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darko.babic@irb.hr

3 Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology,
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* Correspondence: mhranjec@fkit.hr (M.H.); robert.vianello@irb.hr (R.V.)

Abstract: We present the synthesis and analytical, spectroscopic and computational characterization
of three amino-substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as novel pH probes
with a potential application in pH-sensing materials. The designed systems differ in the number
and position of the introduced isobutylamine groups on the pentacyclic aromatic core, which affects
their photophysical and acid-base properties. The latter were investigated by UV-Vis absorption and
fluorescence spectroscopies and interpreted by DFT calculations. An excellent agreement in experi-
mentally measured and computationally determined pKa values and electronic excitations suggests
that all systems are unionized at neutral pH, while their transition to monocationic forms occurs at
pH values between 3 and 5, accompanied by substantial changes in spectroscopic responses that make
them suitable for detecting acidic conditions in solutions. Computations identified imidazole imino
nitrogen as the most favorable protonation site, further confirmed by analysis of perturbations in the
chemical shifts of 1H and 13C NMR, and showed that the resulting basicity emerges as a compromise
between the basicity-reducing effect of a nearby nitrile and a favorable contribution from the attached
secondary amines. With this in mind, we designed a system with three amino substituents for which
calculations predict pKa = 7.0 that we suggest as an excellent starting point for a potential pH sensor
able to capture solution changes during the transition from neutral towards acidic media.

Keywords: benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles; DFT calculations; TD-DFT calculations;
pH sensitivity; acid-base chemistry; NMR chemical shifts

1. Introduction

Nitrogen-containing heterocycles are, besides their well-known biological features,
recognized as an interesting class of organic fluorescent sensors present in a wide range of
biological, environmental, and chemical processes [1–4]. Owing to their excellent spectro-
scopic properties, as well as pronounced and diverse spectral responses, such derivatives
offer promising applications in optoelectronics as optical lasers, fluorescence probes, organic
luminophores or fluorescent dyes [5–8]. Among many heterocyclic derivatives developed
as fluorescent organic sensors, benzimidazole derivatives play an important role and repre-
sent a special interest for organic chemists because of their eminent physico-chemical and
spectroscopic characteristics [9,10]. Additionally, the benzimidazole framework, due to its
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structural similarity to naturally occurring purines, is widely incorporated in the structure
of numerous biologically important natural and synthetic molecules and could interact
with important biomacromolecules within living organisms [11–13].

Furthermore, benzannulated benzimidazoles, due to condensation with other heteroaro-
matics, have a highly conjugated aromatic planar chromophore and thus exhibit bright
fluorescence, which opens the possibility for their application as fluorescent chemosensing
molecules, luminophores or dyes [14,15]. More importantly, the fluorescence intensity
can be easily tuned by different substituents placed around the heteroaromatic skeleton,
allowing for their application as fluorescent pH sensors. In recent years, fluorescent sensors
have been actively investigated because of their high sensitivity and rapid responses to
various analytes, among which pH probes could be used for a wide range of conditions,
including extremely acidic and basic environments [16–19]. Recently, we studied spectro-
scopic characteristics of tetracyclic benzimidazole derivatives, among which 2-amino-5-
phenylbenzimidazo[1,2-a]quinoline-6-carbonitrile has proven to be selective towards Zn2+

concomitant, with a significant increase in fluorescence intensity [20]. Encouraged by these
findings, we have chosen several biologically active benzimidazo[1,2-a]quinolines bearing
amino substituents on different positions (Figure 1) to study their optical properties and
possible application as pH sensors through UV-Vis and fluorescence spectroscopies and
computations. The study of their acid-base properties underlined that all examined com-
pounds showed spectral changes in the pH range of 1–12, with very strong sensitivity of
fluorescence towards pH, thus confirming the requirements for efficient pH sensors [21,22].
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Figure 1. Recently studied benzimidazo[1,2-a]quinolones.

