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Abstract

We present a collection of publicly available intrinsic aqueous solubility data

of 829 drug-like compounds. Four different machine learning algorithms

(random forests [RF], LightGBM, partial least squares, and least absolute

shrinkage and selection operator [LASSO]) coupled with multistage permuta-

tion importance for feature selection and Bayesian hyperparameter optimiza-

tion were used for the prediction of solubility based on chemical structural

information. Our results show that LASSO yielded the best predictive ability

on an external test set with a root mean square error (RMSE) (test) of 0.70 log

points, an R2(test) of 0.80, and 105 features. Taking into account the number of

descriptors as well, an RF model achieves the best balance between complexity

and predictive ability with an RMSE(test) of 0.72 log points, an R2(test) of 0.78,

and with only 17 features. On a more aggressive test set (principal component

analysis [PCA]-based split), better generalization was observed for the RF

model. We propose a ranking score for choosing the best model, as test set

performance is only one of the factors in creating an applicable model. The

ranking score is a weighted combination of generalization, number of features,

and test performance. Out of the two best learners, a consensus model was

built exhibiting the best predictive ability and generalization with RMSE(test)

of 0.67 log points and a R2(test) of 0.81.
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1 | INTRODUCTION

Solubility is a critical topic in pharmaceutical development as it can be a limiting factor to drug absorption.1 High
attrition rate in drug development has been attributed to poor water solubility.2 Predictive models such as quantitative
structure–property relationships (QSPRs) can be useful tools to determine the solubility of a bioactive compound
starting already in early development stages. Llinas and Avdeef3 initiated the second solubility challenge in 2019 in
order to engage the scientific community to address this challenging problem.

The first solubility challenge published by the same authors4 demonstrated clear room for improvement in
predicting solubility from (molecular) structural information. Palmer and Mitchell5 concluded that there is still room
for improvement with respect to predictive capabilities of QSPR rather than the lacking quality of data. Nevertheless,
there is still a lack of public data available to develop quality models or at least cover a larger chemical space. In fact, it
is the aforementioned solubility challenges that made quality data available. At the same time, pharmaceutical compa-
nies still own a large amount of unpublished data. Using such an unpublished dataset with experimental values of
38,841 compounds, Montanari et al.6 tested multitask neural networks for solubility prediction. The authors built a
model that yielded a cross-validated R2 value of 0.59 (root mean square error [RMSE] not published). Such a data size
for solubility is rare among publicly available datasets. Even though one cannot be sure about the quality of proprietary
data, it might confirm Palmer's conclusion about limitations in modeling capabilities.

Many other research groups also dealt with the solubility prediction challenge,5–30 attempting to predict both logSw
(aqueous solubility; measured at a certain pH) and logS0 (intrinsic solubility; solubility of a compound in its free acid or
base form).1 Key studies were summarized in Table S1. A comparison with previous studies is difficult because the
authors often analyze the model quality in different manners (train, test, cross-validation, out-of-fold) and involved a
multitude of model metrics.31 Specifically, for the intrinsic solubility, literature values of the predictive performance of
models on external test sets expressed by RMSE appear to vary between 0.7 and 1.05 log points13,15,17,18,26,28,32 using a
plethora of machine learning algorithms and datasets.

The most recent study from Avdeef17 with the largest curated database known (6355 logS0 entries) applied the
random forests (RF) algorithm yielded RMSE(test) in a range of 0.75–1.05 and with an R2 values between 0.66 and 0.83
across several models. These results outperform studies with the aforementioned proprietary databases, which signals
the importance of careful data curation and chemical space consideration that Avdeef advocated. Within the aforemen-
tioned challenges, additional high-quality solubility data were published. With the availability of efficient and reliable
machine learning methods as well as the ever increasing in computing power in HPC environments, more precise and
faster learning models are available nowadays. Our goal in this work was to conduct a large-scale machine learning
study to investigate how one can achieve robust predictions while retaining minimum model complexity.

For this purpose, we curated a novel intrinsic solubility dataset from literature sources. For the machine learning
tasks, we used boosting and bagging ensemblers as well as partial least squares (PLS) and least absolute shrinkage and
selection operator [LASSO] methods. The last two being established machine learning modes that are often neglected
over seemingly more powerful ensemble regressors.33 Consensus modeling was employed to build a final QSPR model.
Finally, we discussed the use of permutation importance for a multistage feature selection, the relationship of metrics
within data splits, and the relevancy of commonly used feature preprocessing/preselection and data splitting paradigms.
Furthermore, we present a more challenging test set to test the models' extrapolation capabilities.

2 | MATERIALS AND METHODS

2.1 | Data collection and processing

We have collected aqueous solubility data from the following literature sources.4,12,15,16,18,22,34–52 The decision criteria
on which literature to include for our study is initially based on the recommendations in the revisited solubility
challenge.3 Subsequently, we looked for additional literature sources where authors have included pH, which were
measured between 22.5�C and 25�C temperature and used inert gases (argon, nitrogen) in their measurements. Most of
the above-mentioned solubility data sources refer to the intrinsic aqueous solubility (logS0), while others refer to the
aqueous solubility (logSw). For each compound, SMILES strings were retrieved from the name either through PubChem
(https://pubchem.ncbi.nlm.nih.gov/), JChem (Marvin/JChem v20.9.0, ChemAxon, Budapest, Hungary), or via their
CAS numbers (https://cactus.nci.nih.gov/translate/). SMILES strings were curated53 and standardized to isomeric
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SMILES using the ChemAxon Standardizer (v18.28.0, ChemAxon, Budapest, Hungary) and the RDKit library.54

We filtered compounds with the following properties: logP55 in [�3.6, 7.5], molecular weight larger than 88 g/mol,
and structures with more than six heavy atoms. These ranges were determined according to the data published in
the solubility challenges.3 The obtained logSw values in the extracted data were converted to logS0 based on their
formal charges as suggested by Abraham and Le46 and Avdeef.56 Because we had multiple values for intrinsic solubility
per molecule, we removed the duplicated values and averaged the rest. In total, out of the 829 compounds in the
final data set, 446 had originally logS0 values, whereas for the other 383 compounds, we have calculated the values
from logSw.

