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1 Introduction

The one-loop UV/IR mixing structure of noncommutative N=1 super Yang-Mills theory

defined in terms of the noncommutative fields was studied some years ago in a number

of papers [1–5]. The outcome was the famous quadratic noncommutative IR divergences

which occur in the one-loop gauge field propagator of the non-supersymmetric version of the

theory cancel here due to Supersymmetry. The one-loop gauge field propagator still carries

a logarithmic UV divergence -a simple pole in Dimensional Regularization- and the dual

logarithmic noncommutative IR divergence ln(p2(θp)2) as a result of the UV/IR mixing

being at work. By increasing the number of supersymmetries of the noncommutative

Yang-Mills theory one makes the UV behaviour of the theory softer and eventually finite for

N = 4 [6], at which point noncommutative IR divergences cease to exist [7, 8]. In theN = 2

super Yang-Mills case, there still remain logarithmic UV divergences at one-loop in the two-

point function which give rise via UV/IR mixing to the corresponding IR divergences [1, 9].

That noncommutative N = 4 super Yang-Mills has a smooth commutative limit has been

shown in ref. [10].

It is known that classically noncommutative gauge field theories admit a dual formu-

lation in terms of ordinary fields, a formulation that is obtained by using the celebrated

Seiberg-Witten map [11]. However we still do not know whether this duality holds at the

quantum level, i.e., whether the quantum theory defined in terms of noncommutative fields

is the same as the ordinary quantum theory — called the dual ordinary theory — whose

classical action is obtained from the noncommutative action by using the Seiberg-Witten

map. The existence of UV/IR mixing effects in noncommutative field theory defined in

terms of noncommutative fields is thought to be a characteristic feature of those field the-

ories. It is thus sensible to think such effects should also occur in the ordinary dual theory

obtained, as previously explained, by using the Seiberg-Witten map. That these UV/IR

mixing effects actually occur in the propagator of the gauge field of the dual ordinary theory

was first shown in ref. [12] by using the θ-exact Seiberg-Witten map expansion [13, 14]. The
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analysis of the properties and phenomenological implications of the UV/IR mixing effects

that occur in noncommutative gauge theories defined by means of the θ-exact Seiberg-

Witten map has been pursued in refs. [15–18].

Up to the best of our knowledge no analysis of the UV and the noncommutative IR

structures of noncommutative super Yang-Mills theory defined by means of the θ-exact

Seiberg-Witten map has been carried out as yet. In particular, it is not known whether the

cancellation of the quadratic noncommutative IR divergences of the gauge-field propagator

that occurs, as we mentioned above, in noncommutative super Yang-Mills theory defined

in terms of noncommutative fields also works in its dual ordinary theory. The answer to

this question is far from obvious since Supersymmetry is linearly realized in terms of the

noncommutative fields — and thus there exists a superfield formalism — but is non-linearly

realized — see ref. [19] — in terms of the ordinary fields of the dual ordinary theory defined

by means of the Seiberg-Witten map. It has long been known that the proper definition

of theories with non-linearly realized symmetries is a highly non-trivial process.

The purpose of this paper is to work out all the one-loop 1PI two-point functions, and

analyze the UV and noncommutative IR structures of those functions, in noncommuta-

tive U(1) N=1,2 and 4 super Yang-Mills theories in the Wess-Zumino gauge, when those

theories are defined in terms of ordinary fields by means of the θ-exact Seiberg-Witten

maps. To analyze the gauge dependence of the UV and noncommutative IR of the gauge

field two-point functions we shall consider to types of gauge-fixing terms for the ordinary

gauge field: the standard ordinary Feynman gauge-fixing term and the noncommutative

Feynman gauge-fixing term.

The layout of this paper is as follows. Section 2 is devoted to the computation of the

one-loop contributions to the photon and photino propagators in N = 1 super Yang-Mills

U(1) theory in the ordinary Feynman gauge. In section 3 we discuss, for later use, the

construction by using the θ-exact Seiberg-Witten map of a noncommutative U(1) theory

with a noncommutative scalar field transforming under the adjoint representation. The one-

loop propagators of the the ordinary fields of noncommutative N=2 and 4 super Yang-Mills

U(1) theories defined by using the θ-exact Seiberg-Witten map are worked out in sections 4

and 5 in the ordinary Feynman gauge. In sections 6 and 7 we use a noncommutative

Feynman gauge to quantize N = 1 super Yang-Mills U(1) theory and compute the one-

loop photon propagator. Sections 6 and 7 are introduced to analyze the dependence on

the gauge-fixing term of the UV and noncommutative IR contributions found in previous

sections. The overall discussion of our results is carried out in section 8. We also include

several appendices which are needed to complete properly the analysis and computations

carried out in the body of the paper.

2 Noncommutative N = 1 SYM U(1) theory and the θ-exact SW map

The noncommutative field content of the noncommutative U(1) super Yang-Mills the-

ory in the Wess-Zumino gauge is the noncommutative gauge field Aµ, its supersymmet-

ric fermion partner Λα and the noncommutative SUSY-auxiliary field D(nc). The ordi-

nary/commutative counterparts of Aµ, Λα and D(nc) will be denoted by aµ (photon), λα

– 2 –
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(photino) and D, respectively. Regarding dotted and undotted fermions and σαα̇ traces,

we shall follow the conventions of [20].

In terms of the noncommutative fields and in the Wess-Zumino gauge the action of

U(1) super Yang-Mills theory reads

SN=1 =

∫

−1

4
Fµν ⋆ F

µν + iΛ̄α̇σ̄
µ α̇αDµ[A]Λα +

1

2
D(nc)D(nc), (2.1)

where Fµν = ∂µAν − ∂νAµ − i[Aµ
⋆, Aν ] and Dµ[A]Λα = ∂µΛα − i[Aµ

⋆, Λα].

