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Abstract

The inclusive production of the J/ψ and ψ(2S) charmonium states is studied as a function of centrality
in p–Pb collisions at a centre-of-mass energy per nucleon pair

√
sNN = 8.16 TeV at the LHC. The

measurement is performed in the dimuon decay channel with the ALICE apparatus in the centre-of-
mass rapidity intervals −4.46 < ycms <−2.96 (Pb-going direction) and 2.03 < ycms < 3.53 (p-going
direction), down to zero transverse momentum (pT). The J/ψ and ψ(2S) production cross sections
are evaluated as a function of the collision centrality, estimated through the energy deposited in the
zero degree calorimeter located in the Pb-going direction. The pT-differential J/ψ production cross
section is measured at backward and forward rapidity for several centrality classes, together with
the corresponding average 〈pT〉 and 〈p2

T〉 values. The nuclear effects affecting the production of
both charmonium states are studied using the nuclear modification factor. In the p-going direction,
a suppression of the production of both charmonium states is observed, which seems to increase
from peripheral to central collisions. In the Pb-going direction, however, the centrality dependence
is different for the two states: the nuclear modification factor of the J/ψ increases from below unity
in peripheral collisions to above unity in central collisions, while for the ψ(2S) it stays below or
consistent with unity for all centralities with no significant centrality dependence. The results are
compared with measurements in p–Pb collisions at

√
sNN = 5.02 TeV and no significant dependence

on the energy of the collision is observed. Finally, the results are compared with theoretical models
implementing various nuclear matter effects.

*See Appendix A for the list of collaboration members
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1 Introduction

Quarkonia, bound states of a heavy quark and its antiquark, are prominent probes of the properties of
the strong interaction, which is described by quantum chromodynamics (QCD). In high-energy hadronic
collisions, the production of quarkonia is usually factorised in a two-step process: the creation of a
heavy-quark pair, mainly by gluon fusion at LHC energies, followed by its evolution and binding into
a colour-singlet state. The former is described using perturbative QCD calculations, while the latter
involves non-perturbative processes and is described using effective models [1–3].

In high-energy heavy-ion collisions, the creation of a deconfined state of nuclear matter made of quarks
and gluons, the so-called quark–gluon plasma (QGP), modifies the production rates of the various
quarkonium states. On the one hand, the production of quarkonium states is expected to be suppressed
by the large density of colour charges in the QGP [4], with the suppression increasing with decreasing
binding energy of the resonance [5]. Such sequential suppression has been observed, most notably in
the bottomonium (bb) sector in Pb–Pb collisions at the LHC by the CMS [6–9] and ALICE [10] collab-
orations. On the other hand, quarkonia could also be regenerated during the QGP phase [11] or at its
late boundary [12] by recombination of deconfined heavy quarks. Strong indications supporting such
a regeneration mechanism, which (partially) compensates the aforementioned suppression, have been
reported by the ALICE Collaboration in the charmonium (cc) sector for the J/ψ in Pb–Pb collisions at
the LHC [13–17].

However, to fully exploit those experimental results for the understanding of the inner-workings of the
QGP, other nuclear effects, not related to the presence of the QGP, must be addressed. These are typically
referred to as cold nuclear matter (CNM) effects, as opposed to those related to the hot medium, and
include the effects described below. A significant contribution involves the nuclear modification of the
parton distribution function (PDF) of the nucleons inside the nucleus [18], i.e. the modification of the
probability for a parton (quark or gluon) to carry a fraction x of the momentum of the nucleon. The
gluon nuclear parton distribution function (nPDF) includes, most notably, a shadowing region at low
x (x . 0.01) corresponding to a suppression of gluons and an antishadowing region at intermediate x
(0.01 . x . 0.3) corresponding to an enhancement of gluons [18]. The modification of the initial state
of the nucleus with respect to an incoherent superposition of free nucleons can also be described in
terms of the saturation of low-x gluons as implemented in the Colour Glass Condensate (CGC) effective
field theory [19]. In addition, coherent energy-loss effects involving the initial- and final-state partons
can modify the production of heavy-quark pairs and thus of quarkonium states [20]. The pre-resonant
quarkonium state could also interact with the surrounding spectator nucleons. This nuclear absorption is
expected to be negligible at LHC energies due to the short crossing time of the colliding nuclei [21]. The
CNM effects discussed above are expected to affect similarly all states of the same quarkonium family,
as they act on the production cross section of heavy-quark pairs or on the pre-resonant quarkonium state.
On the contrary, final-state interactions with the co-moving medium [22] or with a medium including a
short-lived QGP and a hadron resonance gas [23] could affect differently the various states of the same
family. Soft-color exchanges between the hadronising cc pair and long-lived co-moving partons [24]
could also affect differently the various charmonium states.

Cold nuclear matter effects are typically investigated using proton–nucleus collisions, where the forma-
tion of the QGP is not expected. At the LHC, the production of quarkonia was extensively studied in
p–Pb collisions at a centre-of-mass energy per nucleon pair

√
sNN = 5.02 TeV by the ALICE [25–31],

ATLAS [32], CMS [33, 34], and LHCb [35–37] collaborations. In the charmonium sector, a significant
suppression of J/ψ yields is observed at forward rapidity y, i.e. in the p-going direction, at low transverse
momentum pT, with the effect vanishing with increasing pT. The suppression at midrapidity is compat-
ible with the one at forward y, while at backward y, i.e. in the Pb-going direction, no suppression of the
J/ψ yields is observed [25, 28, 31]. Interestingly, the ψ(2S) appears to be more suppressed than the J/ψ
at both forward and backward rapidity [26]. This observation cannot be explained by the first group of
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CNM effects discussed above and seems to indicate the need to consider additional final-state effects.
The centrality dependence of the J/ψ and ψ(2S) suppression was also measured in p–Pb collisions at√

sNN = 5.02 TeV [29, 30]. The difference between the ψ(2S) and J/ψ suppression increases with in-
creasing centrality, especially at backward rapidity, indicating, once again, that shadowing or coherent
parton energy-loss mechanisms are not enough to explain the ψ(2S) suppression [30]. Complementar-
ily, the ALICE Collaboration also studied the J/ψ production at forward, mid, and backward rapidity as
a function of the multiplicity of charged particles measured at midrapidity [38]. Such study does not
require the interpretation of the centrality classes in terms of collision geometry and allows for the in-
vestigation of rare events with the highest charged particle multiplicities. An increase of the relative J/ψ
yields with the relative charged-particle multiplicity is observed. At forward rapidity the increase satu-
rates towards the highest multiplicities, while at backward rapidity a hint of a faster-than-linear increase
with multiplicity is seen.

Also, in high-multiplicity p–Pb events, long-range angular correlations between the J/ψ at large rapidity
and charged particles at midrapidity are observed [39]. These correlations are reminiscent of those
observed in Pb–Pb collisions, which are often interpreted as signatures of the collective motion of the
particles during the hydrodynamic evolution of the hot and dense medium.

More recently, the J/ψ and ψ(2S) production cross sections were also measured in p–Pb collisions at√
sNN = 8.16 TeV as a function of transverse momentum and rapidity [40–42] confirming, with better

statistical precision, the earlier findings. Namely, a significant suppression of the J/ψ is observed at for-
ward rapidity but not at backward rapidity, and a stronger suppression of the ψ(2S) is seen, especially at
backward rapidity. The J/ψ production at forward and backward rapidity as a function of the multiplicity
of charged particles measured at midrapidity was also studied at

√
sNN = 8.16 TeV [43] confirming the

earlier observations.

