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Abstract: A Snyder model generated by the noncommutative coordinates and Lorentz generators
closes a Lie algebra. The application of the Heisenberg double construction is investigated for the
Snyder coordinates and momenta generators. This leads to the phase space of the Snyder model.
Further, the extended Snyder algebra is constructed by using the Lorentz algebra, in one dimension
higher. The dual pair of extended Snyder algebra and extended Snyder group is then formulated.
Two Heisenberg doubles are considered, one with the conjugate tensorial momenta and another with
the Lorentz matrices. Explicit formulae for all Heisenberg doubles are given.
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1. Introduction

Noncommutative coordinates and noncommutative spacetimes lead to a modifi-
cation of their corresponding relativistic symmetries, which are described by quantum
groups (Hopf algebras). Having a dual pair of Hopf algebras (one describing the quan-
tum symmetry group A and its dual quantum Lie algebra A∗), one can construct the
so-called Heisenberg double. The Heisenberg double, although interesting from a math-
ematical point of view, can also be seen as a generalization of the quantum mechanics
phase space (Heisenberg algebra). Such constructions have been of interest especially
for the κ-Minkowski noncommutative spacetime and its deformed relativistic symmetry
κ-Poincaré quantum group [1–5], as well as for the θ-deformation [5] and for the general
Lie algebra-type noncommutative spaces [6].

In the present paper, we focus on the Heisenberg double construction applied to a
Snyder model. In the 1940s, Snyder proposed the model of Lorentz invariant discrete
spacetime [7] as the first example of the noncommutative spacetime.

The Snyder model has attracted much attention in the literature [8–24]. Field theory
on this space was considered, for example, in [8–10], its extension to a cosmological [11] and
a curved [12,13] background was proposed; deformed Heisenberg uncertainty relations
were investigated [14]; different applications to quantum gravity phenomenology have
been considered as well; see, e.g., [11,15,16]. Different Snyder phase spaces arising within
the projective geometry context were investigated in [17,18], and the κ-Snyder space with
the non-associative star product was proposed in [19,20].

In the Snyder model, the coordinates do not commute, and their commutation relation
is proportional to the Lorentz generators. For this reason, noncommutative coordinates by
themselves do not close a Lie algebra and cannot be equipped in the Hopf algebra structure.
In this paper, we investigated various ways of extending the Snyder space so that we can
define the Lie algebra containing the Snyder coordinates. Then, the Hopf algebra structure
arises naturally, and the Heisenberg double construction may be attempted.

We start with the algebra generated by Snyder coordinates x̂i and Lorentz genera-
tors Mjk, so that it becomes a Lie algebra, and then, we equip its universal enveloping
algebra with the Hopf algebra structure, where the Lie algebra generators have primitive
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coproducts. For the Heisenberg double construction, we need the dual Hopf algebra. Since
the Hopf algebra of Snyder coordinates and Lorentz generators is associative, the dual
Hopf algebra should be coassociative. However, we are interested in investigating the
possibility of constructing the phase space relations between Snyder coordinates and the
commuting momenta pi with non-coassociative coproducts. We try to follow the steps
of the Heisenberg double construction and investigated its limitations in obtaining the
commutation relations between the Snyder coordinates and momenta generators. The
cross-commutation relations obtained correspond to the known versions of the Snyder
phase space used in various applications, e.g., in [12,13,15,16]. Then, the analogous cross-
commutation relations are obtained for (non-coassociative) coproducts of momenta in
various realizations [7,8].

In the second part of the paper, to overcome the obstacles raised by non-coassociativity
and to construct the full dual Hopf algebra and the full Heisenberg double for the Sny-
der model, we propose using the extended noncommutative Snyder coordinates in the
following sections.

We analyze the extended version of the Snyder model, where the Snyder coordinates
were identified as x̂i ∼ x̂iN = MiN ∈ so(1, N)/so(1, N − 1) [9,21]. Thanks to this, we
are able to construct two full Heisenberg doubles, firstly for the extended Snyder algebra
generated by tensorial coordinates x̂µν with its dual Hopf algebra generated by tensorial
(conjugate) momenta pρσ. This way, we find the Heisenberg double for the extended
Snyder space, which may be considered as the extended Snyder phase space. Secondly,
we consider another Heisenberg double for the extended Snyder algebra with its dual
Hopf algebra of functions on a group Λρσ (Lorentz matrices). We also present the Weyl
realization for these Lorentz matrices in terms of tensorial momenta. We finish the paper
with brief conclusions.

2. Issues with the Heisenberg Double for the Snyder Model

Snyder space is defined by the position operators x̂i obeying the following commuta-
tion relations:

[x̂i, x̂j] = iβMij (1)

where Mij are the generators of the Lorentz algebra so(1, N − 1) and β is the Snyder
parameter of length square dimension (usually assumed to be of the order of Planck length
L2

p) that sets the scale of noncommutativity (we used natural units h̄ = c = 1). Note that,
here, i, j = 0, . . . , N − 1.