Pentacyclic benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles with amino chains at dif-
ferent positions, recently synthesized in our research group, have been evaluated by 2D and
3D assays on human breast cancer cells, showing very promising biological potential [23].
The general structure of these dye molecules is based on a fused and highly conjugated
planar chromophore system containing five fused heteroaromatic cores, showing excel-
lent optical properties, including strong fluorescence in the visible spectrum (around
500 nm), as well as good photostability. In this work, the pH sensitivity of their spectro-
scopic properties was studied by UV-Vis and fluorescence spectroscopy, showing that the
protonation-deprotonation equilibrium of the dyes is associated with drastic changes in
photophysical properties that could be harnessed for practical applications. Computational
analysis revealed that all system exchange between neutral and monoprotonated forms in
the range of 3 < pH < 5, while excited-state calculations reproduced experimental spectra
and further confirmed that the observed spectral alterations are brought about by this
process. Analysis of perturbations in the chemical shifts of 1H and 13C NMR was used to
additionally support the protonation state change with varying pH but also to identify the
exact protonation site within the molecule.
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2. Materials and Methods
2.1. General Methods for Synthesis

All chemicals p.a. purity and reagent-grade solvents were purchased from commercial
suppliers Aldrich and Acros. Melting points were recorded on SMP11 Bibby and Büchi
535 apparatus and are uncorrected. Deuterated solvents for NMR analysis were purchased
from EuroIsotop. 1D and 2D NMR spectra were recorded on Bruker Avance AV300 and
AV600 spectrometers equipped with a 5 mm diameter BBO probe with z-gradient accessory.
All spectra were acquired with standard Bruker pulse sequences on samples in DMSO-d6
and 90% DMSO-d6/10% D2O at 25 ◦C, using TMS as internal standard. Chemical shifts are
reported in ppm (δ) relative to TMS or to a deuterated solvent when TMS was not visible.
Analytical thin-layer chromatography was performed with commercial Merck silica gel
60F-254 glass plates. By using multifunctional MW reactor Milestone start S and quartz
cuvettes, the uncatalyzed microwave-assisted amination was conducted under the pressure
of 40 bar and 180 ◦C. Agilent 1200 series LC/6410 QQQ instrument was used to record
mass spectra at room temperature.

2.2. General Method for Preparation of Compounds 4–6

Amino-substituted targeted pentacyclic derivatives 4–6 were prepared according to
the previously published experimental procedures from corresponding halogeno- and
dihalogeno-substituted precursors within the microwave-assisted uncatalyzed amination
by using an excess of isobutylamine in acetonitrile [23].

2.2.1. 3-N-i-butylaminobenzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazole-7-carbonitrile 4

Compound 4 was prepared using the method described above from 1 (100 mg,
0.32 mmol) and i-butylamine (1.20 mL, 24.44 mmol) after 13 h of irradiation to yield 632 mg
(27%) of orange powder; m.p. 247–252 ◦C. 1H NMR (DMSO-d6, 300 MHz): δ/ppm = 8.76
(s, 1H, Harom.), 8.58 (d, 1H, J = 5.76 Hz, Harom.), 8.55 (d, 1H, J = 6.81 Hz, Harom.), 7.98 (d, 1H,
J = 8.04 Hz, Harom.), 7.62 (t, 1H, J = 7.62 Hz, Harom.), 7.47 (t, 1H, J = 7.80 Hz, Harom.),
7.23 (d, 1H, J = 2.01 Hz, Harom.), 7.04 (dd, 1H, J1 = 2.16 Hz, J2 = 9.29 Hz, Harom.), 6.97 (t, 1H,
J = 5.67 Hz, NH), 3.02 (t, 2H, J = 6.23 Hz, CH2), 1.95 (m, 1H, CH), 0.99 (d, 6H, J = 6.60 Hz,
CH3); 13C NMR (DMSO-d6, 150 MHz): δ/ppm = 150.1, 146.9, 145.2, 144.2, 135.9, 133.1,
129.5, 125.7, 124.9, 120.8, 119.6, 118.1, 117.2, 116.5, 114.9, 113.7, 101.7, 93.5, 50.2, 27.2, 20.3
(2C); Found: C, 71.34; H, 4,89; N, 15.11. Calc. for C22H18N4S: C, 71.32; H, 4.90; N, 15.12%.

2.2.2. 6-N-i-butylaminobenzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazole-7-carbonitrile 5

Compound 5 was prepared using the method described method from 2 (100 mg,
0.30 mmol) and i-butylamine (0.35 mL, 3.50 mmol) after 3 h of irradiation to yield 74 mg
(67%) of yellow powder; m.p. 198–1202 ◦C. 1H NMR (DMSO-d6, 300 MHz): δ/ppm = 8.75
(d, 1H, J = 9.03 Hz, Harom.), 8.30 (dd, 2H, J1 = 2.01 Hz, J2 = 8.67 Hz, Harom.), 7.91 (t, 1H,
J = 6.18 Hz, NH), 7.78 (d, 1H, J = 7.74 Hz, Harom.), 7.74–7.67 (m, 2H, Harom.), 7.45 (t, 1H,
J = 7.35 Hz, Harom.), 7.31 (t, 1H, J = 7.26 Hz, Harom.), 3.64 (t, 2H, J = 6.72 Hz, CH2), 2.23–2.09
(m, 1H, CH), 1.00 (d, 6H, J = 6.60 Hz, CH3); 13C NMR (DMSO-d6, 75 MHz): δ/ppm = 151.1,
148.2, 144.7, 138.5, 133.0, 130.0, 128.8, 128.0, 125.1, 124.3, 124.1, 124.1, 119.5, 118.4, 117.5,
117.2, 114.0, 71.6, 50.7, 28.3, 19.4 (2C); Found: C, 71.30; H, 4,91; N, 15.15. Calc. for C22H18N4S:
C, 71.32; H, 4.90; N, 15.12%.

