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Abstract: Electrochemical impedance spectroscopy (EIS) is an important electrochemical technique
that is used to detect changes and ongoing processes in a given material. The main challenge of
EIS is interpreting the collected measurements, which can be performed in several ways. This
article focuses on the electrical equivalent circuit (EEC) approach and uses grammatical evolution to
automatically construct an EEC that produces an AC response that corresponds to one obtained by
the measured electrochemical process(es). For fitting purposes, synthetic measurements and data
from measurements in a realistic environment were used. In order to be able to faithfully fit realistic
data from measurements, a new circuit element (ZARC) had to be implemented and integrated into
the SPICE simulator, which was used for evaluating EECs. Not only is the presented approach able
to automatically (i.e., with almost no user input) produce a more than satisfactory EEC for each of the
datasets, but it also can also generate completely new EEC configurations. These new configurations
may help researchers to find some new, previously overlooked ongoing electrochemical processes.

Keywords: electrochemical impedance spectroscopy; fuel cells; optimization; evolutionary computation

1. Introduction

Electrochemical impedance spectroscopy (EIS) [1] is an important electrochemical
technique that is used to detect changes and ongoing processes in a given material. It
can be applied in fields such as solid oxide fuel cell (SOFC) development, monitoring
protective coatings properties, measuring the effectiveness of electrodes and more. At its
core, EIS consists of measuring an AC signal and presenting it as a function of frequency at
a constant amplitude [2]. The results of an EIS study offer a large amount of additional data
such as the distribution of relaxation times (DRT) [3–5] and the distribution of diffusion
times (DDT) [6,7], which can be used to gain deeper insights into ongoing electrochemical
processes. The main challenge of EIS is interpreting the collected measurements, which
can be conducted in several ways. For example, one can use Electrical Equivalent Circuits
(EECs) or apply the DRT and DDT approaches (Scheme 1). The EEC application is custom
in EIS study [8,9], and there are also modern articles on how to improve and modify EEC
analysis [10–15] EEC analysis.

This article focuses on the EEC approach and proposes an innovative method that
automatically constructs an EEC that produces an AC response, which has the same
impedance characteristic(s) as the measured electrochemical process(es). The resulting
circuit also allows a glimpse into the type of material that was measured (conductor,
conductor with an oxide layer, an SOFC electrode, etc.). Finding an EEC manually is a
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difficult task that requires in-depth knowledge of electrical circuit elements (and system
under the investigation) and comprises several steps. One must first select the appropriate
EEC topology and parameters and then tune the parameters by using an optimization
algorithm such as, for example, the Levenberg–Marquardt algorithm (LMA) [16–18] or the
Nelder–Mead method (NMA) [19,20]. Once this optimization is complete, the optimized
EEC is selected as the representation of the measured system. This process can be somewhat
simplified with the use of sets of pre-determined circuits, but it is unlikely that such limited
sets will be able to fit all the possible signals that one usually encounters in EIS.

Scheme 1. Different approaches commonly applied in EIS study.

In this paper, a novel approach is presented that aims to automate all of the steps in
the EEC approach (Scheme 1) by autonomously generating and optimizing a matching
EEC. Expert knowledge of circuits and circuit simulations is combined with evolutionary
techniques in order to avoid the severe limitations of a conventional EEC approach, which
looks for a solution only from a limited number of EECs with predetermined topology. The
presented approach [21] is based on Grammatical Evolution (GE), which is a well known
Evolutionary Computation technique and allows the user to pick any number of electrical
components, sources, and even custom-created elements, such as a ZARC element (see,
e.g., [1,4,5]). An important advantage of the proposed approach is that once the setup
is complete—which consists only of the list of desirable circuit elements, the objective
function and the EIS data to be fitted—the fitting process is autonomous and requires no
further intervention on the part of the user. Note that the proposed approach lowers the
required skill level of the practitioner; once a working setup has been found (i.e., the right
set of elements for the current measurement set), all the subsequent fittings require no
additional user input except for the new set of EIS values to be fitted.

The next section briefly overviews grammatical evolution and explains the grammar
that was used to describe EECs and the slightly adapted genetic operators of mutation and
crossover. The used genetic parameters, objective function, and the sets of data used for
fitting the EECs are described in Section 3. Finally, the results of fitting the sets of data are
presented, and the paper is concluded with a short discussion of the value of the presented
contribution.