The above action SN=1 (2.1), is invariant under the following noncommutative super-

symmetry transformations

δξΛα = −iD(nc)ξα − e−1(σµσ̄ν) β
α ξβFµν ,

δξA
µ = ie(ξσµΛ̄− Λσµξ̄),

δξD
(nc) = (ξσµDµΛ̄−DµΛσ

µξ̄).

(2.2)

These supersymmetry transformations close on translations modulo noncommutative gauge

transformations and tell us that supersymmetry is linearly realized on the noncommuta-

tive fields — see [19] for further discussion. The action in (2.1), is also invariant under

noncommutative U(1) transformations, which in the noncommutative BRST form read

sNCΛα = −i[Λα
⋆, Ω], sNCAµ = ∂µΩ− i[Aµ

⋆, Ω], sNCΩ = iΩ ⋆ Ω, (2.3)

with Ω being the noncommutative U(1) ghost field. The above action SN=1 can be ex-

pressed in terms of ordinary fields, aµ, λα and D, by means of the SW map. The resulting

functional is invariant under ordinary U(1) BRST transformations:

sλα = −i[λα, ω] , saµ = ∂µω , sω = 0, (2.4)

where ω is the ordinary U(1) ghost field. Indeed, the SW map maps ordinary BRST orbits

into the noncommutative BRST orbits.

The θ-exact SW map for Fµν has been worked out in [15] up to the three ordinary

U(1) gauge fields aµ. It reads

Fµν (e · aµ, θµν) = efµν + F e2

µν + F e3

µν +O
(

e4
)

, (2.5)

where, up to the e2 order, the gauge field strength SW map F e2

µν expansion is fairly univer-

sal [15–17]

F e2

µν = e2θij
(

fµi ⋆2 fνj − ai ⋆2 ∂jfµν

)

. (2.6)

The e3 order SW map for the gauge field strength from [15] in that case reads

F e3

µν(x) =
e3

2
θijθkl

(

[fµkfνiflj ]⋆3′
+ [fνlfµifkj ]⋆3′

− [fνlai∂jfµk]⋆3′
− [fµkai∂jfνl]⋆3′

− [ak∂l (fµifνj)]⋆3′
+ [ai∂jak∂lfµν ]⋆3′

+ [∂lfµνai∂jak]⋆3′

+ [akai∂l∂jfµν ]⋆3′
− 1

2

(

[ai∂kaj∂lfµν ]⋆3′
+ [∂lfµνai∂kaj ]⋆3′

)

)

.

(2.7)
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The generalized star products relevant for this work are defined as follows [17, 18]

(f ⋆2 g)(x) =

∫

e−i(p+q)xf̃(p)g̃(q)f⋆2 (p, q) ,

[fgh]⋆3′ (x) =

∫

e−i(p+q+k)xf̃(p)g̃(q)h̃(k)f⋆3 (p, q, k) ,

[fgh]M(I)
(x) =

∫

e−i(p+q+k)xf̃(p)g̃(q)h̃(k)f(I) (p, q, k) ,

(2.8)

with

f⋆2(p, q) =
sin pθq

2
pθq
2

,

f⋆3′ (p, q, k) =
cos
(

pθq
2 + pθk

2 − qθk
2

)

− 1
(

pθq
2 + pθk

2 − qθk
2

)

qθk
2

−
cos
(

pθq
2 + pθk

2 + qθk
2

)

− 1
(

pθq
2 + pθk

2 + qθk
2

)

qθk
2

,

f(I) (p, q, k) =
1

pθq

(

f⋆3′ [p, q,−(p+ q + k)]− f⋆3′ [p, q, k]
)

.

(2.9)

The θ-exact SW map for Dµ[A]Λα up to the two ordinary fields aµ can be retrieved

from the expression for Fµν in (2.5), (2.6) and (2.7) as explained in the appendix A:

Dµ[A]Λα = ∂µλα +De
µα[e · a, λ] +De2

µα[e · a, λ] +O
(

e3
)

, (2.10)

where

De
µα[e · a, λ] = −eθij

(

fµi ⋆2 ∂jλα + ai ⋆2 ∂j∂µλα

)

, (2.11)

and

De2

µα[e · a, λ]=
e2

2
θijθkl

(

− [fµk∂iλαflj ]⋆3′
− [∂lλαfµifkj ]⋆3′

+ [∂lλαai∂jfµk]⋆3′
(2.12)

+ [fµkai∂j∂lλα]⋆3′
+[ak∂l (fµi∂jλα)]⋆3′

+ [ai∂jak∂l∂µλα]⋆3′
+[∂l∂µλαai∂jak]⋆3′

+ [akai∂l∂j∂µλα]⋆3′
− 1

2

(

[ai∂kaj∂l∂µλα]⋆3′
+ [∂l∂µλαai∂kaj ]⋆3′

)

)

.

To compute the full one-loop photon two-point function, one also needs the SW maps

for the Λ̄α̇ and D fields. They read

Λ̄α̇ =λ̄α̇ − eθijai ⋆2 ∂j λ̄α̇ +
e2

4
θijθkl

(

[

ai∂j
(

ak∂lλ̄α̇

)

]

⋆3′

−
[

ai(fjk∂lλ̄α̇ − ak∂l∂j λ̄α̇)
]

⋆3′
+
[

∂j λ̄α̇ak(∂lai + fli)
]

⋆3′

)

+O
(

e3
)

,

(2.13)

D(nc) =D − eθijai ⋆2 ∂jD +
e2

4
θijθkl

(

[

ai∂j
(

ak∂lD
)

]

⋆3′

−
[

ai(fjk∂lD − ak∂l∂jD)
]

⋆3′
+
[

∂jDak(∂lai + fli)
]

⋆3′

)

+O
(

e3
)

.

