nanoparticle size and arrangement on the MoO3 sputtering power was established. The Al-based
films show a decrease of overall absorption with an Al content increase, while the Au-based films
have the opposite trend. The transport properties of the investigated films also are completely
different. The resistivity of the Al-based films increases with the Al content, while it decreases with
the Au content increase. The reason is a different transport mechanism that occurs in the films due
to their different structural properties. The choice of the incorporated material (Al or Au) and its
volume percentage in the MoO3 matrix enables the design of materials with desirable optical and
electrical characteristics for a variety of applications.

Keywords: gold; aluminum; molybdenum trioxide; nanoparticles; GISAXS; electrical resistivity

1. Introduction

Molybdenum trioxide (MoO3) is an important transition metal oxide that has attracted
the attention of researchers. Pure MoO3 shows a lot of fascinating optical and electrical
properties, which have led to notable technological applications [1–3]. As a result of oxygen
vacancies, MoO3 is also a wide n-type semiconductor with high ionic conductivity [4].

The technological applicability of novel materials largely depends on their nanostruc-
tural properties [2,5–7]. It is shown that the properties of the material are significantly
influenced by the metal atoms, or nanostructures, “inserted” into the basic matrix [8–11]. In
this context, the MoO3 matrix shows significant potential for improving its basic electrical
and optical properties [10–14].

The dimensionality of functional materials, for example one, two and three dimen-
sional, has been demonstrated as a dominant factor in determining the performance
of the resulting applications [15]. Zero dimensional quantum dots (QDs) [16,17], one
dimensional nanofibers/nanotubes/nanorods [18], two dimensional layered semiconduc-
tors/insulators [19] and three dimensional complex structures [20] have recently shown
the most attractive features in terms of structural, optical, electrical and mechanical charac-
teristics, thus creating the conditions for significant technological breakthroughs.

An important part of the development and research of new functional materials is
related to the methods of preparation and conditioning of nanostructures in matrices [21,22].
The creation of spatially ordered nanoparticle (NP) lattices in the matrix material is not a
necessary consequence of the magnetron deposition. Creation and self-organization of NPs
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are the result of physical processes of surface diffusion and aggregation of materials during
deposition and also as interactions of neighboring clusters [23]. The creation mechanism
of spatially arranged Ge and Ge/Si NPs in an alumina matrix has already been well
researched and experimentally confirmed in our previous work [24–26].

Due to their chemical inertness, ease of preparation and interesting electronic, optical
and medical properties, Au NPs have recently become the subject of increasing research.
The potential use of Au NPs in cancer treatment [27,28] (photo-thermal effects, drug
carriers), diagnostics (contrast agents), sensors and in chemical catalysis has been inves-
tigated [29]. An important property of Au NPs is their interaction with electromagnetic
radiation by surface plasmon resonance [30,31]. Al is another very interesting material for
addition in wide bandgap matrices because it can significantly influence their optical and
electrical properties [32].

Al is also a cheap material compared with Au, and it also has interesting properties
and applications. Although MoO3, Au and Al are well investigated as separate materials,
there are not many investigations into their combination. Au+MoO3 films have been
prepared, and the material shows advanced properties for application in solar cells [33],
while the same combination with Al is very rarely investigated.

In this study, we investigated the structural, optical and electrical properties of
Al+MoO3 and Au+MoO3 thin films prepared by magnetron sputtering codeposition. We
demonstrate very different properties of the Al- and Au-based films. The Al atoms seem to
incorporate in the MoO3 lattice without forming NPs. On the other hand, Au forms NPs
that are regularly distributed within the MoO3 matrix. The overall absorption decreases
with increasing Al content in the Al-based films, while it increases in the Au-based ones.
Additionally, surface plasmon resonance is observed in the Au-based film with an NP-size-
dependent peak position. Finally, the electrical resistivity of the films increases with the
Al content, while it decreases with the Au content in the films due to different transport
mechanisms.

2. Materials and Methods

Thin Au+MoO3 and Al+MoO3 films were prepared by magnetron simultaneous de-
position in a multi-source sputtering system (CMS-18 from K.J. Lesker company, Glassport,
PA, USA). All samples were deposited onto glass (VitroGnost microscope slides) and Si
substrates at room temperature (300 K). The working gas pressure was p(Ar) = 0.47 Pa.
Circular targets, 7.62 cm in diameter, were used. For each metal, three different volume
ratios of metal (Al and Au) to MoO3 matrix were explored. The metal DC sputtering power
density was kept constant (PAu = 0.13 and PAl = 0.22 W/cm2), while the RF deposition
power density of the ceramic oxide MoO3 matrix was varied (1.64, 2.19 and 3.29 W/cm2).
Thus, volume of metal to matrix ratios of 0.10, 0.12 and 0.20 were obtained. These vol-
ume ratios were determined from the deposition speed of each element. All films were
deposited with a duration of 30 min.

