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Abstract: While a protein primary structure is determined by genetic code, its specific functional
form is mostly achieved in a dynamic interplay that includes actions of many enzymes involved
in post-translational modifications. This versatile repertoire is widely used by cells to direct their
response to external stimuli, regulate transcription and protein localization and to keep proteostasis.
Herein, post-translational modifications with evident potency to drive prostate cancer are explored.
A comprehensive list of proteome-wide and single protein post-translational modifications and
their involvement in phenotypic outcomes is presented. Specifically, the data on phosphorylation,
glycosylation, ubiquitination, SUMOylation, acetylation, and lipidation in prostate cancer and the
enzymes involved are collected. This type of knowledge is especially valuable in cases when cancer
cells do not differ in the expression or mutational status of a protein, but its differential activity is
regulated on the level of post-translational modifications. Since their driving roles in prostate cancer,
post-translational modifications are widely studied in attempts to advance prostate cancer treatment.
Current strategies that exploit the potential of post-translational modifications in prostate cancer
therapy are presented.

Keywords: prostate cancer; post-translational modification; phosphorylation; glycosylation; ubiquiti-
nation; SUMOylation; acetylation; lipidation

1. Introduction

Prostate cancer is the second most commonly occurring cancer in men and the fifth
leading cause of death worldwide [1]. Since the actions of androgens and androgen receptor
(AR) are among the drivers of prostate cancer [2], one of the therapeutical approaches to
treat prostate cancer is androgen deprivation therapy (ADT) and the downregulation of AR
signaling, which is accomplished by various strategies [3]. Although this approach brings
results in the initial phases of treatment, resistance to therapy develops in a substantial part
of patients and they progress to castration-resistant prostate cancer (CRPC). Consequently,
novel strategies are needed to supplement actions of ADT. Another widely studied driver
of prostate cancer is the dysregulation of the PTEN/PI3K/AKT/mTOR signaling that
is frequently target of epigenetic and post-translational modifications as well as genetic
alterations in prostate cancer. This axis is involved in every aspect of prostate cancer
biology, from cancer cell growth to survival and therapy resistance [4–6]. The Janus kinase
(JAK)/signal transducer and activator of transcription (STAT) pathway that is mediating the
actions of cytokines, interferons, and growth factors is also critically involved in prostate
cancer growth and progression [7]. Specifically, the actions of an IL6/STAT3 axis are
recognized as a major regulator of prostate cancer progression while the STAT5a/b plays a
role in cell viability and growth, DNA repair, epithelial-to-mesenchymal transition (EMT),
metastatic dissemination in preclinical models, and resistance to enzalutamide [7]. Other
strong inducers of prostate cancer progression include EGFR family signaling pathways
that are, among other downstream targets, often converging to mitogen-activated protein
kinases (MAPK) to regulate prostate cancer cell behaviors [8]. Additionally, hypoxia-
induced signaling has been shown to promote prostate cancer progression [9].
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In comparison to other cancer types, prostate cancer displays lower frequency of
mutations and other genetic alterations. However, frequent genetic changes in prostate
cancer include formation of a TMPRSS2/ERG fusion protein, AR amplifications, PTEN
deletions and p53 mutations [10]. Other frequent genetic alterations in a subgroup of
prostate cancer patients are the mutations in the E3 ubiquitin ligase adapter SPOP, which is
found early during prostate cancer development [10].

Proteins and pathways listed above as driving forces of prostate cancer are the subjects
(or executors, such as SPOP) of post-translational modifications (PTMs) that are described
in further chapters. In this publication, the data from proteome and single protein studies
are presented to get an overview of documented PTMs in prostate cancer that influence
largely its biology. Additionally, the possibilities of therapies that target PTMs in prostate
cancer are discussed.

2. Post-Translational Modifications

The biological systems are characterized by extreme complexity that is sustained by
concerted actions of plentitude of players. Proteins are among the main biomolecules that
perform wide spectrum of diverse functions including signaling, transport, biochemical
reactions, and structural support. After translation is complete, majority of proteins un-
dergo different ranges of post-translational modifications (PTMs), chemical modifications
that influence largely their activity and functional abilities. The most common PTMs
include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and
lipidation [11]. These processes are executed and fine-tuned by thousands of enzymes
whose actions are tightly regulated. Deregulations in steps of PTMs leads to pathologies
and this is very well documented in different types of cancers were virtually every process
in the cell and the main drivers, from tumor suppressors and oncogenes to transcription
factors and signaling molecules, are influenced by PTMs [12–15]. Consequently, PTMs
provide potential sites of intervention where tumor promoting events could be suppressed
as a part of anticancer therapy [12,14–16].

An increasing number of proteome-wide studies of PTMs offer insight into global
changes in PTMs in different experimental settings. More than 300 different types of
protein PTMs have been described, but only a small proportion have been investigated at
the proteome level [17]. PTMs increase the proteome size from thousands to the order of
millions of possible protein forms [18], indicating the complexity of the tasks of analyzing
PTMs globally. The proteome-wide approach to study PTMs is especially valuable and
additive in cases where protein expression levels and mutational status do not differ
between conditions that are analyzed, but the changes in the function or the activity of
proteins are determined on the levels of PTMs. This paper reviews evidences on the
example of prostate cancer, that the tumor driving events are detectable and dissectible by
proteome-wide PTM analysis. Findings from proteome studies that encompass changes
in phosphorylation, glycosylation, ubiquitination, SUMOylation, and palmitoylation in
different experimental settings in prostate cancer are summarized in Table 1 and discussed
further in text. The data from single protein studies are added for a complete picture on
PTMs in prostate cancer to emerge.
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Table 1. Findings from proteome studies on post-translational modifications that influence prostate cancer cell fate.

PTM Experimental Setting Main Findings Ref.

Phosphorylation

Comparative phosphoproteomics of
differentially expressed kinases between
the highly aggressive PC-3 and PC-3M

cells.

PAK2, SLK, MST4, MAP2K2, and ARAF are kinases
that are potentially associated with increased

migration in PC-3M cells.
[19]

(Phospho)proteomic profiling of human
prostate cancer (PCa)-associated

fibroblasts.

PCa-associated fibroblasts-derived LOXL2 is an
important mediator of intercellular communication

within the prostate tumor microenvironment.
[20]

Characterization of the ERG-regulated
kinome. TNIK is suggested as a potential therapeutic target. [21]

Phosphoproteome of treatment naive and
metastatic CRPC tissue samples

integrated with genomic and
transcriptomic data.

Six major signaling pathways with phosphorylation
of several key residues are significantly enriched in
CRPC tumors; clinically relevant information (kinase
target potential based on patient-specific networks)

potentially suitable for patient stratification and
targeted therapies in late stage PCa is provided.

[22]

Analysis of global phosphoproteomic
changes induced by fish oil in human

PCa.

Pyruvate dehydrogenase alpha 1 is a target of
omega-3 polyunsaturated fatty acids in human PCa. [23]

Phosphoproteomics data from mouse
model of PCa progression [24] integrated

with gene expression analysis and
literature mining.

A total of 125 wild type kinases implicated in human
PCa metastasis were selected for screen for in vivo

metastatic ability; the RAF family, MERTK, and
NTRK2 kinases drive PCa bone and visceral

metastasis, and are highly expressed in human
metastatic PCa tissues, potentially representing

important therapeutic targets.

[25]

Comparative phosphoproteome analysis
of a PCa cell line, LNCaP, and an

LNCaP-derived androgen-independent
cell line, LNCaP-AI.

The phosphorylation level of THRAP3 is
significantly lower in LNCaP-AI cells;

nonphosphorylatable mutant form of THRAP3 and
the phosphorylation-mimic form differ significantly

in protein binding repertoire; many of the
differentially interacting proteins were identified as

being involved in RNA splicing and processing.

[26]

Quantitative proteomic approach to
compare protein phosphorylation in

orthotopic xenograft tumors grown in
either intact or castrated mice.

Changes in phosphorylation of YAP1 and PAK2 and
their elevated levels in CRPC identified; YAP2 and

PAK2 regulate cell colony formation and invasion in
androgen-independent cells; PAK2 influences cell
proliferation and mitotic timing; pharmacologic

inhibitors of PAK2 and YAP1 are able to inhibit the
growth of androgen-independent PC-3 xenografts.

[27]

Phosphotyrosine peptide enrichment and
quantitative mass spectrometry (MS) in
oncogene(non-TK)-driven mouse model

of PCa progression.

Elevated TK signaling (EGFR, EPHA2, JAK2, ABL1,
and steroid receptor coactivator (SRC) tyrosine

kinase activation) is recorded.
[24]

Proteome analysis of Aurora-A substrates
using small molecule inhibitor and

reverse in-gel kinase assay in PC-3 cells.

NuMA becomes hypo-phosphorylated in vivo upon
Aurora-A inhibition; mutation of three of these

phospho-sites significantly diminishes cell
proliferation and increases the rate of apoptosis;

NuMA T1804A mutant mislocalizes to the
cytoplasm in interphase nuclei in a punctate pattern.

[28]

Phosphoproteomics of metastatic
docetaxel-resistant PCa cell lines

(DU145-Rx and PC-3-Rx).

Increased phosphorylation of FAK mediates
chemoresistance in CRPC. [29]
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Table 1. Cont.

PTM Experimental Setting Main Findings Ref.

Glycosylation

Proteomics analysis to determine the
O-glycan profiles of PCa cells

metastasized to bone (PC-3), brain
(DU145), lymph node (LNCaP), and

vertebra (VCaP) in comparison to
immortalized RWPE-1 cells derived from

normal prostatic tissue.

PCa cells exhibit an elevation of simple/short
O-glycans, with a reduction of complex O-glycans,

increased O-glycan sialylation, and decreased
fucosylation. Core 1 sialylation is increased in all

PCa cells. The expression of sialyl-3T antigen, which
is the product of ST3Gal-I is increased. ST3Gal-I is
associated with PC-3 cell proliferation, migration

and apoptosis. Downregulation of ST3Gal-I reduces
the tumor size in xenograft mouse model.

[30]

Comprehensive proteomic approaches of
FUT8 overexpressing PCa cells.

Upregulation of EGFR and its downstream
signaling; increased cell survival in

androgen-depleted conditions.
[31]

Extracellular vesicles (EV)-derived
glycoproteins upon overexpression of

FUT8 in PCa cells.

Reduced number of vesicles secreted by PCa cells;
increase in the abundance of proteins associated

with cell motility and PCa metastasis; altered
glycans on select EV-derived glycoproteins.

[32]

O-GlcNAc chromatin consensus motif
imposed by OGT used as a bait for MS;

combination with MYC chromatin
immunoprecipitation (ChIP)-MS in PCa

cells.

OGT is an essential mediator in
androgen-independency, which is the major

mechanism of PCa progression.
[33]

Proteomics of androgen-dependent and
androgen-resistant LAPC4 cells.

FUT8 is significantly overexpressed in the
androgen-resistant LAPC4 cells; overexpression of
FUT8 might be responsible for the decreased PSA

expression in prostate cancer specimens.