2.2.3. 3,6-di-(N-i-butylamino)benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazole-7-
carbonitrile 6

Compound 6 was prepared using the method described above from 3 (100 mg,
0.28 mmol) and i-butylamine (1.25 mL, 12.37 mmol) after 27 h of irradiation to yield 24 mg
(19%) of yellow powder; m.p. 144–148 ◦C. 1H NMR (DMSO-d6, 300 MHz): δ/ppm = 8.42
(d, 1H, J = 9.15 Hz, Harom.), 8.26 (d, 1H, J = 8.22 Hz, Harom.), 7.73 (d, 1H, J = 7.86 Hz, Harom.),
7.58 (t, 1H, J = 6.26 Hz, NH), 7.42 (t, 1H, J = 7.61 Hz, Harom.), 7.27 (t, 1H, J = 7.76 Hz, Harom.),
7.20 (d, 1H, J = 1.92 Hz, Harom.), 7.01 (dd, 1H, J1 = 1.97 Hz, J2 = 9.20 Hz, Harom.), 6.76 (t, 1H,
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J = 5.30 Hz, NH), 3.60 (t, 2H, J = 6.63 Hz, CH2), 3.00 (t, 2H, J = 6.14 Hz, CH2), 2.19–2.06
(m, 1H, CH), 2.00–1.86 (m, 1H, CH), 0.99 (d, J = 4.68 Hz, 6H, CH3), 0.97 (d, J = 4.62 Hz, 6H,
CH3); 13C NMR (DMSO-d6, 75 MHz): δ/ppm = 151.0, 150.2, 149.0, 145.3, 142.8, 134.8, 130.4,
125.3, 124.6, 119.6, 118.6, 118.4, 118.2, 114.3, 113.9, 111.7, 102.1, 70.3, 51.2, 50.6, 28.9, 27.8,
20.7 (2C), 19.9 (2C); Found: C, 70.74; H, 6.17; N, 15.85. Calc. for C26H27N5S: C, 70.72; H,
6.16; N, 15.86%.

2.3. Spectroscopic Characterization

A Varian Cary 50 spectrophotometer in double-beam mode was used to record the UV-
Vis absorption spectra in methanol of reagent grade in the wavelength range of 200–650 nm
at room temperature. The absorbance values were recorded with a 0.1 nm resolution using
transparent quartz cuvettes of 1 cm path length. Emission spectra were taken on a Varian
Cary Eclipse spectrophotometer, also at room temperature, with quartz cells of 1 cm path
length. Excitation spectra in the range of 200–500 nm revealed the excitation maxima
necessary to record the emission spectra between 400 and 600 nm. Fluorescence spectra
were corrected for the effects of time- and wavelength-dependent light-source fluctuations.
For the correction, standard of rhodamine 101, a diffuser provided with the instrument,
as well as the instrument software, was used.

2.4. pH Titrations

In order to study the changes in the spectroscopic characteristics of 4–6 obtained within
the usage of reagent-grade universal buffers with different pH values within pH = 1–13,
room-temperature UV-Vis and fluorescence emission spectra were recorded. Amounts
of 0.1 M pH buffer solutions were prepared using boric acid, citric acid, phosphoric acid
and sodium hydroxide, and pH was adjusted with hydrochloric acid. As terminal acidic
and basic points in the titration experiments, solutions of 0.1 mol dm−3 hydrochloric
acid (for pH = 1) and 0.1 mol dm−3 sodium hydroxide (for pH = 13) were used. The
employed concentrations of systems 4–6 were 1 × 10−5 mol dm−3 for the UV-Vis and
5 × 10−8 mol dm−3 (4), 5 × 10−7 mol dm−3 (5), 1 × 10−7 mol dm−3 (6) for the fluores-
cence measurements. The excitation wavelengths were determined from the absorption
spectra. pKa values for 4 and 6 were determined from ratiometric fluorescence titrations
by calculating the ratio of fluorescence intensities at the wavelengths of acidic and basic
emission maxima. Due to the relatively lower fluorescence intensities, the pKa value for
5 was determined from UV-Vis absorption spectra, using the absorbance maximum in
acidic conditions [24].