The data preparation pipeline is depicted in Figure 1. We calculated and considered in modeling two types of
predictive features: fingerprints (FPs)57 and molecular descriptors (DPs) (calculated using DRAGON 6.0—Talete,
Milano, IT). We chose FPs with a comparatively short radius of 3 bonds and large vector length of 5120 bits, to avoid
bit collision as suggested by Landrum.58 From the available �5000 DRAGON molecular DPs, only a few groups of DPs
were selected based on chemical intuition, specifically, constitutional, ring, topological DPs, functional group counts,
and molecular properties. All DPs with missing values were removed. Such a preselection procedure yielded a total of
317 molecular DPs. A combination of FPs and DPs (FPDS) was also evaluated (5444 features in total).

2.2 | Evaluated machine learning methods

For development of intrinsic solubility models of chemical based on their structure, four regression algorithms different
in their paradigms were applied: (i) LASSO,59 (ii) PLS,60 (iii) RF,61 and (iv) LightGBM.62 All four are briefly summarized
in the subsequent subsections.

2.2.1 | Least absolute shrinkage and selection operator

LASSO regression is a multivariate chemometric method, which involves the L1-penalty for regularization.59 Given the
multiple linear regression formulation with standardized features/predictors X (N, p) and response variable (N, 1) y,
LASSO aims to solve the L1-penalized regression problem of finding a set of p model coefficients β = {βj} to minimize:

FIGURE 1 Data collection and preparation pipeline for the novel intrinsic solubility set
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where N is the total number of cases (compounds) in the training set and λ is the penalty term. In a linear regression
model having constant term, the number of predictors (features, DPs) involved is equal to p � 1. Because of the form of
the L1-penalty, LASSO inherently performs feature selection and shrinkage at the same time returning an extremely
sparse coefficient matrix.

2.2.2 | Partial least squares

PLS regression is a chemometric method that aims to reduce the dimension of both the predictors (X-space) and the
dependent variables (Y-space) by compressing them into latent variables (LVs). LVs are constructed in the direction of
maximum correlation between X- and Y-spaces, where one wants to find the multidimensional direction in the X-space
(predictive variables [N, p]) that explains the maximum multidimensional variance direction in the y (target variable
[N, 1]). Readers are referred to Bro60 for a more detailed overview.

2.2.3 | Random forests

The RF algorithm, conceptualized by Breiman,63 creates a large collection of decorrelated decision trees by
using bootstrapping aggregation. The final prediction results are thereby averaged from a multitude of
decision tree regressors; this reduces the bias in the models, whereas variance can be controlled by carefully
optimizing weak learner hyperparameters, such as tree depth. Besides their good performance, RF and
other decision tree-based learners accept many feature representations and are associated with reduced
preprocessing efforts, making them convenient for use in many applications, including manufacturing. Because
trees in RF get trained in parallel, a significant advantage of RF is the speed when compared with boosting
ensemblers.

2.2.4 | LightGBM

Light Gradient Boosting Machine (LGBM)62 is a framework using the decision tree as a base algorithm. LGBM uses the
first-order derivative information when optimizing the loss function. The leaf growth strategy with depth limitation and
multithread optimization in LGBM contributes to solve the excessive memory consumption with respect to other
boosting-ensemble machine learning methods. LGBM was selected to reduce the computational cost of calculations
compared with other boosting ensemblers.

2.3 | Feature selection

In this work, we applied a multistage post hoc feature selection. The strategy is based on permutation
importance64 for eliminating features.65 Using each of the trained models, the method permutes the values of
individual features (one-by-one) to assess the relevance of the features with respect to the response vector (logS0).
The relative decrease in RMSE in a pretrained model caused by a permuted feature is considered a “weight.” The
permutation procedure was repeated 10 times for the feature matrix and averaged to a permutation importance
vector. A cut-off value of 0.001 for the average weight was chosen. The feature elimination procedure
was conducted in multiple stages. Models were trained, and then a set of features was eliminated either by
having an average weight above the cut-off or the number of features used in the next stage were reduced to
one third of the number of features, whichever was smaller. The models from each stage were included in the
performance evaluation.
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2.4 | Hyperparameter optimization

For hyperparameter optimization in machine learning, random and grid searches over hyperparameter spaces are used
very often.66 Because hyperparameter space can be large either by means of number of parameters or grid-points
included, the procedure can suffer from large computational cost even with parallel computing.67 Local optima in the
parameter space are difficult to avoid if the grid is not dense enough with properly set parameter ranges. In this work,
we applied Bayesian optimization (BO)68 for hyperparameter optimization with RMSE (Validation) as a loss function.
BO aims to construct a posterior distribution of functions (Gaussian process) that best describes the loss function. As
the number of observations grows, the posterior distribution becomes narrower, and the algorithm becomes more
certain of which regions in the parameter space are worth exploring and which are not. In the process of parameter
optimization, the model is continuously trained, and the regression results obtained by each parameter combination
are evaluated. Finally, the optimal parameter combination is obtained when a stopping criterion is reached (predefined
number of iterations).

