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Abstract: Pure and Al-doped (3 at.%) ZnO nanorods were prepared by two-step synthesis. In the
first step, ZnO thin films were deposited on silicon wafers by spin coating; then, ZnO nanorods
(NR) and Al-doped ZnO NR were grown using a chemical bath method. The structural properties
of zincite nanorods were determined by X-ray diffraction (XRD) and corroborated well with the
morphologic properties obtained by field-emission gun scanning electron microscopy (FEG SEM)
with energy-dispersive X-ray spectroscopy (EDS). Morphology results revealed a minute change
in the nanorod geometry upon doping, which was also visible by Kelvin probe force microscopy
(KPFM). KPFM also showed preliminary electrical properties. Detailed electrical characterization
of pure and Al-doped ZnO NR was conducted by temperature-dependent current–voltage (I–V)
measurements on Au/(Al)ZnO NR/n-Si junctions. It was shown that Al doping increases the
conductivity of ZnO NR by an order of magnitude. The I–V characteristics of pure and Al-doped
ZnO NR followed the ohmic regime for lower voltages, whereas, for the higher voltages, significant
changes in electric conduction mechanisms were detected and ascribed to Al-doping. In conclusion,
for future applications, one should consider the possible influence of the geometry change of (Al)ZnO
NRs on their overall electric transport properties.

Keywords: ZnO nanorods; n-type doping; chemical bath synthesis; electrical transport mechanism; KPFM

1. Introduction

ZnO is a direct wide-bandgap (3.37 eV) semiconductor with a large exciton binding
energy of 60 meV, high electron mobility, high breakdown electric field strength, high
radiation tolerance, and high thermal conductivity [1,2], suitable for electronic, optoelec-
tronic, and sensing applications. ZnO has a hexagonal wurtzite P63mc structure, where
each anion is surrounded by four cations at the corners of a tetrahedron. The tetrahedral
coordination is typical for covalent bonding, but ZnO has a substantial ionic character.
ZnO, where zinc atoms are present in excess in comparison to oxygen atoms, resides
at the borderline between covalent and ionic semiconductors. It is a nonstoichiometric
compound due to the excess of zinc atoms, and even undoped ZnO shows intrinsic n-type
conductivity with high electron densities around 1021 cm−3. Zinc interstitials, Zni, and the
oxygen vacancies, V, are the dominant donors in undesired n-doped ZnO films. However,
this remains controversial since impurities that are shallow donors, such as hydrogen [3],
are unintentionally introduced and could cause the abovementioned behaviour.

The synthesis and characterization of one-dimensional (1D) semiconductor materials
have recently attracted more interest due to their physical properties that allow them
to play an important role in optoelectronic and electronic devices at the nanoscale. A
com-bination of the three types of fast growth directions (〈2110〉, 〈0110〉, and 〈0001〉) and
the three area-adjustable facets ({2110}, {0110}, and {0001}) of ZnO leads to the growth of a
di-verse group of hierarchical and complicated nanostructures [4]. This is partially reflected
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in the many different structural configurations of ZnO nanomaterials such as nanowires,
nanorods, nanotubes, nanobelts, nanorings, and nanosprings, which are attractive for a
variety of applications [5]. In particular, ZnO nanorods (NRs) are being investigated for
solar cells, photoluminescence devices, and sensors [6]. The large surface-to-volume ratio
provides a large active area, which is advantageous for gas sensors, while the high electron
mobility and transparency are valuable for electron transport layer in solar cells [7,8].
Growth of ZnO nanorods can be achieved using techniques such as metal organic chemical
vapor deposition [9], thermal evaporation [10], radiofrequency magnetron sputtering [11],
pulsed laser deposition [12], and spray pyrolysis [13] (Table 1). These techniques have
been used successfully; however, many of these require specific conditions for successful
reaction, such as high temperature, high pressure, and an inert atmosphere. On the other
hand, chemical solution processes, e.g., chemical bath deposition, greatly facilitate the
fabrication of well-aligned ZnO NRs on a large scale at low temperatures.

Table 1. Growth of ZnO NRs using different techniques.