2. Grammatical Evolution

The presented approach of automatic circuit generation is based on grammatical
evolution [22], which is an evolutionary computation technique. Basically, evolutionary
computation is a family of algorithms for global optimization inspired by biological evolu-
tion. A typical evolutionary computation algorithm generates an initial set of candidate
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solutions and updates them iteratively. Each new generation is produced by applying
selection and mutation operators. As a result, the overall fitness (specified by a special
fitness function) of the population will gradually increase until an acceptable solution
is obtained.

Unlike many conventional EA algorithms, grammatical evolution uses populations of
variable-length binary string genomes (also known as chromosomes, where each codon
is a consecutive group of eight bits, representing an integer value) to select production
rules in a Backus–Naur form (BNF) grammar definition. Thus, GE does not perform the
evolution process on the actual circuits but rather on binary stings, which increases the
flexibility of the algorithm. By using appropriate BNF grammar, one can easily integrate
the expert/domain knowledge in order to speed up the process (such as limiting the ZARC
values as shown in [4,5,23]).

The GE approach was implemented in the Python programming environment with the
addition of the PyOpus package to access the SPICE circuit simulator [24] and is described
in-depth in articles [21,25]. Basically, one step of the GE algorithm produces a generation
of binary strings, each of which is then used to select production rules in a BNF grammar
to build an EEC. Thus, each of the obtained EECs is then evaluated in the SPICE simulator
for its fitness.

2.1. The Grammar

The Backus–Naur form is a notation for specifying a language grammar in the form
of so-called production rules [26]. Production rules include terminals, which are elements
that appear in the language (e.g., 0, 1, +, input, etc.), and nonterminals, which must be
expanded in one or more terminals and/or nonterminals. BNF grammar is often expressed
by the tuple {N, T, P, S}, where N and T stand for the sets of terminals and nonterminals,
respectively, P is a set of production rules mapping nonterminals to terminals, and S is a
start symbol, which must be a nonterminal. When there is more than a single production
that can be applied to a certain nonterminal, the different production rules are delimited
by a vertical bar.

In order to be able to evaluate an EEC produced in the GE process, one needs to build a
SPICE netlist from a binary string, which is then evaluated in the SPICE simulator. Standard
components (i.e., resistors and capacitors) as well as the EIS specific ZARC element are
employed to build EECs. Each component has at least two parameters—the numbers of
the connecting ports and the element value(s) (i.e., resistances, capaticances, etc.). This is
the BNF used to produce a SPICE netlist:

N = {netlist, part, res, cap, zarc, num, exp, zexp, znum, gpair} (1)

T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, input, output} (2)

S = {netlist} (3)

and P is summarized in Table 1.
The first row in the table contains a production rule for the <netlist> nonterminal. The

rule ensures that a netlist is composed of up to twelve circuit elements (or parts), separated
by spaces. This was performed to prevent bloating (i.e., the uncontrolled growth of the size
of a circuit due to unnecessary parallel/serial elements). The second row shows that each of
the twelve elements (parts) can become either one of the three actual elements (i.e., resistor,
capacitor, or ZARC) or a nonexistent element (None). It can be observed from the next three
rows how the three elements are specified. They contain two connecting ports (determined
by the <gpair> rule) and the value(s) appropriate for a specific element. A ZARC element
contains specialized numeric values (zexp and znum). These are obtained according to
expert knowledge (as described in [4,5,23]) in order to narrow down the solution search
space. For example, as we are especially interested in the capacitive characteristic of
electrochemical processes, we only allow ZARC elements with n between 0.50 and 0.99.
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Table 2 shows the value ranges of the elements that can be produced using the rules from
Table 1.

Table 1. Production rules.

Nonterminal Expands to

<netlist> twelve space separated <part> nonterminals
<part> <res> | <cap> | <zarc> | None
<res> rXX (<gpair>) <num><num>e<exp>
<cap> cXX (<gpair>) <num><num>e-<exp>
<zarc> aXX (<gpair>) zarcX .model zarcY zarc

(r=<num>e<exp>
tau=<num>e-<zexp>n=0.<znum><num>)

<num> 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0
<exp> 0 | 3 | 6 | 9 | 12
<zexp> 1 | 2 | 3 | 4 | 5
<znum> 5 | 6 | 7 | 8 | 9
<gpair> input 1 | input 2 | input 3 | input 4 | input output |

1 2 | 1 3 | 1 4 | 1 output |
2 3 | 2 4 | 2 output |
3 4 | 3 output |
4 output

The last row of Table 1 contains another hard-wired optimization. Instead of specifying
each connection port separately, the <gpair> production rule was created which holds all
the feasible port combinations (thus, producing some so-called composite terminals made
up from terminals from (2)). In that way, two benefits were achieved—a higher chance of
creating a working circuit (i.e., where one actually receives a signal from input to output)
and a significantly lower chance of creating an illegal circuit with closed loops.