In the bottomonium sector, a significant suppression of the ϒ(1S) yield is observed at mid and forward
rapidity, vanishing from low to high transverse momentum, while at backward rapidity the yields are
consistent with the expectations from pp collisions [27, 32, 36, 44, 45]. Interestingly, the excited ϒ(2S)
state at midrapidity [32, 46] and ϒ(3S) state at backward rapidity [45] appear to be more suppressed than
the fundamental ϒ(1S) state, which is similar to the comparison of the ψ(2S) and J/ψ discussed above.

This paper presents the centrality dependence of the production of inclusive J/ψ and ψ(2S) in p–Pb
collisions at

√
sNN = 8.16 TeV. The inclusive ψ(nS) production contains contributions from direct ψ(nS),

from decays of higher-mass excited states in the case of the J/ψ (mainly ψ(2S) and χc), as well as from
non-prompt ψ(nS), from weak decays of beauty hadrons. Section 2 briefly presents the experimental
setup and event selection, Section 3 describes the data analysis procedure, while the results are presented
and discussed in Section 4. A summary is given in Section 5.

2 Experimental apparatus and event selection

A detailed description of the ALICE apparatus and its performance can be found in Refs. [47, 48]. The
main detectors used in this analysis are briefly discussed below.

The ALICE muon spectrometer is used to detect muons in the pseudorapidity region −4 < ηlab <−2.5.
It includes five tracking stations each having two planes of cathode pad chambers, with the third station
being placed inside a dipole magnet with a field integral of 3 T ·m. Two trigger stations, each composed
of two planes of resistive plate chambers, provide the trigger for single muon as well as dimuon events
with a programmable single-muon pT threshold. The setup is completed by a set of absorbers. A front
absorber made of carbon, concrete, and steel is placed between the nominal interaction point (IP) and
the first tracking station, to remove hadrons coming from the interaction vertex. An iron filter is posi-
tioned between the tracking and trigger stations and absorbs the remaining hadrons escaping the front
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absorber and the low pT muons originating from the decay of pions and kaons. Finally, a conical ab-
sorber surrounding the beam pipe protects the muon spectrometer against secondary particles produced
by the primary particles emerging at large pseudorapidities and interacting with the beam pipe.

The Silicon Pixel Detector (SPD), corresponding to the two innermost layers of the Inner Tracking Sys-
tem [49] and covering the pseudorapidity ranges |ηlab|< 2 (first layer) and |ηlab|< 1.4 (second layer), is
used to reconstruct the primary vertex of the collision. The two V0 hodoscopes [50] have 32 scintillator
tiles each, are placed on each side of the IP, and cover the pseudorapidity ranges 2.8 < ηlab < 5.1 and
−3.7 < ηlab < −1.7. The coincidence of signals from the two hodoscopes defines the minimum bias
(MB) trigger condition and a first luminosity signal during van der Meer scans [51]. The V0s are also
used to remove beam-induced background. A second luminosity signal in van der Meer scans is defined
by the coincidence of signals from the two T0 arrays, which are located on opposite sides of the IP
(4.6 < ηlab < 4.9 and −3.3 < ηlab < −3.0). Each array consists of 12 quartz Cherenkov counters read
out by photomultiplier tubes [52]. Finally, two Zero Degree Calorimeters (ZDC) [53] are placed along
the beam axis at ±112.5 m from the IP. Each ZDC is composed of a neutron calorimeter (ZN), posi-
tioned between the two beam pipes downstream of the first machine dipole that separates the beams, and
a proton calorimeter (ZP), installed externally to the outgoing beam pipe. The ZN are used to estimate
the centrality of the collision (described in Section 3) and to remove beam-induced background events.

The data were collected in 2016 with two beam configurations obtained by reverting the direction of the
proton and lead ion beams. The corresponding acceptance ranges of the muon spectrometer, in terms
of dimuon centre-of-mass rapidity, are −4.46 < ycms < −2.96 and 2.03 < ycms < 3.53. The backward
and forward rapidity intervals correspond to the muon spectrometer being located in the Pb-going and
p-going direction, and are denoted as Pb–p and p–Pb, respectively.

The non-symmetric rapidity ranges arise from the energy-per-nucleon asymmetry of the p and Pb beams,
which shifts the rapidity of the nucleon–nucleon centre-of-mass system with respect to the laboratory
system by 0.465 units of rapidity in the direction of the proton beam. The events were collected using
an opposite-sign dimuon trigger, which requires the coincidence of the MB trigger condition and two
opposite-sign track segments in the muon trigger chambers. For the data samples used here, the pro-
grammable online pT threshold for each muon track was set to 0.5 GeV/c. This threshold is not sharp in
pT and the single-muon trigger efficiency is about 50% at pµ

T = 0.5 GeV/c and reaches a plateau value
of about 96% at pµ

T ' 1.5 GeV/c. Beam-induced background was removed using the timing information
provided by the V0 and the ZDC. The events are classified in classes of centrality according to the energy
deposited in the ZN located in the direction of the Pb beam, as will be discussed in Section 3. Events
in which two or more interactions occur in the same colliding bunch (in-bunch pile-up) or during the
readout time of the SPD (out-of-bunch pile-up) are removed using the information from the SPD and
V0. The integrated luminosity for the two beam configurations is Lint = 12.8± 0.3 nb−1 for Pb–p and
Lint = 8.4±0.2 nb−1 for p–Pb collisions.

3 Data analysis

In this section the various elements involved in the cross section and the nuclear modification factor
measurements are discussed.

In p–Pb collisions, a centrality determination based on the charged-particle multiplicity can be biased by
fluctuations related to the variation of the event topology, which are unrelated to the collision geometry.
In contrast, an event selection depending on the energy deposited in the ZDC by nucleons emitted in
the nuclear de-excitation process after the collision or knocked out by the nucleons participating in the
collision (participant or wounded nucleons) should not be affected by this kind of bias. In this analysis
the centrality estimation is based on a hybrid method, as described in detail in Refs. [54, 55]. In this
approach, the centrality classes are determined using the ZN detector, while the average number of binary
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nucleon–nucleon collisions 〈Ncoll〉 and the average nuclear overlap function 〈TpPb〉 for each centrality
class are obtained assuming that the charged-particle multiplicity measured at midrapidity scales with
the number of participant nucleons Npart = Ncoll +1. The centrality classes used in this analysis and the
corresponding 〈Ncoll〉 and 〈TpPb〉 as well as their uncertainties, which reflect possible remaining biases
(as discussed in Refs. [54, 55]), are shown in Table 1. Monte Carlo (MC) simulations reproducing the
LHC running conditions indicate that a residual pile-up may be present in the 2% most central collisions.
The 0–2% centrality interval is therefore excluded and a 2% systematic uncertainty is conservatively
assigned to the results in the other centrality classes. Furthermore, the 90–100% centrality interval is
also excluded as the dimuon trigger may suffer from residual background contamination. It is worth
noting that the previous analysis at

√
sNN = 5.02 TeV was performed in the wider 80–100% centrality

class where such possible contamination was not apparent.

Table 1: The average number of binary nucleon–nucleon collisions 〈Ncoll〉 and average nuclear overlap function
〈TpPb〉, along with their systematic uncertainty, for the used centrality classes.