[34]

Cell surface Thomsen–Friedenreich (TF)
antigen proteome profiling of metastatic

PCa cells.

CD44, α2 integrin, β1 integrin, CD49f, CD133, CD59,
EphA2, CD138, transferrin receptor and profilin
express TF antigen; TF antigen positive prostate
cancer cells form significantly more and larger

prostaspheres under both non-differentiating and
differentiating conditions and express higher levels

of stem cell markers.

[35]

Ubiquitination

Overexpression or depletion of USP22 in
PCa cells and analysis of the

ubiquitylome.

Depletion of USP22 sensitizes cells to genotoxic
insult; analysis of the USP22-sensitive ubiquitylome

identified the nucleotide excision repair protein,
XPC, as a critical mediator of the USP22-mediated

response to genotoxic insult.

[36]

Knockdown of E6AP in DU145 cells and
analysis of a proteome.

Clusterin is a novel target of E6AP; concomitant
knockdown of clusterin and E6AP partially restores

cell growth.
[37]

Changes in the ubiquitin landscape
induced by prostate cancer–associated

mutations of SPOP in immortalized
prostate epithelial cells expressing

endogenous SPOP.

DEK and TRIM24 are effector substrates consistently
upregulated by SPOP mutants with decreases in

ubiquitination and proteasomal degradation
resulting from heteromeric complexes of wild type

and mutant SPOP protein; DEK stabilization
promotes prostate epithelial cell invasion.

[38]

SUMOylation
Quantitative proteomics to identify

SUMOylated proteins in SUMO stably
transfected PC-3 cells.

More than 900 putative target proteins of SUMO are
identified; mutation of newly identified SUMO

modification sites of USP39 further promotes the
proliferation-enhancing effect of USP39 on PCa cells.

[39]
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Table 1. Cont.

PTM Experimental Setting Main Findings Ref.

Palmitoylation

Palmitoyl-proteomic analysis of large and
small cancer-derived PCa EVs [40].

STEAP1, STEAP2, and ABCC4 are identified as
PCa-specific palmitoyl-proteins abundant in both EV

populations; their localization in EVs is reduced
upon inhibition of palmitoylation in the producing

cells.

[40]

Palmitoyl proteomic analysis of breast
and PCa cell lines, ±DHHC3 ablation.

Putative substrates include 22–28
antioxidant/redox-regulatory proteins and DHHC3
ablation elevates oxidative stress; DHHC3 ablation,

in combination with chemotherapeutic drug
treatment, elevates oxidative stress, with a greater
than additive effect, and enhances the anti-growth

effects of the chemotherapeutic agents; DHHC3
ablation synergizes with PARP inhibitor PJ-34, to
decrease cell proliferation and increase oxidative

stress.

[41]

Proteomic experiments using clickable
palmitate probe (Alk-C16) between three
individual pairs of androgen-treated and

non-treated LNCaP cells.

Androgen treatment significantly increased the
palmitoylation level of eIF3L, which may be used as

a biomarker for the diagnosis of early-stage PCa.
[42]

LNCaP cells metabolically-labeled with
Alk-C16, a palmitate probe and treated

with R1881, an androgen, or DMSO after
which palmitoylome profiling was

performed.

Androgen treatment significantly increases the
palmitoylation level of α-tubulin and Ras-related

protein Rab-7a (Rab7a), which are essential for cell
proliferation; in the supernatant of LNCaP cells, the
palmitoylation level of α-tubulin is also increased

following androgen treatment, which may represent
a biomarker for early-stage PCa.

[43]

3. Post-Translational Modifications in Prostate Cancer
3.1. Phosphorylation

Phosphorylation is one of the most extensively studied and among the most frequently
experimentally observed PTMs [11]. It is considered that around 40% to 60% of proteins are
temporarily phosphorylated. This PTM is used as a molecular switch for protein activity,
which regulates almost every aspect of cellular processes from growth, differentiation, and
apoptosis to cell signaling. Phosphorylated proteins or proteins involved in phosphoryla-
tion (kinases and phosphatases) are among the main drivers of many cancers including that
of prostate. Both AR and the PTEN/PI3K/AKT/mTOR axis are driven by phosphorylation,
which directs the outcomes of their actions. AR is phosphorylated at 18 sites by many
different enzymes, which influences its stability, nuclear localization, and transcriptional
activity [44–46], which in turn regulates the prostate cancer cell fate.

Phosphatidylinositol-3 kinases (PI3Ks) are a large family of lipid kinases activated
mainly by receptor tyrosine kinases. After activation, a wave of downstream signaling
events takes place initiated by a synthesis of a lipid secondary messenger phosphatidyli-
nositol 3, 4, 5 trisphosphate (PIP3) to mediate cell growth, proliferation, and apoptosis. The
tumor suppressor, phosphatase and tensin homolog deleted on chromosome 10 (PTEN),
negatively regulates PI3K signaling by converting PIP3 back to phosphatidylinositol 4,5 bis-
phosphate. PIP3 recruits phosphoinositide-dependent kinase 1 (PDK1) and AKT to the
plasma membrane, where PDK1 phosphorylates AKT at Thr-308. This is further comple-
mented by the action of mammalian target of rapamycin complex 2 (mTORC2), which
phosphorylates AKT at Ser-473 for its full activation [5]. Part of this signaling axis is
depicted on Figure 1 and involves phosphorylation of downstream AKT targets, such as
FOXOs, GSK3, and NF-κB. As seen on Figure 1, functional studies have revealed many
kinases to be involved in prostate cancer biology. Growth factor and cytokine signaling
conveyed by different receptor kinases (e.g., ErbB2 [47], FGFRs [48–53], IGF1R [54–58],
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CXCRs [59–69]) as well as plasma membrane and cytoplasm located kinases are shown to
critically influence prostate cancer. As an example, MAPKs are serine/threonine kinases
that link extracellular signals to downstream machinery that influences cell behaviors.
Among them, MAPK1 [70–72], MAPK4 [73], and JNK [74] show the most prominent roles
in regulation of prostate cancer progression. They are shown to activate multiple substrates
in response to various stimuli including cytokines, growth factors, oxidative stress, ul-
traviolet radiation, and drugs. Another potent inducer of prostate cancer cell growth is
JAK/STAT signaling axis, which additionally regulates resistance to ADT [75] as well as
the immune escape of CRPC to natural killer (NK) cells in hypoxia [76], which could be
exploited in immunotherapy against prostate cancer.

Prostate cancer metastasis formation is, among other proteins, influenced by EphA2 [77],
steroid receptor coactivator (SRC) family tyrosine kinases [78], FAK [79,80], PKM2 [81],
TGFβ [82], TNFα [83], and chemokine signaling at every step of the metastatic process.
Specifically, CXCL12/CXCR4 signaling axis in prostate cancer bone metastasis (the main
site of prostate cancer dissemination) participates in the formation of the endosteal niche,
and blocking this axis compromises initial establishment of tumors in the bone microen-
vironment. Contrary, the expanding bone tumors are sensitive only to the members of
growth factor receptor inhibition [66].

Cytoplasmic adapter proteins that become phosphorylated and activated downstream
of many kinases are a link between kinases and other events of signaling cascades. Several
adapter proteins (Figure 1) have been shown to influence prostate cancer biology. As
an example, FRS2α (FGF receptor substrate 2α), is an FGF receptor-associated protein
that was shown to regulate prostate development, regeneration, tumorigenesis and tumor
angiogenesis [84,85]. Recently, it was shown that growth factor receptor-bound protein 10
(GRB10), has pro-proliferative function in prostate carcinoma [86], and that it sustains AR
activity by interacting with PP2A [87].
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Figure 1. Interaction network of proteins involved in or affected by phosphorylation in prostate cancer. Kinases, adapter
proteins, and transcription factors are shown to visualize the network that drives prostate cancer progression. The roles of
phosphatases in prostate cancer have been recently reviewed [88] and are omitted from this presentation with the exception
of PTEN. Protein–protein interactions were downloaded from the STRING [89] website (experiments and databases
interaction sources were used) and visualized in Cytoscape [90]. Proteins were selected based on in vitro and in vivo
functional and ex vivo studies.

The examples from the previous paragraphs show how each step of the tumorigene-
sis/metastasis formation of prostate cancer is tightly regulated by different cascades that
include phosphorylating or phosphorylated proteins. However, although prostate cancer is
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widely influenced by (de-)phosphorylating enzymes, activating tyrosine kinase mutations
or amplifications are very rare in this cancer [91]. Therefore, phosphoproteome studies
offer insights in their deregulations. The studies from Drake’s laboratory established
that MERTK and NTRK2 kinases drive prostate cancer bone and visceral metastasis [25].
Further, by comparing phosphoproteomes of treatment naive and metastatic CRPC tissue
samples, Drake and colleagues revealed critical involvement of proteins from migration
and invasion, nuclear receptor, PI3K/AKT/mTOR, stemness, cell cycle, and DNA repair
pathways. Moreover, they suggest possible stratification of patients that could benefit
from personalized therapy based on their data [22], a strategy that is described in more
detail in Chapter 4. Additional proteome-wide studies listed in Table 1 investigated protein
phosphorylation in orthotopic xenograft tumors grown in either intact or castrated mice
and suggested that YAP1 and PAK2 kinases are involved in androgen-independent cell
growth [27]. Another study from a mouse model showed elevated kinase signaling includ-
ing EGFR, EPHA2, JAK2, ABL1, and SRC tyrosine kinase activation in prostate tumors [24].
Taken together, studies that investigate the roles of single proteins, as well as phospho-
proteome studies, complement each other for a complete picture on the deregulation of
phosphorylation in prostate cancer and its driving role in prostate cancer biology.

3.2. Glycosylation

Glycosylation is the attachment of a carbohydrate (glycan) to functional groups of
amino acids. Two main types of glycosylation are recognized: N-glycosylation, when
glycans are added to the amide group of an asparagine (Asn) residue in the endoplas-
mic reticulum and O-glycosylation, when they are added to the hydroxyl oxygen of
serine/threonine residues (Ser/Thr) in the Golgi apparatus. Hundreds of enzymes are
involved in glycosylation and, unlike other PTMs, attached glycans are extremely diverse
and add significantly to the complexity of the final protein structure. Glycome, or the entire
complement of sugars, exceeds the complexity of the proteome by the orders of magnitude
and nearly every protein rose after the appearance of multicellular life is composed of both
polypeptide and glycan parts [92]. Glycosylation is the most common PTM in cells [11] and
it is involved in cell adhesion and metastasis, transmitting signals across plasma membrane,
and immune modulation [93]. The expression of glyco-genes is mainly regulated on the
levels of gene polymorphisms or stable epigenetic regulation [94] that is often dysregulated
in cancer [95].