2.5. Analysis of Perturbations in NMR Chemical Shifts

A total of 5.8 mg of 5 was added to the solution mixture of 540 µL reagent-grade
DMSO-d6 and 60 µL reagent-grade D2O. The final pD of the sample was measured to be
7.1. Considering the correction of 0.4 units for the change in the glass-electrode potential
because of D2O, the actual pH was estimated to be 7.5. A total of 6.0 mg of 5 was added to
the solution mixture of 540 µL DMSO-d6 and 60 µL of 1 mol dm−3 DCl in D2O. The final
pD of the sample was measured to be 2.0. Employing the same 0.4-unit correction, the
actual pH was estimated to be 2.4. The complete 1H and 13C assignments were made on
the basis of one- and two-dimensional NMR spectra (1H, 13C, COSY, HSQCe and HMBC).
All spectra and their acquisition parameters can be seen in Supplementary Information.

2.6. Computational Details

For ground-state calculations, all molecular geometries were optimized using a very
efficient B3LYP/6–31+G(d) model, which was designed to provide highly accurate ther-
modynamic and kinetic parameters for various organic systems, in line with our earlier
work [9,21]. To account for the solvent effects, during geometry optimization, we included
the implicit SMD solvation model corresponding to pure solvents [25]. Thermal corrections
were extracted from the corresponding frequency calculations so that all value pertain to
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Gibbs free-energy differences at room temperature and normal pressure. The selection of
such a computational approach was motivated by its accuracy in evaluating the reaction
parameters and pKa values for a variety of analogous organic systems [26,27]. In this work,
pKa parameters were obtained in an absolute way using the proton’s gas phase free energy
of G◦(H+) = 6.28 kcal mol−1 and its experimental aqueous-solution solvation free energy
of ∆GSOLV(H+) = −265.9 kcal mol−1 [28], also employed by Truhlar and colleagues [25] in
parameterizing the utilized SMD model. The latter value incorporates a constant term of
−1.89 kcal mol−1 associated with the change in the free energy on moving from a gas-phase
pressure of 1 atm to a liquid-phase concentration of 1 M.

For excited-state calculations, geometries of the ground and lowest excited states were
optimized with DFT and time-dependent DFT approaches, respectively, with the B3LYP
functional and 6–31+G(d,p) basis set. Dispersion interactions were accounted for by the
empirical method D3 [29], while solvation effects were implicitly introduced through the
SMD model [25]. The emission energies of the excited-state optimized geometries were
calculated with solvent equilibration through external iterations. For the final excited-state
energies, a larger basis set, 6–311++G(2d,2p), was used. The calculated geometries and
UV-Vis spectra were visualized with the GaussView program [30]. All calculations were
performed with the Gaussian 16 package [31].

3. Results and Discussion
3.1. Chemistry

All studied pentacyclic benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles were pre-
pared by the uncatalyzed microwave-assisted amination from the corresponding halogeno/
dihalogeno-substituted precursors (Scheme 1) according to previously published synthetic
procedures [23]. The obtained compounds were purified using silica-gel column chro-
matography, while their structures were determined through inspection of H–H coupling
constants and chemical shifts derived from NMR spectra, as well as identification of the
molecular ions with mass spectrometry. A downfield shift of the aromatic protons could
be observed in 1H NMR spectra when compared to the spectra of halogeno-substituted
precursors. Additionally, the signals related to the amino substituents are visible in the
aliphatic region of both 1H and 13C spectra.
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Scheme 1. Synthesis of amino-substituted pentacyclic benzimidazole derivatives.

3.2. Spectroscopic Characterization

To investigate photophysical features of prepared systems, UV-Vis and fluorescence
emission spectra were recorded in methanol. The main focus was to study the influence of
amino substituent position at the pentacyclic skeleton on spectroscopic characteristics.

3.2.1. UV-Vis Absorption Spectra

UV-Vis spectra were recorded at room temperature in methanol in the range of
200–600 nm at the same concentration of 2 × 10−5 mol dm−3 for all derivatives (Figure 2).
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Figure 2. UV-Vis spectra of systems 4–6 recorded in methanol at concentration of 2× 10−5 mol dm−3.