ZN class 〈Ncoll〉 Total syst on 〈Ncoll〉 (%) 〈TpPb〉 Total syst on 〈TpPb〉 (%)
2–10% 12.7 4.8 0.175 4.8
10–20% 11.5 3.1 0.159 3.3
20–40% 9.81 1.7 0.135 2.1
40–60% 7.09 4.1 0.0978 4.2
60–80% 4.28 4.6 0.0590 4.8
20–30% 10.4 1.8 0.143 2.2
30–40% 9.21 2.0 0.127 2.4
40–50% 7.82 3.4 0.108 3.7
50–60% 6.37 4.6 0.0879 4.8
60–70% 4.93 5.1 0.0680 5.3
70–80% 3.63 4.4 0.0501 4.6
80–90% 2.53 1.7 0.0349 2.1

Charmonium candidates are built by forming pairs of opposite-sign charged tracks that were recon-
structed by the tracking chambers of the muon spectrometer satisfying the following criteria. Each muon
track candidate should be within −4 < η

µ

lab < −2.5 to avoid the edges of the acceptance. The tracks
crossing the thicker part of the absorber are removed with the condition that the radial transverse posi-
tion of the muon track at the end of the front absorber must be in the range 17.6 < Rabs < 89.5 cm. The
tracks must match a track segment in the muon trigger chambers above the aforementioned pT threshold
of 0.5 GeV/c. The rapidity of the muon pair should be within the fiducial acceptance of the muon spec-
trometer, namely 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, for the p–Pb and Pb–p data samples,
respectively.

The charmonium signal is estimated with a binned maximum likelihood fit to the dimuon invariant mass
distribution. The J/ψ and ψ(2S) mass shapes are described with a Crystal Ball function with asymmetric
tails on both sides of the peak (denoted as extended Crystal Ball) or a pseudo-Gaussian function [56].
The J/ψ mass and width are free parameters of the fit, while the other parameters, which correspond
to the non-Gaussian tails of the signal shape, are fixed to those extracted from MC simulations. In
addition, other sets of tails obtained from fits to the centrality-integrated invariant mass distribution in
p–Pb at

√
sNN = 8.16 TeV and in pp collisions at

√
s = 8 TeV are used to test the stability of the fit and

are included in the evaluation of the charmonium signal and its systematic uncertainty. The ψ(2S) fit
parameters, apart from the amplitude, are constrained to those of the J/ψ , since its signal-to-background
ratio is rather small. For the position of the mass peak, the following relation is used mψ(2S) = mJ/ψ +
mPDG

ψ(2S)−mPDG
J/ψ , where the value obtained from the J/ψ fit is shifted by the difference between the two

mass poles reported by the PDG [57]. The ψ(2S) width is fixed to the J/ψ one, applying a correction
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factor given by the ratio of the widths obtained in MC simulations (σψ(2S) = σJ/ψ ×σMC
ψ(2S)

/
σMC

J/ψ ). The
background continuum is parameterised by either a Gaussian having a mass-dependent width or the
product of a fourth degree polynomial function and an exponential. Finally, to test the background
description, the signal is extracted using different fit ranges (2 < mµµ < 5 GeV/c2 and 2.2 < mµµ < 4.5
GeV/c2). The number of J/ψ and ψ(2S) and their statistical uncertainties are evaluated as the averages
of the results of each test, i.e. the aforementioned signal extraction variations, and of their statistical
uncertainty, respectively. The systematic uncertainty is given by the root-mean-square of the distribution
of the results. For the ψ(2S), an additional uncertainty of 5% is added in quadrature. It corresponds to the
uncertainty on the ψ(2S) width obtained from the large pp data sample used to validate the assumption
on the relative widths for J/ψ and ψ(2S) from the MC [58]. In Fig. 1 the fits to the dimuon invariant
mass distribution for the forward and the backward rapidity ranges are shown for two centrality classes.

The product of the detector acceptance and the reconstruction efficiency (A× ε) is evaluated with a
MC simulation in which J/ψ and ψ(2S) are generated unpolarised according to the results obtained
in pp collisions by the ALICE [59, 60], CMS [61], and LHCb [62, 63] collaborations. In order to
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Figure 1: Fit to the dimuon invariant mass distribution for the p–Pb (top panels) and Pb–p (bottom panels) data
sets, for the 20–40% (left panels) and 60–80% (right panels) ZN centrality classes. The extended Crystal Ball
function is used to describe the J/ψ and ψ(2S) signals, while a Variable Width Gaussian function is used for the
background. The red line represents the total fit.
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realistically describe the J/ψ and ψ(2S) spectra, the MC input pT and y shapes are tuned directly on
data performing an iterative procedure [40]. The decay products of the generated charmonia are then
propagated inside a realistic description of the ALICE detector, based on GEANT 3.21 [64]. The pT-
and y-integrated (A× ε) values are 0.264± 0.001 (0.235± 0.001) in the p–Pb (Pb–p) data sample for
the J/ψ and 0.280± 0.008 (0.250± 0.004) for the ψ(2S). The larger (A× ε) in the p–Pb than Pb–p
data taking period is due to different running conditions. The quoted uncertainties are the systematic
uncertainties on the input pT and y shapes used for the MC generation, which are evaluated comparing
the (A× ε) values obtained using different input MC distributions. For the J/ψ , these were obtained by
adjusting the input MC distributions to the data in various pT and y intervals. For the ψ(2S), due to the
larger statistical uncertainties of the data, the input pT and y shapes used for the J/ψ were considered in
addition to the ones tuned directly on the ψ(2S) data. For the J/ψ the uncertainty on the pT-integrated
(A× ε) is 0.5% for both p–Pb and Pb–p, varying with pT from 1% to 3%, while for the ψ(2S) the
uncertainty amounts to 3% and 1.5% in p–Pb and Pb–p collisions, respectively. The same values of
(A× ε) are used for all centrality classes since no dependence on the detector occupancy is observed
within the multiplicities reached in p–Pb collisions. Possible changes of (A× ε) due to shape variations
of the pT- and y-differential cross sections with centrality are accounted for in the systematic uncertainties
by using different pT shapes extracted from different centrality intervals as inputs to the MC simulations.
The corresponding systematic uncertainty on the pT-integrated J/ψ (A× ε) varies from 1.6% (2.5%) to
1.7% (2.7%) as a function of centrality, while as a function of pT in different centrality classes it varies
from 1.2% (1.4%) to 4.4% (2.2%) in Pb–p (p–Pb) collisions.

The normalisation of the J/ψ and ψ(2S) yields is obtained following the prescription described in
Ref. [54]. It is based on the evaluation of the number of minimum bias events Ni

MB for each central-
ity class i as Ni

MB = F i
2µ/MB×Ni

2µ
, where F i

2µ/MB is the inverse of the probability of having a dimuon-
triggered event in a MB-triggered one, and Ni

2µ
is the number of analyzed dimuon-triggered events. The

value of F i
2µ/MB depends on the centrality class and increases from central to peripheral events, passing

from 384± 3 to 1855± 18 in p–Pb and from 161± 1 to 2036± 16 in Pb–p collisions, for the 2–10%
and 80–90% centrality classes, respectively. The quoted systematic uncertainties, which vary between
1% and 1.4%, contain two contributions. The first one, which is correlated in pT and centrality and
amounts to 1%, is estimated by comparing the centrality-integrated F2µ/MB obtained with the method
described above with the one obtained using the information of the online trigger counters, as described
in Ref. [25]. The second one, which is not correlated in centrality, is obtained comparing F i

2µ/MB eval-
uated with two different methods, as detailed in Ref. [29]. Namely, F i

2µ/MB can be evaluated directly in
each centrality class, or derived from the centrality integrated F2µ/MB factor normalised by the ratio of
Ni

MB/NMB to Ni
2µ
/N2µ . The resulting systematic uncertainty varies from 0.1% (0.1%) to 0.8% (1%) in

Pb–p (p–Pb) collisions.