2.5 | Model training

To train the models, the datasets (logS0 and the predictive sets) were split following two strategies: randomly and by
means of diversity picking (a method of picking diverse molecules into subsets by means of their FP similarity).69

For both splits, the external test set was set to 20% of the whole data set a priori (Table S2; previously published at
Lovri�c et al.70), and the remaining 80% were further split by one of the two strategies into training (80%) and
validation (20%) sets. We trained the models with (i) three options for the predictive features, namely, FP, DS, and
a joint data set of FPDS; (ii) two splitting options: random or by diversity picking; (iii) four ML algorithms;
(iv) with and without multistage feature selection; and (v) with and without feature preprocessing. The code for the
preprocessing method (available at https://github.com/mariolovric/solubility) comprises the following sequential
steps: removing features with any missing values, removal of correlated features (Pearson correlation > 0.85),
separation of categorical features (from binary and continuous) and their conversion to binary features (based on
binning to four “dummy” bins), and removal of low variance binary features (lower than 1% variance). The parame-
ters of the ML models were tuned using BO for each of the named combinations. The available parameter space
(upper and lower bounds) per algorithm can be found in the code repository. The models were trained on the train-
ing set and validated on the validation set during BO. RMSE computed out of the validation set was used as a loss
function for BO. The optimization experiment ran for �48 h on a virtual machine with 24� Intel(R) Xeon(R) Gold
6148 CPU @ 2.40GHz with 30 GB of RAM. We also followed per iteration results on the external test set, to later
on report the estimated generalization performance. Apart from LASSO, which has an internal regularization of the
feature space, the models were trained iteratively with the permutation importance feature selection strategy
multiple times, with each time transferring the feature list to the next model sequentially. Such modeling pipeline is
depicted in Figure 2.

Finally, the best models were chosen based on a ranking schema, which we believe it reflects an objective model
evaluation. In Equation 2, the weights were chosen in such a manner that performance on the test is given the largest
importance, followed by complexity expressed through the number of features and two terms representing
generalization all combined in the average rank RkM

.. All ranks are sorted ascending.

RkM ¼ 0:5RRMSE testð Þ þ0:3Rfeaturesþ0:1RΔvalþ0:1RΔtrain, ð2Þ

where Rfeatures is the rank based on the total number of features involved in the model and RRMSE(test) is the rank of
RMSE of the respective test set, whereas Δval and Δtrain are defined with Equations 3 and 4, respectively. Both terms
account for the generalizability of the models.

Δval ¼ RMSE testð Þ�RMSE valð Þj j, ð3Þ

Δtrain ¼ RMSE trainð Þ�RMSE valð Þj j: ð4Þ
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3 | RESULTS AND DISCUSSION

In this work, we have compared four machine learning methods for prediction of aqueous solubility. Namely, PLS,
LASSO, RFs, and LGBMs. PLS is an LV method in which predictors X are correlated to the dependent variable y by
compressing both into LVs. The LVs are extracted by maximizing the variance in both X and y, as well as correlation
between them. PLS is suitable for very intercorrelated data such as spectral information, has generally good generaliza-
tion ability, and is able to deal with datasets with larger number of features than observations. LASSO is a method in
which an L1-penalty is introduced for regularization with inherent feature selection, which makes it robust and also
able to handle high-dimensional data. However, LASSO and PLS can be quite sensitive to outliers. RFs belong to a
family of ensemble (nonlinear) methods where a series of weak learners are trained and aggregated with the aim of
building strongly predictive models. The fourth algorithm is LGBM, a gradient boosting algorithm in which
first-derivative information is used while computing the loss function for generation of the ensemble model. It possesses
similar regression features as RFs. Finally, consensus models can be built out of the best regressors to further improve
predictive ability, generalization, and robustness.

3.1 | Model optimization results

Detailed results of all trained models are summarized in Table S3. Based on the RMSE(test) values, LASSO is the best
performing model (RMSE(test) = 0.69) with 105 features (FPDS) involved. RMSE(train) and RMSE(val) for LASSO
were 0.66 and 0.96, respectively.

FIGURE 2 The model pipeline for the optimization experiment
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This model, ranked by RMSE(test), was followed by five (second to sixth position in Table S3) RF models with some
of them comprising as few as 16 features. The first PLS model appeared on the seventh place comprising 33 original
features (10 latent features). The best LGBM model by means of RMSE(test) was ranked 15th comprising 47 features.
Figure 3 depicts the contributions of the choice of predictors, algorithm, and the splitting method.

It can be observed that the FP-based solubility models have generally underperformed when compared with the
models built out of molecular DPs or their combination. The models based on FP also exhibit a large spread in regard
to RMSE(test). This outcome could have been expected because none of the four algorithms (PLS, LASSO, LGBM, and
RF) creates metavariables (hidden layer abstract molecular representations) out of the FPs like deep neural networks
do in the hidden layers that contribute to their predictive ability.71 Furthermore, with the addition of FPDS, only
marginal improvements can be observed. LGBM shows a notably larger spread compared with other algorithms
(Figure 4), which can be explained by evident overfitting on the train set and lower predictive ability on the test set.

FIGURE 3 Distribution of testing set errors for the four evaluated machine learning algorithms in cases when two algorithms are used

for training/test set partition. Differences between random train/test/validation split and diversity picking are depicted with green ascending

and red descending line patterns, respectively. Mean values of the testing errors are depicted with green and red circles, whereas the outliers

are depicted with green and red upwards-facing triangles, for random train/test/validation split and diversity picking, respectively

FIGURE 4 Generalization ability and robustness for all the models trained in this work. The RMSE(test) /RMSE(train) ratio depicted in

this figure was grouped based on the method used (RF, PLS, LASSO, LGBM) for model development and three sets of predictive variables.