The films are named after the used metal followed by the number showing its amount
in the films. Thus, the film with the lowest Au amount is Au1, while the highest amount is
Au3. The deposition conditions together with the sample names and film thicknesses and
Au/Al to MoO3 volume ratios are summarized in Table 1.

Structural analysis of the films (the nanoparticle formation, their size and arrangement
properties) was performed by grazing-incidence small-angle X-ray scattering (GISAXS).
Grazing-incidence wide angle X-ray scattering (GIWAXS) was applied to determine the
crystalline structure of the materials. Both measurement types were performed simultane-
ously at the Austrian SAXS beamline of Elettra-Sincrotrone in Trieste, using 8 keV photons
and a 2D 100k Pilatus (for GIWAXS) and a 2D Pilatus3 1M (for GISAXS) detector system
(Dectris Ltd., Baden, Switzerland). The GISAXS and GIWAXS maps were measured using
grazing-incidence angles slightly above the critical angle.
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Table 1. Deposition parameters of the films. P indicates the sputtering power of the correspond-
ing target, d is the film thickness determined from grazing-incidence small-angle X-ray scattering
(GISAXS) measurements and Au/Al to MoO3 shows the targeted volume ratio of the metal to the
matrix.

Sample/Par PAu/Al (W) PAu/Al
(W/cm2)

P MoO3
(W)

P MoO3
(W/cm2) d (nm) Au/Al to MoO3

Volume Ratio

Au1 6 0.132 150 3.289 29.4 0.10

Au2 6 0.132 100 2.193 20.6 0.15

Au3 6 0.132 75 1.644 16.0 0.20

Al1 10 0.219 150 3.289 26.5 0.10

Al2 10 0.219 100 2.193 16.3 0.15

Al3 10 0.219 75 1.644 13.2 0.20

Optical measurements were carried out using Ocean Optics (Orlando, FL, USA)
equipment including a deuterium–halogen light source (DH-2000-BAL), a UV/VIS detector
(HR4000) and SpectraSuite software.

The transport properties of the films were investigated by the measurement of the
surface resistance using the van der Pauw four contact method [34] at room temperature.
Indium contacts were placed on the sample edges. All current–voltage (I-V) measurements
were done with a Keithley 2401 Sourcemeter SMU, controlled by a LabView program
through which data were also collected.

3. Results
3.1. Structural Properties of the Films
3.1.1. Nanoparticle Formation and Size—Arrangement Properties

The nanoparticle formation and structural properties were analyzed using the GISAXS
technique. This method is very suitable for the analysis of nanostructured thin films as it
provides structural parameters with excellent statistics. GISAXS maps of the investigated
films are shown in Figure 1.
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The structural properties of the NPs in the Au-based films, given in Table 2, are sum-
marized in Figure 2. From Figure 2a it follows that all structural parameters including the 
inter-NP separation a, vertical separation c and the NP radii RL and RV all decrease with 
increasing MoO3 sputtering power, i.e., with decreasing Au percentage in the films. Figure 
2b shows the comparison of the Au/MoO3 volume ratio obtained from the GISAXS analy-
sis (parameters of the NP size and arrangement), and from the deposition conditions 
(sputtering powers of Au and MoO3). The good agreement between these two curves con-
firms the reliability of the GISAXS analysis. 

Figure 1. GISAXS maps of the investigated films. (a–c) Al-based films, (d–f) Au-based films. The
insets in (d–f) show simulations of the measured GISAXS maps obtained by their numerical analysis.

The GISAXS maps of the Al-based films are shown in Figure 1a–c and show no signal
related to NP formation. The features in the center of their GISAXS maps originate from the
coherent scattering, surface roughness and the entire film thickness contributions. These
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features are not interesting for further analysis of the NP structural and arrangement
properties, as the NPs are not formed in the Al-based films according to the GISAXS
analysis. It seems that all atoms are homogeneously distributed through the films.