The inclusive cross section for J/ψ and ψ(2S) for centrality class i is calculated using the expression

σ
i,ψ(nS)
pPb =

Ni
ψ(nS)→µ+µ−

(A× ε)ψ(nS)→µ+µ−×Ni
MB×B.R.ψ(nS)→µ+µ−

×σMB, (1)

where Ni
ψ(nS)→µ+µ− is the raw yield for the given resonance, (A× ε)ψ(nS)→µ+µ− is the corresponding

product of the detector acceptance and reconstruction efficiency, and B.R.ψ(nS)→µ+µ− is the branching
ratio of the corresponding dimuon decay channel as reported in Ref. [57]. The integrated luminosity Lint
of the analyzed data sample is given by the ratio of the equivalent number of minimum bias events NMB
to the cross section for events satisfying the minimum bias trigger condition σMB. The latter is evaluated
through a van der Meer scan and results in a value of 2.09±0.04 b for p–Pb collisions and 2.10±0.04 b
for Pb–p [51], where the quoted uncertainties are the systematic uncertainties. The integrated luminosity
can be independently calculated using the luminosity signal provided by the T0 detector. The difference
between the integrated luminosity obtained with the V0 and T0 detectors amounts to 1.1% (0.6%) [51] in
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the p–Pb (Pb–p) data sample and is assigned as a further systematic uncertainty of σMB. The correlated
uncertainty on σMB for the p–Pb and Pb–p data samples are 0.5% and 0.7%, respectively [51].

The relative modification between the two charmonium states in proton–nucleus collisions can be firstly
observed through the evaluation of the ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ , where the sys-
tematic uncertainties on trigger, tracking, and matching efficiencies, as well as on the luminosity, which
are common for the J/ψ and ψ(2S), cancel out. The only remaining systematic uncertainties are those
related to the signal extraction and to the shape of the input pT and y distribution used for the MC sim-
ulations. In turn this ratio can be normalised to the same quantity evaluated in pp collisions, providing
a direct access to the relative ψ(2S) production modification with respect to J/ψ moving from a pp to
a p–Pb collision system. Since there is no measurement available at

√
s = 8.16 TeV in pp collisions,

the ratio ψ(2S)/J/ψ is evaluated through an interpolation procedure using ALICE data at
√

s = 5, 7, 8,
and 13 TeV in the interval 2.5 < y < 4 [58, 65, 66]. The uncertainty associated to the interpolated value
contains a contribution of 6% due to the energy-interpolation procedure and a further 1% contribution
due to the rapidity-extrapolation procedure [42]. In addition an extra 1% is included due to the assump-
tion of non-flat dependence of the ratio as a function of

√
s, according to the NRQCD+CGC calculations

[67, 68]. The results of the interpolation procedure are reported in Ref. [69].

The nuclear modification factor as a function of centrality is calculated using the following expression

Qi,ψ(nS)→µ+µ−

pPb =
Ni

ψ(nS)→µ+µ−

〈T i
pPb〉×Ni

MB× (A× ε)ψ(nS)→µ+µ−×B.R.ψ(nS)→µ+µ−×σ
pp
ψ(nS)

, (2)

where 〈T i
pPb〉 is the nuclear overlap function for the centrality class i, while σ

pp
ψ(nS) is the ψ(nS) production

cross section in proton–proton collisions. The notation QpPb is used instead of the usual RpPb in order
to point out the possible bias in the centrality determination, which depends on the loose correlation
between the centrality estimator and the collision geometry [54]. The J/ψ cross section in pp collisions
at
√

s = 8.16 TeV is obtained from the available results in the interval 2.5 < y < 4 for inclusive J/ψ
production at

√
s = 8 TeV from ALICE [66] and LHCb [70] using the energy and rapidity extrapolation

procedure described in Ref. [40]. A resulting first contribution of 7.1% to the systematic uncertainty
of the extrapolation procedure is correlated in pT, y, and centrality. A second contribution of 1.8%
(1.5%) for the pT-integrated cross section and ranging from 3.0% to 4.6% (2.9% to 4.7%) for the pT-
differential cross section at backward (forward) rapidity, correlated with centrality, arises from the energy
and rapidity interpolation procedures (see Ref. [40] for details). The ψ(2S) cross section in pp collisions
at
√

s = 8.16 TeV is obtained from the extrapolated J/ψ cross section and the interpolated ψ(2S)/J/ψ

ratio. The related total systematic uncertainty is 9.4% and is correlated in pT, y, and centrality. The
resulting extrapolated cross sections are reported in Ref. [69].

In addition to the various contributions to the systematic uncertainty discussed above, the following
sources, which are common for the J/ψ and ψ(2S) states, are also taken into account. The systematic
uncertainty of the trigger efficiency includes two contributions, one related to the intrinsic efficiency of
each trigger chamber and one related to the muon trigger response function. The former is calculated
from the uncertainties on the trigger chamber efficiencies measured from data and applied to simulations
and it amounts to 1%. The latter is obtained from the difference between the (A× ε) obtained using the
response function in data or in MC simulations and for the pT-integrated case this uncertainty is 2.9%
for Pb–p and 2.4% for p–Pb, and it varies between 1% and 4% as a function of pT. The total systematic
uncertainty of the trigger efficiency, obtained by adding in quadrature the aforementioned contributions,
is 3.1% for Pb–p and 2.6% for p–Pb, varying as a function of pT from 1.4% up to 4.1%. The evaluation of
the systematic uncertainty on the tracking efficiency follows a similar approach as reported in Ref. [26].
The discrepancy between the efficiencies in data and MC corresponds to 2% in Pb–p and 1% in p–Pb,
without any appreciable dependence on the dimuon kinematics and event centrality. Finally, the choice
of the χ2 selection applied for the definition of the matching between tracks in the trigger and tracking
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chambers leads to a 1% systematic uncertainty.

In Table 2, a summary of all the sources of systematic uncertainty which contribute to the cross section
and nuclear modification factor measurements is reported.

Table 2: Summary of the systematic uncertainties (in percentage) of the quantities associated to the measurements
of the differential J/ψ cross section and QpPb of J/ψ and ψ(2S). The uncertainties for the pT-differential case
are indicated in parentheses if the values are different from the pT-integrated case. When appropriate, a range
of variation (for centrality, rapidity, or pT intervals) of the uncertainty is given. Type I, II, and III stands for
uncertainties correlated over centrality, rapidity, or pT, respectively.

J/ψ ψ(2S)
Sources of uncertainty − 4.46 < ycms < − 2.96 2.03 < ycms < 3.53 − 4.46 < ycms < − 2.96 2.03 < ycms < 3.53

cent. (cent. and pT) cent. (cent. and pT) cent. cent.
Signal extraction 3.0–3.3 (2.2–6.8) 2.8–3.1 (2.6–4.2) 7.1–15.9 7.6–12.8
Trigger efficiency (I) 3.1 (1.4–4.1) 2.6 (1.4–4.1) 3.1 2.6
Tracking efficiency (I) 2 1 2 1
Matching efficiency (I) 1 1 1 1
MC input (I) 0.5 (1–2) 0.5 (1–3) 1.5 3
MC input 1.6–1.7 (1.2–4.4) 2.5–2.7 (1.4–2.2) 1.6–1.7 2.5–2.7
Fnorm (I,III) 1 1 1 1
Fnorm (III) 0.1–0.8 0.1–1.0 0.1–0.8 0.1–1.0
Pile-up (III) 2 2 2 2

Uncertainties related to cross section only
σMB (I,III) 2.2 2.1 – –
σMB (I,II,III) 0.7 0.5 – –
BR (I,II,III) 0.6 0.6 – –

Uncertainties related to QpPb only
〈TpPb〉 (II,III) 2.1–4.8 2.1–4.8 2.1–4.8 2.1–4.8
pp reference (I) 1.8 (3.0–4.6) 1.5 (2.9–4.7) – –
pp reference (I,II,III) 7.1 7.1 9.4 9.4

4 Results

4.1 pT-differential cross section of inclusive J/ψ for various centrality classes

Figure 2 shows the pT-differential cross section of inclusive J/ψ at backward (left) and forward (right)
rapidity measured in six centrality classes: 2–10%, 10–20%, 20–40%, 40–60%, 60–80%, and 80–90%.
The vertical error bars represent the statistical uncertainties and the open boxes the uncorrelated sys-
tematic uncertainties. A global systematic uncertainty, which is correlated over centrality, rapidity, and
pT and is obtained as the quadratic sum of the systematic uncertainty of the branching ratio and the
correlated systematic uncertainty of σMB amounts to 0.9% (0.7%) at backward (forward) rapidity.