(2.14)

Let us stress that the way we have constructed — by appropriate restriction of the SW

map for the gauge-field — the SW map for Λα and D(nc) is very much in harmony with
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the idea that if supersymmetry and gauge symmetry are not to clash, the superpartners

must have similar behavior with respect to the gauge group.

As discussed in [19] the noncommutative supersymmetric transformations in (2.2) can

be understood as the push-forward under the SW map of the appropriate θ-dependent

supersymmetric transformations of the ordinary fields. Here we have worked out the θ-

exact expression for such deformed transformations up to the order e2,

δ
(nc)
ξ λα = δ

(0)
ξ λα + eδ

(1)
ξ λα + e2δ

(2)
ξ λα +O

(

e3
)

,

δ
(nc)
ξ aµ = δ

(0)
ξ aµ + eδ

(1)
ξ aµ + e2δ

(2)
ξ aµ +O

(

e3
)

,

δ
(nc)
ξ D = δ

(0)
ξ D + eδ

(1)
ξ aµ + e2δ

(2)
ξ D +O

(

e3
)

,

(2.15)

where

δ
(0)
ξ λα = −iDξα − 1

2
(σµσ̄ν) β

α ξβfµν ,

δ
(0)
ξ aµ = i(ξσµλ̄− λσµξ̄),

δ
(0)
ξ D = (ξσ∂µΛ̄− ∂µλσ

µξ̄),

δ
(1)
ξ λα = −iD(1)ξα − 1

2e2
(σµσ̄ν) β

α ξβF
e2

µν − δ
(0)
ξ Λ(1)

α ,

δ
(1)
ξ aµ = i(ξσΛ̄(1) − Λ(1)σµξ̄)− δ

(0)
ξ A(1)

µ ,

δ
(1)
ξ D = (ξσµD̄e

µ −De
µσ

µξ̄)− δ
(0)
ξ D(1),

δ
(2)
ξ λα = −iD(2)ξα − 1

2e3
(σµσ̄ν) β

α ξβF
e3

µν − δ
(1)
ξ Λ(1)

α − δ
(0)
ξ Λ(2)

α ,

δ
(2)
ξ aµ = i(ξσΛ̄(2) − Λ(2)σµξ̄)− δ

(1)
ξ A(1)

µ − δ
(0)
ξ A(2)

µ ,

δ
(2)
ξ D = (ξσµD̄e2

µ −De2

µ σµξ̄)− δ
(1)
ξ D(1) − δ

(0)
ξ D(2).

(2.16)

The reader shall find in the appendix A the values of objects in the previous equations

that have not been given yet.

The θ-exact deformed supersymmetry transformations given in (2.15) and (2.16) can

be rightly called supersymmetry transformations since, as shown in [19], they close on

translations modulo gauge transformations and, hence, they carry a representation of the

supersymmetry algebra. However notice that these deformed supersymmetry transforma-

tions of the ordinary field do not realize the supersymmetry algebra linearly. Finally,

since these supersymmetry transformations generate the noncommutative supersymmetry

transformations of (2.2), we conclude that the total θ-exact action (given explicitly in

the next subsection) has to be invariant up to the second order in e, under the deformed

supersymmetry transformations in (2.15).

2.1 The action

Now, substituting into (2.1), the Seiberg-Witten maps from (2.6), (2.10) and (2.13) and

dropping any contribution of order e3, one obtains the SYM U(1) action in terms of com-

mutative fields:

S = Sphoton + Sphotino + SSUSY−auxiliary, (2.17)

– 5 –
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where

Sphoton =

∫

−1

4
fµνf

µν − e

2
θijfµν

(

fµi ⋆2 fνj −
1

4
fij ⋆2 fµν

)

− e2

4
θijθkl

(

(fµi ⋆2 fνj)(f
µ
k ⋆2 f

ν
l)− (fij ⋆2 fµν)(f

µ
k ⋆2 f

ν
l)

+ 2fµν
(

ai ⋆2 ∂j(fµk ⋆2 fνl)− [fµkai∂jfνl]⋆3′ − [aifµk∂jfνl]⋆3′

+ [fµifνkfjl]⋆3′ −
1

8
[fµνfikfjl]⋆3′

)

+
1

8
(fµν ⋆2 fij) (fkl ⋆2 fµν) +

1

2
θpqfµν [∂ifjkflp∂qfµν ]M(I)

)

,

(2.18)

Sphotino =

∫

iλ̄α̇σ̄
µ α̇α∂µλα

− ieθij
(

λ̄α̇σ̄
µ α̇α

[

fµi ⋆2 ∂jλα + ai ⋆2 ∂j∂µλα

]

+ ai ⋆2 ∂j λ̄α̇σ̄
µ α̇α∂µλα

)

− i
e2

2
θijθkl

(

λ̄α̇σ̄
µ α̇α

([

fµk∂iλαflj

]

⋆3′
+
[

∂lλαfµifkj

]

⋆3′
−
[

∂lλαai∂jfµk

]

⋆3′

−
[

fµkai∂j∂lλα

]

⋆3′
−
[

ak∂l (fµi∂jλα)
]

⋆3′
−
[

ai∂jak∂l∂µλα

]

⋆3′
−
[

∂l∂µλαai∂jak

]

⋆3′

−
[

akai∂l∂j∂µλα

]

⋆3′
+

1

2

[

ai∂kaj∂l∂µλα

]

⋆3′
+

1

2

[

∂l∂µλαai∂kaj

]

⋆3′

)

− 2ai ⋆2 ∂j λ̄α̇σ̄
µ α̇α

(

fµk ⋆2 ∂lλα + ak ⋆2 ∂l∂µλα

)

− 1

2

([

ai∂j
(

ak∂lλ̄α̇

)

]

⋆3′

−
[

ai(fjk∂lλ̄α̇−ak∂l∂j λ̄α̇)
]

⋆3′
+
[

∂j λ̄α̇ak(∂lai + fli)
]

⋆3′

)

σ̄µ α̇α∂µλα

)

+O
(

e3
)

,

(2.19)

and

SSUSY−auxiliary =

∫

1

2
DD + eθij D(ai ⋆2 ∂jD)

+
e2

4
θijθkl D

(

[

ai∂j
(

ak∂lD
)

]

⋆3′
−
[

ai(fjk∂lD − ak∂l∂jD)
]

⋆3′
+
[

∂jDak(∂lai + fli)
]

⋆3′

)

+
e2

2
θijθkl

(

ai ⋆2 ∂jD
)(

ak ⋆2 ∂lD
)

+O
(

e3
)

. (2.20)

First we note that, since the Feynman rules of the 3- and 4-photon self-coupling (2.18),

are already given in previous papers [16] and [18], respectively, we shall not repeat them here.