However, the Au-based films, shown in Figure 1d–f, all have a characteristic semicir-
cular (ring-like) signal, which shows the presence of NPs that have a correlated mutual
first neighbor spacing (inter-nanoparticle distance). The same type of signal that is present
in the Al-based films is present also in the maps of the Au-based films, but as we men-
tioned before is not interesting for further analysis. The radius of the ring-like signal in
the Au-based films decreases with the fraction of Au in the films (Au1–Au3), showing an
increase in the distance between the NPs and in the NP size. For the details of the structural
properties, we performed a numerical analysis of the GISAXS maps.

The insets show simulations of the measured GISAXS maps obtained by numerical
analysis of the GISAXS maps. For the numerical analysis we used the model described
in Reference [35]. More precisely, we assumed that NPs order in a 3D paracrystal lattice,
described by basis vectors a1–a3. The vectors a1 and a2 are placed in the plane parallel to the
substrate surface, while a3 describes the ordering of the NPs in the direction perpendicular
to the film surface. We assumed the ordering of the NPs in a body centered tetragonal
lattice. A short range ordering is assumed along all basis vectors. The disorder in the
NP lattice, i.e., the deviations from the ideal positions defined by basis vectors a1–a3, is
described by 4 σ parameters: σ1–2

x,y, σ3
x,y, σ1–2

z and σ1–3
z. The first three describe the

degree of deviation of the NP positions from the ideal ones in the direction parallel to
the film substrate, while the fourth one describes the vertical deviation. The radii of the
NPs are denoted by RL and RV for the directions parallel and perpendicular to the film
substrate, respectively. The mean radius is denoted by R. The standard deviation of the size
distribution is denoted by σR. For more details about the paracrystal lattice and deviation
parameters, as well as detailed GISAXS analysis, please see Reference [35]. The results of
the numerical analysis are given in Table 2.

Table 2. Parameters of the Au QD lattices found by GISAXS analysis. a and c are the lateral and
vertical separation of Au NPs, respectively; σ1–3

x,y,z are the deviation parameters, and RL and RV are
the Au NP lateral and vertical radii respectively. All values are given in nm.

Sample/Par. a c σ1,2
x,y σ1,2

z σ3
x,y σ3

z RL RV σR

Au1 3.3 2.0 1.1 0.8 1.9 0.7 0.8 0.9 0.1

Au2 3.7 3.1 1.4 1.3 1.5 0.8 1.0 1.2 0.2

Au3 4.5 3.6 1.8 0.9 2.1 1.2 1.5 1.7 0.3

The structural properties of the NPs in the Au-based films, given in Table 2, are
summarized in Figure 2. From Figure 2a it follows that all structural parameters including
the inter-NP separation a, vertical separation c and the NP radii RL and RV all decrease
with increasing MoO3 sputtering power, i.e., with decreasing Au percentage in the films.
Figure 2b shows the comparison of the Au/MoO3 volume ratio obtained from the GISAXS
analysis (parameters of the NP size and arrangement), and from the deposition conditions
(sputtering powers of Au and MoO3). The good agreement between these two curves
confirms the reliability of the GISAXS analysis.

The GISAXS analysis shows the decrease of all main NP structural parameters with
the sputtering power of MoO3. The increase in the MoO3 sputtering power causes the
increase in the number of its atoms on the growing surface during the deposition, while the
number of the Au atoms is constant. The increased number of the matrix atoms obviously
decreases the diffusion length of the Au atoms resulting in a smaller inter-nanoparticle
distance a with increasing MoO3 power. The decrease in the diffusion length also results
in the formation of smaller NPs, i.e., in the decrease of RL. The parameters describing
the direction perpendicular to the film surface (parameters c and RV) also decrease with
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the MoO3 sputtering power. The reason is very probably the morphology of the growing
surface that influences the self-assembly mechanism (see Reference [36]).
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3.1.2. Nanoparticle Internal Structure—Crystalline Properties

The crystalline structure of the films was explored by GIWAXS measurements. The
curves measured on Al-based and Au-based films are shown in Figure 3a,b, respectively.
The measurements support the GISAXS findings. In the curves of the Al-based films
(Figure 3a) there are no Al-related crystalline peaks; however, broad Al2O3-related peaks
are weakly observable. Al atoms are therefore very probably oxidized by the oxygen from
the MoO3 matrix and residual gas from the deposition chamber, and there is no Al NP
formation.
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Figure 3. Grazing-incidence wide angle X ray scattering (GIWAXS) measurements of the (a) Al-based
and (b) Au-based films. The tiny peaks with similar shapes, visible in most of the curves, are detector
artefacts.