Differences between random train/test/validation split and diversity picking are depicted with green ascending, and red descending line

patterns, respectively. Mean values of the testing errors are depicted with green and red circles, whereas the outliers are depicted with green

and red upwards-facing triangles, for random train/test/validation split and diversity picking, respectively
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Such performance decrease is not caused by the optimizer being stuck in local optima, as evident from Table S4 where
optimal hyperparameters of LGBM vary considerably in each run.

Even though the LGBM is a powerful algorithm, it has a large variety of hyperparameters, and finding the
right set of those can appear troublesome. The spread of RF tends to be smaller than LGBM, which can be
explained by the bagging + decorrelation paradigms, which can help in avoiding any local optima during BO. In
our previous work, we observed boosting ensemble methods also underperforming when compared with the bag-
ging ensemblers.33,72 Overall, the spreads per algorithm in Figure 4 are larger for the FP and FPDS predictive sets.
This might be explained by randomness that FPs can introduce by having a train or test bit with all zero values
impeding convergence.

Herein, we also evaluate the contribution of the data-splitting strategies. RMSE(val) values for models with datasets
split via diversity picking can be as low as 0.53 (Table S3). Nevertheless, the highest ratios of RMSE(test/val) (above 1.2)
are all originating from diversity-picked data splits. Diversity-picking leads to similar train and validation set that points
to an overestimation of the model quality on any external test set. Therefore, the validation or other cross-validation
metrics for models with diversity-picking-based splitting can point to lower generalization/robustness. Based on Δtrain

(Equation 4), LASSO is overall the best performer. PLS performs well in terms of both generalization metrics. RF
models exhibited overfit but in a lesser extent than LGBM. Table 1 summarizes the 10 best models according to the
RkM metric only for random splits, because we have shown that diversity-picking can deviate the impression in general-
ization. Even though the LASSO model has the best score by RMSE(test), it has a high number of features, which is
deteriorating its RkM score. Because the LASSO algorithm is penalizing the coefficients, it can perform well with a high
number of features if it sets the coefficients close to zero, which was the case with this model. The coefficients are in a
range �0.38 to 0.29 with �42% coefficients being in the range from �0.01 to 0.01. A coefficient plot is given in
Figure S1.

The RkM metric was chosen in such a manner as to create a simple model by means of the number of features and a
good result on the (external) test set but still taking into account generalization/robustness (see Equation 1).

By means of RkM, a RF model using 17 features was ranked as best. The predictive ability of the two best models
based on RMSE(test) and RkM is depicted in Figure 5A,B, respectively. Out of the 10 best models by RkM, four are RF
and four are LGBM, the rest being LASSO. Interestingly, there are two LGBM models using two and three features for
training. Even though not ranked as the best, they exhibited reasonable generalization. Eight out of these 10 models are
not using preprocessing (part of the grid search), which shows that ensemble methods work well with the original
data as preprocessing can remove valuable information. None of the best models was based on FPs. The models in
Table 1 were based either on DPs or the combined with FPs. The R2 values for the two best models are 0.80 (LASSO)
and 0.78 (RF).

It is worth pointing that out of the two best models (LASSO and RFs), a consensus model was built outperforming
all the evaluated models with RMSE(test) of 0.67 log points (R2 of 0.81).

TABLE 1 Results across models sorted by the scoring method RkM

Algorithm Data set Preprocessed RMSE(test) # features RMSE(train) RMSE(val) RkM score

*RF FPDS FALSE 0.72 17 0.47 0.94 21.6

LGBM FPDS FALSE 0.84 2 0.82 1.01 25.1

RF FPDS TRUE 0.74 8 0.57 0.98 25.2

LGBM DS FALSE 0.74 15 0.46 0.96 25.8

LASSO DS FALSE 0.73 92 0.70 0.97 26.2

RF FPDS FALSE 0.72 51 0.47 0.94 26.5

*LASSO FPDS FALSE 0.69 105 0.66 0.96 26.6

RF DS FALSE 0.74 19 0.53 0.96 26.7

LGBM DS FALSE 0.73 47 0.30 0.92 27.1

LGBM DS TRUE 0.84 3 0.82 1.04 28.0

Note: A lower RkM means better performance. An asterisk assigns the two chosen winners, one based on scoring the other on RMSE(test).
Abbreviations: DS, descriptors; FPDS, fingerprints and descriptors; LASSO, least absolute shrinkage and selection operator; LGBM, Light Gradient Boosting

Machine; RF, random forests; RMSE, root mean square error.

8 of 16 LOVRI�C ET AL.



3.2 | Comparison of model scores

The aim of modeling is to develop a model by which we will be able to predict a modeled activity of an external
(unseen) set of molecules. For this reason, it is of utmost importance to estimate generalization based on known
performance of model obtained in training and validation procedures. We have therefore compared here the
RMSE values for 158 models (separately for splitting methods), that is, the scores on train, validation, and test set.
Additionally, we have calculated the average of RMSE(train) and RMSE(val) as RMSE(train, val). The results are
shown in Table 2.

The comparison of results for randomly split data shows a correlation of 0.85 for train test and 0.87 for val
test. The same comparison of models where train and val were diversity picked shows a somehow lower
correlation of 0.77 for RMSE(train) � RMSE(val) with RMSE(val) � RMSE(test) being the same at 0.87. The reader
is reminded here that the test set is a true external set that was split a priori. Only train � val splits were tested
by the splitting strategies. Generally, a better prediction of intrinsic solubility for external set of compounds can
be achieved if the model is validated (during model optimization and development) by means of cross-validation
or a validation set in which the training set was split randomly into validation subsets. We propose that the
diversity picking, another splitting algorithm applied in this study, can lead to overly optimistic results. A
correlation of 0.87 in RMSE(train) � RMSE(val) within the diversity picking split supports this further, compared
with the correlation of RMSE(train) � RMSE(val) in random split, which is at 0.71 (a lower correlation) meaning
the distribution of the train and validation sets differs slightly. It is shown here that a drift in the distributions of
train and validation sets can lead to a better generalization (on the true test set). Even more interesting is that in
random splitting, the average of the train and validation by means of RMSE(train, val) delivers a good overview
of the generalization of the model because they show a correlation as high as 0.92 to RMSE(test). Therefore, we
suggest the use of RMSE(train, val) after they were randomly split for choosing models with good generalization
on external unseen data.