Photino-photon Feynman rules, obtained from (2.19), are given explicitly in the appendix C.

2.2 The photon one-loop contributions to the photon polarization tensor

Most generally speaking, the total photon one-loop 1PI two-point function Πµν(p) in the

N = 1, 2, 4 SYM theory is the sum of the following contributions

Πµν(p) = (Bµν(p)+Tµν(p))+nf (P
µν(p)bub+Pµν(p)tad)+ns(S

µν(p)bub+Sµν(p)tad), (2.21)

– 6 –
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where Bµν(p), Tµν(p), Pµν(p)bub, P
µν(p)tad, S

µν(p)bub and Sµν(p)tad refer to the contribu-

tions from the photon bubble and tadpole, the photino bubble and tadpole, and the adjoint

scalar bubble and tadpole diagrams, respectively. The last two diagrams appear only in

the extended SUSY, of course. We use nf for the number of photinos (Weyl fermions) and

ns for the number of real adjoint scalar bosons (one complex scalar is counted as two real

scalars), which are uniquely determined by N = 1, 2, 4 SUSY.

Explicit computation revolves that each of these diagrams can be expressed as a linear

combinations of five transverse tensor structures

Π(B, T, P, Sbub, Stad)
µν(p) =

e2

(4π)2

{

[

gµνp2 − pµpν
]

Π1(B1, T1, P1, S
bub
1 , Stad

1 )(p)

+ (θp)µ(θp)νΠ2(B2, T2, P2, S
bub
2 , Stad

2 )(p)

+
[

gµν(θp)2 − (θθ)µνp2 + p{µ(θθp)ν}
]

Π3(B3, T3, P3, S
bub
3 , Stad

3 )(p)

+
[

(θθ)µν(θp)2 + (θθp)µ(θθp)ν
]

Π4(B4, T4, P4, S
bub
4 , Stad

4 )(p)

+ (θp){µ(θθθp)ν}Π5(B5, T5, P5, S
bub
5 , Stad

5 )(p)

}

.

(2.22)

The sum (2.21) can be expressed, in the language of the five tensor decomposition (2.22), as1

Πi(p) = Bi(p) + Ti(p) + nfPi(p) + ns

(

Sbub
i (p) + Stad

i (p)
)

. (2.23)

In the subsequent sections we are going to compute and give the coefficients Bi(p), Ti(p),

Pi(p), S
bub
i (p) and Stad

i (p) in detail via equations (2.25), (2.27), (2.32), (3.6) and (3.12),

respectively.

For the N = 1 theory nf = 1, ns = 0, thus we have

ΠN=1
i (p) = Bi(p) + Ti(p) + Pi(p). (2.24)

In this section we are going to show that all quadratic IR divergences cancel in each of the

ΠN=1
i ’s, then we extend our results to the N = 2, 4 theories as well.

We choose one specific set of four (five in the sections 6 and 7) nonplanar/special

function integrals T0, I
0
K , I1K and IH alongside the usual planar/commutative UV divergent

integrals to express all loop diagrams/coefficients in this article. This decomposition enjoys

the advantage that each nonplanar integral bear distinctive asymptotic behavior in the IR

regime: T0 carries all the quadratic IR divergence (θp)−2, with a pre-factor −2, while I0K
and I1K contain the dual logarithmic noncommutative IR divergence ln(p2(θp)2), with pre-

factors −1/2 and −1/12, respectively. The last integral IH is finite at the IR limit. Further

details of these integrals are given in the appendix B.

1As we will see soon, the photino tadpole diagram vanishes, so we can simply denote Pµν(p) = Pµν(p)bub
and consequently Pi(p) = Pi(p)bub.
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Figure 1. Three-photon bubble contribution to the photon two-point function Bµν(p).

2.2.1 The photon-bubble diagram

From the photon bubble diagram figure 1 we obtain the following loop-coefficients [16]

B1 =
2D2 − 9D + 8

D − 1
(4πµ2)2−

D
2 (p2)

D
2
−1Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 16I1K − 4IH

+ 3trθθ
p2

(θp)2
1

2

(

2(4πµ2)2−
D
2 (p2)

D
2
−1Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 4I0K − 4IH

)

+ (θθp)2
p2

(θp)4

(

4(4πµ2)2−
D
2 (p2)

D
2
−1Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 8I0K − 4IH

)

,

B2 =
1

(θp)2

(

2(D − 2)(4πµ2)2−
D
2 (p2)

D
2
−1Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 16

3
T0 + p2(48I1K − 16I0K − 4IH)

+
1

2
trθθ

p4

(θp)2

(

− 4(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

+ 8I0K + 8IH

)

)

,

B3 =
1

(θp)2

(

2(4πµ2)2−
D
2 (p2)

D
2
−1Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

+
16

3
T0 − p2(4I0K + 8IH)

)

,
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B4 =
p2

(θp)4

(

− 4(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

+
16

3
T0 + 8I0K + 4IH

)

,

B5 =
p2

(θp)4

(

4(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 8I0K − 4IH

)