In prostate cancer, glycosylation and the enzymes involved play central roles in tumor
progression as shown in Table 2 and reviewed recently [96,97]. Glyco-genes that participate
in the formation of both O- and N-linked glycans are deregulated in prostate cancer leading
to effects on every aspect of cellular processes and behaviors, from cell proliferation,
migration, apoptosis, and viability to in vivo tumor growth and metastasis formation
(Table 2). Sialylation, or the addition of sialic acid residues as the terminal monosaccharide,
is a process that is disturbed in cancers [93,98]. Sialylated blood group antigen Sialyl
Lewis X (SLeX) influences prostate cancer progression through various mechanisms as
well as the cancer-associated sialyl-Tn glycan (sTn), which affects prostate cancer cell
adhesion and whose expression is shown to be regulated by AR [99]. Fucosylation is the
addition of a fucose to a glycan, as either a terminal glycan or the addition to the core
structure. As seen on Table 2, fucosylation is dysregulated in prostate cancer progression
and participates in the development of castrate resistance. The addition of O-GlcNAc to
proteins (O-GlcNAcylation) is catalyzed by O-GlcNAc transferase (OGT) whose substrate,
UDP-GlcNAc, is synthesized in the hexosamine biosynthetic pathway (HBP). Inhibition
of the HBP was also shown to promote CRPC [100]. OGT was shown to be an essential
mediator in androgen-independency also in a glycoproteomic approach where O-GlcNAc
chromatin consensus motif imposed by OGT was used as a bait for MS and complemented
with MYC ChIP-MS in PCa cells [33]. In this way, it was shown that high OGT activity is
essential for proliferation of prostate cancer cell that is driven by MYC. The glycoproteomic
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approach to prostate cancer yielded several other publications (Table 1) that show the
diversity of processes in prostate cancer that implicate glycosylation.

Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each
rectangle and examples are schematically depicted. The prostate cancer processes affected are listed on the bottom
of rectangles.

Sialylation
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In vitro proliferation, migration 
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Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-
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[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
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cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 
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source of biomarkers of disease progression and severity. One of the central issues in pros-
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to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

O-linked glycans: in vitro
proliferation, migration,

apoptosis; tumor size in mouse
model [30]; cell adhesion [99];

N-linked glycans: in vitro
proliferation, migration, invasion

[101].

Fucosylation
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N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Self-assembly of spheroids
[102]; EGFR signaling; cell

survival in androgen-depleted
conditions [31]; vesicles

secreted by PCa cells [32]; PSA
expression [34]; metastasis to

bone [103].

Biosynthesis of1,6
GlcNAc-Branched

N-glycans
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

In vitro invasion; tumor
growth in xenograft models

[104].

Mannose Trimming of
N-glycans
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Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each 
rectangle and examples are schematically depicted. The prostate cancer processes affected are listed on the bottom of 
rectangles. 

Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Essential for cell viability
[105].

Regulation of N-glycosylation
Substrate Specificity

In vitro proliferation, migration
and invasion; xenograft growth in
a PTEN negative background; ER
structure and stress response; Akt

signaling [106].

O-Linked
N-Acetylgalactosamine

Addition

Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 43 
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Essential for cell viability
[105].

O-Linked
N-Acetylglucosamine

Addition
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Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each 
rectangle and examples are schematically depicted. The prostate cancer processes affected are listed on the bottom of 
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Essential process in
androgen-independency [33];

metabolism [107].

Generation of the
Common Core 1

O-glycan Structure
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Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each 
rectangle and examples are schematically depicted. The prostate cancer processes affected are listed on the bottom of 
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Castration resistance and
metastasis [108,109].

Core-2-branched O-linked
glycosylation
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Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each 
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Tumor growth in mouse model
[110,111]; cell adhesion [110];

resistance to NK cell immunity
[112]; LNCaP susceptibility to

apoptosis induced by Galectin-1
[113].

Core-3 O-linked glycan
formation
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Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Tumor formation
andmetastasis of PC-3 and

LNCaP cells through
downregulation of α2β1
integrin complex [114].

I-branching
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rectangles. 

Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 

Mannose

Biomolecules 2020, 10, x FOR PEER REVIEW 9 of 43 

Table 2. Involvement of glycosylation in prostate cancer biology. The step of glycosylation is stated on the top of each 
rectangle and examples are schematically depicted. The prostate cancer processes affected are listed on the bottom of 
rectangles. 

Sialylation 
 
 
 
 
 

O-linked glycans: in vitro prolif-
eration, migration, apoptosis; tu-

mor size in mouse model [30]; 
cell adhesion [99]; N-linked gly-
cans: in vitro proliferation, mi-

gration, invasion [101]. 

Fucosylation 
 
 
 
 
 

Self-assembly of spheroids [102]; 
EGFR signaling; cell survival in 
androgen-depleted conditions 
[31]; vesicles secreted by PCa 

cells [32]; PSA expression [34]; 
metastasis to bone [103]. 

Biosynthesis of 1,6 
GlcNAc-Branched 

N-glycans 
 
 
 
 
 
 

In vitro invasion; tumor growth 
in xenograft models [104]. 

Mannose Trimming of N-gly-
cans 

 
 
 
 
 
 
 

Essential for cell viability [105]. 

Regulation of N-glycosylation 
Substrate Specificity 

In vitro proliferation, migration 
and invasion; xenograft growth 
in a PTEN negative background; 

ER structure and stress re-
sponse; Akt signaling [106]. 

O-Linked N-Acetylgalactosa-
mine Addition 

 
 
 
 

Essential for cell viability [105]. 

O-Linked N-Acetylglucosa-
mine Addition 

 
 
 
 

Essential process in androgen-
independency [33]; metabolism 

[107]. 

Generation of the Common 
Core 1 O-glycan Structure 

 
 
 
 

Castration resistance and metas-
tasis [108,109]. 

Core-2-branched O-linked gly-
cosylation 

 
 
 
 
 
 

Tumor growth in mouse model 
[110,111]; cell adhesion [110]; re-

sistance to NK cell immunity 
[112]; LNCaP susceptibility to 

apoptosis induced by Galectin-1 
[113]. 

Core-3 O-linked glycan for-
mation 

 
 
 
 
 
 

Tumor formation and 
metastasis of PC-3 and LNCaP 

cells through downregulation of 
α2β1 integrin complex [114]. 

I-branching 
 
 
 
 
 
 
 

Migration and invasion; integ-
rin signaling via indirect mech-
anisms; in DU145 cells appears 
to largely occur on glycolipids 

and partially on O-glycans 
[115]. 

Legend: 
 

  N-acetylglucosamine 
 

  N-acetylgalactosamine 
 

Galactose 
 

  Mannose 
 

Sialic acid 
 

  Fucose 

Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer, 
and that affect multiple proteins globally, single glycosylated proteins or the proteins that 
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are 
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and 
syndecan-1 were shown to influence prostate cancer cell survival and metastasis [96,116]. 
Galectins are glycan binding proteins widely studied in the field of prostate cancer re-
search [117] and, among them, galectin-3 was linked to tumor progression [118] and bone 
remodeling of the bone metastasis niche [119]. 

In addition to playing driving roles in prostate cancer, another important feature that 
glycosylation brings to the field of prostate cancer research is the potential to serve as a 
source of biomarkers of disease progression and severity. One of the central issues in pros-
tate cancer management is to distinguish indolent and aggressive prostate cancer to tailor 
the treatments accordingly. Current methods that are available do not offer satisfying so-
lution to this issue. Therefore, glycans were suggested to be considered as a supplement 
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor 
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Besides the steps of glycosylation processes that are dysregulated in prostate cancer,
and that affect multiple proteins globally, single glycosylated proteins or the proteins that
bind glycans have been implicated in prostate cancer. Proteoglycans are proteins that are
extensively glycosylated. Among them, versican, decorin, biglycan, lumican, and syndecan-
1 were shown to influence prostate cancer cell survival and metastasis [96,116]. Galectins
are glycan binding proteins widely studied in the field of prostate cancer research [117]
and, among them, galectin-3 was linked to tumor progression [118] and bone remodeling
of the bone metastasis niche [119].

In addition to playing driving roles in prostate cancer, another important feature that
glycosylation brings to the field of prostate cancer research is the potential to serve as
a source of biomarkers of disease progression and severity. One of the central issues in
prostate cancer management is to distinguish indolent and aggressive prostate cancer to
tailor the treatments accordingly. Current methods that are available do not offer satisfying
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solution to this issue. Therefore, glycans were suggested to be considered as a supplement
to the current tools to diagnose prostate cancer rapidly, and to precisely determine tumor
aggressiveness and prognosis [96]. As an example, sialylation of the prostate-specific
antigen (PSA), a serine protease secreted by prostate that liquefies semen, has shown the
robust prediction power to diagnose aggressive prostate cancer [120,121].

3.3. Ubiquitination

Ubiquitination (or ubiquitylation) is a covalent attachment of a ubiquitin, a small
protein composed of 76 amino acids (8.5 kDa) with highly conserved primary sequence
to lysines of a substrate protein via an isopeptide bond. Depending on the number of
ubiquitin units attached, proteins can be monoubiquitinated (addition of a single ubiqui-
tin molecule) or polyubiquitinated (sequential addition of more ubiquitin molecules to
preceding ubiquitins). The polyubiquitin chains are named, according to which of the
seven lysines (K) within ubiquitin are used to link the chains. Ubiquitination is a process
that controls protein abundance, function, and trafficking. Usually, K48-linked chains
lead to degradation of a substrate, while K63-linked chains can alter the protein’s activity,
interaction, or localization. Furthermore, monoubiquitination mainly plays a role in pro-
tein trafficking while polyubiquitination, in addition to protein trafficking, contributes to
degradation. Proteins modified by ubiquitin addition are recognized by the proteasome, a
cylinder-shaped multi-protein cellular structure located in the cytoplasm and the cell nu-
cleus, which cleaves and degrades or modulates the proteins. This system is known as the
ubiquitin-proteasome system (UPS) and its precise control ensures that unnecessary, dam-
aged, misfolded, and potentially harmful proteins are removed. Virtually every process in
the cell, from the cell cycle to cell adhesion, migration, invasion, apoptosis, differentiation,
angiogenesis, and tumor growth, antigen processing, cytokine signaling, transcription, and
DNA damage response is regulated by the UPS [122,123]. Many proteins are involved
in the processes of ubiquitination, which is divided in three steps. In a first step, ubiqui-
tin is activated by the ubiquitin-activating enzyme (E1) via using ATP. Subsequently, it
becomes transferred to the ubiquitin-conjugating enzyme (E2) and recruited into the E3
ligase, which binds the substrate protein and targets it for proteasome degradation. It is
widely accepted that E3 ligases direct the specificity of the complex towards the substrate,
which is ensured by the increase in the number of enzymes from E1 to E3. While there
are only two E1 and 38 E2 enzymes, there are more than 600 human E3 ubiquitin ligases,
which are classified according to the protein sequence homology into the largest Really
Interesting New Gene (RING) finger family with more than 600 predicted members and
the HECT (Homologous to the E6-AP Carboxyl Terminus) family, with approximately
30 members in the human genome [124]. There are also less common Ring-Between-Ring
(RBR) family [125] with 12 members as well as the U-box type E3 ligases, which create an
E2 binding surface that resembles a RING finger [126]. These enzyme families differ also
by a mechanism of ubiquitination; while RING finger or U-box E3 ligases act as a scaffold,
HECT, and RBR type E3 ligases form transient thioester linkages with ubiquitin before
transferring it to the protein substrate. Furthermore, RING type E3 ligases can be classified
as single or multisubunit E3 ubiquitin ligases. Example of a multisubunit E3 ubiquitin
ligase are the SCF cullin–RING ligases (CRLs). CRLs are the major group of RING-type
E3 ligases and SCFs are SKP1-CUL1-F-box protein E3 ligases with 69 different complexes
found in humans. U-box type ubiquitin ligases are also classified as E4 ubiquitin ligases, a
new class of ubiquitination enzymes [127].