FIGURE 5 Predictive ability of the two best intrinsic solubility QSPR models from Table 1. (A) LASSO model, (B) RF model, and

(C) the consensus model

TABLE 2 Pearson correlation coefficients of RMSE scores across 158 trained models (78 randomly and 80 diversity picked)

Data splitting RMSE(test) RMSE(train) RMSE(val) RMSE(train, val)

Random RMSE(test) 1 0.85 0.87 0.92

RMSE(train) 0.85 1 0.71 0.96

RMSE(val) 0.87 0.71 1 0.88

RMSE(train, val) 0.92 0.96 0.88 1

Diversity
picking

RMSE(test) 1 0.77 0.87 0.82

RMSE(train) 0.77 1 0.87 0.99

RMSE(val) 0.87 0.87 1 0.94

RMSE(train, val) 0.82 0.99 0.94 1

Note: The bolded number indicates the best performance.
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3.3 | Feature importance

Careful analysis of the involved features for all the models in this study showed some interesting patterns (Table S3).
First, the PLS models in general did not reduce to as few features during the feature selection as RF or LGBM. Second,
LASSO mostly converged to subsets of 50–100 features. The multistage feature selection was not used in the case of
LASSO as feature selection is inherent to this technique. Third, RF models have overall exhibited a reasonable model
quality with a smaller number of features. This points to a fact that RF seems more efficient in removing features due
to its bagging and decorrelation paradigms. The best model by means of RkM was refitted with the resulting features
and the resulting parameters. The retrained model was subjected to permutation importance, the results of which are
depicted in Figure 6.

Table 3 summarizes the descriptions of DPs involved in the best final RF model (Table 1), selected using the permu-
tation importance strategy.

Detailed descriptions of all the DPs can be found in Todeschini and Consonni.73 The analysis of the permutation
importance of the DPs in Figure 6 shows that the best RF model is most sensitive to the order of values of the SCBO

FIGURE 6 Mean permutation importance for 1000 random

resampling runs of the best model with 17 features (RF model from

Table 1)

TABLE 3 Full names of descriptors

selected into the final/best RF model

from Table 1

Descriptor Description

SCBO Sum of conventional bond orders (H-depleted)

D/Dtr 06 Distance/detour ring index of order 6

AMR Ghose–Crippen molar refractivity

MLOGP Moriguchi octanol-water partition coefficient

TPSA (tot) Topological polar surface area using N, O, S, P polar contributions

ICR Radial centric information index

MAXDN Maximal electrotopological negative variation

C% Percentage of C atoms

nCar Number of aromatic carbons

nCsp2 Number of sp2 hybridized Carbon atoms

BLTD48 Verhaar Daphnia base-line toxicity from MLOGP (mmol/L)

BLTA96 Verhaar algae base-line toxicity from MLOGP (mmol/L)

BLTF96 Verhaar fish base-line toxicity from MLOGP (mmol/L)

nC Number of carbon atoms

Rperim Ring perimeter

FP 4582 Fingerprint 4582

nROH Number of hydroxyl groups
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descriptor. The largest decrease of RMSE of the best RF model from Table 1 is caused by the permutation of values of
the SCBO descriptor. This result could be an evidence that SCBO descriptor interacts the most with other 16 DPs
involved in the RF model. Thus, by permutation of values of the SCBO descriptor within the RF model, a large number
of model coefficients become suboptimal, and the quality of the model decreases the most. Additionally, results of
permutation importance analysis surely depend on the distribution of values of DPs. If the descriptor has more diverse
values, then the permutation can result in significantly different sequences of its values, causing the largest drop in
model quality measured by RMSE. On the other hand, if the descriptor has monotonic values, the total number of
different possible sequences of descriptor values will be smaller, as well as the change of RMSE of the actual model
compared with RMSE of the model containing permuted values of one descriptor.

3.4 | Physical interpretation of the relation between molecular DPs and aqueous
solubility

The above analysis clearly established certain quantitative structure–aqueous solubility relationships for drug
compounds. However, the question is: What is the physical interpretation of the correlating between the molecular
(structural) parameters and the aqueous solubility? Here, we attempt to provide the physical interpretation of the top
five important molecular DPs (Figure 6).

1. SCBO: The sum of conventional bond orders in a molecule is related to the size (or molecular weight) of a com-
pound, as well as to the total number of hydrogens in it. In general, larger (organic) molecules are less soluble in
aqueous medium because it is more difficult for water solvent molecules to surround the larger molecules.
Therefore, this strong correlation is expected.

2. D/Dtr 06: This descriptor describes the cyclic character of the evaluated molecules in terms of topological patterns
that allow one to compare the cyclic complexity of structures, namely, the number of molecule cycles and the man-
ner in which the cycles are connected. As the cyclic character also relates to the size of a solute, negative correlation
with aqueous solubility is also anticipated.

3. AMR: Molecular refraction, a measure of the total polarizability, is often used as a solubility parameter, for example,
Abraham solvation parameter model. Good correlations between solubility parameters and refractive indices have
been reported. Hence, AMR is believed to be a good molecular descriptor of aqueous solubility.

4. MLOGP: The octanol-water partition coefficient (logP) is a ratio of the solubilities of a solute in a two-phase
octanol/water system, which is an important index in measuring solubility. This is an obvious parameter correlates
well with aqueous solubility of drug molecule.