The UV-Vis spectra of 4–6 show one main absorption band, which, for 5 and 6, is
centered at 330–470 nm and at 400–520 nm for 4. Based on computational results, these
bands were assigned to π–π* transitions (Figures S16, S18 and S20). On the same grounds,
the absorption bands in the region from 250 to 330 nm were assigned to the transitions
within the pentacyclic conjugated aromatic π-system. The most intensive absorbance with
a strong hyperchromic effect and a strong bathochromic shift was observed for 4, relative
to 5 and 6, while system 5 showed a hypsochromic shift of the absorption maxima, as well
as a hypochromic effect.

3.2.2. Fluorescence Emission Spectra

Emission spectra were measured between 400 and 700 nm at the concentrations of
5 × 10−8 mol dm−3 (4), 5 × 10−7 mol dm−3 (5) and 1 × 10−7 mol dm−3 (6) at room
temperature (Figure 3).
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Figure 3. Emission spectra of 4–6 in methanol (λexc.(4) = 479 nm; λexc.(5) = 319 nm; λexc.(6) = 425 nm).

Emission spectra of all systems reveal one main emission band. Diamino-substituted
6 showed a slight hypsochromic shift relative to monosubstituted 5, while system 4, bearing
isobutylamine substituent at position 3, exhibited significant bathochromic shift relative to
5 and 6. System 4 showed the greatest fluorescence intensity (note the lower concentration),
followed by 6, while 5 showed the lowest fluorescence intensity when compared to other
derivatives. Electronic absorption and fluorescence data for 4–6 are summarized in Table 1.
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Table 1. Electronic absorption and fluorescence emission data for systems 4–6.

System λmax (nm) ε × 103 (dm3 mol−1 cm−1) λemis (nm) Rel. Fluorescence Int.

4

479
459
371
297
267
234

36.6
32.3

11.45
30.05
32.7
37.4

536 512

5

401
367
319
285
253

8.8
14.5
7.2
48.1
32.1

505 347

6

425
412
370
350
230
287
252

22.2
21.9

16.35
12.85
35.2
31.15
30.0

498 885

3.3. Effects of pH on Spectral Properties

Aqueous-solution pKa values are useful parameters to determine precise protonation
states of a molecule and are typically used to characterize potential optical pH sensors.
Optical evaluation of the concentrations of the acidic (HA) and basic forms (A−) is based
on the Henderson—Hasselbach equation [32]:

pH = pKa + log

[
A−

]
[HA]

(1)

pH dependence of spectral properties was inspected by spectroscopic pH titrations. Through
the protonation of the basic nitrogen within the pentacyclic skeleton, pronounced spec-
tral changes were observed, thereby confirming the potential of the studied systems as
pH-sensing optical probes (Figure 4 for 4, Figure S1 for 5–6). When compared, the effect
of pH is more evident in the fluorescence spectra than in the absorption. The binding
of a proton alters π-conjugation and electronic features of the aromatic moieties, which
results in changed both emission intensity and color. In addition, protonation causes a
hypsochromic shift (blue shift) of absorption bands for all systems (Table 2).

Table 2. pH dependence of absorption and fluorescence emission for 4–6 in buffered solutions 1.

λmax (nm) ε × 103 (dm3 mol−1 cm−1) λemis (nm) Stokes Shift (nm)
pKa

Acidic Neutral Basic Acidic Neutral Basic Acidic Neutral Basic Acidic Neutral Basic

4 491
378

499
469
377

494
466

14.40
4.60

8.30
9.05
4.45

7.40
8.55
4.05

571 548 551 80 49 57 3.01

5 356
447
385
313

443
380
311

16.05
11.30
12.05
15.35

12.05
13.55
18.80

511 524 517 155 77 74 3.18

6 416
361

444
415
377

446
416
378

5.90
10.75

10.70
9.85
8.95

12.25
11.15
10.15

527 513 512 111 69 66 4.73

1 Acidic, neutral and basic conditions are 0.1 M HCl, MQ water and buffer at pH = 13, respectively.

Representative spectral responses to varied pH for 4 are shown in Figure 4. As seen, a
significant increase in the absorbance and fluorescence intensity occurs on moving from
neutral to acidic conditions, while in alkaline media, the changes are practically negligible.
Additionally, only one absorption band with a maximum at 491 nm is visible in the acidic
environment, where the emission spectra maxima showed a bathochromic shift of around
23 nm. System 6 exhibited similar behavior: a bathochromic shift and increased fluorescence