In agreement with Snyder [7], the symmetry of such a (noncommutative) space is
described by the undeformed Lorentz algebra so(1, N − 1). This requires that the Mij
generators satisfy the standard commutation relations:

[Mij, Mkl ] = i(ηik Mjl − ηil Mjk + ηjl Mik − ηjk Mil). (2)

We also have the cross-commutation relations between Lorentz generators and Sny-
der coordinates:

[Mij, x̂k] = i(ηik x̂j − ηjk x̂i). (3)

Relations (1)–(3) constitute a Lie algebra, which we embed into the associative universal
enveloping algebra. We denote this universal enveloping algebra as the algebra A.

We are interested in constructing the Heisenberg double corresponding to the noncom-
mutative Snyder space; therefore, first, we need to equip A with the Hopf algebra structure.
It is enough to impose the primitive coalgebra structure on x̂i and Mij. We investigate if
it is possible to use the Heisenberg double construction to obtain the phase space built
up from the Snyder noncommutative coordinates x̂i and the momenta pi. We consider
the algebra Ã generated by commuting momenta pi equipped in the non-coassociative
coalgebra structure. We choose the realization for the coproducts of momenta, which was
proposed in [8] and called the Snyder realization therein.
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The defining relations of Ã are: [
pi, pj

]
= 0 (4)

and the (non-coassociative) coalgebra structure is the following:

∆pi = 1⊗ pi +
1

1− βpk ⊗ pk

(
pi ⊗ 1− β

1 +
√

1 + βp2
pi pj ⊗ pj +

√
1 + βp2 ⊗ pi

)
,

ε(pi) = 0, S(pi) = −pi, (5)

where p2 = ηij pi pj is Lorentz invariant and i, j = 0, . . . , N − 1.
We note that Ã is non-coassociative; therefore, momenta cannot be the proper dual

generators to Snyder coordinates, which are the generators of the associative Hopf algebra
A (see, e.g., [25], Section 1.2.8). Nevertheless, we can still propose the following duality
relations < , >: Ã× A→ C (on the generators only1):

< pi, x̂j >= −iηij, (6)

and:
< pi, Mjk >= 0. (7)

Then, we consider the analogue of the left Hopf action . of Ã on A defined as:

pi . x̂j = < pi, x̂j(2) > x̂j(1) = −iηij. (8)

(on the generators only) and use the usual cross-product construction mimicking that of
the Heisenberg double (we refer the reader to the Appendix A for the details of the Heisen-
berg double construction in the Hopf algebra setting). The resulting cross-commutation
relations are: [

pi, x̂j
]
= x̂j(1) < pi(1), x̂j(2) > pi(2) − x̂j pi = −i(ηij + βpi pj). (9)

We note that the relations (9) between momenta and Snyder coordinates obtained
here (although with the limitations discussed) are in agreement with the commutation
relations for the phase space of the Snyder model usually considered in the literature;
see, e.g., [12,13,15,16].

Different Realization for Coproducts of Momenta

In the previous section, we used the coalgebra sector for momenta in the so-called
Snyder realization [7,8]. There exist more possible realizations for momenta’s (non-
coassociative) coproducts; see e.g., [8,22,23]. Different realizations for coproducts can
be related to each other by a change of basis in the momentum space.

However, there is a general way to write the (non-coassociative) coproduct for mo-
menta corresponding to the Snyder model, i.e., the realization proposed in [8] and called
“general realization” therein2.

The formula we recall below [8] is calculated only up to the second order in the
parameter β:

∆pi = 1⊗ pi + pi ⊗ 1

+β

((
c− 1

2

)
pi ⊗ p2 +

(
2c− 1

2

)
pi pk ⊗ pk + c

(
p2 ⊗ pi + 2pk ⊗ pk pi

))
+ O(β2), (10)

ε(pi) = 0, S(pi) = −pi. (11)

This formula describes the general non-coassociative3 coproduct for Snyder momenta.
The choice of the parameter c encodes different realizations. For c = 1

2 , the coproduct
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(10) admits its finite form considered in the previous section. For c = 0, we obtain the
realization investigated in [22,23]. If c = 1

6 , we obtain the realization investigated in [29,30].
We can now calculate the cross-relations between momenta and Snyder coordinates

corresponding to the “general realization” of the momenta coproducts for the Snyder
model (the proposed duality relations on the generators and the left Hopf action proposed
in the previous section remain unchanged (6)–(8) for the linear power of the generators).
This results in the following cross-commutation relations between momenta and Snyder
coordinates:

[pi, x̂k] = x̂k(1) < pi(1), x̂k(2) > pi(2) − x̂k pi

= −iηik

(
1 + β

(
c− 1

2

)
p2
)
− 2icβpk pi + O(β2). (12)

This reduces to (for the specific, above-mentioned choices of the parameter c):

• for c = 1
2 [8] to:

[pi, x̂k] = −i(ηik + βpi pk) (13)

cf. (9);
• for c = 0 [22,23] to:

[pi, x̂k] = −iηik

(
1− β

2
p2
)
+ O(β2); (14)

• for c = 1
6 [29,30] to:

[pi, x̂k] = −iηik

(
1− β

3
p2
)
− i

3
βpk pi + O(β2). (15)

It is worth noting that in the limit of β→ 0, the coproducts for the momenta (5) and
(10) reduce to ∆pi = 1⊗ pj + pi ⊗ 1. For β = 0 (classical case), there exists full-duality
between algebra A generators xi, Mij and group elements pi, Λij (where Λij are the matrix
elements of Lorentz matrices; see, e.g., [1–5]).

In this section, we focused on the Snyder space, and we tried to investigate the possi-
bility of using the Heisenberg double procedure to obtain the phase space for this model.
We encountered the following issues. First, the noncommutative Snyder coordinates do
not close the Lie algebra, and only after extending the algebra by the Lorentz generators,
we have a Lie algebra that can be equipped in the Hopf algebra structure. Second, the mo-
menta corresponding to the Snyder model are non-coassociative; hence, the corresponding
structure is not a Hopf algebra. Nevertheless, we tried and proposed the duality between
the Snyder coordinates and momenta, which is valid only on the generators (in the linear
power). This allowed us to mimic the Heisenberg double construction and led to the
cross-relations that are in agreement with the literature. Additionally, we cannot define the
dual elements to the Lorentz generators Mij for β 6= 0 (cf. (The general realization for the
coproduct of momenta corresponds to the general realization for the Snyder coordinates;
see Equations (6) and (7) in [8], where x̂i . 1 = xi, Mij . 1 = 0.)). The non-coassociative
momenta do not allow for expanding the Lorentz algebra (2) to the Poincaré algebra.

The only way to construct the full dual Hopf algebra for the Snyder model and the full
Heisenberg double is described in Sections 3 and 4 and requires introducing the extended
noncommutative coordinates x̂ij.

3. Unified Notation for the Snyder Algebra: Extended Snyder Model

In the previous section, to consider a Hopf algebra related to the Snyder model, we
expanded the commutation relations between Snyder coordinates (1) by the Lorentz algebra
(2) and included the cross-commutation relations (3), which allowed us to define a Hopf
algebra related to the Snyder model (1)–(3). Then, we calculated the cross-commutation
relations mimicking the Heisenberg double construction. However, in that framework,
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it was not possible to define the dual elements to the Lorentz generators, and the proper
treatment of the algebra of momenta Ã would require using the quasi-Hopf algebra
framework; hence, we were not able to obtain the full Heisenberg double for the Snyder
model. The full Heisenberg double construction for the Snyder space within the Hopf
algebra setting requires an introduction of the extended noncommutative coordinates,
which we discuss in this section.

Another way to obtain a Lie algebra from the Snyder model (1) is to extend it by identi-
fying the Snyder coordinates as x̂i ∼ x̂iN = MiN ∈ so(1, N)/so(1, N − 1) [9,21]. This way,
one can define a Lie algebra corresponding to the extended Snyder space, and further, one
can also define the (coassociative) Hopf algebra structure [21]. In this approach, the Snyder
coordinates are seen as generators of the Lorentz algebra, but the Lorentz algebra considered
now has one dimension higher (i.e., so(1, N) instead of so(1, N − 1)4 version of the Snyder
model [9,21], the Heisenberg double construction completely mimics the construction of
the undeformed Heisenberg double for the Lorentz algebra so(1, N) with its dual algebra
of functions on a group SO(1, N) (Lorentz matrices). In this way, the noncommutativity
parameter β related to the Snyder space (1) is implicitly included in the cross-commutation
relations. This will be considered in Section 4.2. In Section 4.3, we will also present the
realizations for the Lorentz matrices in the so-called Weyl realization [21,29,30]. However,
to obtain the phase space from the Heisenberg double, we now can consider a dual Hopf
algebra of momenta and find the corresponding extended Snyder phase space. In the
remaining part of the paper, we want to focus on finding the explicit formulae for such
Heisenberg doubles corresponding to the extended Snyder model.