Technique Specifications Reference

Chemical vapor deposition Accurate growth control, high T, carrier gas [9]
Thermal evaporation Simple, no catalysts, high temperature [10]

RF magnetron sputtering High sample purity, low cost, low pressure [11]
Pulsed laser deposition Gas pressure control, high T, low pressure [12]

Spray pyrolysis Does not require high-quality targets [13]

Precoating the substrate with a ZnO seed layer is crucial for the subsequent growth
of highly oriented ZnO NR arrays from the solution [14]. Control over the nanorod
growth can be gained simply by varying the layer thickness, layer patterns, and deposition
techniques [15]. Hexamine, also known as hexamethylenetetramine (HMT), is a highly
water-soluble, nonionic tetradentate cyclic tertiary amine. Thermal degradation of HMT
releases hydroxyl ions which react with Zn2+ ions to form ZnO [15]. The aqueous solutions
of zinc nitrate and HMT can produce the following chemical reactions:

(CH2)6N4 + 6H2O↔ 6HCHO + 4NH3, (1)

NH3 + H2O↔ NH4
+ + OH−, (2)

Zn(NO3)2 + 6H2O→ Zn2+ + 2(NO3)− + 6H2O, (3)

Zn2+ + 2OH− ↔ ZnO + H2O. (4)

The consensus is that the role of HMT is to supply the hydroxyl ions which drive the
precipitation reaction [16]. Initially, due to the decomposition of zinc nitrate hexahydrate
and HMT at an elevated temperature, OH- is introduced into the Zn2+ aqueous solution.

In the hydrothermal growth process, with the temperature increase, the concentra-
tions of Zn2+ and OH− also increase. When the concentration increases to a critical value
of solution supersaturation, spontaneous fine ZnO nuclei are formed. Furthermore, the
formed nanoparticles combine, reducing the free interface energy [17]. Due to the higher
symmetry of the (001) plane compared to other planes along the c-axis, it is the typical
growth plane. Nucleation determines the surface-to-volume ratio of the ZnO NR. Sub-
sequently, the incorporation of growth units into the crystal lattice of the nanorods by
dehydration takes place.

The electrical, optical, and mechanical properties of ZnO NR can be improved by
doping [18–24]. N-type doping is relatively easy in comparison to p-type doping. Group III
elements such as Al, Ga, and In as substitutional elements for Zn and group VII elements
such as Cl and I as substitutional elements for O can be used as n-type dopants. Among
possible dopants, Al is particularly interesting due to the enhancement of conductivity and
optical bandgap [25]. Al doping introduces a donor level at 120 meV below the conduction
band in the bulk ZnO NR [1,26] and increases the free carrier concentration. The current
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transport is significantly affected by present traps due to the inherently weak screening of
injected and trapped charges in nanorods [27]. Previous studies reported the effect of Al
doping on defects present in the ZnO nanostructures [6,28–30].

In this paper, we used the chemical bath reaction for the growth of ZnO NR, which is
one of the simplest, nontoxic, low-temperature, and low-cost methods. Among the various
methods, the spin-coating method was applied to prepare the ZnO seed layer on substrates
because of its low cost and easy approach. The electrical properties of undoped and
Al-doped ZnO NR were studied by KPFM and temperature-dependent current–voltage
(I–V–T) measurements. The analysis of transport processes provided information about
the electron traps present in ZnO NRs and the effects related to Al doping.

2. Materials and Methods

The following materials and chemicals were used: n-doped Si wafers (~450 µm,
2–7 Ω·cm), deionized water (Milipore, Burlington, NJ, USA), acetone (Merck, Darmstadt,
Germany), ethanol (EtOH, aps., Honeywell, Offenbach am Main, Germany), methanol
(Honeywell, Offenbach am Main, Germany), hydrofluoric acid 40% (HF, Sigma-Aldrich,
Steinheim am Albuch, Germany), zinc acetate dehydrate (Honeywell, Offenbach am Main,
Germany), zinc nitrate hexahydrate (Acros Organics, Geel, Belgium), hexamethylente-
tramine (Sigma-Aldrich, Steinheim am Albuch, Germany), monoethanolamine (MEA,
Merck, Darmstadt, Germany), and aluminum nitrate nonahydrate (Honeywell, Offenbach
am Main, Germany). All of the materials were analytical grade and used as received
without further purification.