. (2.25)

Extracting the divergent parts from each of the Bi’s

B1(p) = +

(

4

3
+ 3

p2(trθθ)

(θp)2
+ 4

p2(θθp)2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

+ finite terms,

B2(p) = +2
p2

(θp)2

(

2− p2(trθθ)

(θp)2

)(

2

ǫ
+ ln(µ2(θp)2)

)

+
32

3

1

(θp)4
+ finite terms,

B3(p) = +2
p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

− 32

3

1

(θp)4
+ finite terms,

B4(p) = −4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

− 32

3

p2

(θp)6
+ finite terms,

B5(p) = +4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

+ finite terms,

(2.26)

we observe the presence of the UV plus logarithmic IR divergences in all of them. The

logarithmic IR divergences from both planar and nonplanar sources in the bubble diagram

appear to have identical coefficient and combine into a single ln(µ2(θp)2) term, confirming

the expected UV/IR mixing. The quadratic IR divergence, on the other hand, exists only

in the B2,3,4 terms.

2.2.2 The photon-tadpole diagram

From tadpole figure 2 we obtain the same tensor structure as from the photon bubble

diagram (figure 1) with the following loop-coefficients Ti(p):

T1(p) =T5(p) = 0,

T2(p) =− 32

3

1

(θp)2
T0 =

64

3

1

(θp)4
,

T3(p) =− 16

3

1

(θp)2
T0 =

32

3

1

(θp)4
,

T4(p) =− 16

3

1

(θp)4
T0 =

32

3

p2

(θp)6
.

(2.27)

We notice immediately the absence of UV plus logarithmic divergent terms contrary to the

photon-bubble diagram results (2.26). In addition, the tadpole diagram produces no finite

terms either, and the quadratic IR are again present in the second, third and fourth term!
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Figure 2. Four-photon tadpole contribution to the photon two-point function Tµν(p).

Figure 3. Photon-2photinos tadpole contribution to the photon two-point function Pµν
tad(p).

Figure 4. Photon-photino bubble contribution to the photon two-point function: Pµν
bub(p).

2.3 The photino one-loop contributions to the photon polarization tensor

The photino sector contains two diagrams: photino tadpole figure 3 and photino bubble fig-

ure 4. We are going to see below that only the latter contributes to the photon polarization

tensor.

2.3.1 The photino-tadpole diagram

The photino-tadpole contribution is computed using vertex (C.4). It produces only the

quadratic IR divergent terms which cancel each other internally, thus giving vanishing

contribution to the photon polarization tensor

Pµν
tad(p) = −µ4−D

∫

dDℓ

(2π)D
1

ℓ2
V e2µν

µ1
[ℓ,−p, p, ℓ; θij ]ℓµ2Tr(σ̄

µ1σµ2)
∣

∣

∣

D→4

= − e2

3π2

(θp)µ(θp)ν

(θp)4
(4− 2− 2) = 0.

(2.28)
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2.3.2 The photino-bubble diagram

Taking the photino-photon Feynman rules from appendix C we obtain the following

photino-bubble contribution to the photon polarization tensor, Pµν
bub(p), from figure 4:

Pµν
bub(p) =− µ4−D

∫

dDℓ

(2π)D
1

ℓ2(ℓ+ p)2

· V eµ
µ1
[ℓ+ p, p, ℓ; θij ]ℓµ2V

eν
µ3
[ℓ,−p, ℓ+ p; θij ](ℓ+ p)µ4Tr(σ̄

µ1σµ2 σ̄µ3σµ4).

(2.29)

Taking into account the trace

Tr(σ̄µ1σµ2 σ̄µ3σµ4) = 2(ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4 + ηµ1µ4ηµ2µ3 − iǫµ1µ2µ3µ4), (2.30)

and that Pµν
bub(p) cannot have, at the end of the day, contributions depending on ǫµ1µ2µ3µ4 ,

one arrives at

Pµν
bub(p) =− µ4−D

∫

dDℓ

(2π)D
1

ℓ2(ℓ+ p)2

·
[

V eµ
µ1
[ℓ+ p, p, ℓ; θij ]ℓµ1V eν

µ3
[ℓ,−p, ℓ+ p; θij ](ℓ+ p)µ3

+ V eµ
µ1
[ℓ+ p, p, ℓ; θij ](ℓ+ p)µ1V eν

µ3
[ℓ,−p, ℓ+ p; θij ]ℓµ3

− V eµ
µ1
[ℓ+ p, p, ℓ; θij ] ηµ1µ3 V eν

µ3
[ℓ,−p, ℓ+ p; θij ] ℓ · (ℓ+ p)

]

.

(2.31)

After some amount of computations we find that only first two of the general five-terms

structure (2.22) survive in D = 4 dimensions:

P1(p) = −2
D − 2

D − 1
(4πµ2)2−

D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

+ 16I1K ,

P2(p) = 16T0 + 8p2(I0K − 6I1K), P3(p) = P4(p) = P5(p) = 0. (2.32)

After inspecting the divergences in these two terms we also find that the first of the two,

P1(p), contain the logarithmic UV/IR mixing terms, while P2(p) possesses only quadratic

IR divergence and finite terms, as the dual NC logarithmic divergences from integrals I0K
and I1K cancel each other.