We first need to define the Hopf algebra related to the extended Snyder model and
also define the dual Hopf algebra of objects that would play the role of momenta. We
start by embedding the Snyder algebra relations (1)–(3) in an algebra that is generated by
the N position operators denoted by x̂i and N(N − 1)/2 antisymmetric tensorial coordi-
nates x̂ij, transforming as Lorentz generators [9,21]. This larger algebra has the following
commutation relations:

[x̂i, x̂j] = iλβx̂ij, [x̂ij, x̂kl ] = iλ(ηik x̂jl − ηil x̂jk − ηjk x̂il + ηjl x̂ik), (16)

[x̂ij, x̂k] = iλ(ηik x̂j − ηjk x̂i), (17)

where λ and β are real parameters. We can easily notice that these commutation relations
reduce to those of the standard Lorentz algebra acting on commutative coordinates in the
limit of β→ 0 and λ→ 1 and to the Lie algebra from Section 2 ((1)–(3)) in the limit λ→ 1.

To define the algebra in a unified way, one can exploit the isomorphism between
the Snyder coordinates and the Lorentz generators of so(1, N) and write the previous
Formulas (16) and (17) more compactly, defining, for positive β,

x̂i =
√

βx̂iN . (18)

The extended Snyder algebra then takes the form [9,21] of the Lorentz algebra so(1, N)
(to be precise, it is Uso(1,N)[[λ]]

5 , given by one set of commutation relations as:

[x̂µν, x̂ρσ] = iλ(ηµρ x̂νσ − ηνρ x̂µσ + ηνσ x̂µρ − ηµσ x̂νρ), (19)

with ηNN = 1 and ηkN = 0; here, µ = 0, 1, . . . , N (Greek indices run from zero up to N,
whereas Latin indices are i, j = 0, 1, . . . , N − 1, as before).

One can check explicitly that (19), via (18), reduces:

• to the Snyder noncommutative spacetime relations (16):

[x̂jN , x̂iN ] = [
1√

β
x̂j,

1√
β

x̂i] = iλ(ηji x̂NN − ηNi x̂jN + ηNN x̂ji − ηjN x̂Ni) = iλx̂ji

(note that x̂NN = 0 due to antisymmetricity);
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• to the commutation relations for Lorentz generators (16):

[x̂ij, x̂kl ] = iλ(ηik x̂jl − ηil x̂jk − ηjk x̂il + ηjl x̂ik);

• and to cross-commutation relations of Lorentz generators acting on coordinates (17):

[x̂jk, x̂iN ] = [x̂jk,
1√

β
x̂i] = iλ(ηji x̂kN − ηki x̂jN + ηkN x̂ji − ηjN x̂ki)

= iλ
1√

β
(ηji x̂k − ηki x̂j).

In turn, these all reduce to (1)–(3) from Section 2, respectively, for λ→ 1.

3.1. Generalized Heisenberg Algebra

To discuss the extended phase space associated with this extended Snyder model (19)
as a result of the Heisenberg double construction, we need to first recall a few facts about
the generalized Heisenberg algebra and Weyl realization of the Lorentz algebra based on
results presented in [29].

The generalized Heisenberg algebra can be introduced as a unital, associative algebra
generated by (commutative) xµν and pµν (both antisymmetric), satisfying the following
commutation relations: [

xµν, xαβ

]
= 0, (20)[

pµν, pαβ

]
= 0, (21)[

pµν, xρσ

]
= −i

(
ηµρηνσ − ηµσηνρ

)
. (22)

Here, we considered the elements pµν as canonically conjugate to xµν, which can be
realized in a standard way as pµν = −i ∂

∂xµν .
Commutative coordinates xµν can be viewed as the classical limit (when λ → 0) of

x̂µν generators of so(1, N) used in the extended version for the Snyder algebra (19). In
other words, the Lie algebra so(1, N), more specifically its universal enveloping algebra
Uso(1,N)[[λ]], generated by x̂µν can be seen as a deformation of the underlying commutative
space xµν with λ as the deformation parameter.

Now, since we are interested in the Snyder model (in its extended version) and the
corresponding deformed phase space, first, let us notice that we can use the analogous
relation to (18) for the commutative coordinates, i.e., take xi =

√
βxiN , and similarly, for

the conjugate canonical momenta pµν, we can introduce: pi =
piN√

β
. This allowed us to

reduce the above generalized Heisenberg algebra (20)–(22) to:

• the usual Heisenberg algebra sector, i.e., quantum mechanical phase space correspond-
ing to the commutative (classical) spacetime:[

xi, xj
]

= 0,
[
pi, pj

]
= 0 (23)[

pj, xi
]

=
[
piN , xjN

]
= −i

(
ηijηNN − ηiNηNj

)
= −iηij; (24)

• and “the remaining part”, consisting of commutation relations between xij—tensorial
coordinates—and pij—their corresponding canonical momenta:[

xij, xkl
]

=
[
xij, xk

]
= 0, (25)[

pij, pkl
]

=
[
pij, pk

]
= 0, (26)[

pij, xkl
]

= −i
(

ηikηjl − ηilηjk

)
, (27)

[pi, xkl ] =
[
pij, xk

]
= 0. (28)
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Therefore, the relations (20)–(22) indeed describe the generalization of the quantum
mechanical phase space as they contain, as a subalgebra, the relations (23) and (24).