ZnO NRs were prepared in two steps. The first step was the deposition of the ZnO
seed layer by spin-coating a solution of 0.25 M zinc acetate and MEA in EtOH on previously
cleaned (acetone, methanol, and water in ultrasound for 10 min each, followed by a 60 s
dip in 2% HF solution and UV ozone cleaner for 10 min as the last step) Si substrates. Si
substrates coated with the ZnO seed layer were immersed in an upside-down position
in a glass beaker, filled with an aqueous solution of 0.025 M zinc nitrate and 0.025 M
hexamethylenetetramine (HMT); for 3 at.% Al doping, aluminum nitrate was added and
kept at 85 ◦C for 1 h. At the end of the growth period, the substrates were taken from the
solution and immediately rinsed with deionized water to remove the residuals from the
surface and dried in a nitrogen stream.

For electrical characterization, metallic contacts were prepared. Aluminum (Al) con-
tacts were deposited on the back surface of the Si substrate, while the top gold (Au) contacts
were deposited on the front surface of the samples through a mask with circular openings
by vacuum thermal evaporation. The fabricated samples are illustrated in Figure 1.
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Figure 1. A schematic illustration of prepared Au/ZnO NR/n-Si junction for electrical characterization.

Temperature-dependent current–voltage (I–V–T) measurements were performed us-
ing a 4200-SCS Semiconductor Parameter Analyzer (Keithley, Cleveland, OH, USA). The
measurements were carried out in a vacuum, in the temperature range from 100 K to 300 K
with 25 K temperature steps. Voltage was applied to the top gold contact using a gold tip
probe. The bias voltage was swept from −6 V to 4 V and back.

The morphology of the samples was studied by scanning electron microscopy with a
field-emission gun (FEG-SEM, Tokyo, Japan) using JEOL JSM-700F.
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The surface roughness and the electrical and potential energy were studied by atomic
force microscopy (AFM) in dynamic and KPFM in electric mode, using a Nanosurf Core-
AFM device (Nanosurf, Liestal, Switzerland) operating in noncontact dynamic acquisition
mode with scan time of 0.78 s, 50% setpoint on a 10 × 10 µm2 area, tip voltage of −3V, and
Si electrically conductive tip coated with chromium and platinum (ElectricMulti75G, Bud-
getSensors) under ambient conditions. Images were processed with Gwyddion software
(2.60) [31].

XRD measurements were performed using XRD6000 Shimadzu device (Shimadzu,
Kyoto, Japan) in Bragg Brentano configuration with CuKα radiation using an acceleration
voltage of 40 kV and current of 30 mA in 2θ range 2◦–80◦ with a step size of 0.02◦ 2θ and a
counting time of 0.6 s.

3. Results and Discussion
3.1. Electron Microscopy Analysis

SEM shows the microscructure of the nanorods. The ZnO NRs grew quite homoge-
neously with a slight variation in length but within the range of 150–250 nm and a diameter
range of 70–100 nm (Figure 2). EDS showed around 1% of Al in the doped ZnO NRs
(Table 2). It was assumed that no noticeable change in the morphology could be observed
due to the low amount of aluminum doping. However, a notable difference was observed
between pure ZnO nanorod samples and those doped with Al, which can be best described
as some change in the geometry of the rod tips (Figure 2c). Such a geometry change
can occur due to changes during crystallization, i.e., samples show different preferred
orientation parameters. The difference seemed to comprise different bending geometry of
the NR ends. This behavior is related to the energy levels of certain crystal facets, where
the facets with the highest energies want to minimize surface exposure to minimize energy.
This behavior is surely the consequence of the Al-doping precursor presence in the growth
solution. Statistical analysis of this feature is not feasible using the top-view SEM presented
here. Furthermore, statistical analysis of this feature using cross-sections obtained by FIB
TEM (focused ion-beam transmission electron microscopy) is simply too time-consuming.
Therefore, the differences in morphology were qualified by calculating microstructural
parameters from the diffraction analysis.
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Figure 2. (a) Seed layer ZnO; (b) as-grown ZnO NR; (c) Al-doped ZnO NR.

Table 2. EDS analysis.