Summing over (2.26), (2.27) and (2.32) one can see that the total quadratic IR di-

vergences in all Πi’s are zero. The total UV divergences for the N = 1 theory are as

follows

Π1(p)|UV =
p2

(θp)4

(

3(trθθ)(θp)2 + 4(θθp)2
)

(

2

ǫ
+ ln(µ2(θp)2)

)

, (2.33)

Π2(p)|UV =
p2

(θp)2

(

2− p2(trθθ)

(θp)2

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (2.34)

Π3(p)|UV =
p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

, (2.35)

Π4(p)|UV = −4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

, (2.36)

Π5(p)|UV = 4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

. (2.37)
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2.4 The one-loop SUSY-auxiliary field contributions to the photon propagator

The free two-point function of the SUSY-auxiliary field D reads
〈

D(x)D(y)
〉

= δ(x− y), (2.38)

hence, the integrals to be computed in dimensional regularization are of the type

∫

dDℓ

(2π)D
ei(ℓθp)

(ℓθp)n
. (2.39)

The integrals in (2.39) vanish in dimensional regularization and hence the SUSY-auxiliary

field D does not contribute to the one-loop photon propagator. Indeed, following [21], we

first split the D-dimensional ℓ(≡ ℓ(D)) into

ℓ(D) = ℓ(D−1) + x
θp

|θp| , (2.40)

where ℓ(D−1) belongs to D − 1 dimensional space orthogonal to θp, and |θp| > 0 is the

modulus of θp — recall that θp is a space-like vector, since θµ0 = 0. Then introduce the

following definition of the dimensionally regularized integral in (2.39):

∫

dDℓ

(2π)D
eiℓθp

(ℓθp)n
=

∫

d(D−1)ℓ

(2π)(D−1)
lim
ε→0

∫ +∞

−∞
dx

eix

(x+ iε)n
. (2.41)

However, in dimensional regularization — see [21]

∫

d(D−1)ℓ

(2π)(D−1)
= 0, (2.42)

which in turn leads to the conclusion that the integral (2.39) vanishes under the dimensional

regularization procedure.

It is not difficult to see that the argument above can be generalized to integrals with

positive ℓ powers too, i.e.

∫

dDℓ

(2π)D
ℓµ1 . . . ℓµ2n

ei(ℓθp)

(ℓθp)n
= 0. (2.43)

One can explicitly verify two special cases of the identity above

∫

dDℓ

(2π)D
f⋆2 (ℓ, p)

2 =

∫

dDℓ

(2π)D
ℓµℓνf⋆2 (ℓ, p)

2 = 0, (2.44)

using a generalization of the n-nested zero regulator method [18].

2.5 The one-loop photino 1-PI two point function

The photino self-energy consists two diagrams, a tadpole figure 5 and a bubble figure 6.

Explicit computation shows that the tadpole diagram figure 5 vanishes:

Σα̇α(p)tad = 0. (2.45)
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Figure 5. N=1 photino-photon tadpole: Σα̇α(p)tad.

Figure 6. N=1 photino-photon bubble: Σα̇α(p)bub.

The bubble diagram was computed in [16], which boils down to following expressions

Σα̇α(p)bub = − e2

(4π)2
σα̇α
µ

[

pµ N1(p) + (θθp)µ N2(p)
]

, (2.46)

with

N1(p) =− 1

2
(θp)2IH

+ trθθ
p2

(θp)2

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− (2I0K + 2IH)

)

+ (θθp)2
p2

(θp)4

(

2(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− (4I0K + 2IH)

)

, (2.47)

and

N2(p) =4
p2

(θp)2
IH . (2.48)

One can easily notice the absence of the quadratic IR divergent integral T0. The UV

divergence can be expressed as follows

Σα̇α(p)bub|UV =− e2

(4π)2
σα̇α
µ pµ N1(p)|UV

=− e2

(4π)2
σα̇α
µ pµ

(

trθθ
p2

(θp)2
+ 2(θθp)2

p2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

.

(2.49)
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3 Minimal action of the noncommutative adjoint scalar field

It is commonly known that extended, N = 2, 4, super YM theories contain not only fermion

(photino) but also scalar bosons in the adjoint representation. These scalar bosons couple

minimally to the gauge field, and their action for the real scalar is

Sreal =
1

2

∫

DµΦDµΦ, (3.1)

or

Scomplex =

∫

DµΦ†DµΦ, (3.2)

for the complex scalar. We study the minimal interacting scalar boson’s contribution to

1-PI photon two point function as well as the scalar’s own 1-PI two point function in this

section. These results will be used for our discussion on N = 2, 4 SYM in the subsequent

sections.

It is straightforward to derive the SW map expansion of either Sreal or Scomplex using

the method described in the appendix A

Sreal =
1

2

∫

DµΦDµΦ =
1

2

∫

∂µφ∂µφ− 2eθij∂µφ
(

fµi ⋆2 ∂jφ+
1

4
fij ⋆2 ∂µφ

)

+

+ e2θijθkl
(

(fµi ⋆2 ∂jφ)(f
µ
k ⋆2 ∂lφ) + (∂µφ ⋆2 fij)(f

µ
k ⋆2 ∂lφ)

+ ∂µφ
(

[fµi∂lφfik]⋆3′ + [∂lφfµifik]⋆3′ + [∂lφai∂jfµk]⋆3′ + [fµkai∂j∂lφ]⋆3′

+ [ai∂j(fµk∂lφ)]⋆3′ − 2ai ⋆2 ∂j(fµk ⋆2 ∂lφ) +
1

4
[∂µφfilfjk]⋆3′

+
1

8
fij ⋆2 (fkl ⋆2 ∂µφ) +

1

2
θpq[∂ifjkflp∂q∂µφ]M(I)

)

)

,

(3.3)

Scomplex =

∫

DµΦ†DµΦ =

∫

∂µφ
∗∂µφ

− eθij
(

∂µφ∗(fµi ⋆2 ∂jφ) + (fµi ⋆2 ∂jφ
∗)∂µφ+

1

2
(∂µφ

∗ ⋆2 fij)∂
µφ

)

+ e2θijθkl
(

(fµi ⋆2 ∂jφ
∗)(fµ

k ⋆2 ∂lφ) +
1

2
((fµi ⋆2 ∂jφ

∗)(fij ⋆2 ∂
µφ)