The concerted action of ubiquitination enzymes that leads to control of protein abun-
dance and function in a cell is supplemented by the actions of deubiquitinases (DUBs),
which remove ubiquitin chains from a substrate and protect it from degradation. This type
of interplay between ubiquitinating and de-ubiquitinating enzymes is required to keep the
cellular homeostasis [128]. It is estimated that the human genome encodes approximately
100 DUBs [129].
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Considering the involvement of ubiquitination in many cellular processes, it is not sur-
prising that the failure to keep it tightly regulated contributes to many pathologies including
prostate cancer. The most prominent role among the enzymes involved in ubiquitination in
prostate cancer has been described for speckle-type poxvirus and zinc finger (POZ) protein
(SPOP) that functions as a substrate adaptor of a CRL3. This protein is altered genetically
or through changes in expression in a number of cancers [130]. For prostate cancer, the
number of cases with genetic alterations ranges from 4.4% to 28.6% of the cases studied and
the number of the cases with downregulation ranges from 25.2 to 93.5% [130]. SPOP muta-
tions are often located in the substrate-binding domain suggesting its biological role. While
the role of SPOP protein differs depending on the tumor type, in prostate cancer, SPOP
seems to function as a tumor suppressor and its targets for degradation, among others,
include AR, ERG, steroid receptor coactivator 3 (SRC3), BRD4, MYC, and TRIM24 [130,131].
The essential role of SPOP in prostate carcinogenesis has been confirmed in different
mouse models where SPOP mutations activate the PI3K/mTOR pathway and promote
carcinogenesis [132]. Ubiquitylome analysis of a landscape induced by prostate cancer–
associated mutations of SPOP in immortalized prostate epithelial cells expressing endoge-
nous SPOP revealed DEK and TRIM24 as substrates consistently upregulated by SPOP
mutants and with decreases in ubiquitination and proteasomal degradation (Table 1) [38].
Of these, DEK stabilization was shown to promote prostate epithelial cell invasion [38].
Other proteome studies revealed clusterin as a novel target of E6AP with roles in cell
growth [37] and XPC, as a critical mediator of the USP22-mediated response to genotoxic
insult [36] (Table 1).

While the roles of DUBs in prostate cancer have been recently reviewed [129], here,
in Table 3, the summary on the roles of E3 ligases and the processes affected by their
actions are presented. The target proteins of E3 ligases in prostate cancer, among others,
are the driving proteins, such as AR, ERG, PTEN, cell-cycle progression proteins, and other
transcription factors and signaling molecules (Table 3). According to the current knowl-
edge, AR is ubiquitinated by the actions of RNF6, MDM2, CHIP, and SPOP ligases/ligase
subunits, which regulate its stability, transcriptional activity, recruitment of co-activators,
chromatin retention, and degradation (reviewed in [133,134]) (Table 3). In addition, the
actions of BMI1 affect MDM2-mediated AR protein degradation [135]. SIAH2, an E3
RING finger ubiquitin ligase that influences formation of neuroendocrine phenotype and
neuroendocrine prostate tumors through its actions on HIF-1α and FOXA2 [136], is also
involved in AR ubiquitination to regulate its transcriptional activity by targeting for degra-
dation a select pool of NCOR1-bound transcriptionally-inactive AR on a group of gene
promoters/enhancers [137]. In this way, the subsequent recruitment of AR/coactivator
complexes to increase the transcriptional output of selective AR target genes is potentiated.
It is interesting to note that in the same publication, the authors did not observe changes in
the global levels of AR, emphasizing the subtle roles of SIAH2 in the control of a specific
pool of ARs. In a recent work, Vatapalli et al. [138] have shown that upregulation of MYC-
regulated E3 ubiquitin ligases HECTD4 and MYCBP2 promotes AR and MYC degradation
that leads to repression of MYC in a negative feed forward manner and regulation of
the tumorigenicity of AR-positive prostate cancer cells. Among the most prominent E3
ligases that influence prostate cancer is SKP2, an F-box protein, and a crucial component
of the SCF type of E3 ubiquitin ligase complexes. SKP2 has been shown to also affect
AR ubiquitination [139], but additionally its targets in prostate cancer include EZH2, p27,
JARID1B, DAB2IP, AKT, BRCA2, ATF4, p27, p21, and Twist to regulate various cellular
processes (Table 3).
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Table 3. Ubiquitin E3 ligases, their target proteins, and processes they influence in prostate cancer. Signaling pathways
regulated by deubiquitinases in prostate cancer have been recently reviewed [129], as well as the roles of the SPOP
protein [130,131], substrate adaptor of a CRL3 that is frequently mutated in prostate cancer.

(Component of)
E3 Ligase Description

Affected Protein(s)
and/or Signaling

Pathways
Effects on Processes

RING type

AMFR

RING-type E3 ubiquitin transferase,
component of a complex that

participates in the final step of
ER-associated degradation

3βHSD1 [140] DHT synthesis necessary to activate the
AR [140]

APC/C

Multi-subunit cullin-RING E3
ubiquitin ligase that regulates

progression through the metaphase to
anaphase of the cell cycle

Cyclin A2, Geminin,
PLK1, Aurora A, and

CDC20 [141]; SKP2 [142]

PTEN loss but not phosphatase
inactivation results in hypersensitivity

to pharmacological inhibition of
APC-CDH1 targets PLK1 and Aurora A

[141]; cell cycle [142]

BIRC6

Consists of a BIR and a
ubiquitin-conjugating (UBC) domain
with chimeric E2/E3 ubiquitin ligase

activity; through its BIR domain
binds to active caspases; through its
UBC domain, facilitates proteasomal
degradation of pro-apoptotic proteins

GPCR and matrisome
signaling; prosurvival

genes [143]

Implicated in advanced, Enzalutamide
(Enz)-resistant PCa [143]; role in PCa
progression and treatment resistance

[144]

BMI1

Contains a RING motif; it does not
have E3 ubiquitin ligase activities;
forms a complex with RING1B to

ubiquitinate H2A-K119 and repress
the expression levels of polycomb

repressive complex 1 (PRC1) targets

AR [135]

PRC1-independent role in
MDM2-mediated AR protein
degradation; tumor growth of

xenografts that have developed
resistance to surgical castration and

Enz treatment [135]

CAND1
F-box protein exchange factor; key

assembly factor of SCF E3 ubiquitin
ligase complexes

p21 [145]; PLK4 [146]
In vitro cell viability, proliferation,

apoptosis [145]; centriole
overduplication [146]

c-CBL RING domain E3 ligase EGFR [147] EGFR/Erk1/2 signaling-mediated PCa
[147]

COP1 RING-type E3 ubiquitin transferase
STAT3 [148]; ETS

transcription factors
[149]

Tumorigenesis; proliferation and cancer
stem-like properties in prostate

epithelial cells [148,149]

CRL4/Cdt2
Proliferating cell nuclear antigen
(PCNA)-dependent E3 ubiquitin

ligase
WHSC1 [150]

Interaction with key intracellular
signaling molecules, AKT, RICTOR,

and Rac1, to drive PCa metastasis [150]

CUL3 Cullin–RING-based E3 ubiquitin
ligase

Mutated in a subset of PCa indicating
possible driving roles [151]

CUL4A Cullin family of ubiquitin ligase
proteins AR [152] AR protein homeostasis [152]

CUL4B Scaffold protein that assembles the
Cullin4B-RING E3 ligase complex BMI1 [153], c-MYC [154] Cancer stem-like traits of PCa cells

[153]; PCa progression [154]

FBXL2
F-box protein; the receptor subunit of
one of 69 human SCF ubiquitin ligase

complexes
IP3R3 [155] Ca2+-mediated apoptosis and tumor

growth [155]

FBXL4
Member of the F-box protein family;
part of a modular E3 SCF ubiquitin

ligase complexes

Potentially ERLEC1
[156] PCa progression and metastasis [156]
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Table 3. Cont.

(Component of)
E3 Ligase Description

Affected Protein(s)
and/or Signaling

Pathways
Effects on Processes

FBXL7 F-box protein that functions as
substrate receptor for SCF c-SRC [157] Epithelial-to-mesenchymal transition

(EMT) and metastasis [157]

FBXO45 Substrate-specific adaptor subunit of
SCF E3 ubiquitin ligase complex PAR4 [158,159] Cell survival [158,159]; therapy

resistance [159]

FBXW7 F-box and WD repeat domain
containing 7 AURKA [160] Pathogenesis of prostatic small cell

neuroendocrine carcinoma [160]

FBW7 F-box protein; a substrate receptor for
SCF-type E3 ligase

Dual phosphorylated
ERG [161] Driving of prostate oncogenesis [161]

KLHL20 Substrate-binding subunit of Cullin3
ligase PML, HIF-1α [162] PCa progression [162]

MARCH5 RING-finger E3 ligase MCL1 [163] Apoptosis in response to a BH3
mimetic agent targeting BCLXL [163]

MDM2

The RING domain E3 ubiquitin ligase;
key regulator of p53 tumor

suppressor protein activity and
stability

AR [164,165]; p53
[166,167]; E2F1 [168];

AR-v7 [169]; E-cadherin
[170]; activation of p53
and destabilization of
AR by combinatorial

inhibition of MDM2 and
MDMX [171]

Phosphorylation-dependent
ubiquitination and degradation of AR
by AKT [165]; stem cell integrity [164];

survival and proliferation of
genomically unstable tumor cells [167];

prolongs the half-life of the E2F1
protein by inhibiting its ubiquitination
(MDM2 displaces SCFSKP2); influences

cell proliferation [168]

MYCBP2

Atypical E3 ubiquitin-protein ligase,
which mediates ubiquitination of

threonine and serine, instead of lysine
residues

AR, MYC [138] Tumorigenicity of AR-positive PCa
cells [138]

MYLIP
E3 ubiquitin-protein ligase whose
activity depends on E2 enzymes of

the UBE2D family
AR [172] AR activity [172]

PIRH2 Ring finger protein with ubiquitin
ligase activity

Epsilon-COP [173];
HDAC1 [174]

Regulation of the secretion of PSA
[173]; AR signaling [174]

pVHL

Substrate recognition subunit of the
VHL-Elongin B/C E3 ligase complex

that targets the HIF-1/2 for
proteasomal degradation under

normoxia conditions

AR (enhanced AR
de-ubiquitination

instead of inducing AR
ubiquitination) [175];

HIF-1α [176]

Suppression of AR activity [175]; HIF-1
hypoxic response [176]

RNF2 Also known as RING1b or RING2;
catalytic subunit of PRC1 TXNIP [177]; CCL2 [178]

Cell cycle arrest and apoptosis [177];
metastasis in mice inoculated

intracardially with PC-3M cells [178]

RNF6 RING finger-type E3 ligase
Poly- and

mono-ubiquitination of
AR [179]

Promotes AR transcriptional activity
and specificity [179]

RNF7 RING component of CRL
(Cullin-RING ligase)

PHLPP1 and DEPTOR
(PI3K/AKT/mTOR axis)
[180]; p21, p27, NOXA;
ERK1/2 signaling [181]

Proliferation in monolayer and soft
agar; clonogenic survival; migration

[180]; PCa tumorigenesis [181]

RNF11 RING finger-type E3 ligase ErbB2 and EGFR [182] Growth arrest [182]
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Table 3. Cont.