Element Mass (%) MassNorm. (%) Atom (%)

Oxygen 4.85 4.72 8.11
Aluminum 0.91 0.88 0.90

Silicon 94.28 91.65 89.83
Zinc 2.83 2.75 1.16
Total 102.87 100.00 100.00
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3.2. Atomic Force Microscopy

AFM analysis showed slight variations in the microstructure (Figure 3a,d) of the ZnO
NRs and Al-doped ZnO NRs, consistent with the SEM images. In addition, the surface
roughness of the samples also showed an increase in value; the undoped sample had a
value of Sq 30.81 nm and the doped sample had a value of Sq 49.35 nm, which can be
attributed to the addition of Al to the growth solution.
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Al-doped ZnOs NR: (d) morphology; (e,f) surface potential scans.

Electrical (KPFM) mode measurements (Figure 3b,c,e,f) also showed a difference in the
surface potential of the samples: the undoped sample had values in the range up to 0.098 V,
while the Al-doped sample had values in the range up to 0.250 V, further confirming
successful Al doping.

3.3. Diffraction Analysis

All samples yielded qualitatively the same crystal phase composition with structural
differences among the present phases and some semiquantitative differences (Figure 4).
The major phase was zincite ICDD PDF#36-1451. The samples seemed to have the same
amount of zincite quantitatively. Apparently, the intense (002) zincite reflex does not reflect
the higher content of zincite; rather, it suggests the presence of the preferred orientation of
zincite. Such a strong intense (002) zincite reflex correlates well with the growth of zincite
nanorods. From the change in the mutual relative ratio of zincite (100) to (002) reflex, we
can quantify the extent of structural changes (Figure 4 Inset). Specifically, it seems that the
aspect ratio of zincite nanorods differed in the samples, affecting the preferred orientation.
One-dimensional growth was the strongest for Sample 1 but weakest for Sample 3. The
differences between samples seemingly occurred due to the addition of 3% Al. The addition
of Al precursor to the ZnO NR growth medium obviously disrupted the 1D growth to
some extent. The strongest reflex was the (100) reflex, which was assigned to n-Si, used
as the wafer substrate for zincite nanorod growth. From the constituents, the presence of
gold ICDD PDF#04-0784 and silver ICDD PDF#87-0720 was observed. Gold was sputtered
to ensure electric contact at the surface, while silver paste was used to fix the substrate’s
bottom contact. Both phases yielded similar structural features, as visible from the heavily
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overlapped diffraction pattern. Therefore, it is not possible to deconvolute and distinguish
the contribution from Au and Ag. Surprisingly, the presence of a silver oxide ICDD PDF#41-
1104 phase was observed. The semiquantitative correlations for Au–Ag–Ag2O phases were
very interesting. Specifically, only very similar positioning of the specimens in the XRD
holder can control the quantity of signal collected from gold sputtered at the surface.
Therefore, we can assume that the gold signal does not change significantly. However, the
quantity of signals collected from the underlying silver cannot be controlled. As such, the
proportional increase in reflexes (111) and (200) occurred because of different amounts of
signal collected from silver. In addition, Ag (200) and Au (200) are overlapped by Ag2O
(200). However, the extent of contribution could hardly be observed, even for Sample 2
where Ag2O presence could not be neglected. Another explanation for such behavior may
be found in the preferred orientation, which is common in such films. This is especially
visible for zincite, as previously mentioned. The consequence of this growth mechanism
change is in concordance with SEM results, as already explained above.
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3.4. Optical and Electrical Analysis

The optical properties are an important part of ZnO thin-film investigations. The
literature reports bandgaps for pure ZnO NR at about 3.37 eV, and doping modification by
Al moves the bandgap value toward 2.98 eV [32,33]. Following the same type of deposition,
we expected similar values. However, the confirmation of bandgap values for our samples
was omitted due to the use of Si wafers as substrates to focus on electric performance. The
forward I–V characteristics at selected temperatures of the samples with undoped and
Al-doped ZnO NRs are shown on the log–log plot in Figure 5. We can clearly distinguish
two linear regions in both cases. For the lower voltages, I–V characteristics were well
described by the ohmic transport process (undoped and Al-doped ZnO NRs), whereas,
for the higher voltages, a significant difference between undoped and Al-doped ZnO NRs
was detected.
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At the higher voltages (V > Vc) the I–V characteristics for undoped ZnO NRs (Figure 5a)
were described by the space charge-limited current (SCLC) transport processes. In the case
of Al-doped ZnO NR (Figure 5b), the I–V characteristics for voltages > 0.3 V were described
by the relation I~Vα.