However, the Au-based films (Figure 3b) show clear Au-based (111) and (200) crys-
talline peaks at 38.1 and 44.3 degrees, respectively. The width of the peaks increases from
Au1 to Au3 film, and the (200) peak becomes more visible. The width of the peak is related
to the crystallite size; the wider peaks show smaller crystalline grains. Thus, the GIWAXS
results show an increase in the Au crystallite size. The Au crystallite radii calculated from
the width of the peaks are as follows: 0.7, 0.9 and 1.6 nm for the films Au1, Au2 and Au3,
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respectively. The obtained values are in good agreement with the Au NP size increase
found by GISAXS (Table 2).

3.2. Optical Properties of the Films

The optical properties of the films (absorbance vs. wavelength and energy) are
shown in Figure 4. The absorption coefficient of the Al-based films is shown in Figure 4a.
Interestingly, the value of the absorbance decreases with an increasing amount of Al
(Al1–Al3). The reason could be the formation of Al2O3 in the reaction of Al with O.
The refractive index of alumina is lower than that of MoO3 in the measured range of
wavelengths [37–39], so the increase in the amount of Al2O3 content in the film may reduce
the total absorbance of the films, as observed experimentally. This is in agreement with the
GIWAXS results that indicate formation of Al2O3 in the Al-based films.
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Figure 4. Optical properties of the films. Absorption coefficient vs. wavelength for (a) Al-based and
(b) Au-based films.

The Au-based films show the opposite trend, so the overall absorption coefficient
increases with increasing Au content (Au1–Au3) (Figure 4b). Additionally, the Au-based
films show the presence of Au surface plasmons, with the maximum close to 580 nm for
the film with the smallest Au NPs. The plasmon peak shifts toward higher wavelengths,
and it becomes broader with increasing Au NP size. The broadening of the peak is the
consequence of the broadening of the Au NP size distribution from A1 to A3 (see the
parameter σR, Table 2). Otherwise, the width of the plasmon peak should have the opposite
behavior [31,40].

3.3. Electrical Properties of the Films

NPs embedded in oxide matrices are very interesting for nanotechnology applications
due to their semiconductor nature, strong confinement effects and dependence of the
material properties on the matrix in which the QDs are embedded. Therefore, knowledge
of the electrical and transport properties of these materials is essential.

The dependence of the measured resistivity of Al- and Au-based films on the MoO3
deposition power is given in Figure 5. The resistivity of pure MoO3 is about 10 times
higher than the highest resistivity of the Al-based film (about 20 MΩcm [41]). It follows
from Figure 5a that a decrease of the Al amount causes a drop of the material resistivity.
The decrease of the resistivity with the Al content could have a similar origin to doping
of some other oxide matrices with Al (like Al-doped ZnO-AZO for example [32]). In the
case of AZO, an atomic substitution of Al to Zn in the ZnO crystal structure occurs, which
provides a reduction in its electrical resistivity. We also observed a lack of Al nanoparticle
formation and a drop in the overall absorption, which supports this assumption. However,
a more detailed investigation is needed to explain in detail the effect of Al-doping of MoO3.
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Figure 5. Resistivity as a function of sputtering power of (a) Al-based and (b) Au-based thin films.

Interestingly, the Au-based films show the opposite trend (Figure 5b). The increase in
the proportion of gold in the MoO3 matrix reduces the total resistivity of the films. In the
Au-based films Au nanoparticles are formed, so another transport mechanism occurs.

The dependence of the resistivity on the Au NP lattice parameters and Au NP sep-
aration are shown in Figure 6a,b, respectively. Figure 6a shows that the resistivity drops
with all of the main structural parameters including the mean NP radius R and lateral
and vertical NP lattice parameters (a and c, respectively). The more interesting parameter
is the Au NP separation, which is calculated from the arrangement parameters of the
Au nanoparticles and their radii. The dependence of the resistivity on the Au separation
(closest distance to the neighbor) is shown in Figure 6b. From the figure it is evident that
the resistivity significantly increases with the NP separation.
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Several different transport mechanisms exist to describe the resistivity in quantum dot
assemblies including, but not limited to, tunneling and hopping conduction [42]. Based
on the results shown in Figure 6b, we believe that the main transport occurs by tunneling
of charge carriers through MoO3 barriers between Au NPs [43,44]. In a simplified case, a
rectangular potential barrier between NPs is assumed, where the probability of tunneling,
and thus the conductivity, decreases exponentially with the nanoparticle distance. We
intend to perform a more profound analysis of the transport mechanism on a larger series
of samples in our future work.
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4. Conclusions