(Component of)
E3 Ligase Description

Affected Protein(s)
and/or Signaling

Pathways
Effects on Processes

RNF20 and RNF40 Histone H2B ubiquitin E3 ligases AR, several cell cycle
promoters [183]

Proliferation (due to changed
expression of several cell cycle

promoters) and modulation of AR
transcriptional activity in intact cells

[183]

RNF41 Ring Finger Protein 41, E3 ligase ErbB3 [184] AR-independent proliferation [184]

RNF126 E3 ligase that contributes to
BAG6-mediated quality control p21 [185] Proliferation [185]

SIAH2
E3 RING finger ubiquitin ligase;
member of the seven in absentia

homolog (SIAH) family

EAF2 [186]; AR [137];
AR-V7 [187]; HIF-1α and

FOXA2 [136];
Wnt/β-catenin signaling

[188]

Apoptosis [186]; lipid metabolism, cell
motility, proliferation, cell growth

under androgen-deprivation condition
in vitro and in vivo, PCa regression

upon castration [137];
castration-resistance in PCa therapy
[187]; formation of neuroendocrine

phenotype and neuroendocrine
prostate tumors [136]; inducing and
maintaining PCa cells dormancy in
bone [188]; death receptor-mediated

apoptosis [189]

SKP2
F-box protein; crucial component of

the SCF (Skp1-Cullin1-F-box) type of
E3 ubiquitin ligase complexes

EZH2 [190]; p27
[191–193]; JARID1B
[194]; DAB2IP [195];

AKT [196]; BRCA2 [197];
ATF4, p27, p21 [198];
Twist [199]; AR [139];
IDH1/2 [200]; FOXO3
[201]; E-cadherin [202]

TRAF6-mediated ubiquitination of
EZH2; progression of PCa and CRPC

through upregulation and activation of
progenitor genes, as well as AR-target
genes [190]; paclitaxel resistance [191];
tumorigenesis [192–196]; proliferation,

survival, glucose uptake [196];
homologous recombination and
sensitivity to the PARP inhibitor

rucaparib [197];
oncogenic-stress-driven senescence

[198]; progression and stem cell
features of CRPC [199]; cell

cycle-dependent metabolic oscillation
between glycolysis and TCA cycle

[200]; cell migration [202]; high
expression is associated with a

mesenchymal phenotype and increased
tumorigenic potential [203]

SOCS2

Probable substrate recognition
component of a SCF-like ECS

(Elongin BC-CUL2/5-SOCS-box
protein) E3 ubiquitin ligase complex

FLT3 and JAK2 [204];
NDR1 stability; NF-κB
transactivation [205]

Metastasis formation [204];
SOCS2-deficiency leads to

hyper-activation of NF-κB and
downstream pathological implications

[205]

TOPORS RING domain containing E3 ligase NKX3.1 [206] Tumor progression [206]

TRAF4 RING domain E3 ubiquitin ligase TrkA [207] Metastasis formation [207]
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Table 3. Cont.

(Component of)
E3 Ligase Description

Affected Protein(s)
and/or Signaling

Pathways
Effects on Processes

TRAF6 RING domain E3 ubiquitin ligase

p85a [208]; TGFβ type I
receptor [209,210]; PS1

[210]; mTOR [211]; AKT
[196]; TAK1 [212]; EZH2

[190]

PI3K/AKT signaling; migration [208];
tumor-promoting effects of TGFβ type I
receptor [209,210]; activation of mTOR;

regulation of autophagy and cell
proliferation [211]; proliferation,

survival, glucose uptake, in vivo tumor
growth [196]; activation of NF-κB
signaling downstream of several

receptors [212]

TRIM11 E3 ubiquitin-protein ligase; the TRIM
motif contains a RING domain

Cell proliferation in vitro and the
progression of PCa [213]

TRIM16

It lacks a RING domain found in
other TRIM proteins, but can

dimerize with other TRIM proteins
and has E3 ubiquitin ligase activity

SNAIL signaling
pathway [214] Progression of prostate tumors [214]

TRIM25 RING domain E3 ubiquitin ligase ERG [215]; G3BP2 [216]
Driving of prostate carcinogenesis
[215]; cell growth and survival by

modulating p53 signals [216]

β-TrCP Substrate recognition subunit for the
SCFβ-TrCP E3 ligases

HIF-1α [217], Twist
[199]; CHD1 [218];

MTSS1 [219]; REST [220];
δ-catenin [221]; AhR

[222]; Gli2 [223]

Progression and stem cell features of
CRPC [199]; transcription of the

pro-tumorigenic TNF–NF-κB gene
network [218]; proliferation and

migration [219]; AR activity [220]; cell
growth [222]

UHRF1 Ubiquitin Like with PHD And Ring
Finger Domains 1; E3 ubiquitin ligase

Cell proliferation and biochemical
recurrence after radical prostatectomy

[224]; epigenetic crosstalk and PCa
progression [225]

RBR type

PRKN Parkin RBR E3 Ubiquitin Protein
Ligase

Participates in removal of damaged
mitochondria via mitophagy [226]

U-box type

CHIP U-box type chaperone associated E3
ligase

JMJD1A [227]; SNPH
[228]; AR/AR-V7 [229];
AKT signaling pathway

[230]; AR [231–233];
HIF-1α [234]; PRMT5

[235]; PTEN [236]

AR activity [227]; mitochondrial
dynamics, tumor chemotaxis, invasion,

and metastasis in vivo [228];
anti-androgen resistance [229]; in vitro
migration and invasion [230]; mitotic

arrest [233]; potential role in PCa
oncogenesis through PRMT5 [235]

UBE4A

Ubiquitin-protein ligase that probably
functions as an E3 ligase; may also

function as an E4 ligase
complementing actions of another E3

ubiquitin ligase

Interleukin-like EMT
inducer (ILEI) [237] In vitro migration and invasion [237]

HECT type

EDD
E3 ubiquitin-protein ligase, which is a

component of the N-end rule
pathway

Wnt/β-Catenin
signaling [238]

Sensitivity of hormone-refractory PCa
to docetaxel in vitro and in vivo [238]
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Table 3. Cont.

(Component of)
E3 Ligase Description

Affected Protein(s)
and/or Signaling

Pathways
Effects on Processes

E6AP
The founding member of the HECT

(Homologous to E6AP Carboxyl
Terminus) domain E3 ligases

NDRG1 [239], p27 [240];
PI3K, AKT [241,242],

mTOR [241]

Acquisition of mesenchymal features,
migration, ability for

anchorage-independent growth [239];
tumor growth [240]; proliferation and
invasion in bone metastasis [241]; cell
growth, proliferation, apoptosis [242];

cellular senescence in vivo,
radiation-induced cell death [243]

HACE1 HECT domain and ankyrin
repeat-containing ubiquitin ligase

HACE1 is a critical chromosome 6q21
tumor suppressor involved in prostate

cancer [244]

HECTD4 Probable HECT domain E3
ubiquitin-protein ligase AR, MYC [138] Tumorigenicity of AR-positive PCa

cells [138]

HUWE1 WWE domain-containing protein 1,
E3 ubiquitin protein ligase

HK2 [245]; c-MYC
[246,247]

Metabolism and cancer stem cell
expansion [245]; survival [246];

proliferation [246,247] and migration
in vitro, and explant growth in vivo

[247]

ITCH/AIP4 HECT-type E3 ubiquitin transferase
Itchy homolog ErbB3 [248]

ErbB3 ubiquitination and degradation
in cancer cells through

JNK1/2-dependent ITCH/AIP4
activation [248]

Nedd4

Comprised of a catalytic C-terminal
HECT domain and N-terminal C2

domain and WW domains
responsible for cellular localization

and substrate recognition

IRS-2 [249]; AR [250];
ErbB3 levels and
signaling [251]

IGF signaling and mitogenic activity
[249]; cancer cell proliferation in vitro

and in vivo; sensitization of cancer cells
for growth inhibition by an anti-ErbB3

antibody [251]

SMURF1 SMAD specific E3 ubiquitin protein
ligase 1 PTEN [252] PCa progression [252]; invasion [253]

WWP1 WW domain-containing E3 ubiquitin
protein ligase-1

TGFβ [254]; p63 [255];
KLF5 [256]

Migration and invasion [257]; 22Rv1
cells colony formation; PC-3 cells
proliferation and TGFβ-mediated

growth inhibition [254]; apoptosis [255]

WWP2 WW Domain Containing E3
Ubiquitin Protein Ligase 2

SUMO1-modified PTEN
[258] PCa development [258]

On the example of AR ubiquitination, it is evident that the status and the type (site
and the number of units involved) of ubiquitination determine whether upregulation
or downregulation of a process (AR transcription activity) will occur. In addition, some
ubiquitination proteins, such as SPOP regulate global, while the others, like SIAH2, only
specific pools of AR. This emphasizes the versatile role that ubiquitination plays in cellular
processes and the importance of its tight regulation.

In addition to E3 ligases, there are several publications exploring the roles of E2 en-
zymes in prostate cancer. It was shown that ubiquitin conjugating enzyme E2T (UBE2T)
exhibits oncogenic properties [259] while genetic ablation of Ube2o (ubiquitin conjugating
enzyme E2O) impairs progression of prostate cancer. UBE2O targets AMPKa2 for ubiqui-
tination and degradation and UBE2O blockade inhibits tumorigenesis through AMPKa2
restoration [260]. Furthermore, MYLIP is an E3 ubiquitin-protein ligase whose activity
depends on E2 enzymes of the UBE2D family and that was shown to affect AR activity in
prostate cancer [172].
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In conclusion, prostate cancer biology is widely influenced by the actions of enzymes
involved in ubiquitination and the main players that drive prostate carcinogenesis are
affected and regulated by the UPS system. Understanding of the so-called “ubiquitin
code” [261] of prostate cancer through ubiquitomics would add in attempts to dissect the
driving events of this disease.