The Weyl realization of the Lorentz algebra in terms of this generalized Heisenberg
algebra (20)–(22) (as formal power series) were discussed in detail in [29].

4. Extended Snyder Space and Its Heisenberg Doubles

We are now ready to discuss how to construct two full Heisenberg doubles corre-
sponding to the extended Snyder space (19), in its unified so(1, N)-like version (with the
generators x̂µν). For the purpose of this section, let us denote the extended Snyder algebra,
defined by the relations (19), as an algebra B. To construct the Heisenberg double for the
extended Snyder algebra B, we first need to equip it in the Hopf algebra structure (which
is straightforward, as we can use the primitive coproducts for x̂µν), and then, we need to
define the dual Hopf algebra.

We equip the Snyder algebra B (as so(1, N)), defined by the relations (19), with the
Hopf algebra structure as follows:

∆
(
x̂µν

)
= ∆0

(
x̂µν

)
, (29)

ε
(
x̂µν

)
= 0 and S

(
x̂µν

)
= −x̂µν. (30)

With the above relations algebra B, using (18) leads to the extended Snyder Hopf algebra.

4.1. Extended Snyder Phase Space from the Heisenberg Double Construction

To discuss the phase space corresponding to the extended Snyder space, we consider
the Hopf algebra generated by pµν (satisfying (21)), as a dual Hopf algebra B∗, which is
equipped with the Hopf algebra structure introduced in [21](see Equation (25) therein),
where the coproducts, calculated up to the third order, have the following form:

∆pµν = ∆0 pµν −
λ

2
(

pµα ⊗ pνα − pνα ⊗ pµα

)
−λ2

12
(pµα ⊗ pαβ pνβ − pνα ⊗ pαβ pµβ − 2pαβ ⊗ pµα pνβ

+pµα pαβ ⊗ pνβ − pνα pαβ ⊗ pµβ − 2pµα pνβ ⊗ pαβ) + O(λ3). (31)

Counits are ε(pµν) = 0, and antipodes are S(pµν) = −pµν. This defines the coasso-
ciative6 Hopf algebra B∗ as the dual to the extended Snyder Hopf algebra B. The above
coproducts for momenta correspond to the so-called Weyl realization for the x̂µν

7. One
could use the coproducts for generic realization, but they depend on five free parameters
and are calculated up to the second order in λ [21].

The duality relation < , >: B∗ × B→ C is as follows:

< pµν, x̂ρσ >= −i
(
ηρµησν − ησµηρν

)
(32)

and can be extended to all elements of both Hopf algebras B and B∗. We take the left Hopf
action . of B∗ on B, which is defined by:

pρσ . x̂µν =< pρσ, x̂µν(2) > x̂µν(1) = −i
(
ηρµησν − ησµηρν

)
. (33)

We can now construct the corresponding Heisenberg double resulting in the following
cross-commutation relations:[

pµν, x̂ρσ

]
= x̂ρσ(1) < pµν(1), x̂ρσ(2) > pµν(2) − x̂ρσ pµν

= −i
(
ηρµησν − ησµηρν

)
+

iλ
2
(ηρµ pνσ − ησµ pνρ − ηρν pµσ + ησν pµρ)

+
iλ2

12
[ηρµ pσβ pνβ − ησµ pρβ pνβ − ηρν pσβ pµβ + ησν pρβ pµβ − 2pµρ pνσ + 2pµσ pνρ] + O

(
λ3
)

. (34)
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For the description of the phase space corresponding to the extended Snyder model
(in Snyder coordinates x̂i, x̂ij), we use the isomorphism (18) x̂i =

√
βx̂iN and pi =

piN√
β

. The

above duality (32) then becomes:

< pj, x̂i >= −iηij, (35)

< pk, x̂ij >= 0, (36)

< pkl , x̂i >= 0, (37)

< pkl , x̂ij >= −i
(

ηikηjl − ηjkηil

)
. (38)

The cross-commutation relations are as follows:

• commutation relations between Snyder coordinates and their coupled momenta:

[pk, x̂i] = [pkN , x̂iN ] = −iηik(1−
βλ2

12
pl pl)−

iβλ2

12
pk pi +

iλ
2

pki +
iλ2

12
pil pkl + O

(
λ3
)

; (39)

• commutation relations between tensorial coordinates and their coupled momenta:

[
pkl , x̂ij

]
= −i

(
ηikηjl − ηjkηil

)
+ i

λ

2
(ηik pl j − ηjk pli − ηil pkj + ηjl pki) +

iλ2

12
[(ηik pjm plm − ηjk pim plm)