+ (fµi ⋆2 ∂jφ)(fij ⋆2 ∂
µφ∗)) +

1

2
∂µφ∗([fµi∂lφfjk]⋆3′ + [∂lφfµifjk]⋆3′ )

+
1

2
([fµi∂lφ

∗fjk]⋆3′ + [∂lφ
∗fµifjk]⋆3′ )∂

µφ+
1

2
∂µφ∗([∂lφai∂jfµk]⋆3′

+ [fµkai∂j∂lφ]⋆3′ + [ai∂j(fµk∂lφ)]⋆3′ − 2ai ⋆2 ∂j(fµk ⋆2 ∂lφ))

+
1

2
([∂lφ

∗ai∂jfµk]⋆3′ + [fµkai∂j∂lφ
∗]⋆3′ + [ai∂j(fµk∂lφ

∗)]⋆3′

− 2ai ⋆2 ∂j(fµk ⋆2 ∂lφ
∗))∂µφ+

1

4
∂µφ∗[∂µφfilfjk]⋆3′ +

1

8
(∂µφ∗ ⋆2 fij(∂µφ ⋆2 fkl)

+
1

4
θpq(∂µφ∗[∂ifjkflp∂q∂µφ]M(I)

− ∂q∂µφ
∗[∂ifjkflp∂µφ]M(I)

)

)

,

(3.4)
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Figure 7. Photon-scalar bubble: Sµν(p)bub.

with the product M(I) being defined in [18]. One can show that

Scomplex
(

φ =
1√
2
(ϕ1 + iϕ2)

)

= Sreal
(

ϕ1

)

+ Sreal
(

ϕ2

)

, (3.5)

if we express one complex scalar in terms of two real scalars. For this reason one complex

scalar contribution to the photon 1-PI two point function is twice as one real scalar, while

the photon contribution to the complex scalar two point function is the same as for the

real scalar two point function. Thus, we shall compute only those for the real scalar field.

The scalar-photon Feynman rules are given in the appendix D.

3.1 Scalar one-loop contributions to the photon polarization tensor

Like the photino sector, the adjoint scalar sector contains also two diagrams that contribute

to the photon polarization tensor, the scalar-bubble diagram figure 7 and scalar-tadpole

diagram figure 8. They both follow the five tensor structure decomposition (2.22) and stay

nonzero at the D → 4− ǫ limit.

3.1.1 The scalar-bubble diagram

Using Feynman rule (D.1) and employing the dimensional regularization techniques we

obtain the following loop-coefficielnts from the photon-scalar bubble diagram figure 7:

Sbub
1 (p) =− 1

D − 1
(4πµ2)2−

D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 8I1K + 2I0K ,

Sbub
2 (p) =− 8

1

(θp)2
T0 =

16

(θp)4
, Sbub

3 (p = 4
1

(θp)2
T0 = − 8

(θp)4
,

Sbub
4 (p) =

16

3

p2

(θp)4
T0 = −32

3

p2

(θp)6
, Sbub

5 (p) = 0.

(3.6)

3.1.2 The scalar-tadpole diagram

Next, with Feynman rule (D.2) we compute the photon-scalar tadpole diagram in figure 8,

Sµν(p)tad =
4
∑

k′=1

Sµν
k′ (p)tad =

1

2

∫

dDℓ

(2π)D
i

ℓ2

4
∑

k′=1

Sµν
k′ (ℓ, p,−p,−ℓ). (3.7)
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Figure 8. Photon-2scalars tadpole: Sµν(p)tad.

Starting with the first integral under dimensional regularization:

Sµν
1′ (p)tad=−e2

∫

dDℓ

(2π)D
f⋆2(ℓ, p)

ℓ2

(

(pθℓ)
(

(pθℓ)gµν−pµ(θℓ)ν−(θℓ)µpν
)

+p2(θℓ)µ(θℓ)ν
)∣

∣

∣

∣

D→4

=
e2

(4π)2
8

3(θp)4

[

3
(

gµν(θp)2−(θθ)µνp2+p{µ(θθp)ν}
)

+
4p2

(θp)2

(

(θθ)µν(θp)2+(θθp)µ(θθp)ν
)]

,

(3.8)

we obtained the IR result. To evaluate Sµν
2′ (p)tad, S

µν
3′ (p)tad and Sµν

4′ (p)tad we first need to

establish the following identities:

f⋆3′ (ℓ, p,−p) = f⋆3′ (ℓ,−p, p) = f⋆3′ (−ℓ, p,−p) = f⋆3′ (−ℓ,−p, p) = 1,

f⋆3′ (p,−p,−ℓ) = f⋆3′ (p,−p, ℓ) = f⋆3′ (−p, p,−ℓ) = f⋆3′ (−p, p, ℓ) = f2
⋆2
(ℓ, p),

f⋆3′ (−ℓ, p,−p) + f⋆3′ (p,−p,−ℓ)− 2f2
⋆2
(ℓ, p) ∼ −f2

⋆2
(ℓ, p),

f⋆3′ (p,−p,−ℓ) + f⋆3′ (−p, p,−ℓ)− 2f2
⋆2
(ℓ, p) = 0,

f⋆3′ (ℓ, p,−p) + f⋆3′ (p,−p, ℓ)− 2f2
⋆2
(ℓ, p) ∼ −f2

⋆2
(ℓ, p),

f⋆3′ (p,−p, ℓ) + f⋆3′ (−p, p, ℓ)− 2f2
⋆2
(ℓ, p) = 0.