Chemosensors 2022, 10, 21 8 of 15

in acidic media. Interestingly, only 5 showed a hypochromic shift of emission intensity in
acidic conditions relative to neutral and basic media, as well as a hypsochromic shift of
emission maxima around 13 nm (Figure S1). Stokes shifts (Table 2) are moderate in neutral
and basic media for all systems (49–77 nm) but are exceptionally high in acidic media,
reaching a maximum of 155 nm for 5. This is significant for a potential application of these
systems as fluorescent pH sensors in acidic aqueous solutions.
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Figure 4. Absorption (a) and emission (b) spectra for 4 at different pH values in buffer (λexc = 467 nm).
(c) Ratiometric fluorescence pH titration curve from which the pKa value was obtained and
(d) its photos at pH = 1 and pH = 7 under UV lamp (365 nm).

The acid-base features are best described by an ‘apparent’ pKa value, as opposed to a
real thermodynamic pKa, since pH titrations were not performed under strictly controlled
temperature and ionic strength. The pKa values were determined as the inflection point of
a sigmoid Boltzmann curve fitted to the experimental pH titration data. As seen in Table 2,
the obtained apparent pKa values are 3.01, 3.18 and 4.73 for 4–6, respectively. A single pKa
was obtained for each system, indicating that they all exist in two different states in the
tested pH range (2–13), which is confirmed by the computational analysis (see later).

3.4. Effects of pH on NMR Spectra

Since spectroscopic pH titrations showed that 5 changes the protonation state at pH
around 3, our idea was to record and analyze NMR spectra in neutral and acidic media,
aiming to identify which nitrogen atom becomes protonated under acidic conditions.
Initially, we were thinking of comparing 15N chemical shifts at pH = 2 and pH = 7, but the
solubility of 5 in water proved to be insufficient. Instead, we performed the analysis in
solvent mixture of 90% DMSO-d6/10% D2O and monitored the effect of protonation on
1H and 13C chemical shifts (Table 3). Therefore, two samples of 5 were prepared, one at
pH = 7.5 and the other at pH = 2.4. All recorded NMR spectra are shown in Figures S2–S11.
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Table 3. Proton and carbon NMR chemical-shift comparison for 5 under neutral and acidic conditions,
all in 90% DMSO-d6/10% D2O at 25 ◦C. The largest differences in chemical shifts are marked as bold.
Indicated positions correspond to the presented atom numbering.
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Data in Table 3 and Figure 5a clearly indicate that the biggest difference between the
spectra recorded in neutral and acidic conditions is observed for proton chemical shifts H-10
and H-11. Both protons show a significant downfield shift in the protonated form, which
agrees with previously published work in similar systems [33]. This narrows down the
possible protonation site to the benzimidazole unit, the final choice being either N-8 or N-15.
Further analysis of carbon chemical shifts at different pH values (Table 3 and Figure 5b)
revealed the biggest difference for C-9 and C-14 resonance lines. As previously shown for
several benzimidazoles [33], the largest upfield shift for carbon signals is expected for the
resonance line of the carbon adjacent to the protonation site. In our case, the 12.46 ppm
upfield shift was found for C-14, which identifies imidazole N-8 as the most probable
protonation site, in line with computations presented later.

3.5. Computational Analysis
3.5.1. Acid-Base Properties

Computational analysis was performed to offer an insight into the acid-base features
of studied systems and to provide interpretation of the observed spectroscopic properties
in solution. Initially, we focused on calculating the matching pKa values (Table 4), which
reveal an excellent agreement with experiments. Specifically, for 4–6, relative differences
between computed and measured data are only 0.2, 0.3 and 0.7 pKa units, respectively,
which strongly confirms the validity of the employed computational approach.
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62− 28.5 N3− → N3–H

6− 18.4 N2− → N2–H

6 5.0 [4.73] N1→ N1–H+

6+ −1.0 N3→ N3–H+

62+ −13.9 N2→ N2–H+

Considered systems are composed of five cyclic units, encompassing the imidazole and
thiophene rings as likely sites for protonation. Still, it turns out that the most basic position
in 4–6 is imidazole imino nitrogen, which is, not surprisingly, given a typically higher
basicity of nitrogen heterocycles than their sulfur analogues in the aqueous solution [34].
In addition, imidazole (pKa = 6.95) and benzimidazole (pKa = 5.56) are more basic than
aniline (pKa = 4.62) and N-methylaniline (pKa = 4.85) [34], which further confirms imidazole
N-atom as the most susceptible towards protons.