Temperature-induced changes in I–V characteristics were more pronounced in the
case of undoped ZnO NRs. The crossover point (critical voltage, Vc) was clearly defined
and shifted to higher voltages with decreasing temperature. A sharp transition between
the two linear regions was not detected for Al-doped ZnO NRs.

In order to understand the influence of Al doping on the transport properties of ZnO
NRs, we analyzed the I–V characteristics of undoped and Al-doped ZnO NRs using the
ohmic and SCLC transport processes. The basic energy band diagrams for these two
processes are given in Figure 6.

At lower voltages, the current scales linearly with voltage (as seen in Figure 5a,b).

I = σ
S
L

V (5)

where S is the area of the Au electrical contact, L is the width of the ZnO NR layer, and σ is
the conductivity of the ZnO NR layer. The increase in ohmic current with the temperature is
well described by an increase in thermally generated free carrier concentration. Al doping
increased the conductivity of the ZnO NR layer by an order of magnitude. It is known
that undoped ZnO NRs are n-type due to intrinsic defects such as oxygen vacancies and
zinc interstitials [26]. The estimated values for conductivity for undoped and Al-doped
ZnO NRs measured at 150 K and 300 K are listed in Table 3. As previously reported, the
incorporation of Al3+ ions at the Zn lattice site during the growth of ZnO NRs leads to an
increase in free carrier concentration and, consequently, to an increase in conductivity of
ZnO NR [18,26].
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bandgaps of Si (1.12 eV) and ZnO (3.25 eV), and work function of Au (5.1 eV) were used in the
calculations [35]. The trap states below the conduction band are illustrated in green. (a) Ohmic
current due to thermally generated free carriers in the ZnO NRs. (b) SCLC determined by trapped
charge near the injecting ZnO NR/n-Si contact.

Table 3. The electrical conductivity σ of undoped and Al-doped ZnO NRs.

Sample σ (mS·cm−1) at 300 K σ (mS·cm−1) at 150 K

Undoped ZnO NR 3–5 × 10−5 5–9 × 10−7

Al-doped ZnO NR 2–4 × 10−4 3–5 × 10−6

Figure 7 shows the Arrhenius plot of electrical conductivity for undoped and Al-doped
ZnO NRs. The apparent activation energies derived from this plot were 0.095 eV and
0.099 eV for the undoped and Al-doped ZnO NRs, respectively. The estimated activation
energies are close to previously reported values for ZnO NRs [36]; the differences are due
to the different growth methods and conditions. The observed linearity indicates that
a thermally activated transport process dominated in the measured temperature range
(100–300 K).
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At higher voltages, the transition to the SCLC regime occurred due to the injected
carrier concentration becoming comparable to the thermally generated free carrier concen-
tration in undoped ZnO NR.

Electrons are easily injected into the ZnO NR layer owing to significant conduction
band discontinuity ∆EC = 0.3 eV [37] at the ZnO NR/n-Si contact. The traps in the ZnO NR
layer capture electrons; hence, the negative space charge density increases with an increase
in positive bias. The negative trapped charge and the positive charge on the Au contact
introduce an electric field that affects the current flowing in response to the applied voltage
(as schematically represented in Figure 6). Therefore, the SCLC analysis provides useful
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information regarding the concentration of traps in the ZnO NR layer and their energy
distribution [38–40].