Table 2. Feasible value ranges.

Parameter Value Range

Resistance [1 Ω, 99 TΩ]
Capacitance [99 pF, 99 F]
ZARC resistance [1 Ω, 9 TΩ]
ZARC n factor [0.50, 0.99]
ZARC time constant [9× 10−9 s, 9× 10−1 s]

Note that there is still a certain (small) probability that the algorithm produces an
invalid circuit when using the above rules—in some conditions, the process of mapping
the codons to the actual circuit can result in an element that is connected to itself. Such a
circuit can create serious problems during the simulation (i.e., the simulator could either
crash or become stuck in an endless loop). In order to avoid such situations, the system
was augmented with a special subroutine that detects such circuits and simply eliminates
them from the evolutionary process even before they become evaluated for their fitness.
Some may argue that this is not the best possible strategy since it may result in a loss of
important genetic material at the beginning of the run. That being said, this was still the
most efficient solution. Devising a set of production rules that would prevent this problem
is simply not feasible.

2.2. Mapping Process Examples

For convenience, we now present two examples of mapping an individual produced
during the evolutionary process to an actual electrical circuit.
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2.2.1. A Single Element Example

Let us start with a simple example of mapping a chromosome to a single element.
Assume one has a chromosome {12, 127, 209, 21, 76} that they want to map to a single
element using the grammar from Section 2.1. Note that, as the chromosome is to be mapped
to a single element, rather than a complete netlist, the start symbol will be S = {part}.
The goal is to map the start symbol onto terminals by reading codons (i.e., integer values)
from a chromosome from which a corresponding production rule is selected by using the
following modulo operation.

(rule number) =
(codon integer value) mod
(number of rules for the current nonterminal)

As the start symbol has four possible rules as shown in the second row of Table 1, the
codon value of 12 selects the first production rule (i.e., 12 mod 4 = 0), hence choosing a
resistor. The remaining four codons are then used to map the four nonterminals contained
in the production rule for <res> to the corresponding four terminals. The entire mapping
process is summarized in Table 3. The first column lists the complete chromosome, while
the right operands and results of the modulo operations are given in the third column. The
last column provides the actual selected terminals by using the corresponding production
rule on nonterminals in the second row.

Table 3. Using the chromosome {12, 127, 209, 21, 76} to map the start symbol <part> to an actual
circuit element.

Number of Rules/ Selected
Codon Nonterminal Resulting Rule Terminal

12 <part> 4/0 <res>
127 <gpair> 15/7 1 4
209 <num> 10/9 0
21 <num> 10/1 2
76 <exp> 5/1 3

The resulting element is a resistor connected to ports 1 and 4 with a resistance value
of 2 kΩ (i.e., rXX (1 4) 02e3).

2.2.2. A Complete Netlist

The previous subsection illustrated a simple procedure of mapping a chromosome
to a single circuit. For the next example, we take a chromosome that came out as the best
solution while approximating a Randles circuit. The chromosome is listed in Table 4. Using
the production rules from Table 1 and start symbol S = {netlist}, one starts with the first
codon (236) and perform a modulo 4 operation (the <part> symbol has four possible values)
in order to obtain the result 0. As a result, the first of the 12 <part> nonterminals is replaced
by the <res> nonterminal, which further expands to 4 nonterminals, the first of which is
<gpair>. The next codon (143) maps this nonterminal to the composite terminal (1 output)
(obtained as 143 mod 15, which results in rule number 8). The next three codons (231,
47, and 145) determine the numeric value (two digits and exponent) of the resistor. The
digits require modulo 10 and exponent modulo 5. The result is a 28 Ω (i.e., 28e0) resistor.
This completes the current element, which means that one moves onto the next <part>
nonterminal at the start symbol. The next codon in the sequence (125) selects a capacitor.
Following this procedure, a total of 50 codons are used to create a netlist of ten circuit
elements as shown in Figure 1. The next two codons (223 and 171 found in the fifth row
of Table 4) result in two empty elements (the value of “None”) that are omitted from the
netlist. The final netlist and its resulting circuit are shown in Figures 1 and 2, respectively.
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Table 4. An example chromosome.