4.2 Inclusive J/ψ average transverse momentum and pT broadening

A first insight into the modification of J/ψ production in p–Pb collisions can be obtained by studying the
average transverse momentum 〈pT〉 and the average squared transverse momentum 〈p2

T〉 as a function of
the collision centrality. The 〈pT〉 and 〈p2

T〉 are extracted for each centrality class by performing a fit of
the pT-differential cross section with a widely used function proposed in Ref. [71] and defined as

f (pT) =C
pT

(1+(pT/p0)2)n , (3)

where C, p0, and n are free parameters of the fit. The central values of 〈pT〉 and 〈p2
T〉 are obtained from

the fit using the quadratic sum of statistical and uncorrelated systematic uncertainties of the data points.
The uncertainties on the free parameters obtained from the fit are propagated to the values of 〈pT〉 and
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Figure 2: Inclusive J/ψ pT-differential cross section for different centrality classes at backward (left) and forward
(right) rapidity in p–Pb collisions at

√
sNN = 8.16 TeV. The vertical error bars, representing the statistical uncer-

tainties, and the boxes around the points, representing the uncorrelated systematic uncertainties, are smaller than
the marker. The global systematic uncertainty, which is correlated over centrality, rapidity, and pT and is obtained
as the quadratic sum of the systematic uncertainty of the branching ratio and the correlated systematic uncertainty
of σMB, amounts to 0.9% (0.7%) at backward (forward) rapidity and is shown as text.

〈p2
T〉. The statistical and systematic uncertainties on 〈pT〉 and 〈p2

T〉 are obtained by performing the fit
using, respectively, only the statistical or the uncorrelated systematic uncertainties on the data points.
The range of integration on pT for this calculation is limited to the pT interval 0 < pT < 16 GeV/c.
Extending the integration range to infinity has a negligible effect with respect to the quoted uncertainties.
Table 3 shows the values of 〈pT〉 and 〈p2

T〉 of inclusive J/ψ for each centrality class. Both 〈pT〉 and
〈p2

T〉 increase with increasing centrality, which indicates a hardening of the J/ψ pT distribution from
peripheral to central collisions in both rapidity intervals.

The pT broadening defined as the difference between the average squared transverse momentum in p–Pb
and pp collisions (∆〈p2

T〉= 〈p2
T〉pPb−〈p

2
T〉pp) can be used to quantify the nuclear effects on the J/ψ pro-

duction [72–74]. The value of 〈p2
T〉pp is evaluated from the pT-differential cross section in pp collisions

at
√

s = 8.16 TeV obtained with the interpolation procedure described in Ref. [40], and using the same
pT integration range as for p–Pb collisions. The resulting values are reported in Ref. [69]. Figure 3 shows
∆〈p2

T〉 as a function of the number of binary collisions at backward and forward rapidity. In all cases,
∆〈p2

T〉 is larger than zero, indicating a broadening of the pT distribution in p–Pb collisions compared to

Table 3: Values of 〈pT〉 and 〈p2
T〉 of inclusive J/ψ in the range 0 < pT < 16 GeV/c. The first uncertainty is

statistical while the second one is systematic. The values along with the systematic uncertainty obtained from the
pp cross section interpolated to

√
s = 8.16 TeV are also indicated.

− 4.46 < ycms < − 2.96 2.03 < ycms < 3.53
〈pT〉 (GeV/c) 〈p2

T〉 (GeV2/c2) 〈pT〉 (GeV/c) 〈p2
T〉 (GeV2/c2)

centrality class p–Pb
2–10% 2.753 ± 0.016 ± 0.027 10.919 ± 0.118 ± 0.186 3.094 ± 0.022 ± 0.029 14.016 ± 0.119 ± 0.223
10–20% 2.760 ± 0.014 ± 0.027 10.959 ± 0.108 ± 0.189 3.094 ± 0.020 ± 0.029 14.051 ± 0.188 ± 0.219
20–40% 2.740 ± 0.011 ± 0.028 10.846 ± 0.095 ± 0.192 3.059 ± 0.015 ± 0.029 13.747 ± 0.135 ± 0.224
40–60% 2.700 ± 0.013 ± 0.027 10.549 ± 0.106 ± 0.184 3.007 ± 0.017 ± 0.029 13.303 ± 0.155 ± 0.226
60–80% 2.658 ± 0.016 ± 0.028 10.334 ± 0.130 ± 0.190 2.875 ± 0.020 ± 0.028 12.339 ± 0.177 ± 0.208
80–90% 2.594 ± 0.030 ± 0.032 10.037 ± 0.231 ± 0.208 2.811 ± 0.033 ± 0.029 11.836 ± 0.284 ± 0.211

pp
2.557 ± 0.035 9.678 ± 0.225 2.738 ± 0.037 11.242 ± 0.252
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Figure 3: pT broadening of J/ψ , ∆〈p2
T〉, as a function of 〈Ncoll〉 at backward (blue circles) and forward (red

squares) rapidity in p–Pb collisions at
√

sNN = 8.16 TeV compared to the results at
√

sNN = 5.02 TeV [29] and
to energy loss model calculations [20]. The vertical error bars represent the statistical uncertainties and the boxes
around the data points the systematic uncertainties.

pp collisions. For the most peripheral collisions, corresponding to 〈Ncoll〉 ∼ 2.5, the ∆〈p2
T〉 measured at

backward y is compatible, within uncertainties, with that at forward y. In both backward and forward
rapidity ranges the pT broadening increases with increasing centrality. However, the increase of ∆〈p2

T〉
is stronger in the p-going direction than in the Pb-going direction. Thus, nuclear effects appear to in-
crease with the centrality of the collision and to be stronger in the p-going than in the Pb-going direction.
Here, it is worth noting that under the naive assumption of a 2→ 1 production process (gg→ ψ(nS)),
the sampled x ranges of the lead nuclei correspond to the shadowing and anti-shadowing regions for
the p-going and lead-going direction measurements, respectively. Also shown in Fig. 3 are the results
at
√

sNN = 5.02 TeV [29]. The same trend of ∆〈p2
T〉 as a function of 〈Ncoll〉 is seen at both collision

energies in the two rapidity ranges. Overall, ∆〈p2
T〉 slightly increases with the collision energy. The

∆〈p2
T〉 as function of 〈Ncoll〉 is also compared in Fig. 3 to the results of an energy loss model, which is

based on a parameterisation of the prompt J/ψ pp cross section and includes coherent energy loss effects
from the incoming and outgoing partons [20]. The band in this model represents the uncertainty on the
parton transport coefficient and the parameterisation used for the pp reference cross section. The model
describes the centrality dependence of ∆〈p2

T〉 at forward rapidity reasonably well, but it underestimates
the data at backward rapidity.