In the case of the undoped ZnO NRs (Figure 5a), the I–V–T characteristic at voltages
above 0.5 V (VC) is well described by the following relation [38]:

I = eµNC

(
ε

eNT

)TC/T VTC/T+1

L2TC/T+1 (6)

Deduced in the case of the exponential density of trap energy levels below the bottom
of the conduction band,

nT(E) =
NT

ET
exp

(
−EC − E

ET

)
(7)

where ET = kBTC is the characteristic trap energy, ε is the dielectric constant, e is the elemen-
tary charge, µ is the electron mobility, NC is the effective density of states in the conduction
band, and NT is the total trap concentration. The characteristic trap energy ET = 79 meV
is determined from the temperature dependence of voltage exponent α = T/TC + 1, while
the total trap concentration NT~5 × 1015–1016 cm−3 is estimated from the temperature de-
pendence of the prefactor in Equation (6). The estimate of total trap concentration assumed
a ZnO NR length of 150–250 nm (estimated from SEM and AFM), a relative dielectric
constant εr = 3 of ZnO NRs [41], and a temperature-independent µNC. It is believed that
the characterized traps correspond to surface states [42] or electron traps in the bulk ZnO
NRs [43].

As already mentioned, the crossover to the SCLS regime was not observed for Al-
doped ZnO NRs. In the case of Al-doped ZnO NRs (Figure 5b), the increase in the forward
current was more gradual, and the current did not reach the saturation current value unlike
the case of the undoped sample.

In fact, the current followed the relation I~Vα with exponent α = 1.5 showing only a
small deviation from the ohmic behavior. Such a dependence was also preserved at the
lower temperatures.

It should be noted that the increase in the trap concentrations or the introduction of
donors could shift the trap-filled limit to higher voltages, and a crossover (as observed
for undoped ZnO NR) could occur at voltages greater than the measured voltage range
(>4 V). We believe that Al doping introduced traps i.e., energy levels, and those traps have
a strong influence on SCLS transport properties. Further studies are needed for a better
understanding of Al doping influence on the transport properties of ZnO NR, especially
due to the ambiguous contribution of changes in ZnO NR geometry [44].

4. Conclusions

In this work, we investigated the most important electric properties of undoped and
Al-doped (3 at.%) ZnO nanorods prepared via a facile two-step wet-chemistry technique.
Firstly, ZnO thin films were deposited on silicon wafers by spin-coating; secondly, ZnO
nanorods (growth solution contained hexamethylenetetramine and zinc nitrate hexahy-
drate) and Al-doped ZnO NRs (growth solution additionally contained 3 at.% aluminum
nitrate nonahydrate) were grown via a chemical bath method.

The SEM micrographs confirmed that closely packed arrays of vertically aligned
nanorods with approximately the same lengths were achieved for all synthesis conditions.
SEM revealed that the geometry of the Al-doped rods marginally changed. XRD results
revealed that the as-synthesized nanorods were highly crystalline with preferential growth
along the c-axis, as expected for ZnO thin films. Phase separation and impurities were not
observed in the XRD results. Samples with Al doping showed preferred orientation to a
different extent, suggesting a different effect on the ZnO lattice. Calculated microstructural
parameters confirmed the SEM and AFM observations; AFM analysis confirmed the slight
differences in morphology that were observed in SEM. The KPFM electrical mode of AFM
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showed larger differences between sample groups, highlighting the successful synthesis
and Al doping, which was subsequently confirmed by the I/V measurements.

The electrical properties of undoped and Al-doped ZnO nanorods were thoroughly
studied. The understanding of the control achieved by means of intentional doping is
crucial for the further development and application of electronic devices based on ZnO
nanorods. For the lower voltages, the I–V characteristics of undoped and Al-doped ZnO
nanorods both followed the ohmic regime, whereas Al-doping influenced the transport
properties at higher voltages. Moreover, Al doping increased the conductivity of ZnO
nanorods by an order of magnitude. Nevertheless, the contribution of ZnO nanorod
geometry to overall electric properties still requires further investigation. Specifically, the
growth of the rods is a chemical process where the system wants to reach an energetically
more favorable state by favoring directional growth, i.e., nanorods. Researchers have
tried to describe and understand the system to consequently have control over the growth
parameters. Using various approaches, it is possible to control the shape, length, alignment,
density, diameter, distances, and branching parameters to some extent. However, until
now, under pragmatic conditions, it was not possible to mitigate the relative difference
in lengths of the nanorods, as well as slight tilting from the perpendicular orientation to
the substrate. This is particularly true for the case when modifications are implemented,
as in our case. Thus, the intended application requires interfacing to other layers where
the mentioned geometric discrepancies still need to be addressed. Thus, this area is still
interesting for researchers.
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