236 143 231 47 145 125 33 201 237 187 180
104 251 217 172 112 143 31 227 45 228 183
101 218 83 152 4 253 220 215 77 183 51
147 32 220 173 31 177 0 113 30 211 157
212 45 22 201 117 230 223 171 89 143 243
135 135 11 37 178 161 139 191 148 208 219
159 200 196 231 252 254 232 183 119 165 156
219 205 138 254 133 123 96 68 204 77 229
114 116 139 219 189 97 32 101 166 140 98
168 220 198 93 146 129 130 194 6 125 236
32 51 68 20 183 249 96 156 28 12 62
104 253 104 174 65 11 185 37 137 26 238
86 103 58 122 110 80 222 83 125 18 163
73 19 255 85 104 149 105 127 189 218 54
198 183 144 162 161 47 77 56 21 9 15
16 66 34 132 101 150 135 192 184 138 134
96 96 183 212 147 3 196 101 246 9 241
156 109 113 254 115 13 35 48 117 65 141
8 21 229 74 100 222 69 23 90 7 42
168 120 227 206 147 139 190 22 127 148 187
45 235 97 36 192 92 254 64 188 247 51
183 194 164 61 121 188 100 58 226 255 137
16 88 223 148 155 225 28 233 120 222 167
246 216 225 163 2 86 52 189 45 232 159
118 165 172 74 151 80 19 219 141 0 22
129 33 190 184 253 248 205 30 186 6 186
84 71 126 199 133 127 180 172 159 166 71
27 105 189.

r1 (1 output) 28e0
c1 (input 4) 28e-6
r2 (4 output) 28e6
r3 (1 output) 28e0
r4 (input 4) 29e9
r5 (input output) 40e0
c2 (input 4) 28e-6
r6 (1 output) 28e0
c3 (input 1) 28e-6
c7 (1 4) 29e-0

Figure 1. A netlist created from the chromosome from Table 4.

2.3. Genetic Operations and Circuits

Evolutionary computation features several operators used to manipulate and combine
individual solutions. For the purposes of working with EEC, these operators have to be
adjusted accordingly, most noticeably mutation and crossover.

2.3.1. Circuit Mutation

Mutation results in a change in the chromosome of the individual, which is reflected in
the final interpretation of the chromosome. The change can be minor or major depending
on which codon is selected to mutate. A minor change occurs when, for example, a
chromosome from Section 2.2.1 changes from {12, 127, 209, 21, 76} to {12, 127, 209, 70, 76}.
The effect of this change is that the resistor changes its value from two kiloohms to one
kiloohm, as shown in Figure 3.
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28 µF

29 GΩ

28 µF

40Ω

2.8 MΩ

28 µF

28Ω

28Ω

28Ω

29Ω

OutIn

Figure 2. The final circuit from the chromosome from Table 4.

After Mutation Rxx (1 4) 1e3 Ω

Before Mutation Rxx (1 4) 2e3 Ω

Figure 3. A minor circuit mutation where only the value of the element changes (dashed).

A more significant mutation, on the other hand, happens if the chromosome changes
to {117, 127, 209, 21, 76}. That changes a resistor to a capacitor, as shown in Figure 4, which
can of course result in a completely different function of the resulting circuit (which is not
necessarily a bad thing).

After Mutation Cxx (1 4) 2e-3 F

Before Mutation Rxx (1 4) 2e3 Ω

Figure 4. A more serious circuit mutation where the type of the element changes (dashed).

An even more drastic mutation occurs if the same element changes to {119, 127, 209,
21, 76}. This string now represents two empty elements (119 and 127 both map to rule
number 3, None), and the next codon (209) is used to determine the next element in the
circuit, which will be a capacitor connected to ports 1 and 3 (mapped from <gpair> using
the codon with the value of 21).

2.3.2. Circuit Crossover

While mutation targets a single circuit, crossover takes two different circuits (parents)
and swaps their elements in order to create new circuits (children) that might be better
suited to solving the given problem.