5. TPSA (total): The polar surface area (surface sum over all polar atoms) represents potential area of a molecule that
interacts with water molecule as a solvent. A large total polar surface area of a solute indicates stronger solvation in
an aqueous medium. Thus, it is an important molecular descriptor to quantify the solute–solvent interaction of a
drug molecule in aqueous environment.

Our result here confirms the valuable roles of constitutional, topological, geometrical, and electronic DPs to predict
the aqueous solubility. Some of the selected DPs were utilized in many solubility prediction studies, for example,
MLOGP (logP) as the most frequent by appearance in the literature,16,17,74–77 as well as other top DPs from Table 3 like
the total number of carbon atoms (nC),78 TPSA,32,76,77 SCBO,75 AMR (MR),17,32 and the number of aromatic atoms
(here nCar).

32

3.5 | Evaluation of the models' extrapolation capabilities on a more challenging test set

In order to test the extrapolation capabilities of the models, we have introduced a more challenging test set, that is, an
extreme-case scenario. For this purpose, we have principal component analysis (PCA)-transformed FP data to LVs
(principal components). The three components explain only �28.35% of total variance. This however does not affect the
research issue at hand, which is the creation of a different train–test split which should reveal extrapolation capabilities
of the winning models. Prior to PCA, low-variance FPs were removed (below 0.05). The centroid of the PCA space
(three dimensions) was calculated as well as the Euclidean distances of all compounds to the centroid. The Euclidean
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distances to the centroid were sort and split at 80 percentiles of distance. All compounds below 80 percentiles were set
as a new train set (PCA-train) and above as a new test set (PCA-test). The validation set is subtracted, so the number of
compounds corresponds to the other splits (529 in PCA-train, 167 in PCA-test). The PCA-split space is depicted in
Figure 7. The splits were subjected to the two winning models presented in Figure 5 (LASSO and RF); that is, the same
hyperparameters and features were utilized, but the model was retrained on the PCA-train set and evaluated on the
PCA-test set.

The LASSO model (Figure 5A) had here an RMSE of 1.31 log-points on PCA-test, which is a large increase of error
compared with the random split that results in a RMSE of 0.69. The RF model scores an RMSE of 0.89 on PCA-test
compared with 0.72 obtained on the randomly split test set (Figure 5B). It is interesting that the RF model performs bet-
ter in such an extreme-case scenario. The LASSO model was chosen in the first place based on its test set performance,
while the RF model was chosen based on RkM, which is including also performance on train and validation sets and
therefore present a better tool for estimating generalization. This confirms the appropriateness of using quality estima-
tion by means of RkM but also the importance of challenging the models with extreme-case scenarios such as this. It
could be expected that similar descriptors utilized in models (which are presented in Figure 6) and a worse RMSE(test)
of RF comparing to LASSO (see Table 1) would deteriorate the extrapolation capability, which was not the case since
RF performed better in this more challenging task. This supports our discussion that the ensemblers can stabilize the
models in case of descriptor redundancy.

3.6 | Limitations of the machine learning approaches for prediction of solubility

This study was designed as a multifactor evaluation for training machine learning models for the prediction of solubil-
ity. Some conventions like removal of collinear features were varied as a segment of a grid search to evaluate whether
that might have an influence on model performance. The top models summarized in Table 1 have shown that eight of
10 models were those run without extensive preprocessing. Interestingly, the models with redundant features included
fared better and had better predictive performance than the models that involved extensive preprocessing. This points
to the fact that some machine learning models do profit from redundancy, at least those with intrinsic feature prioritiza-
tion such as ensemble learners.

The best RF model in our evaluations has shown a slight bias on the test set. One potential cause of such bias
can be attributed to the chosen metric for evaluation (RMSE—on the testing set in our case) because the research
community still did not fully agree on the model quality metrics to be used.31,79 This also makes comparison of
research works and models published in literature challenging. Some biases can be avoided by using other or

FIGURE 7 PCA scores plot for the intrinsic solubility data.

Molecular fingerprints are transformed onto three axes (PC1, PC2,

PC3). Black X marker is the centroid of the space. Data points are

colored by means of Euclidean distance from the centroid.

Molecules that are in the 80 percentiles closest to the centroid are

colored in green, whereas those further apart are colored in red
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weighted metrics. In this work, we limited ourselves to the RMSE, to avoid ambiguity in the decision-making pro-
cess. Furthermore, bias can also be introduced by the experimental data itself. Literature suggests that the standard
deviation in solubility laboratory measurements increases with decreasing intrinsic solubility.17 Even though we
limited ourselves to data where measurements are well described, there is a lack of coherence within data sources,
which is described previously in literature.17,56 Nevertheless, the RF model showed better extrapolation in the
extreme-case scenario on the PCA-test set, which supports the use of proposed ranking methods and the stability of
model regardless of the redundant features.

Even though we suggest two winners, the LASSO model by RMSE(test) and the RF model by RkM, both
are arbitrarily chosen criteria because (a) our ranking approach is a heuristic reasoned by weighting and
(b) RMSE is chosen due to the its higher robustness comparing to the correlation coefficient,17 but there are
also other model quality metrics that can be used. It is important to note that the winning models have
marginal improvements over follow-up models in the ranks. Presented results appear to converge to the values
of RMSE(test) �0.7, which may suggest low structure-based information content involved in the calculated
molecular features involved or certain limitations of quantitative structure–activity relationship (QSAR) predictive
approaches that were used in this study. Even though the two predictive challenges4,80 were 10 years apart
and the second had an improved data quality, but very poor (or no) improvement has been achieved by means
of the use of advanced machine learning models. Our approach with the ensemble models led us to be among
the top performers (MLKC team) in the 2019 solubility challenge.80 However, we acknowledge that limitations
were reached for predictive capabilities QSAR models and the most popular chemical representations such
as molecular DPs and FPs, which are also utilized in this work. Furthermore, we have curated our own data set
to increase the size of the data, which can lead to error propagation because not all data sources have the
same reliability.