Our analysis identifies that systems 4–6 are unionized under neutral conditions since
imidazole protonation occurs under acidic conditions with pH values equal to or lower
than 5. Comparing the systems with a single amino substituent, the basicity of 5 surpasses
that of 4, in agreement with experiments, because of a higher positive electron-donating
influence of the N-alkyl unit in the former and due to the closer proximity to the protonation
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site in 5 relative to 4. Disubstituted 6 combines the favorable effect of both N-alkyl groups,
and the resulting basicity is higher, at pKa = 5.0, in line with experiments.

The second protonation in all systems occurs at pH values below zero, which would
require extremely acidic conditions for it to be allowed. This suggests that dicationic
systems are not predominant protonation forms under conditions employed in this work,
although a notable portion of diprotonated 4-H++ and 6-H++ is possible at the lowest
pH values. Specifically, considering pKa = −1.0 for the second protonation of 6 indicates
that at pH = 1, there is around 4% of 6-H++ in solution, which becomes important for
rationalization of its excitation spectra (see latter). In addition, one observes a very low
amine basicity in 5 of around 13 pKa units lower than in 4 and 6 because of the presence of
a vicinal –CN group, which is known to be among the most efficient acidifiers and basicity-
reducing groups [35,36]. This is also the reason why a more distant amine substituent in
6 is more basic than that of its analogue placed closer to the nitrile.

Where potential deprotonation reactions are concerned, the highest acidities reside
on the secondary N–H amino groups, yet the calculated pKa values are located beyond
employed experimental conditions, thereby disallowing the existence of monoanionic
species in our case. In terms of basicities, 5 is more acidic than 4 since its deprotonating
amine is positioned closer to the favorable effect of the electron-withdrawing –CN group,
while the same argument can be used to interpret the acidity trend among amines in
disubstituted 6.

In concluding this section, we can emphasize that at neutral pH, 4–6 are all present
as unionized systems, while under employed experimental conditions (pH = 1–13) they
interchange with monocationic derivatives protonated at the imidazole N-atom at pH
values between 3 and 5. Our analysis also reveals that investigated systems are less basic
than both imidazole and benzimidazole. Considering the relative difference between the
latter two reference systems, a reduction in the basicity of 4–6 comes as a result of a further
annulation that depletes the electron density from N-atoms but also because of the nearby
presence of an efficient basicity-reducing, electron-withdrawing –CN group. The latter
overcomes a favorable influence of the attached secondary amines, even when two such
moieties are introduced in 6. To test these hypotheses, we repeated the analysis on three
systems 7–9 (Figure 6), with the additional idea to bring the corresponding pKa values
closer to 7, which would be beneficial for their practical application. When the most basic
6 is depleted from the –CN group, as in 7, the basicity of the system, expectedly, increases
to pKa = 9.2, thus confirming the unfavorable effect of the latter moiety. Along these lines,
if 7 is enriched with another amine moiety, this time placed on the benzimidazole part of
the system, as in 8, the resulting basicity is additionally increased to pKa = 11.5, which
would promote both 7 and 8 as efficient pH sensors for alkaline media. Lastly, if this
strategy is combined, as in 9, which maintains the nitrile group as an important building
requirement during the employed synthetic approach, while having additional amine
relative to 6, the resulting pKa value assumes precisely pKa = 7.0. This suggests that system
9 bears acid/base features with significant practical usefulness, which, provided it shows
appropriate analytic responses, would make it an applicable pH sensor for acidic media
below neutrality. Because of that, its synthesis and characterization remain challenges for
future studies.
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3.5.2. Absorption and Emission Spectra

Variations in pH conditions are remarkably reflected in the UV-Vis absorption and
emission spectra of 4–6. By comparing the calculated spectra of the chemical species
potentially present at different pH values with experiments, it is possible to recognize the
protonation forms responsible for the detected spectral changes (Figures S12–S15).