−
(

ηil pjm pkm − ηjl pim pkm

)
− 2pki pl j + 2pkj pli] + O

(
λ3
)

; (40)

• and mixed relations:

[pkl , x̂i] =
[

pkl ,
√

βx̂iN

]
= i

λ

2
β(ηik pl − ηil pk)− i

λ2

12
β[ηik pm plm − ηil pm pkm + 2pki pl − 2pk pli] + O

(
λ3
)

, (41)

[
pk, x̂ij

]
=

[
1√

β
pkN , x̂ij

]
= −i

λ

2
(ηik pj − ηjk pi)− i

λ2

12
[
(

ηik pjl pl − ηjk pil pl

)
− 2pki pj + 2pkj pi] + O

(
λ3
)

. (42)

One can notice that the commutator between the momenta generators and the Snyder
coordinates (39) obtained from (34) actually resembles the Snyder model phase space for
the Weyl realization (15) obtained in Section 2. The first three terms agree up to the factor
λ2

4 , but the remaining terms include the tensorial momenta.
We now obtained the full extended Snyder phase space (39)–(42) resulting from the

Heisenberg double construction.
It is worth mentioning that some authors (see e.g., [17]) also consider another version

of the Snyder phase spaces, where momenta do not commute, but we did not consider this
type of phase space in this work; the momenta sector is always commutative, for both the
Snyder model considered in Section 2 and the extended Snyder model in Section 4.1.

4.2. Another Heisenberg Double for the Extended Snyder Algebra

To construct another Heisenberg double for the extended Snyder algebra B written in
a unified so(1, N)-like form (19), it is quite straightforward to mimic the Heisenberg double
construction for the Lorentz algebra.

We take the extended Snyder Hopf algebra B (19) equipped with the Hopf algebra
structure (29) and (30), as before. We define the dual Hopf algebra algebra D (as the dual to
the extended Snyder Hopf algebra B) as an algebra of functions on a group SO(1, N) ,which
is generated by Lorentz matrices Λαβ, i.e.,

D = F(SO(1, N)) = {Λαβ :
[
Λαβ, Λµν

]
= 0 : ΛTηΛ = η}, (43)

∆
(
Λρσ

)
= Λρα ⊗Λασ; ε

(
Λρσ

)
= δρσ ; S

(
Λρσ

)
= (Λ−1)ρσ = Λσρ. (44)
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Note that the Greek indices run up to N, i.e., α, β = 0, 1, . . . , N. The duality relation
< , >: D× B→ C is given by:

< Λρσ, x̂µν >= −iλ(ηρµησν − ηρνησµ). (45)

We consider the left Hopf action . of D on B, which is defined by:

Λρσ . x̂µν =< Λρσ, x̂µν(2) > x̂µν(1) = ηρσ x̂µν − iλ(ηρµησν − ηρνησµ). (46)

We calculate the cross-commutation relations defining the Heisenberg double as:[
Λρσ, x̂µν

]
= x̂µν(1) < Λρσ(1), x̂µν(2) > Λρσ(2) − x̂µνΛρσ (47)

= −iλ(ηρµΛνσ − ηρνΛµσ). (48)

For the description of the Heisenberg double for the extended Snyder model (in
Snyder coordinates x̂i, x̂ij), we again use the isomorphism (18), and the above formulae
lead to:

• duality for the Snyder coordinates with Lorentz matrices:

< Λjk, x̂i >=
√

β < Λjk, x̂iN >= −iλ
√

β(ηjiηkN − ηjNηki) = 0, (49)

< ΛjN , x̂i >=
√

β < ΛjN , x̂iN >= −iλ
√

βηji, (50)

< ΛNk, x̂i >=
√

β < ΛNk, x̂iN >= iλ
√

βηki, (51)

< ΛNN , x̂i >=
√

β < ΛNN , x̂iN >= 0; (52)

• duality of the Lorentz generators with their dual Lorentz matrices:

< Λjk, x̂ip >= −iλ(ηjiηkp − ηjpηki), (53)

< ΛjN , x̂ip >= 0 =< ΛNk, x̂ip >, (54)

< ΛNN , x̂ip >= 0. (55)

Similarly, the cross-commutation relations from the Heisenberg double construction (47)
then become as follows:

• cross-commutation relations between the Snyder coordinates and Lorentz matrices:[
Λjk, x̂i

]
=

√
β
[
Λjk, x̂iN

]
= −iλ

√
βηjiΛNk, (56)[

ΛjN , x̂i
]

=
√

β
[
ΛjN , x̂iN

]
= −iλ

√
βηjiΛNN , (57)

[ΛNk, x̂i] =
√

β[ΛNk, x̂iN ] = iλ
√

βΛik, (58)