The system first selects two appropriate circuits (usually the circuits that are amongst
the better performing ones). In the example (shown in the top row of Figure 5), there are
two circuits with identical topology but different component values. In the first step, a
random element from Parent 1 is selected—the 13 Ω resistor drawn in solid black. The
algorithm then searches for a similar element in the second circuit (Parent 2) and finds
the 400 Ω resistor. Since two elements of the same type could be found, the crossover can
proceed and the two elements are swapped. The chromosomes are adjusted accordingly so
as to reflect the change. The resulting circuits (show in the bottom row of Figure 5) are then
used as potential candidates in the next generation and (hopefully) perform better than
their parents.
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290 MΩ

13Ω

40Ω

2.8 MΩ

280 µF

2.8 µF

OutIn

(a)

123 MΩ

60Ω

400Ω

2.8 kΩ

56 µF

9.9 µF

OutIn

(b)

290 MΩ

400Ω

40Ω

2.8 MΩ

280 µF

2.8 µF

OutIn

(c)

123 MΩ

60Ω

13Ω

2.8 kΩ

56 µF

9.9 µF

OutIn

(d)

Figure 5. Two circuits before (parents) and after (children) crossover. (a) Parent 1; (b) Parent 2;
(c) Child 1; (d) Child 2.

Note that we used a slightly modified version of crossover, which focuses on the
phenotype instead of considering all available codons. Usually, crossover selects two
completely random codons (or substrings of codons) and swaps them. This proved to be
quite destructive for the circuits as it usually resulted in the circuit becoming nonfunctional
either due to disconnected elements, impossible values, short circuits, or other similar
drastic changes. Therefore, we limited the crossover to elements and values in order to
preserve circuit integrity and increase the chance of converging towards a working solution.

3. Experiments and Data

Table 5 shows the GE parameters that were used in the experiments. The parameters
were chosen based on the previous experience with automatic creation of electronic circuits
using this method [21]. For this research, we selected Sheppard’s objective [27] function as
it is commonly used by researchers for EEC fitting purposes (see, for example, [11]), which
makes it easier to compare the results with those in the literature.

3.1. Objective Function and Evaluation

An objective function is used to calculate the cost or fitness of a solution. The cost of an
individual reflects how well the individual solves a given problem—the lower the cost the
closer the solution to the desired behavior. How the objective function is selected and/or
constructed depends strongly on the problem at hand. In some cases, the objective function
represents a simple numerical comparison of points between two curves while it can be a
complex multi-objective function in others that compares different aspects of the solution
such as cut-off frequency, damping, gain, and combines them into a single measure.
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Table 5. Genetic parameters used in the experiments.

Parameter Description

Population Size 300
Generations 250
Mutation type Fixed Mutation probability
Mutation chance 5%
Fitness Sheppard’s Objective Function
Elitism Best individual always survives
Elite size 60% of population

Sheppard’s Objective Function

It was already mentioned that, in the experiments, we employed the objective function
proposed by Sheppard et al. [27], which is commonly used for solving Complex Nonlinear
Least Squares (CNLS) problems (e.g., [8,11]).

S =
m

∑
j=1

(wj(Re(yexp
j )− Re(ycom

j ))2 + wj(Im(yexp
j )− Im(ycom

j ))2), (4)

wj =
1

Re(yexp
j )2 + Im(yexp

j )2
. (5)

Here, m, yexp
j , ycom

j , and wj are the number of data points, the jth value of experimental
impedance data to be fitted, the jth value of impedance data computed by the proposed
algorithm, and the weighting modulus factor [28] associated with the jth data point. The
goal of the evolutionary algorithm is to minimise the value of S.

3.2. Data Sets Used for Evaluation

The experimental impedance data to be fitted were obtained either via mathematical
models (so-called synthetic data) or from measurements in a realistic environment [5].

3.2.1. Randles Circuits

The first two sets of synthetic data were generated using two circuits that contain
only resistors and capacitors, without any constant phase elements. The first of the two
circuits contains three elements (an equivalent of one Randles circuit [23]), and the second
one contains five elements (an equivalent of two serially linked Randles circuits). The
impedance characteristics and the corresponding Randles circuits can be observed in
Figures 6 and 7.