The absorption spectra generated from the calculated vertical excitation states of
neutral 4–6 (Figure 7) are in very good agreement with experimental measurements
(Figure 2). This confirmed the basic reliability of the calculation methods and the the-
oretical characterization of the spectra. Representation of the lowest excited states for all
the involved chemical species (neutral and protonated) in terms of the natural transition
orbitals (NTO) [37] shows that these excitations can be clearly classified as the π–π* transi-
tions (Figures S16–S22). Mostly, they are well described by only one pair of NTOs, with the
unoccupied one being very similar to the canonical LUMO orbital.
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The changes in the absorption spectra due to pH variation are explained by the
equilibrium dynamics between neutral 4–6 and their protonated derivatives. On the other
hand, the calculations for deprotonated anionic species (at the amino N–H group) suggest
that they do not exist at the experimental range of pH values, which is consistent with the
calculated pKa data (Table 4). Indeed, the spectral shapes of 4–6 within pH = 7–14 are rather
conserved, showing only minor changes, which can be assigned to different compositions
of the buffer solutions. Remarkable shifts in the absorption bands occur in the acidic region
of pH = 1–7 that are explained by assuming protonation of one or more nitrogen atoms.
Indeed, excited state calculations for all potential protonated species and their comparison
with experimental spectra, confirm that in all three systems the imidazole imino nitrogen
accepts the proton most easily. In 4 and 5, only this atom is substantially protonated at
pH = 1–7, but in 6, the amino-nitrogen at position 6 also becomes protonated at very low
pH values. Specifically, dicationic 6 is required to match experimental data at such acidic
conditions (Figure S15), being in line with the calculated protonation constants, which
confirms the fact that the protonation of the amino group in 6 is at least partially feasible
under employed experimental conditions.

The fluorescence spectra are commonly explained by assuming that emission occurs
from the lowest excited state after geometrical relaxation (Kasha’s rule) [38]. The calculated
emission wavelengths for 4 and 4-H+ are almost the same (539 nm and 538 nm), which
is in reasonable agreement with experimental values of 546 nm and 569 nm recorded in
the neutral medium and at pH = 1, respectively. The calculated emission wavelengths for
6 and 6-H++ are 541 nm and 565 nm, which reproduce the experimental trend of 514 nm
and 527 nm for the neutral medium and at pH = 1, respectively, and do not deviate too
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much in absolute values. Only for 5 and 5-H+, the calculated emission wavelengths of
678 nm and 640 nm, respectively, correctly reproduce the trend in experimental values
yet somewhat disagree in quantitative terms with the emissions recorded at 518 nm and
508 nm in the neutral medium and at pH = 1, respectively. As the excitation wavelength is
relatively high (310 nm), the emission may, in principle, occur not from the lowest but from
a higher excitation state, although this is considered to rarely happen.

Geometrical relaxation in the first excited state does not bring significant changes in
the structural parameters, likely because the conjugated π-skeleton is remarkably rigid. Al-
though protonation induces visible changes only with amino-nitrogens as proton acceptors,
these are still restricted to their local environment (Figures S23–S25).

Overall, the calculated absorption and emission spectra fully support the pH-dependent
chemical speciation established by the calculated thermodynamic acid-base constants and
the presented NMR evidence.

4. Conclusions

This work employs UV-Vis and fluorescence spectroscopies to describe the optical
properties and pH-sensing ability of the prepared pentacyclic amino-substituted benzo[b]
thieno[2,3-b]pyrido[1,2-a]benzimidazoles and reports their aqueous pKa values through
pH titrations in buffered water solutions.

The UV-Vis absorption spectra reveal one absorption band at 330–470 nm for 5 and
6, which is shifted to 400–520 nm for 4, and one emission band for all systems. The most
intensive absorbance with a strong hyperchromic effect and a strong bathochromic shift
was seen for 4. Aqueous pKa values appear suitable for monitoring acidic pH in solution,
as differences in the electronic transitions occur at pH values between 3 and 5, where
all systems change from unionized to monoprotonated forms. This is supported by DFT
calculations, which achieved excellent agreement in the calculated pKa values, together
with the measured 1H and 13C NMR chemical-shift differences at pH = 2.4 vs. pH = 7.5,
identified the imidazole imino N-atom as the most favorable protonation site. Excited-
state TD-DFT calculations also achieved excellent agreement with experimentally recorded
spectra and revealed that observed excitations can be classified as the π–π* transitions in
all cases. Together with the calculated pKa constants, these also ruled out the existence of
deprotonated anionic species under employed conditions and suggested a partial existence
of diprotonated 6-H++ at very low pH values.

As an extension of the current work, computational analysis predicted that system 9,
made by introducing an additional isobutylamine group on the benzimidazole unit in 6,
would have pKa = 7.0, making it very useful for detecting changes on going from neutral to
immediately acidic media in a wide range of optical sensing applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors10010021/s1, Figure S1: Emission spectra of 5 and 6 at different pH values,
Figures S2–S11: 1H and 13C NMR spectra for 5 at different pH values, Figures S12–S15: Comparison
of experimental and calculated absorption spectra, Figures S16–S25: Changes in natural transition
orbitals and geometries during calculated excitations.
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draft preparation, D.B., A.Č., M.H. and R.V.; writing—review and editing, N.P., D.B., P.K., A.Č., M.H.
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