4 | CONCLUSIONS

In this work, we tested the effects of multiple factors affecting machine learning outcomes in order to obtain the
best prediction for intrinsic aqueous solubility. Besides the four regressors, namely, LASSO, RF, LightGBM, and
PLS, we tested the effects of feature selection by means of permutation importance, the type and size of chemical
representation (FP and molecular DPs), Bayesian optimization, and two data splitting options. The intrinsic
solubility data used here is a novel collection of curated values and structures obtained from literature with
829 drug-like compounds. The best model by means of predictive performance on external test set is a LASSO
regressor based on 105 features giving a RMSE of 0.7 (log units) in prediction on an external test set of organic
compounds. Nevertheless, we proposed a ranking schema for choosing the best models based not solely on the
measure's performance on a fixed test set but also by taking into account the number of features and the estimated
generalization performance estimated on the training and validation sets. The rankings reveal a clear dominance of
the RF algorithm because it can predict well with less features involved but has also a better performance on the
more challenging PCA-split test set. Even though LightGBM is a powerful algorithm, it has a complex
hyperparameter space, which is hard to optimize and was working in the overfitting regime in most cases. We show
that there is no single criterion, data set, nor algorithm that can cover it all but rather a multiverse of possibilities
and decisions to be embraced for building robust models with strong generalizability.
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Bono Luči�c is partially supported by the Croatian Government and the European Union through the Programme
KK.01.1.1.01—The Scientific Centre of Excellence for Marine Bioprospecting—BioProCro.

ORCID
Mario Lovri�c https://orcid.org/0000-0002-3541-9624
Kristina Pavlovi�c https://orcid.org/0000-0001-6069-7020
Petar Žuvela https://orcid.org/0000-0001-6481-2241
Adrian Spataru https://orcid.org/0000-0002-6195-2385
Roman Kern https://orcid.org/0000-0003-0202-6100
Ming Wah Wong https://orcid.org/0000-0003-2162-1220

LOVRI�C ET AL. 13 of 16

https://orcid.org/0000-0002-3541-9624
https://orcid.org/0000-0002-3541-9624
https://orcid.org/0000-0001-6069-7020
https://orcid.org/0000-0001-6069-7020
https://orcid.org/0000-0001-6481-2241
https://orcid.org/0000-0001-6481-2241
https://orcid.org/0000-0002-6195-2385
https://orcid.org/0000-0002-6195-2385
https://orcid.org/0000-0003-0202-6100
https://orcid.org/0000-0003-0202-6100
https://orcid.org/0000-0003-2162-1220
https://orcid.org/0000-0003-2162-1220


REFERENCES
1. Hörter D, Dressman JB. Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev.

2001;46(1-3):75-87. https://doi.org/10.1016/S0169-409X(00)00130-7
2. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):

442-453. https://doi.org/10.1016/j.apsb.2015.07.003
3. Llinas A, Avdeef A. Solubility challenge revisited after ten years, with multilab shake-flask data, using tight (SD �0.17 log) and loose

(SD �0.62 log) test sets. J Chem Inf Model. 2019;59(6):3036-3040. https://doi.org/10.1021/acs.jcim.9b00345
4. Hopfinger AJ, Esposito EX, Llinàs A, Glen RC, Goodman JM. Findings of the challenge to predict aqueous solubility. J Chem Inf Model.

2009;49(1):1-5. https://doi.org/10.1021/ci800436c
5. Palmer DS, Mitchell JBO. Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules? Mol

Pharm. 2014;11(8):2962-2972. https://doi.org/10.1021/mp500103r
6. Montanari F, Kuhnke L, Ter Laak A, Clevert DA. Modeling physico-chemical ADMET endpoints with multitask graph convolutional

networks. Molecules. 2020;25(1):1-13. https://doi.org/10.3390/molecules25010044
7. Cao DS, Xu QS, Liang YZ, Chen X, Li HD. Prediction of aqueous solubility of druglike organic compounds using partial least squares,

back-propagation network and support vector machine. J Chemometr. 2010;24(9):584-595. https://doi.org/10.1002/cem.1321
8. Duchowicz PR, Talevi A, Bruno-Blanch LE, Castro EA. New QSPR study for the prediction of aqueous solubility of drug-like

compounds. Bioorganic Med Chem. 2008;16(17):7944-7955. https://doi.org/10.1016/j.bmc.2008.07.067
9. Louis B, Agrawal VK, Khadikar PV. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur J Med

Chem. 2010;45(9):4018-4025. https://doi.org/10.1016/j.ejmech.2010.05.059
10. Schäfer RB, Pettigrove V, Rose G, et al. Effects of pesticides monitored with three sampling methods in 24 sites on macroinvertebrates

and microorganisms. Environ Sci Technol. 2011;45(4):1665-1672. https://doi.org/10.1021/es103227q
11. Wang J, Hou T, Xu X. Aqueous solubility prediction based on weighted atom type counts and solvent accessible surface areas. J Chem

Inf Model. 2009;49(3):571-581. https://doi.org/10.1021/ci800406y
12. Palmer DS, Llinàs A, Morao I, et al. Predicting intrinsic aqueous solubility by a thermodynamic cycle. Mol Pharm. 2008;5(266-279):