4.3 Centrality dependence of the inclusive J/ψ nuclear modification factor

Figure 4 shows the pT-integrated QpPb of J/ψ as a function of 〈Ncoll〉 in p–Pb collisions at
√

sNN = 8.16
TeV at backward and forward rapidity. At forward y, the production of inclusive J/ψ in p–Pb collisions
is suppressed with respect to expectations from pp collisions for all centrality classes. Furthermore, QpPb
decreases with increasing collision centrality from a value of 0.85±0.02(stat.)±0.03(syst.) for the 80–
90% centrality class to 0.69± 0.01(stat.)± 0.04(syst.) for the 2–10% centrality class. At backward y,
on the contrary, a significant suppression is seen for the most peripheral collisions (Q80−90%

pPb = 0.80±
0.02(stat.)±0.03(syst.)) with QpPb increasing with increasing centrality and reaching values above unity
for the most central collisions (Q2−10%

pPb = 1.16± 0.01(stat.)± 0.07(syst.)). The QpPb as a function of
〈Ncoll〉 is compared with the results at

√
sNN = 5.02 TeV [29]. No strong dependence with the energy of

the collision is observed in the two rapidity intervals.

Three model calculations are also shown in Fig. 4 for comparison. First, a next-to-leading order (NLO)
Colour Evaporation Model (CEM) [75] using the EPS09 parameterisation of the nuclear modification of
the gluon PDF at NLO is shown and denoted as “EPS09s NLO + CEM". The band represents the system-
atic uncertainty of the calculation, which is dominated by the uncertainty of the EPS09 parameterisation.
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The second one is the energy loss model that was described in the Section 4.2. Finally, the third one is
a transport model [23] based on a thermal-rate equation framework, which implements the dissociation
of charmonia in a hadron resonance gas. The fireball evolution implemented in this model includes the
transition from a short QGP phase into the hadron resonance gas, through a mixed phase. The model
uses a cc production cross section dσcc/dy = 0.57 mb and a prompt J/ψ production cross section in pp
collisions of dσ

pp
J/ψ

/dy = 3.35 µb. Shadowing effects are included through the EPS09 parameterisation.
In this case, the upper (lower) limit of this calculation corresponds to a 10% (25%) contribution of nu-
clear shadowing. The three models provide a satisfactory description of the centrality dependence of
the inclusive J/ψ QpPb at forward rapidity. However, at backward rapidity, all three calculations show a
slightly decreasing trend of QpPb with increasing centrality that appears opposite to the one indicated by
the data.

It is worth noting that the model calculations discussed above are for prompt J/ψ while the inclusive
measurements contain a contribution from non-prompt J/ψ too. The Qprompt

pPb can be extracted from Qincl
pPb

using the relation Qprompt
pPb =Qincl

pPb+ fB ·(Qincl
pPb−Qnon-prompt

pPb ), where fB is the ratio of non-prompt to prompt
J/ψ production cross sections in pp collisions and Qnon-prompt

pPb is the nuclear modification factor of the non-
prompt J/ψ mesons. The value of fB is about 0.12 and was calculated from the LHCb measurements for
2 < y < 4.5 and pT < 14 GeV/c in pp collisions at

√
s = 8 TeV [70]. The nuclear modification factor

of non-prompt J/ψ with pT < 14 GeV/c measured by LHCb varies between 0.97±0.11 and 1.10±0.13
(0.80± 0.07 and 0.89± 0.09) in the backward (forward) rapidity interval of interest in p–Pb collisions
at
√

sNN = 8.16 TeV [41]. However, the centrality dependence of Qnon-prompt
pPb has not been measured yet,

therefore Qprompt
pPb is estimated for each centrality class under the two extreme hypotheses of Qnon-prompt

pPb =

0.75 (0.85) and Qnon-prompt
pPb = 0.95 (1.25) at forward (backward) rapidity. These hypotheses correspond

to the same relative variation of Qnon-prompt
pPb with centrality as observed for Qincl

pPb. The differences between
Qprompt

pPb and Qincl
pPb are found to be below 9% and 5% at backward and forward rapidity, respectively. Thus,

the conclusions outlined above, and also in the following, are expected to remain valid also for prompt
J/ψ .
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Figure 4: Inclusive J/ψ QpPb as a function of 〈Ncoll〉 at backward (left) and forward (right) rapidity in p–Pb colli-
sions at

√
sNN = 8.16 TeV compared with the results at

√
sNN = 5.02 TeV [29] and theoretical models [20, 23, 75].

The vertical error bars represent the statistical uncertainties and the boxes around the data points the uncorrelated
systematic uncertainties. The boxes centered at QpPb = 1 represent the systematic uncertainties correlated over
centrality.
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Figure 5: Inclusive J/ψ QpPb as a function of pT for various centrality classes at backward (left) and forward
(right) rapidity. The vertical error bars represent the statistical uncertainties and the open boxes around the data
points the uncorrelated systematic uncertainties. The full coloured boxes centered at QpPb = 1 on the right are the
systematic uncertainties due to pile-up, 〈TpPb〉, and Fnorm, while the full black box on the left of each panel shows
the global systematic uncertainties.

4.4 Centrality-differential inclusive J/ψ QpPb as a function of pT

Figure 5 shows the inclusive J/ψ QpPb as a function of pT at backward and forward rapidity for all
centrality classes considered in this analysis. At backward rapidity, a slight suppression is seen at low
pT for all centralities. However, while almost no pT dependence is observed for the most peripheral
collisions, for all other centralities QpPb increases with pT reaching a plateau for pT & 5 GeV/c, with the
value of the plateau being largest for more central collisions. For the three most central classes, QpPb is
above unity for pT & 2 GeV/c. A similar behavior is also observed for prompt D mesons at midrapidity
(−0.96 < ycms < 0.04) measured in p–Pb collisions at

√
sNN = 5.02 TeV [76]. In contrast, at forward

rapidity, QpPb is below or consistent with unity for all pT in all centrality classes. At low pT, a centrality
dependent hierarchy of QpPb is observed, showing a stronger suppression in central collisions compared
to peripheral ones. For all centralities, QpPb smoothly increases towards unity at high pT.

The different shapes of the evolution of QpPb with pT for the various centralities can be better appreciated
by forming the ratio QPC of the QpPb in peripheral to that in central collisions. Figure 6 shows the inclu-
sive J/ψ QPC as a function of pT at backward and forward rapidity. The centrality-correlated systematic
uncertainties cancel when calculating the ratio. The QPC could, therefore, provide stronger constraints to
the theoretical calculations. Transport model calculations by Du et al. [23] are also shown in Fig. 6 for
comparison. At backward rapidity, the model calculations tend to overestimate the measured QPC for all
centrality classes. The centrality dependent hierarchy of the measured QPC is also not reproduced by the
model calculation. At forward rapidity, the transport model calculations qualitatively describe the pT and
centrality dependence of the inclusive J/ψ QPC, but do systematically overestimate the measurements.

The J/ψ QpPb as a function of pT is shown separately for the six centrality classes in Figs. 7 and 8 for
the backward and forward rapidity regions and is compared with the results at

√
sNN = 5.02 TeV [29]

and the same model calculations discussed previously. The results are similar at both collision energies
in the two rapidity ranges, indicating that the mechanisms behind the modification of the J/ψ production
in p–Pb collisions do not depend strongly on the collision energy. It is worth noting that the pT range is
extended up to 16 GeV/c at

√
sNN = 8.16 TeV and that the most peripheral centrality is 80–90% at the

highest energy while it was 80–100% at the lowest one.