We studied Au+MoO3 and Al+MoO3 thin films prepared by magnetron sputtering
codeposition at room temperature. The structural parameters of these films and their main
optical and transport properties were explored. We show that Al does not form nanoparti-
cles in the MoO3 matrix, contrary to Au, which produces a 3D lattice of nanoparticles. The
dependence of the parameters of the Au NP lattice on the deposition condition is shown.
Tuning the deposition conditions, we can tune the size and separation of the Au NPs. The
optical properties of the Al- and Au-based films also significantly differ. The Al-based films
show a decrease of the absorption with increasing Al content. The Au-based films show
the opposite trend, and in addition they show a size-dependent surface plasmon resonance
peak. The Al- and Au-based films show opposite behavior of their electrical properties.
While the resistivity for the Al-based films increases with the Al content, the resistivity
decreases for the Au-based ones. We believe that Al incorporates in the MoO3 lattice, while
the electrical transport in Au-based films occurs via tunneling of charge carriers between
NPs. The studied material is very interesting for application in various nanotechnology
devices.
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Quantum Wires in Amorphous Alumina Matrix. Nanomaterials 2020, 10, 1363. [CrossRef]
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three-dimensional quantum-dot superlattices in amorphous systems: Experiments and Monte Carlo simulations. Phys. Rev. B
2009, 79, 035310. [CrossRef]

http://doi.org/10.1021/acs.jpcc.9b10825
http://doi.org/10.1016/j.apsusc.2020.146263
http://doi.org/10.1016/j.jallcom.2019.151920
http://doi.org/10.1002/aelm.201901352
http://doi.org/10.1016/j.jmmm.2020.166503
http://doi.org/10.1039/C4TA03996C
http://doi.org/10.1039/C7TC02897K
http://doi.org/10.1007/s12274-014-0644-3
http://doi.org/10.1002/advs.201901837
http://www.ncbi.nlm.nih.gov/pubmed/31832321
http://doi.org/10.3390/nano10071363
http://doi.org/10.1088/1361-6528/ab1d3c
http://doi.org/10.1107/S0021889813026836
http://doi.org/10.1103/PhysRevB.74.165406
http://doi.org/10.1088/0957-4484/26/6/065602
http://www.ncbi.nlm.nih.gov/pubmed/25605224
http://doi.org/10.1515/nanoph-2016-0133
http://doi.org/10.1038/s41598-019-41942-3
http://doi.org/10.1259/bjr/59448833
http://doi.org/10.1038/aps.2011.82
http://doi.org/10.1016/j.snb.2016.06.081
http://doi.org/10.1007/s11051-014-2790-7
http://doi.org/10.1088/1361-648X/aa60f3
http://www.ncbi.nlm.nih.gov/pubmed/28426435
http://doi.org/10.1088/1742-6596/901/1/012153
http://doi.org/10.1016/j.orgel.2012.12.020
http://doi.org/10.1107/S0108767311040104
http://www.ncbi.nlm.nih.gov/pubmed/22186289
http://doi.org/10.1103/PhysRevB.79.035310


Materials 2021, 14, 766 10 of 10

37. Vos, M.; Macco, B.; Thissen, N.F.W.; Bol, A.A.; Kessels, W.M.M. Atomic layer deposition of molybdenum oxide from
(NtBu)2(NMe2)2Mo and O2 plasma. J. Vac. Sci. Technol. A 2016, 34, 01A103.

38. de Melo, O.; González, Y.; Climent-Font, A.; Galán, P.; Ruediger, A.; Sánchez, M.; Calvo-Mola, C.; Santana, G.; Torres-Costa, V.
Optical and electrical properties of MoO2 and MoO3 thin films prepared from the chemically driven isothermal close space vapor
transport technique. J. Phys. Condens. Matter 2019, 31, 295703. [CrossRef]

39. Malitson, H.; Dodge, M.J. Refractive Index and Birefringence of Synthetic Sapphire. J. Opt. Soc. Am. 1972, 62, 1405.
40. Farooq, S.; de Araujo, R.E. Engineering a Localized Surface Plasmon Resonance Platform for Molecular Biosensing. Open J. Appl.

Sci. 2018, 8, 126–139. [CrossRef]
41. Subbarayudu, S.; Reddy, K.V.S.; Uthanna, S. Sputtering pressure influenced structural, electrical andoptical properties of RF

magnetron sputtered MoO3 films. Mater. Sci. 2000, 38, 41–47.
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