[ΛNN , x̂i] =
√

β[ΛNN , x̂iN ] = iλ
√

βΛiN ; (59)

• and the cross-commutation relations between the Lorentz generators (of so(1, N − 1))
with the Lorentz matrices:[

Λjk, x̂ip

]
= −iλ(ηjiΛpk − ηjpΛik), (60)[

ΛjN , x̂ip
]

= −iλ(ηjiΛpN − ηjpΛiN), (61)[
ΛNk, x̂ip

]
= −iλ(ηNiΛpk − ηNpΛik) = 0, (62)[

ΛNN , x̂ip
]

= 0. (63)

The primitive coproduct for x̂µν reduces to the primitive coproduct for x̂ip (Lorentz
generators of so(1, N − 1)) and to the primitive coproduct for x̂i (Snyder coordinates), as in
Section 2, respectively.

We also note that:
[Λµν, pρσ] = 0. (64)
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4.3. Realizations for Lorentz Matrices

We can actually relate the dual momenta discussed in Section 4.1 to the dual Lorentz
matrices discussed in Section 4.2.

This can be performed by introducing the realizations of the elements of the dual alge-
bra D, i.e., functions on a group SO(1, N)—Lorentz matrices Λαβ. These realizations can
be expressed as a formal power series of the tensorial momenta introduced in Section 3.1.
For more details, we refer the reader to [29], where the Lorentz algebra extension by its
dual counterpart was discussed in detail. The formulas presented below were based on the
Theorem III.1 from [29]. The Weyl realization [29,30] for the generators of the algebra D,
satisfying (43), can be written in a very compact form as follows:

Λρσ =
(

eλp
)

ρσ
. (65)

If we want to calculate the explicit formulae for the realization of the elements dual
to the Lorentz sector in the extended Snyder algebra written in the form of tensorial
coordinates x̂ij (16) and (17), we use the above formula and obtain:

Λkl =
∞

∑
n=0

λn

n!
(pn)kl ,

ΛNl =
∞

∑
n=1

λn

n!
pNk

(
pn−1

)
kl
= pNk

(
Λ− η

p

)
kl

,

ΛkN =
∞

∑
n=0

λn

n!
(pn)kN =

∞

∑
n=1

λn

n!

(
pn−1

)
kl

plN =

(
Λ− η

p

)
kl

plN =
(

Λ−1
)

Nk
,

ΛNN =
∞

∑
n=0

λn

n!
(pn)NN = ηNN +

∞

∑
n=2

λn

n!
pNk

(
pn−2

)
kl

plN = ηNN + pNk

(
Λ− η − λp

p2

)
kl

plN ,

where we also used the following notation (p0)αβ = ηαβ and
(
Λ0)

ρσ
= ηρσ.

5. Conclusions

In this paper, we investigated three Heisenberg doubles related to the two types
of noncommutative Snyder models. The Heisenberg double construction was widely
investigated for other noncommutative spacetimes [1–5], but not yet (to our knowledge)
for the Snyder space. Therefore, this work offers the first study on Heisenberg doubles for
the Snyder model, as well as for the extended Snyder model.

In Section 2, we discussed issues arising when applying the Heisenberg double
construction to the Snyder model. We proposed a duality between Snyder coordinates
and momenta with the (non-coassociative) coproducts related to the so-called Snyder
realization (5). This duality is valid on the generators (in the linear powers) only. The
cross-commutation relations obtained for the generators (9) were compared with the
Snyder phase space relations considered in the literature. Then, we used the momenta
with the (non-coassociative) coproducts in the general realization, which provided a more
general version of the cross-commutation relations between the momenta and Snyder
coordinates and reduced to all known cases for the certain choices of the parameter c (which
parametrizes the non-coassociative coproduct for the momenta generators). However, at
the end of Section 2, we pointed out that the construction of the full Heisenberg double
for the Snyder space in the Hopf algebra setting requires the introduction of extended
noncommutative coordinates.

Therefore, we used the fact that the Snyder model can be embedded in a larger algebra,
Uso(1,N)[[λ]], for which the dual algebra admits the coassociative coalgebra structure. We
then constructed the Heisenberg double for this extended Snyder model in two ways:
firstly, by introducing the dual tensorial momentum space; secondly, by using the Lorentz
matrices, i.e., functions on the Lorentz group.
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The Heisenberg double of the extended Snyder algebra with the corresponding dual
momenta can be interpreted as the extended Snyder phase space. The formulation of
Heisenberg doubles as extended Snyder phase spaces, proposed in this work, can be used
in many further applications. An additional advantage is that, since the noncommutative
coordinates generate the Lie algebra, then the corresponding coproducts of momenta
are coassociative, and the related star products between coordinates are associative [21],
which opens a way to a great number of applications where the associative star product
is required. The only drawback of this approach is the unclear physical interpretation of
tensorial coordinates and corresponding conjugated momenta appearing in this picture.