3.4. SUMOylation

SUMOylation is the covalent addition of Small Ubiquitin-related MOdifier (SUMO)
proteins of about 12 kDa and 100 amino acids to other proteins via an isopeptide bond
between the C terminal carboxyl group on the SUMO protein and the amino group
on the lysine of the substrate protein. SUMO proteins have four isoforms (SUMO-1,
SUMO-2, SUMO-3, and SUMO-4). Although not highly similar at the level of amino
acid sequence, SUMO-1 and ubiquitin are related at the levels of secondary and tertiary
structures and, consequently the processes of SUMOylation and ubiquitination are mech-
anistically similar [123]. The SUMOylation process is also executed in three enzymatic
steps: SUMO-activation by the enzyme E1 (such as SUMO-activating enzyme SAE1/2);
SUMO-conjugation by the enzyme E2 (UBC9—the only SUMO E2 conjugating enzyme
discovered to date and the best-characterized E2 enzyme [262]); and SUMO-ligation by
the enzyme E3 (such as PIAS/RANBP2/hPC2). The specificity for the target protein
of SUMOylation is thought to reside within E2 enzyme. By the in vitro experiments it
was indicated that UBC9 is sufficient for binding to the SUMO moiety and transferring
SUMO to substrate proteins, but, recently it was suggested that a specific E3 ligase might
be required for efficient SUMOylation in vivo by acting as scaffold and helping to add
specificity to the SUMOylation reaction [263]. As indicated above, SUMO E3 ligases are
classified into three groups: the protein inhibitor of activated STAT (PIAS) family proteins,
the polycomb protein Pc2, and RANBP2 (RAN Binding Protein 2, localized to the nuclear
pore complex) [263]. SUMOylation is reversible process and de-SUMOylation is catalyzed
by SUMO proteases named Sentrin/SUMO-specific Proteases (SENPs), which cleave the
terminal glycine of SUMO, releasing it from its core protein to recycle SUMO molecules.
This process keeps the low detectable levels of SUMOylated proteins in cells (5–10% of
substrate proteins) [127]. There are six SENP enzymes in mammals, which contain a highly
conserved 200 amino acid catalytic domain responsible for the enzymatic activity. Other
domains vary between SENPs and play roles in subcellular localization and possibly sub-
strate recognition [263]. On the list of experimentally documented and predicted PTMs,
SUMOylation, unlike ubiquitination, is not among the top ten processes [11]. Furthermore,
SUMOylation, unlike ubiquitination, does not directly target proteins for degradation but
is thought to determine cellular localization and, in some cases, can regulate transcriptional
activity or act as a protective mechanism to prevent structural alterations to proteins in
response to cellular stress [128,264]. Since quite often the same residues within proteins
are targeted by SUMOylation and ubiquitination, SUMOylation may compete with the
ubiquitination process [128,264]. Additionally, the processes influenced by SUMOylation
include subnuclear structure formation, protein–protein interactions, cellular metabolism,
regulation of several intracellular signaling pathways, cell differentiation, cell cycle, DNA
damage repair, apoptosis, tissue development, and disease progression [263].

By using quantitative proteomics to identify SUMOylated proteins in SUMO stably
transfected PC-3 cells Wen et al. [39] (Table 1) found more than 900 putative target proteins
of SUMO. Additionally, they have shown that mutation of newly identified SUMO mod-
ification sites of USP39 further promotes the proliferation-enhancing effect of USP39 on
prostate cancer cells. Among the SUMOylated proteins in prostate cancer are the driving
proteins such as AR [134,263,265–270], PTEN [271], p53 [216,272], ATF3 [273], FOXA1 [274],
FOXA2 [275], CSR1 [276], TBL1 and TBLR1 [277], WWOX [278], pontin [279] SLUG [280],
and SNAIL1 [281]. Two SUMOylation residues (K386 and K520) are defined in AR [134].
The PIAS proteins are reported to act as SUMO-E3 ligases for the SUMO-1 and SUMO-2/3
conjugation to AR in vivo and in vitro [263,265,266]. Recently it was shown that SUMO-3
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modification by PIAS1 modulates AR cellular distribution and stability [267]. By using wild
type and doubly SUMOylation site mutated AR, Sutinen et al. showed that SUMOylation
does not simply repress the AR activity, but it regulates AR’s interaction with the chromatin
and the target gene selection [268]. Further, androgen-induced, dynamic SUMOylation
is linked to the activity cycles of AR in the cell nucleus and chromatin binding, while the
stress-induced SUMO-2/3 modifications sustain the solubility of the AR and protect it
from short-term proteotoxic insults such as hyperthermia in the nucleus [269]. Clinically
isolated substitutions at a SUMOylation related sites in AR lead to SUMOylation that
affects multiple endogenous genes. These alterations in AR SUMOylation play significant
roles in AR-based diseases, oligospermia, androgen insensitivity syndrome, and recurrent
prostate cancer [270].

Of other proteins critically involved in prostate tumorigenesis, it was shown that
SUMO-1 modification of PTEN regulates tumorigenesis by controlling its association with
the plasma membrane, which in turn affects PI3K/AKT pathway [271]. Additionally,
androgen induces SUMO-mediated p53 nuclear export that promotes treatment-resistant
prostate cancer [272]. Pro-invasive properties of prostate cancer cells are also regulated
by SUMOylation; it was shown that SNAIL1 is regulated by SUMOylation in response to
TGFβ stimulation [281] and that p14ARF stabilizes SLUG through increased SUMOylation
at lysine residue 192 [280].

Studies that examined the roles of proteins involved in SUMOylation revealed that
PIAS1 is a central factor that influences prostate cancer cell proliferation and survival and
tumor growth in vitro and in vivo most probably through increased expression of tumor
suppressor p21 and declined expression of anti-apoptotic protein Mcl1. Moreover, the
same study suggests that PIAS1 is a valid target in docetaxel resistant cells [282]. The work
from Palvimo laboratory revealed that PIAS1 is a chromatin-bound AR coregulator that
functions in a target gene selective fashion to regulate prostate cancer cell growth [283].
Recent work from the Culig laboratory established PIAS1 as a positive feedback regulator of
AR signaling, which is achieved through enhanced AR stabilization in prostate cancer [284].

SENP1 is reported to be the de-SUMOylation enzyme that cleaves the SUMO-1 group
from SUMOylated AR protein and reverses the ligand-induced SUMOylation of AR to
help to fine tune the cellular responses to androgens in a target promoter-selective man-
ner [285]. SENP1 also promotes EMT of prostate cancer cells via regulating SMAD4
de-SUMOylation [286] and it regulates PTEN stability to promote prostate cancer devel-
opment [258]. In a mouse model, Bawa-Khalfe et al. showed that SENP1 overexpression
induces transformation of the normal prostate gland and gradually promotes the onset
of high-grade prostatic intraepithelial neoplasia through induction of HIF-1α-dependent
angiogenesis and increased cell proliferation [287]. Similarly, Wan et al. showed that SENP1
promotes prostate cancer progression and metastasis [288]. As a connection to the ubiquiti-
nation pathway in prostate cancer, it was shown that SPOP promotes cellular senescence by
degrading the SENP7 [289]. Taken together, these results indicate that investigated SENPs
in prostate cancer induce cancer progression and a malignant phenotype, while the work
on SUMOylation revealed the frequent modification of prostate cancer driving proteins.

3.5. Acetylation

The acetylation of proteins is a dynamic and highly specific PTM in which acetyl
donors (such as acetyl-CoA) transfer acetyl groups to the proteins under the catalysis of
acetyltransferase. In the opposite reaction, proteins are deacetylated by the actions of
deacetylases. Protein acetylation is one of the main regulators of gene transcription since
most histone acetyltransferases are located in the nucleus where they act as transcriptional
co-activators [290]. Historically, acetylation was first discovered as a process affecting
histones and if lysine is acetylated, histones will no longer be positively charged, so the
binding of DNA to the histone is relaxed, which facilitates gene transcription. However,
currently >100 non-histone proteins that are involved in transcription are shown to be
affected by acetylation confirming that regulation of gene transcription is a major role
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of non-histone protein acetylation too [291]. Protein acetylation is also associated with
protein degradation and it can regulate a variety of signaling pathways as well as the
cell cycle [292]. To recognize the large amount of non-histone protein acetylation, histone
acetyltransferases (HATs) and histone deacetylases (HDACs) were renamed to lysine
acetyltransferases (KATs) and lysine deacetylases (KDACs), respectively. The documented
roles of these proteins in prostate cancer are summarized in Table 4.

Globally, hypoacetylation and excessive histone deacetylase activity in prostate cancer
cells has been observed [293,294] and global histone modification patterns (acetylation and
dimethylation in histones H3 and H4) predict progression, development and risk of prostate
cancer recurrence [295,296]. These patterns change under chronic hypoxic conditions in
the prostate [297]. Additionally, acetylation of the histone variant H2A.Z occurs at active
promoters and is associated with oncogene and neo-enhancers activation in prostate
cancer [298]. The transition of androgen-dependent to -independent prostate cancer was
suggested to be associated with the changes in protein lysine acetylation as the number of
cellular proteins undergoing acetylation in the androgen-dependent prostate cancer was
higher as compared to the androgen-independent [299]. H3-lysine-27 acetylation (H3K27ac)
ChIP-seq in Enzalutamide (Enz)-resistant CRPC cells identified a group of super enhancers
that are abnormally activated in Enz-resistant CRPC cells and associated with enhanced
transcription of a subset of tumor promoting genes such as CHPT1 that drive anti-androgen
therapy resistance in prostate cancer [300]. Takeda et al. showed that the AR candidate
enhancer becomes histone acetylated (H3K27ac) in CRPC tumors and that deacetylation
of this enhancer element effectively suppresses AR signaling and decreases sensitivity
to Enz [301]. Among those listed in Table 4, other proteins that direct AR acetylation
include Arrest defective protein 1 (ARD1) that is androgen induced [302] and promotes
AR dissociation from HSP90 complex and prostate tumorigenesis [303]. Acetylation of AR
enhances coactivator binding [304] and in turn histone acetylation, among other factors,
defines genomic AR-occupied regions [305]. Deregulation of AR expression is a driver
of chromatin relaxation and AR/androgen-regulated bromodomain-containing proteins
(BRDs), which are histone acetylation readers, mediate this effect, which helps to stratify
patients with tumors in which BRD-mediated TF binding is enhanced or modified as cancer
progresses. Those patients could potentially benefit from combination therapy targeting
bromodomains [306].

Table 4. Roles of (de-)acetylating enzymes in prostate cancer.

Enzyme Involvement(s) in Prostate Cancer Ref.