10 15 20 25 30 35 40
Re(Z)/Ωcm2

0

5

10

15

−I
m
(Z
)/Ω

cm
2

(a)

R1

R2

C

(b)
Figure 6. Single ZARC characteristic and its equivalent circuit. (a) Z characteristic; (b) Equivalent
circuit.



Processes 2021, 9, 1859 10 of 17

10 20 30 40 50 60 70
Re(Z)/Ωcm2

0

5

10

15

−I
m
(Z
)/Ω

cm
2

(a)

R1

R2

C1

R3

C2

(b)
Figure 7. Double ZARC characteristic and its equivalent circuit. (a) Z characteristic; (b) Equivalent
circuit.

3.2.2. Cole–Cole Model

A more complex Cole–Cole (ZARC) [29] model was employed for the next set of
synthetic data. This model is widely used in Distribution of Relaxation Time (DRT)
studies [3–5] and can also be applied when developing new algorithms for solving CNLS
problems [13]. The following equation was used to compute single (K = 1) and double
(K = 2) ZARC element data:

ZZARC(ωj) =
k=K

∑
k=1

Rk
1 + (iωjτ0,k)nk

, k = 1, 2, ..., N, (6)

where ωj is an angular frequency associated with the jth impedance data point, i is the
imaginary unit, Rk is the kth resistance, nk is a factor related to a constant phase element [11],
and τ0,k is the kth time constant.

ZARC data in this study were computed by using (6) and values in Table 6. An
example of such synthetic data can be observed in Figure 8 where a double ZARC (i.e.,
k = 2) was used to generate the impedance characteristic. This characteristic is defined by
two suppressed semi-circuits that can be frequently found in EIS study [5,30].

Table 6. Parameters used to compute single and double ZARC data.

Synthetic Data R1(Ωcm2) τ0,1(s) n1 R2(Ω cm2) τ0,2(s) n2

ZARC 50 0.01 0.7 50 0.0001 0.7

20 40 60 80 100
Re(Z)/Ωcm2

0

5

10

15

−I
m
(Z
)/Ω

cm
2

Figure 8. Double ZARC synthetic data characteristic.

3.2.3. Solid Oxide Fuel Cell Data

Realistic data were obtained from the measurements of solid oxide fuel cells, which
were already used in the previous work [5]. The measured cells were industrial-sized
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and characterized by an active surface of 80 cm2 and an operating temperature of 800 ◦C.
Humidified hydrogen was used as a fuel for a fuel electrode, and air was used as fuel for
an air electrode. More details regarding the experimental setup can be found in [31]. The
impedance characteristic obtained from the measurements is shown in Figure 9.

0 20 40 60 80
Re(Z)/Ωcm2

0

10

20

30
−I
m
(Z
)/Ω

cm
2

Figure 9. Solid oxide fuel cell characteristic—measured data.

Note that, compared to synthetic data, this set features a lot less comparison points
since it was obtained from real measurements. We were, therefore, faced with two options—
either to evaluate the model using only the original data points or try to increase the
amount of points using interpolation. We opted for interpolation since it permits better
accuracy with respect to the evaluation of the results (more data points help to match
the curve with better accuracy). We used the linear interpolation included in the Numpy
Python package. Incidentally, without interpolation, the algorithm was unable to evolve an
appropriate EEC since almost any random circuit fitted in the original twenty data points
quite well. Using interpolation, every single run produced an acceptable solution.

4. Results

This section presents the results of running the grammatical evolution algorithm in
trying to approximate the data provided in the previous section.

4.1. Randles Impedance Characteristic Matching

After initial fiddling with system settings and parameters (maximum number of
elements and a few others), the system was able to consistently produce matching circuits
with a good fit with the Sheppard’s value of 0.29 or lower. What is more, at least half of the
population (i.e., 150 circuits) produced viable (and different) solutions, which means that
the system is able to produce several candidates in a single run. Figures 10 and 11 show that
the matched impedance characteristics (dashed orange) overlaid over the original (solid
blue) characteristic and layouts of the best matching circuits for each case, respectively.