At backward rapidity, the EPS09s NLO + CEM [75] calculations show a mild increase of QpPb with
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pT for all centralities, but more pronounced towards more central collisions. The EPS09s NLO + CEM
QpPb is above unity for all centralities but the strength of the anti-shadowing effect is stronger the more
central the collisions are. The description of the data by the EPS09s NLO + CEM calculations is rather
poor, except for the 40–60% centrality class. For more central collisions the calculations underestimate
the data, but overestimate them for more peripheral collisions. Similar observations can be drawn from
the energy loss [20] calculations, which in the common pT region are compatible with the EPS09s NLO
+ CEM calculations. Only for the more central collisions the pT dependence appears steeper for the
energy loss model and closer to the data, but the overall magnitude is lower than the measured QpPb. The
transport model [23] calculations, which are in general terms lower than the EPS09 + CEM and quite
similar to the energy loss ones, only describe the inclusive J/ψ QpPb in the 40–60% centrality class, while
underestimating it for more central collisions and overestimating it for more peripheral ones.

At forward rapidity, the differences between the EPS09 + CEM and the energy loss calculations are more
pronounced. On the contrary, the transport model calculations are rather similar to the EPS09 + CEM
ones, though on the lower edge. The uncertainties of the model calculations are also larger at forward
than at backward rapidity, especially for the most central collisions. The description of the data by the
EPS09 + CEM calculations is fair for all centralities, especially for pT & 4 GeV/c. Below 4 GeV/c,
the model tends to overestimate the measured QpPb. The pT dependence of the energy loss calculation
appears steeper than that in data, except for the most peripheral class. The model tends to underestimate
the measured QpPb at low pT and to overestimate it at high pT in all the other centrality classes. The
transport model describes the data fairly well in all centrality classes for pT . 8 GeV/c but tends to
overestimate the QpPb at higher pT.
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Figure 6: Inclusive J/ψ QPC as a function of pT for various centrality classes at backward (left) and forward (right)
rapidity compared to the theoretical calculations [23]. The vertical error bars represent the statistical uncertainties
and the boxes around the data points the uncorrelated systematic uncertainties. The boxes centered at QPC = 1 are
the systematic uncertainties due to pile-up, 〈TpPb〉, and Fnorm.
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Figure 7: Inclusive J/ψ QpPb as a function of pT for 2–10%, 10–20%, 20–40%, 40–60%, 60–80%, and 80–90%
ZN centrality classes at backward rapidity in p–Pb collisions at

√
sNN = 8.16 TeV compared with the results at

√
sNN = 5.02 TeV [29] and with the theoretical calculations [20, 23, 75]. The vertical error bars show the statistical

uncertainties, the open boxes the uncorrelated systematic uncertainties, and the full boxes centered at QpPb = 1 the
correlated systematic uncertainties.
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Figure 8: Inclusive J/ψ QpPb as a function of pT for 2–10%, 10–20%, 20–40%, 40–60%, 60–80%, and 80–90%
ZN centrality classes at forward rapidity in p–Pb collisions at

√
sNN = 8.16 TeV compared with the results at

√
sNN = 5.02 TeV [29] and with theoretical calculations [20, 23, 75]. The vertical error bars show the statistical

uncertainties, the open boxes the uncorrelated systematic uncertainties, and the full boxes centered at QpPb = 1 the
correlated systematic uncertainties.

4.5 Inclusive ψ(2S) to J/ψ ratio and double ratio

The relative production of the excited ψ(2S) state compared to that of the J/ψ state can be quantified
by the ψ(2S)/J/ψ ratio, which is defined here as B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ . The relative
modification of the production of the two states in p–Pb collisions with respect to pp collisions is then
obtained by comparing the ψ(2S)/J/ψ ratio in the two collision systems. Several systematic uncertainties
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cancel in the ψ(2S)/J/ψ ratio, and the remaining ones are due to the signal extraction and the MC input
shapes. The centrality dependence of the ψ(2S)/J/ψ ratio at backward and forward rapidity in p–Pb
collisions at

√
sNN = 8.16 TeV are shown in Fig. 9. The results are compared with the same ratio in p–Pb

collisions at
√

sNN = 5.02 TeV [30] as well as in pp collisions at
√

s = 7 TeV [65]. Firstly, the ψ(2S)/J/ψ
ratio does not exhibit any significant dependence on the collision energy. Secondly, the ratio appears
to be smaller in p–Pb than in pp collisions, in both explored rapidity regions and for all centralities,
except the most peripheral, where the uncertainty is considerably large, and the most central ones. Here,
it is important to note that also no significant energy dependence is observed in the ψ(2S)/J/ψ ratio
in pp collisions [58]. Thus, the production of the ψ(2S) in p–Pb collisions appears to be suppressed
compared to that of the J/ψ with respect to the expectation from pp collisions. Thirdly, given the current
experimental uncertainties, no clear trend of the ratio as a function of centrality can be drawn. Finally,
the suppression of the ψ(2S) relative to the J/ψ in p–Pb compared to pp collisions appears to be stronger
in the Pb-going (backward rapidity) than in the p-going direction (forward rapidity).

The same conclusions can be also drawn from the so-called double ratio, i.e. the ratio of the
ψ(2S) to the J/ψ cross section in p–Pb collisions divided by the same ratio in pp collisions,
[σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp. Figure 10 shows the double ratio [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp as
a function of centrality in the backward and forward rapidity regions for p–Pb collisions at

√
sNN = 8.16

TeV. For the cross section ratio in pp collisions, the energy and rapidity interpolated value discussed
in Section 3 is used. The double ratio is also compared with the one measured in p–Pb collisions at√

sNN = 5.02 TeV [30]. Calculations from the Comovers + EPS09LO model [22] are also shown in
Fig. 10 for comparison. In the Comovers + EPS09LO model, resonances may be dissociated via inter-
actions with “comoving particles" (their nature, partonic or hadronic, not being defined in the model)
produced in the same rapidity region. The dissociation is governed by the comover interaction cross
sections, σ co−J/ψ = 0.65 mb and σ co−ψ(2S) = 6 mb, which are fixed from fits to low-energy experimen-
tal data. The main source of uncertainty in this model is the nPDF parameterisation, which is strongly
correlated between the J/ψ and the ψ(2S) and thus cancels out when calculating the cross section ratio.
Overall, the agreement between the model calculations and the measurements is good at both collision
energies. The decrease of the double ratio with increasing collision energy in the model is due to the
increase of the comover density. The measurement uncertainties do not allow for the experimental con-
firmation of such decrease of the double ratio.
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Figure 9: B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ as a function of 〈Ncoll〉 at backward (left) and forward (right)
rapidity compared with the measurement in pp collisions at

√
s = 7 TeV [65] (line with the band representing

the total uncertainty), and to the results at
√

sNN = 5.02 TeV [30]. Vertical error bars represent the statistical
uncertainties, while the open boxes correspond to the systematic uncertainties.
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Figure 10: Double ratio [σψ(2S)/σJ/ψ ]pPb/[σψ(2S)/σJ/ψ ]pp as a function of 〈Ncoll〉 at backward (left) and forward
(right) rapidity compared with the one at

√
sNN = 5.02 TeV [29]. The vertical error bars represent the statistical un-

certainties and the open boxes around the data points the uncorrelated systematic uncertainties. The boxes around
unity represent the correlated systematic uncertainty and correspond to the uncertainty on the ratio ψ(2S)/J/ψ

in pp collisions. Experimental points are compared with the theoretical predictions of the comovers model at
√

sNN = 5.02 TeV (green line [22]) and
√

sNN = 8.16 TeV (blue line [77, 78]).