KATs

KAT2A
KAT2A inhibition prevents interleukin (IL) 6-induced PCa metastases through

PI3K/PTEN/AKT signaling by inactivating Egr-1 [307]

Association between AR and histone acetyltransferase KAT2A increases histone H3
acetylation level on cis-regulatory elements of AR target genes [308]

KAT2B Promotes PKM2 acetylation and decreases PKM2 protein level through degradation
through chaperone-mediated autophagy; promotes tumor growth [309]

CBP
(KAT3A) CBP loss cooperates with PTEN haploinsufficiency to drive PCa [310]

p300 (KAT3B)

p300-mediated acetylation of histone demethylase JMJD1A prevents its degradation by
CHIP and enhances its activity [227]

p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade
treatment [311]

Therapeutic targeting of the CBP/p300 bromodomain blocks the growth of CRPC [312]
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Table 4. Cont.

Enzyme Involvement(s) in Prostate Cancer Ref.

p300 regulates fatty acid synthase expression, lipid metabolism and PCa growth [313]

p300 regulates AR degradation and PTEN-deficient prostate tumorigenesis [314]

The assembly of a macromolecular complex involving CBP/p300 results in acetylation of
p53 at K373, a critical PTM required for its biological activity [315]

SKP2 is acetylated by p300 at K68 and K71, which promotes its cytoplasmic retention, and
cytoplasmic SKP2 enhances cellular migration through ubiquitination and destruction of

E-cadherin
[202]

p300 is the dominant coregulator of the CBP/p300 pair for androgen-regulated gene
expression in C4-2B cells; p300 is required at an early stage of chromatin remodeling and
transcription complex assembly after binding of AR to the gene but before many critical

histone modifications occur

[316]

Function in the survival and invasion pathways of PCa cell lines [317]

p300 and CBP stimulate estrogen receptor-beta (ER-β) signaling and regulate cellular
events in PCa [318]

IL-4 activates AR through enhanced expression of CBP/p300 and its histone
acetyltransferase activity [319]

p300 modulates nuclear morphology in PCa and is required for androgen depletion
independent activation of the AR [320]

p300 mediates STAT3 acetylation on Lys685, which mediates STAT3 dimerization and is
reversible by type I HDAC [321]

CBP/p300 is a component of a transcriptional complex that regulates SRC-dependent
hypoxia-induced expression of VEGF [322]

The downregulation of p300 inhibits PCa cell proliferation both at the basal level and on
IL6 stimulation [323]

p300 mediates androgen-independent transactivation of the AR by IL6 [324]

p300 and p300/CBP acetylate the AR at sites governing hormone-dependent
transactivation [325]

Tip60
(KAT5)

Negatively regulates the proliferation of LNCaP cells via the caspase 3-dependent
apoptosis pathway [326]

Associated with resistance to X-ray irradiation [327]

Inhibition by TH1834 increases the effect of ionizing radiation in PC-3 and DU145 cells,
induces apoptosis and increases unrepaired DNA damage [328]

Interacts with ER-β to regulate endogenous gene expression such as CXCL12 and cyclin
D2 [329,330]

KAT5 and KAT6B positively regulate cell proliferation through PI3K/AKT signaling [331]

Inhibition by NU9056 induces a decrease of AR, PSA, p21 and p53 levels in LNCaP cells,
which might explain the increase of apoptosis and the decrease of proliferation [332]

Overexpression increases the acetylation of the AR and its localization in the nucleus and
promotes cell proliferation [333]

Tip60 and β-catenin complexes regulate expression of metastasis suppressor gene KAI1 [334]

A possible role for Tip60 in the molecular pathway leading to the development of
androgen-independent PCa following long-term androgen deprivation therapy [335]

Tip60 and HDAC1 regulate AR activity through changes to the acetylation status of the
receptor [336]

MYST1
(KAT8)

Regulates androgen signaling in PCa cells [337]

Regulates NF-κB and AR functions during proliferation of PCa cells [338]
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Table 4. Cont.

Enzyme Involvement(s) in Prostate Cancer Ref.

FOXP3 induces H4K16 acetylation and H3K4 trimethylation and activation of multiple
genes by recruiting KAT8 and causing displacement of PLU-1 [339]

KDACs

Class I Maspin induction is a critical epigenetic event altered by class I HDACs in the restoration
of balance to delay proliferation and migration ability of PCa cells [340]

HDAC1

KLF5 inhibits STAT3 activity and tumor metastasis in PCa by suppressing IGF1
transcription cooperatively with HDAC1 [341]

Involved in E-cadherin expression in PCa cells [342]

Ubiquitination of the AR and HDAC1 may constitute an additional mechanism for
regulating AR function; HDAC1 and MDM2 function co-operatively to reduce AR

mediated transcription that is attenuated by the HAT activity of the AR co-activator Tip60
[343]

HDAC3 Genetic knockdown of either HDAC1 or HDAC3 can suppress expression of
AR-regulated genes, recapitulating the effect of HDAC inhibitor treatment [344]

HDAC4

Positive regulator of AR SUMOylation, revealing a deacetylase-independent mechanism
of HDAC action in PCa cells [345]

Recruitment of HDAC4 by transcription factor YY1 represses HOXB13 to affect cell
growth in AR-negative PCa [346]

HDAC6

Synergistic interaction with MEK-inhibitors in CRPC cells [347]

Metastatic prostate cancer-associated p62 inhibits autophagy flux and promotes EMT by
sustaining the level of HDAC6 [348]

Regulates AR hypersensitivity and nuclear localization via modulating Hsp90 acetylation
in CRPC [349]

HDAC7
HDAC7 localizes to the mitochondrial inner membrane space of prostate epithelial cells
and exhibits cytoplasmic relocalization in response to initiation of the apoptotic cascade,

which highlights a link between HDACs, mitochondria, and programmed cell death
[350]

HDAC11 HDAC11 depletion is sufficient to cause cell death and to inhibit metabolic activity in
PC-3 cells [351]

SIRT1

Modulates the sensitivity of PCa cells to vesicular stomatitis virus oncolysis [352]

Mesenchymal stem cells overexpressing SIRT1 inhibit PCa growth by recruiting NK cells
and macrophages [353]

Loss of miR-449a in ERG-associated PCa promotes the invasive phenotype by inducing
SIRT1 [354]

SIRT1 and LSD1 competitively regulate KU70 functions in DNA repair and mutation
acquisition [355]

The silencing of SIRT1 gene in PC-3 cells suppresses the movement, migration, and
invasion, possibly via reversing the EMT process [356]

Loss of Sirt1 promotes prostatic intraepithelial neoplasia, reduces mitophagy, and delays
Park2 translocation to mitochondria [226]

Existence of SIRT1 and MPP8 crosstalk in E-cadherin gene silencing and EMT [357]

Regulation of histone H2A.Z expression is mediated by SIRT1 in PCa [358]

Enhances matrix metalloproteinase-2 expression and tumor cell invasion of PCa cells [359]

SIRT1 induces EMT by cooperating with EMT transcription factors and enhances PCa cell
migration and metastasis [360]

Inhibition of cortactin and SIRT1 expression attenuates migration and invasion of DU145
cells [361]
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Table 4. Cont.

Enzyme Involvement(s) in Prostate Cancer Ref.

Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to SKP2-mediated FOXO3
ubiquitination and degradation [201]

Disruption of a SIRT1-dependent autophagy checkpoint in the prostate results in prostatic
intraepithelial neoplasia lesion formation [362]

Inhibition of SIRT1 activity increases the chemosensitivity of androgen-refractory PCa
cells [363]

SIRT1 inhibition at the activity level as well as via shRNA results in a significant
inhibition in the growth and viability of human PCa cells; inhibition of SIRT1 causes an

increase in FOXO1 acetylation and transcriptional activation in PCa cells
[364]

SIRT1 inhibition causes a decrease in cell growth, cell viability and the colony formation
ability and an increase in FOXO1 acetylation and subsequent transcriptional activation

regardless of p53 status; SIRT1 inhibition results in an increase in senescence in PC-3-p53
(wild type p53) cells whereas it results in an increase in apoptosis in PC-3 (lack p53) cells

[365]

Upregulation of SIRT1 expression may play an important role in promoting cell growth
and chemoresistance in androgen-refractory PC-3 and DU145 cells [366]

Required for antagonist-induced transcriptional repression of androgen-responsive genes
by the AR [367]

SIRT1 is a regulator of AR expression and function [368]

FOXO1 activity in PCa cells is inhibited by deacetylation by SIRT1 [369]

SIRT2 Dysregulation of SIRT2 and histone H3K18 acetylation pathways associates with adverse
PCa outcomes [370]

SIRT3

Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to
drive aggressive PCa to the bone [371]

SIRT3 and SIRT6 promote PCa progression by inhibiting necroptosis-mediated innate
immune response [372]

Inhibits PCa metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin
pathway [373]

Inhibits PCa by destabilizing c-MYC through regulation of the PI3K/AKT pathway [374]

Inactivation of SIRT3 leads to elevated SKP2 acetylation, which leads to increased SKP2
stability through impairment of the CDH1-mediated proteolysis pathway resulting in
increase of SKP2 oncogenic function; cells expressing an acetylation-mimetic mutant

display enhanced cellular proliferation and tumorigenesis in vivo

[202]

SIRT4 Mitochondrial PAK6 inhibits PCa cell apoptosis via the PAK6-SIRT4-ANT2 complex [375]

SIRT5 SIRT 5 regulates the proliferation, invasion, and migration of PCa cells through
acetyl-CoA acetyltransferase 1 [376]

SIRT6
E2F1 enhances glycolysis through suppressing Sirt6 transcription in cancer cells [377]

Inhibition of SIRT6 reduces cell viability and increases sensitivity to chemotherapeutics [378]

SIRT7

SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by
suppressing the AR signaling in PCa [379]

Promotes PCa cell aggressiveness and chemoresistance [380]

SIRT7 inactivation reverses metastatic phenotypes [381]

Of other proteins implicated in prostate cancer, transcriptional regulator and tumor
suppressor Id4 was shown to regulate transcriptional activity of wild type and mutant
p53 via K373 acetylation in prostate cancer [315,382], which directs selective transcription
complex assembly [383]. Mechanistic insights into p53 acetylation come from studies that
showed that resveratrol enhances p53 acetylation and apoptosis in prostate cancer by
inhibiting MTA1/NuRD complex [384]. It also regulates PTEN/AKT pathway through
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inhibition of the same complex [385]. Metastasis-associated protein 1 (MTA1) is a part
of the nucleosome remodeling deacetylation (NuRD) corepressor complex that mediates
posttranslational modifications of histones and non-histone proteins, which leads to tran-
scriptional repression.

The transcription factors Krüppel-like factor 5 and 6 (KLF5 and KLF6) are critically
involved in prostate cancer progression [386,387]. Recently, it was shown that KLF5 acety-
lation regulates luminal differentiation of basal progenitors in prostate development and
regeneration [388] and is involved in TGFβ caused docetaxel resistance [389]. Remarkably,
the acetylation status of KLF5 determines whether this protein will switch from its tumor
suppressor function to tumor promoter in prostate cancer cells [390]. Additionally, differ-
ent expression patterns of acetylated and unacetylated KLF5 in prostatic epithelial cells
have been reported [391]. For KLF6, it was also suggested that acetylation may regulate
its function [392]. In conclusion, global as well as single protein aberrant acetylation is
critically involved in many aspects of prostate cancer progression.