Note that the presented approach generates some additional elements that can be later
removed with a bit of expert knowledge. An example of such a simplification is shown in
Figure 12, where the elements that have no effect since they are too large to receive any
current were removed. Thus, the capacitor with 29 F was removed since it is effectively an
open circuit, and no current passes through it at measured frequencies. The entire bottom
subcircuit (the two resistors of 290 MΩ and 2.8 MΩ and the 560 µF capacitor) can also be
removed since there will be no current over these elements as there is a path with much
lower resistance (i.e., via the 13.3Ω and 40Ω resistors).
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Figure 10. Randles circuit—matched impedance characteristic. (a) Single; (b) Double.
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Figure 11. Cont.
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Figure 11. Randles fitted circuits. (a) Single; (b) Double.
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13.3Ω
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Figure 12. A simplified circuit from Figure 11a.

4.2. Cole–Cole Fitting

Cole–Cole data revealed a serious problem with the system—any simulation with a nk
factor lower than 0.9 failed to produce a working circuit. However, this is not a surprise as
such a factor requires a Constant Phase Element (CPE) in order to be included in a circuit
and in order for the circuit to be able to produce the desired characteristic. Note that a CPE
features frequency dependant values, which cannot be carried out using basic electronic
components (i.e., resistors and capacitors) nor does such an element exist in the SPICE
simulator. Fortunately, SPICE lends itself to implementing and integrating custom circuit
elements; therefore, we created a model for the ZARC element based on (6) and added
it to the Spice Opus circuit simulator as a built-in device. The model was implemented
via the XSPICE extensions, which allow the user to load user-defined devices from dll
files. However, because EIS only requires a small-signal AC analysis, a transient analysis
model was omitted because of its undue complexity and the fact that it is not needed in the
simulations. It is quite crucial that we built this model since it enabled us to continue to
use the SPICE simulator. We believe this is the first implementation of the ZARC element
in SPICE since we have not found it mentioned anywhere in the literature.

The results obtained with the updated engine are once again spot on, as observed in
Figure 13.

The resulting circuit is shown in Figure 14 with ZARC values provided in Table 7.
Again, the circuit was simplified (by removing unnecessary parallel/serial resistors and
capacitors), but the resulting circuit still differs from the expected topology of two serial
ZARC elements. The issue here lies in the fact that the presented system creates a circuit
with a fitting impedance characteristic and matching time constants. It succeeds in this task
since the results (extracted via Python Cole–Cole decomposition) indicate that the resulting
circuit (Figure 14) yields time constants values (0.007 and 0.00008) that are close to the ones
(0.01 and 0.0001) used to prepare the original data (see Table 6). The final metric value
is, therefore, slightly larger in the range of 10 due to a more complex problem (multiple
ZARC elements), but the resulting circuit meets the expectations. We believe that this value
could be further lowered with further fine tuning of the parameters, such as increasing the
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accuracy of element values (from two digits two four, using all possible exponent values,
and increasing the number of generations in our experiment).
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Figure 13. The result of fitting the synthetic data obtained using the Cole–Cole equation (i.e., ZARC
elements).

45.45Ω ZARC1
6 µF

In
ZARC2

ZARC3

ZARC4

Out

Figure 14. Cole–Cole fitted circuit.

Table 7. ZARC values for the elements in circuit from Figure 14.

Element R(Ωcm2) τ(s) n

ZARC1 348.21 0.0003 0.91
ZARC2 65 0.065 0.53
ZARC3 66 0.003 0.57
ZARC4 80 0.00005 0.5

4.3. Solid Oxide Fuel Cell Fitting

As already noted in the last paragraph of Section 3, additional comparison points
using interpolation had to be generated because the measured points were too few for the
algorithm to be able to find a matching circuit. Taking more measured data points requires
extra time, which prolongs DRT analysis that is vital for monitoring SOFC health. After
the interpolation, the best obtained matching impedance characteristic is demonstrated in
Figure 15, with the dashed line representing the fitted characteristic. Please note that the
line appears smoother since it was generated via an AC sweep, while the original charac-
teristic (solid line) comes from connecting the original (fewer) data points. Nevertheless,
the characteristic was fitted with the Sheppards value of 300 and we believe that—if we
had more measured data points available—the Sheppards value would be lower due to the
disuse of interpolation.
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Figure 15. Solid oxide fuel cell fitted impedance characteristic.

The resulting circuit (shown in Figure 16) is fairly simple given the complexity of
input data. Regardless, a fitting circuit and DRFT characteristic was found without much
trouble beyond interpolating the data points. This is significant since it opens many new
possibilities of quickly fitting measured data and finding the relevant time constants.