545-556. https://doi.org/10.1021/mp7000878
13. Chen XQ, Cho SJ, Li Y, Venkatesh S. Prediction of aqueous solubility of organic compounds using a quantitative structure-property

relationship. J Pharm Sci. 2002;91(8):1838-1852. https://doi.org/10.1002/jps.10178
14. Bergström CAS, Luthman K, Artursson P. Accuracy of calculated pH-dependent aqueous drug solubility. Eur J Pharm Sci. 2004;22(5):

387-398. https://doi.org/10.1016/j.ejps.2004.04.006
15. Bergström CAS, Wassvik CM, Norinder U, Luthman K, Artursson P. Global and local computational models for aqueous solubility

prediction of drug-like molecules. J Chem Inf Comput Sci. 2004;44(4):1477-1488. https://doi.org/10.1021/ci049909h
16. Delaney JS. ESOL: Estimating aqueous solubility directly from molecular structure. J Chem Inf Comput Sci. 2004;44(3):1000-1005.

https://doi.org/10.1021/ci034243x
17. Avdeef A. Prediction of aqueous intrinsic solubility of druglike molecules using random forest regression trained with Wiki-pS0

database. Admet Dmpk. 2020;8(1):29-77. https://doi.org/10.5599/admet.766
18. Bergström CAS, Norinder U, Luthman K, Artursson P. Experimental and computational screening models for prediction of aqueous

drug solubility. Pharm Res. 2002;19(2):182-188. https://doi.org/10.1023/A:1014224900524
19. Engkvist O, Wrede P. High-throughput, in silico prediction of aqueous solubility based on one- and two-dimensional descriptors.

J Chem Inf Comput Sci. 2002;42(5):1247-1249. https://doi.org/10.1021/ci0202685
20. McElroy NR, Jurs PC. Prediction of aqueous solubility of heteroatom-containing organic compounds from molecular structure. J Chem

Inf Comput Sci. 2001;41(3-6):1237-1247. https://doi.org/10.1021/ci010035y
21. Huuskonen J, Salo M, Taskinen J. Neural network modeling for estimation of the aqueous solubility of structurally related drugs.

J Pharm Sci. 86(4):450-454. https://doi.org/10.1021/js960358m
22. Mitchell BE, Jurs PC. Prediction of aqueous solubility of organic compounds from molecular structure. J Chem Inf Comput Sci. 1998;38

(3):489-496. https://doi.org/10.1021/ci970117f
23. Sutter JM, Jurs PC. Prediction of aqueous solubility for a diverse set of heteroatom-containing organic compounds using a quantitative

structure-property relationship. J Chem Inf Comput Sci. 1996;36(1):100-107. https://doi.org/10.1021/ci9501507
24. Tang B, Kramer ST, Fang M, Qiu Y, Wu Z, Xu D. A self-attention based message passing neural network for predicting molecular

lipophilicity and aqueous solubility. J Chem. 2020;12(1):1-9. https://doi.org/10.1186/s13321-020-0414-z
25. Deng T, Jia GZ. Prediction of aqueous solubility of compounds based on neural network. Mol Phys. 2020;118(2):1-8. https://doi.org/10.

1080/00268976.2019.1600754
26. Boobier S, Osbourn A, Mitchell JBO. Can human experts predict solubility better than computers? J Chem. 2017;9(1):1-14. https://doi.

org/10.1186/s13321-017-0250-y
27. Zang Q, Mansouri K, Williams AJ, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular

fingerprints and machine learning. J Chem Inf Model. 2017;57(1):36-49. https://doi.org/10.1021/acs.jcim.6b00625
28. McDonagh JL, Nath N, De Ferrari L, Van Mourik T, Mitchell JBO. Uniting cheminformatics and chemical theory to predict the intrinsic

aqueous solubility of crystalline druglike molecules. J Chem Inf Model. 2014;54(3):844-856. https://doi.org/10.1021/ci4005805
29. Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-

like molecules. J Chem Inf Model. 2013;53(7):1563-1575. https://doi.org/10.1021/ci400187y

14 of 16 LOVRI�C ET AL.

https://doi.org/10.1016/S0169-409X(00)00130-7
https://doi.org/10.1016/j.apsb.2015.07.003
https://doi.org/10.1021/acs.jcim.9b00345
https://doi.org/10.1021/ci800436c
https://doi.org/10.1021/mp500103r
https://doi.org/10.3390/molecules25010044
https://doi.org/10.1002/cem.1321
https://doi.org/10.1016/j.bmc.2008.07.067
https://doi.org/10.1016/j.ejmech.2010.05.059
https://doi.org/10.1021/es103227q
https://doi.org/10.1021/ci800406y
https://doi.org/10.1021/mp7000878
https://doi.org/10.1002/jps.10178
https://doi.org/10.1016/j.ejps.2004.04.006
https://doi.org/10.1021/ci049909h
https://doi.org/10.1021/ci034243x
https://doi.org/10.5599/admet.766
https://doi.org/10.1023/A:1014224900524
https://doi.org/10.1021/ci0202685
https://doi.org/10.1021/ci010035y
https://doi.org/10.1021/js960358m
https://doi.org/10.1021/ci970117f
https://doi.org/10.1021/ci9501507
https://doi.org/10.1186/s13321-020-0414-z
https://doi.org/10.1080/00268976.2019.1600754
https://doi.org/10.1080/00268976.2019.1600754
https://doi.org/10.1186/s13321-017-0250-y
https://doi.org/10.1186/s13321-017-0250-y
https://doi.org/10.1021/acs.jcim.6b00625
https://doi.org/10.1021/ci4005805
https://doi.org/10.1021/ci400187y


30. Salahinejad M, Le TC, Winkler DA. Aqueous solubility prediction: do crystal lattice interactions help? Mol Pharm. 2013;10(7):2757-2766.
https://doi.org/10.1021/mp4001958
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