3.6. Lipidation

Protein lipidation that includes cysteine palmitoylation, N-terminal glycine myris-
toylation and cystein prenylation (farnesylation and geranylgeranylation) is frequently
detected in eukaryotic proteins [11] and is involved in membrane trafficking, protein
localization and secretion, signal transduction, and apoptosis [393]. In prostate cancer,
the palmitoyl-protein signature of extracellular vesicles (EVs) was reported [40] and it
was suggested that palmitoylation plays a role in the sorting of the EV-bound secretome.
Other reports investigated changes in palmitoylation after androgen treatment [42,43] and
DHHC3 palmitoyltransferase ablation [41] (Table 1).

Of the enzymes involved in lipidation, it was shown that fatty acid synthase (FASN), an
enzyme that catalyzes de novo synthesis of the fatty acid palmitate, increases prostate can-
cer cell adhesiveness, impairs HGF-mediated cell migration and reduces three-dimensional
(3D) invasion by mediating actin cytoskeletal remodeling downstream of palmitoylated
atypical GTPase RHOU [394,395]. Moreover, p63 cell survival promoting capabilities en-
gage the actions of FASN [396] and inhibition of FASN induces endoplasmic reticulum
stress in prostate cancer cells [397] as well as down-regulates c-MET expression [398].

Another lipidation enzyme, lysophosphatidylcholine acyltransferase of histone serine
palmitoylation (LPCAT1) was found to mediate CRPC growth via nuclear re-localization
and histone H4 palmitoylation in an androgen-dependent fashion by increasing mRNA
synthesis rates. Additionally, LPCAT1 overexpression led to CRPC cell resistance to
treatment with paclitaxel [399].

Farnesyl diphosphate synthase (FDPS), a mevalonate pathway enzyme that synthe-
sizes isoprenoids, plays an oncogenic role in PTEN-deficient prostate cancer progres-
sion [400]. Inhibition of FDPS by zoledronic acid reduces growth and clonogenicity of
human and murine PCa cells in 2D and 3D by disrupting AKT and ERK signaling through
direct interference of small GTPases protein prenylation. Among the numerous products
including cholesterol, vitamin K, coenzyme Q10, and all steroid hormones, the mevalonate
synthesis pathway produces intermediates for isoprenylation of small GTPases, and it was
shown that inhibition of geranylgeranyltransferase (GGTase-I), and farnesyltransferase
(FTase) disrupts cytoskeletal organization of human PC-3 prostate cancer cells [401]. Inhibit-
ing geranylgeranyl diphosphate synthesis reduces nuclear AR signaling and progression
to neuroendocrine prostate cancer phenotype [402]. The same strategy of targeting pro-
tein geranylgeranylation slows tumor development in a murine model of prostate cancer
metastasis possibly through reduction in Rap1A geranylgeranylation [403] and reduces
adrenal gland tumor burden in a murine model of prostate cancer metastasis [404]. Further
to this, statins are a class of inhibitors of 3-hydroxyl3-methylglutaryl coenzyme A (HMG-
CoA) reductase, a key enzyme in synthesis of cholesterol. Antitumoral effects of statins
in prostate cancer have been attributed to both cholesterol dependent and independent
effects. However, the reduced circulating and cellular cholesterol levels are thought to
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contribute the most [405]. Studies have demonstrated statin therapy to be associated with
prostate cancer prevention and favorable clinical outcomes and they suppress tumorigen-
esis in prostate cancer models [406–410]. In PC-3 cells, statin (atorvastatin, a commonly
prescribed statin for treatment of hypercholesterolemia) induces autophagy most likely by
inhibiting geranylgeranyl biosynthesis, which suggests that autophagic response to statins
may partially underlie the protective effects of statins on prostate cancer progression [411].

Of the individual proteins affected by lipidation, it was shown that alteration of
palmitoylation and myristoylation sites change oncogenic potential of constitutively ac-
tive SRC [412–415] and FYN kinases in prostate cancer [412]. Moreover, the oncogenic
effects of AKT are reinforced by its myristoylation and these effects arise, in part, from
the tendency of the membrane-targeted form of the protein to reside in cholesterol-rich
membrane microdomains [416]. Palmitoylation of the classical sex steroid receptors is
required for membrane localization and function [417] and palmitoylation of KAI1/CD82
is necessary for its inhibitory effect on cell migration and invasion [418]. Furthermore,
pharmacologically targeting the myristoylation of the FRS2 scaffold protein whose role in
prostate cancer has been elaborated in Chapter 3.1, inhibits FGF/FGFR-mediated oncogenic
signaling and consequently the prostate cancer progression [419].

4. Therapeutic Potential of Post-Translational Modifications in Prostate Cancer

In previous chapters, critical involvement of PTMs in prostate cancer progression has
been documented. As such, targeting PTMs offers the opportunity to interfere with crucial
events in cancer biology as depicted on Figure 2.Biomolecules 2020, 10, x FOR PEER REVIEW 24 of 43 
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Since kinases are the driving proteins in both cancer cell growth and dissemination,
during the last two decades, several molecules targeting receptor tyrosine kinases were
used in oncology as a first or second line therapy in various cancer types [420]. In prostate
cancer, tyrosine kinase inhibitors targeting signaling pathways of EGFR, VEGFR, c-SRC
family kinases, platelet-derived growth factor and c-MET showed encouraging results in
pre-clinical settings but these finding are still waiting to be realized as anticancer drugs as
phase III clinical trials did not produce satisfying results [421].
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Despite promising results in early preclinical studies, targeting the PI3K-AKT-mTOR
pathway in prostate cancer appeared to be challenge due to numerous feedback and feedfor-
ward loops and redundancy mechanisms that prevent complete blockage of the pathway [6].
Consequently, combinatorial therapies are explored. Targeting PI3K-AKT-mTOR in com-
bination with AR (phase II study of ipatasertib in combination with abiraterone) showed
promising results [422], but further research is needed to delineate the crosstalk between
the two pathways and to define biomarkers for patient stratification.

Since the mechanisms of resistance to therapy are expected to vary significantly
between patients and in individual tumors, another opportunity for prostate cancer man-
agement that is based on phosphorylation emerges from phosphoproteome studies. Ana-
lyzing phosphoproteomic profiles of cancer patients would contribute to possible patient
stratification and this valuable knowledge could be used in the settings of personalized
medicine [423]. Personalized phosphoproteomics or the analysis of signaling networks in
individual tumors, advances personalized therapy by discovering biomarkers of pathway
activity and therefore, suggesting potential targets [424]. Like mentioned in an introduc-
tory part, CRPC often arises in a substantial subgroup of patients worsening the treatment
options. Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate
cancer with poor prognosis that most commonly arises in later stages of prostate cancer
as a mechanism of treatment resistance [425]. Clinically distinct therapeutic strategies are
considered against NEPC compared to the AR-driven adenocarcinomas. The studies from
Beltran and Drake laboratories established that targeting Aurora A [426] and Ret [427]
kinases could bring benefit to NEPC patients. Specifically, a phase II clinical trial of the
Aurora kinase A inhibitor alisertib for CRPC and NEPC patients established that in a subset
of patients with molecular features supporting Aurora A and N-myc activation significant
clinical benefit from single agent alisertib could be achieved [426]. On this example it is
evident how precision oncology and disease classification based on genomic sequencing
that would consider individual qualities of tumors and the status of the main drivers offers
possibilities of improvements of prostate cancer therapy by either providing the targets for
the treatment or the biomarkers to guide future pre-clinical research and improve clinical
trials [428,429].

The strategy to target oncogenic proteins for degradation is widely used in the at-
tempts to develop novel anti-cancer drugs. A proteolysis targeting chimera (PROTAC)
consists of one protein-binding molecule that is capable of engaging an E3 ubiquitin ligase,
and another that binds to a target protein meant for degradation. In this way, PROTAC is ca-
pable of removing specific unwanted proteins. Recently, the first clinical data were reported
for AR PROTAC showing some efficacy and good safety profile in men with metastatic
CRPC [430]. Considering that AR is heavily affected by other PTMs [44–46,134,431,432],
they could potentially be explored in prostate cancer treatment.

SENP [433] and SUMO enzyme inhibitors [434] are studied in the field of prostate
cancer and showed efficacy in in vitro studies. While this strategy in prostate cancer still
awaits to be further exploited, the (de-)acetylation inhibitors are already used in clinical
trials. HDAC inhibitors vorinostat, pracinostat, panobinostat, and romidepsin underwent
phase II clinical trials for prostate cancers but results were not satisfying to recommend
phase III trials as majority of patients exhibited either toxicity or disease progression [435].
The CBP/p300 bromodomain inhibitor CCS1477, the only CBP/p300 inhibitor currently in
clinical trials, is under clinical evaluation for the treatment of prostate cancer [436].

Interference with lipidation showed efficacy in in vivo model where blocking myristoy-
lation of SRC inhibited its kinase activity and suppressed prostate cancer progression [415].
Moreover, statins (inhibitors of cholesterol synthesis) used as a therapy were associated
with prostate cancer prevention and favorable clinical outcomes [405].

Although their great importance in cancer progression continues to be shown, gly-
cans are still overlooked in drug discovery strategies, mainly because of the complexity
associated with the glycosylation process and technical difficulties in studying this PTM.
However, some researchers envision that targeting glycans has the potential to start a new
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era of cancer therapy especially because glycans are actively involved in tumorigenesis and
seem to play a role in the failure of existing cancer treatment options [437]. Glycosylation is
recognized as an androgen-regulated process essential for prostate cancer cell viability and
is a global target for androgen control suggesting that loss of specific glycosylation enzymes
might contribute to tumor regression following ADT [105]. Additionally, as mentioned in
Chapter 3.2, global glycosylation profiles or those of individual proteins may serve as a
source of biomarkers of disease progression and severity.

Taken together, the driving role of PTMs in prostate cancer biology is widely consid-
ered in efforts of finding new drugs targeting this disease with some promising compounds
reaching far in (pre)clinical and epidemiological studies of prostate cancer. Besides being
the targets for the treatment, PTMs offer potential of biomarkers that could guide future
research and therapeutic strategies.

5. Conclusions

The main drivers of prostate cancer progression, such as AR [44–46,134,431,432],
PTEN/PI3K/AKT/mTOR [438], STAT3 [439,440], NKX3.1 [441] are influenced by PTMs,
which changes their activity, expression, stability, and localization. Additionally, many
enzymes involved in PTMs are deregulated in prostate cancer and this directs prostate
cancer cell behaviors. Since their driving role in prostate cancer, PTMs are widely explored
in attempts to advance prostate cancer therapy. Proteomics analysis of PTMs in prostate
cancer offers valuable information especially in cases when protein expression and/or
mutational status do not change in malignancy, but the proteins differ only in the PTMs.
Further to this, single protein PTM studies complement proteomics to generate complete
catalogue of PTMs in prostate cancer.
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