ZARC1

12.5Ω ZARC2

300 µF

2.73 mF

OutIn

Figure 16. Fuel cell simplified fitted circuit.

5. Discussion

Grammatical evolution was used as an automatic method for creating a matching
EEC circuit without much additional user input. Basically, the research started from
previous work conducted on evolving electrical circuits [21], which turned out to be
quite appropriate for the problem at hand. Amongst the most important additions that
had to be implemented for this research was modified grammar, a new metric, and the
implementation of a new element for the SPICE simulator.

In a series of experiments, we successfully created several solutions that fitted the
supplied data—synthetic as well as real—with a sufficient level of accuracy. Some of the
resulting circuits were similar to the known EEC solutions while others present a possible
new standard model that should be further investigated by experts in the EIS field.

We believe that the presented approach offers at least two important benefits. Firstly,
it automates the EEC creation process and renders the entire method accessible even
to less experienced researchers who are only starting in this field. Secondly, it might
produce new standard EEC circuits and help identify new, previously overlooked ongoing
electrochemical processes.

Author Contributions: Conceptualization, M.Ž. and M.K.; Methodology, M.Ž., I.F. and M.K.; Soft-
ware, I.F., Á.B. and M.K.; Validation, M.Ž., I.F. and T.T.; Formal Analysis, M.Ž., M.K. and V.S.;
Investigation, T.T., Ž.R. and M.K.; Data Curation, V.S. and Á.B.; Writing—Original Draft Preparation,
M.K.; Writing—Review & Editing, T.T., Ž.R. and M.K.; Visualization, M.K.; Supervision, M.Ž., T.T.
and I.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.



Processes 2021, 9, 1859 16 of 17

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the financial support from the Slovenian Research
Agency (research core funding No. P2-0246 Algorithms and Optimization Methods in Telecommuni-
cations).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications; Wiley: Hoboken, NJ, USA, 2005.
2. Yuan, X.Z.; Song, C.; Wang, H.; Zhang, J. EIS Applications. In Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals

and Applications; Springer: London, UK, 2010; pp. 263–345. [CrossRef]
3. Wan, T.H.; Saccoccio, M.; Chen, C.; Ciucci, F. Influence of the Discretization Methods on the Distribution of Relaxation Times

Deconvolution: Implementing Radial Basis Functions with DRTtools. Electrochim. Acta 2015, 184, 483–499. [CrossRef]
4. Dion, F.; Lasia, A. The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes.

J. Electroanal. Chem. 1999, 475, 28–37. [CrossRef]
5. Zic, M.; Pereverzyev, S., Jr.; Subotic, V.; Pereverzyev, S. Adaptive multi-parameter regularization approach to construct the

distribution function of relaxation times. Gem-Int. J. Geomath. 2020, 11, 1–23. [CrossRef]
6. Song, J.; Bazant, M. Electrochemical Impedance Imaging via the Distribution of Diffusion Times. Phys. Rev. Lett. 2018, 120, 116001.

[CrossRef] [PubMed]
7. Pereverzev, S.V.; Solodky, S.G.; Vasylyk, V.B.; Žic, M. Regularized Collocation in Distribution of Diffusion Times Applied to

Electrochemical Impedance Spectroscopy. Comput. Methods Appl. Math. 2020, 20, 517–530. [CrossRef]
8. Boukamp, B.A. A nonlinear least-squares fit procedure for analysis of immittance data of electrochemical systems. Solid State

Ionics 1986, 20, 31–44. [CrossRef]
9. Macdonald, J.R.; Schoonman, J.; Lehnen, A.P. The applicability and power of complex non-linear least-squares for the analysis of

impedance and admittance data. J. Electroanal. Chem. 1982, 131, 77–95. [CrossRef]
10. Sihvo, J.; Roinila, T.; Stroe, D.I. Novel Fitting Algorithm for Parametrization of Equivalent Circuit Model of Li-Ion Battery from

Broadband Impedance Measurements. IEEE Trans. Ind. Electron. 2021, 68, 4916–4926. [CrossRef]
11. Žic, M. An alternative approach to solve complex nonlinear least-squares problems. J. Electroanal. Chem. 2016, 760, 85–96.

[CrossRef]
12. Kobayashi, K.; Suzuki, T. Development of impedance analysis software implementing a support function to find good initial

guess using an interactive graphical user interface. Electrochemistry 2020, 88, 39–44. [CrossRef]
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