Nevertheless, by using the algebraic scheme of Heisenberg doubles, one can introduce
the covariant Snyder phase spaces and further investigate the applications where the
consistent definition of a phase space is crucial, for example: such a deformed (extended)
Snyder phase space may lead to deformed Heisenberg uncertainty relations [14], or may
be considered in the context of quantum gravity phenomenology [11,15,16], or when inves-
tigating cosmological [11] and curved [12,13] backgrounds coupled to Snyder spacetime.
We consider our work presented here as a first step towards such applications.
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Appendix A. Heisenberg Double Construction

Let A and A∗ be dual Hopf algebras. To construct the Heisenberg double A o A∗, we
started with the left Hopf action . of A∗ on A defined as:

a∗ . a =< a∗, a(2) > a(1), (A1)

where we used the Sweedler notation ∆(a) = a(1) ⊗ a(2) for the coproduct and a∗ ∈ A∗, a ∈ A.
Duality needs to satisfy the following compatibility conditions between algebras:

< a∗(1), a >< a∗(2), a′ > = < a∗, a · a′ >, (A2)

< a∗, a(1) >< a∗′, a(2) > = < a∗ · a∗′, a > . (A3)

The Heisenberg double corresponding to these data can be then constructed as the
cross-product algebra (also known as the “smash product”) A o A∗. The (left) product in
the cross-product algebra (Heisenberg double) becomes:

(a⊗ a∗)o (a′ ⊗ a∗′) = a
(

a∗(1) . a′
)
⊗ a∗(2)a

∗′ =< a∗(1), a′(2) > aa′(1) ⊗ a∗(2)a
′, (A4)

which leads to the following (left) products:

a∗ ◦ a = (1⊗ a∗)o (a⊗ 1) =
(

a∗(1) . a
)
⊗ a∗(2) =< a∗(1), a(2) > a(1) ⊗ a∗(2), (A5)

a ◦ a∗ = (a⊗ 1)o (1⊗ a∗). (A6)
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Therefore, the cross-commutation relation becomes:

[a∗, a] = a(1) < a∗(1), a(2) > a∗(2) − a ◦ a∗. (A7)

There are some special cases worth considering:

1. If the generators of A have a primitive coproduct, then the above formula, for the
generators, reduces to:

[a∗, a] =< a∗(1), a > a∗(2). (A8)

2. If the coproduct on the algebra A∗ is opposite, i.e., ∆a∗ = a∗(2) ⊗ a∗(1), then the commu-
tator becomes:

[a∗, a] = a(1) < a∗(2), a(2) > a∗(1) − a ◦ a∗. (A9)

If, in addition, the generators of A have a primitive coproduct then, for the generators,
we obtain:

[a∗, a] =< a∗(2), a > a∗(1). (A10)

Notes
1 The pairing we propose here is satisfied on the generators (in the first power) only, and it may not be possible to

extend it to the full algebra due to the non-coassociative nature of Ã. We also note that the proper definition of
Ã would require the quasi-Hopf algebra framework [26]. Defining the Heisenberg double within the quasi-Hopf
algebra setting has been proposed, for example, in [27,28] and would be worth investigating further.

2 The general realization for the coproduct of momenta corresponds to the general realization for the Snyder coordi-
nates; see Equations (6) and (7) in [8], where x̂i . 1 = xi, Mij . 1 = 0.

3 The difference between the left-hand side and the right-hand side of the coassociativity condition for the coproduct
of momenta can be explicitly calculated and is as follows, in the first order in β:

((id⊗ ∆) ◦ ∆pi) − ((∆⊗ id) ◦ ∆pi) = −
1
2

β
(

pi ⊗ pk ⊗ pk − pk ⊗ pi ⊗ pk
)
+ O

(
β2
)

.

4 Many authors use the word “generalized” for the version of Snyder space in a different meaning (see, e.g., [18] or [24]);
therefore, following [21], we shall call the version used here “extended” instead of generalized—since it is unified with
the additional tensorial coordinates transforming as the Lorentz generators.

5 A topological extension of the corresponding enveloping algebra Uso(1,N) into an algebra of formal power series
Uso(1,N)[[λ]] in the formal parameter λ is required here. This provides the λ-adic topology (see, for example, Chapter
1.2.10 in [25]).

6 In general, if noncommutative coordinates close a Lie algebra, as is the case for x̂µν, then the corresponding coproducts
of momenta are coassociative [30–32].

7 The Weyl realization for the extended Snyder space is defined as eiki x̂i+
i
2 kij x̂ij . 1 = eiki xi+

i
2 kij xij where x̂i . 1 = xi, x̂ij . 1 =

xij, see Equation (17) in [21]. Note that the action differs from the one described in Note 2.
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