4.6 Centrality dependence of the inclusive ψ(2S) nuclear modification factor

The nuclear modification factor of the ψ(2S) is calculated using Eq. 2. Figure 11 shows the inclusive
ψ(2S) QpPb as a function of 〈Ncoll〉, for the backward and forward rapidity intervals, compared with the
inclusive J/ψ QpPb. At forward rapidity, the suppression and its centrality dependence are similar for the
ψ(2S) and the J/ψ . At backward rapidity, on the contrary, a systematically stronger suppression of the
ψ(2S) relative to the J/ψ is observed, except for the most peripheral and most central collisions, where
the large uncertainties prevent a firm conclusion. The ψ(2S) QpPb at

√
sNN = 8.16 TeV shows the same

dependence with the centrality of the collision than at
√

sNN = 5.02 TeV [29].

Also shown in Fig. 11 are the results of model calculations. The EPS09s NLO + CEM calculations [75]
of QpPb are very similar for both ψ(2S) and J/ψ . The model fails to describe ψ(2S) results at forward
rapidity, while the J/ψ results lie in the lower edge of the model calculation. At backward rapidity,
the model calculation is close to the J/ψ data, although exhibiting different centrality trends, but fails
at explaining the stronger ψ(2S) suppression. The transport model [23] calculations yield significantly
smaller QpPb for the ψ(2S) than for the J/ψ , with the difference being more pronounced in the Pb-going
direction, where this difference increases with increasing centrality. The description of the forward
rapidity results is fair for both charmonium states. At backward rapidity, the model tends to overestimate
the ψ(2S) measurement in the most peripheral centrality classes. In this model, the lower QpPb for
the ψ(2S) than for the J/ψ is caused by a larger suppression of the ψ(2S) in the short QGP and the
hadron resonance gas phases. Finally, the Comovers + EPS09LO model [22] predicts a significantly
lower QpPb for the ψ(2S) than for the J/ψ in the backward rapidity region. In the forward rapidity
region the model uncertainties are too large to draw any firm conclusion. It is worth noting that the
model uncertainties are largely correlated between the J/ψ and ψ(2S), as they are dominantly due to the
nPDF parameterisation, and thus mostly cancel when calculating the double ratio as shown in Fig. 10.
Nuclear shadowing is included using the EPS09 LO parameterisation [18] and the uncertainties of this
parameterisation dominate the uncertainties of the model. The effect of the comovers, responsible for the
stronger suppression of the ψ(2S) compared to the J/ψ , is stronger at backward rapidity due to the larger
density of comovers in the Pb-going direction [22]. This model provides a fair description of ψ(2S) QpPb
at backward rapidity. However, the trend with centrality exhibited for the J/ψ does not reproduce the one
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Figure 11: Inclusive ψ(2S) QpPb as a function of 〈Ncoll〉 at backward (left) and forward (right) rapidity compared
to J/ψ QpPb and with the theoretical models. Vertical error bars represent the statistical uncertainties, while the
open boxes around the data points correspond to the uncorrelated systematic uncertainties. The red and blue boxes
around unity represent the correlated systematic uncertainty specific to the J/ψ and ψ(2S), respectively. The grey
box corresponds to the common systematic uncertainty correlated over 〈Ncoll〉.

observed in the data. Although not shown in the figure, the energy loss model [20] predicts sensibly the
same QpPb for the two reported charmonium states. Only models including final-state interactions are
able to describe, at least qualitatively, a stronger suppression of the less bound ψ(2S) state than of the
more tightly bound J/ψ state.

As for the J/ψ , it is also possible to estimate the Qprompt
pPb of ψ(2S). In this case, the value of fB is

about 0.18 and it is calculated using the LHCb measurements in pp collisions at
√

s = 7 TeV for pT <
16 GeV/c and 2 < y < 4.5 [79]. Since the non-prompt ψ(2S) QpPb has not been measured yet as a
function of centrality, it is conservatively assumed to vary between 0.4 and 1 in all centrality classes
for both forward and backward rapidity. That variation range for non-prompt ψ(2S) QpPb englobes the
centrality-integrated non-prompt ψ(2S) RpPb measured by LHCb at backward and forward rapidity in p–
Pb collisions at

√
sNN = 5.02 TeV [37] as well as all the inclusive ψ(2S) QpPb reported here. The Qprompt

pPb
calculated under these assumptions is compatible within uncertainties with the inclusive one, showing a
maximum difference of 25% with respect to the latter.

5 Summary

The study of the centrality dependence of the J/ψ and ψ(2S) production in p–Pb collisions at
√

sNN =
8.16 TeV using the energy deposited in the neutron ZDC located in the Pb-going direction as the cen-
trality estimator is presented. The J/ψ 〈pT〉 and 〈p2

T〉 are reported for different centrality classes in the
forward and backward rapidity regions covered by the ALICE muon spectrometer. The ∆〈p2

T〉 measure-
ment shows a pT broadening, relative to pp collisions, that increases from peripheral to central collisions,
with larger values at forward than at backward y, except for the most peripheral events where similar val-
ues are seen in both rapidity intervals.

At forward rapidity, a clear suppression of J/ψ in p–Pb collisions compared to pp collisions is observed,
which increases from peripheral to central collisions. At backward rapidity, the trend is opposite: the
production of J/ψ relative to expectations from pp collisions is suppressed in peripheral collisions but
enhanced in central collisions. The pT- and centrality-differential measurements of the J/ψ QpPb indicate
a stronger suppression in central than in peripheral collisions at low pT and forward rapidity, but with
QpPb approaching unity at high pT for all centrality classes. At backward rapidity, an enhancement is
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observed in central compared to peripheral collisions for pT > 3 GeV/c.

The ratio B.R.ψ(2S)→µ+µ−σψ(2S)/B.R.J/ψ→µ+µ−σJ/ψ is compatible with the pp measurement in the most
central and most peripheral collisions (within large uncertainties), whereas a decrease is observed in the
semi-central and semi-peripheral events. Thus, in those centrality classes, the ψ(2S) production relative
to the J/ψ is suppressed in p–Pb collisions compared to pp collisions. The nuclear modification factor of
the ψ(2S) is compatible, within large uncertainties, with the one of the J/ψ in the most central and most
peripheral events, but a stronger suppression of the ψ(2S) is observed in semi-central and semi-peripheral
events, especially at backward rapidity.

The results presented here at
√

sNN = 8.16 TeV confirm with improved statistical precision the earlier
observations at

√
sNN = 5.02 TeV and extend the pT reach up to 16 GeV/c for the J/ψ analysis. No

significant dependence with collision energy is observed.

Theoretical models employing nPDF or energy loss mechanisms describe the centrality dependence of
the J/ψ nuclear modification factor at forward rapidity but do not reproduce the shape at backward
rapidity. The pT dependence of the J/ψ QpPb in central collisions is not well described by the nPDF or
energy loss based models, while the agreement is fair in peripheral collisions.

Among the three models considered, the one based only on nPDF cannot reproduce the ψ(2S) suppres-
sion. The model including final-state comover interactions describes the stronger ψ(2S) suppression at
backward and forward rapidity, although the large model uncertainty prevents a firm conclusion at for-
ward rapidity. The transport model is in good agreement at forward rapidity, but overestimates the ψ(2S)
results at backward rapidity, especially in peripheral collisions.

The results presented here stress the need for a sound theoretical understanding of the production of
quarkonia, including the excited states, in proton–nucleus collisions. Further experimental results ex-
pected from the future Run 3 and Run 4 of the LHC will push further our understanding of nuclear
effects.
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