(3.9)

We then find the following pure IR divergent terms:

Sµν
4′ (p)tad = −2Sµν

2′ (p)tad = −2Sµν
3′ (p)tad = −Sµν

2′ (p)tad − Sµν
3′ (p)tad

= e2
∫

dDℓ

(2π)D
f⋆2(ℓ, p)

ℓ2

(

(pℓ)
(

(θp)µ(θℓ)ν + (θℓ)µ(θp)ν
)

− (pθℓ)
(

ℓµ(θp)ν + (θp)µℓν
)

)∣

∣

∣

∣

D→4

=
e2

(4π)2
32

3

(θp)µ(θp)ν

(θp)4
, (3.10)

Sµν(p)tad = Sµν
1′ (p)tad. (3.11)

Using (3.8) and (3.11) and by comparing with general tensor structure (2.22) we have found

that from scalar-photon tadpole diagram only two terms survives:

Stad
1 (p) =Stad

2 (p) = Stad
5 (p) = 0,

Stad
3 (p) =− 4

1

(θp)2
T0 =

8

(θp)4
, Stad

4 (p) = −16

3

p2

(θp)4
T0 =

32

3

p2

(θp)6
.

(3.12)
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Figure 9. The scalar-photon tadpole: Σ(φ)(p)tad.

Finally summing up the IR parts of bubble (3.6) and tadpole (3.12) contributions we get:

[

Sµν(p)bub + Sµν(p)tad
]

IR
=

e2

(4π)2
(θp)µ(θp)ν S2(p)bub|IR

=− e2

(4π)2
(θp)µ(θp)ν

(θp)2
8T0 =

e2

(4π)2
(θp)µ(θp)ν

16

(θp)4
,

(3.13)

where all IR terms from both diagrams, except the one arising from the bubble, cancels

out. Interesting enough is that within this noncommutaive scalar-photon action in the ad-

jont (3.3) we are facing the exact cancelations of all divergences of the higher order terms of

noncommutative tensor-parameter θµν , showing thus the consistency of our computations.

3.2 The photon one-loop contribution to scalar 1-PI two point function

The one-loop adjoint scalar 1-PI two point function in the minimal coupled model con-

sists the tadpole diagram figure 9 and the bubble diagram figure 10. The evaluation is

straightforward. We obtain in the end

Σ(φ)(p)tad =
e2

(4π)2
8T0, (3.14)

and

Σ(φ)(p)bub =

− e2

(4π)2

[

trθθ
p4

(θp)2

(

2(4π)−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 4I0K − 4IH

)

+ (θθp)2
p4

(θp)4

(

4(4π)−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 8I0K − 4IH

)

+ p2
(

(2D − 4) (4π)−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 8I0K − 12IH

)

− 4T0

]

.

(3.15)
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Figure 10. The scalar-photon bubble: Σ(φ)(p)bub.

The total quadratic IR divergence reads

[

Σ(φ)(p)tad +Σ(φ)(p)bub
]

IR
=

e2

(4π)2
12T0 = − e2

(4π)2
24

(θp)2
. (3.16)

We will soon see in the next section that this divergence is exactly canceled by the contri-

butions from scalar-photino and scalar self-interaction diagrams.

4 Noncommutative N = 2 SYM U(1) theory and the θ-exact SW map

The noncommutative U(1) N=2 super Yang-Mills theory has the following action

SN=2 =

∫

−1

4
Fµν ⋆ F

µν + (Dµ[A]Φ)
†Dµ[A]Φ− e2

2
[Φ† ⋆, Φ]2

+ iΛ̄σ̄µDµ[A]Λ + iΨ̄σ̄µDµ[A]Ψ + ie
√
2Ψ[Λ ⋆, Φ†] + ie

√
2Ψ̄[Λ̄ ⋆, Φ],

(4.1)

in the Wess-Zumino gauge. The noncommutative fields in the previous action constitute

the noncommutative U(1) supermultiplet (Aµ,Λα,Ψα,Φ). Λα and Ψα are Weyl fermion

fields and Φ is a complex scalar field. Each field Λα, Ψα and Φ transforms under the adjoint

action of the NC U(1), so that the NC covariant derivative is Dµ[A] = ∂µ − i[Aµ
⋆, ].

By replacing the noncommutative fields of the action in (4.1) with the θ-exact Seiberg-

Witten maps — see appendix A — Aµ[aρ; θ], Λα[aρ, λα; θ], Ψα[aρ, ψα; θ], Φ[aρ, φ; θ], the

action SN=2 is turned into the action of a theory which is an interacting deformation of

the free ordinary U(1) supersymmetric theory for the U(1) supermultiplet (aµ, λα, ψα, φ).

This deformation is supersymmetric although supersymmetry — N = 2 — is nonlinearly

realized on the ordinary multiplet (aµ, λα, ψα, φ); a feature we have already seen in the

N = 1 SYM case.

The contributions to the action in (4.1) that are needed to compute one-loop

1PI two-point function of each field in (aµ, λα, ψα, φ) can be readily obtained by us-

ing (2.15), (2.16), (3.3) and

∫

ie
√
2ψ[λ ⋆, φ†] + ie

√
2ψ̄[λ̄ ⋆, φ]− e2

2
([Φ† ⋆, Φ])2. (4.2)

The terms in (4.2) yields the scalar-fermion N=2 Feynman rules (E.1) given in appendix E.

Now we are ready to display the value of each one-loop Feynman diagram contributing to

the two-point functions of the ordinary fields of the theory.
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Figure 11. N=2 four-scalar tadpole: Σ(φ)(p)4sc−tad.

Figure 12. N=2 scalar-photino bubble: Σ(φ)(p)f−bub.

4.1 The one-loop 1PI two-point function for photon field aµ

For N = 2 theory one has nf = ns = 2. Substituting these numbers as well as the

scalar bubble and tadpole results to (2.21), and then restricting to quadratic IR divergence

only, gives

Πµν(p)|IR =
e2

(4π)2
(θp)µ(θp)ν

(θp)2
(−16T0 + 16nfT0 − 8nsT0)|nf=ns=2 = 0, (4.3)

i.e. clean quadratic IR divergence cancellation. Remaining UV divergences can be ex-

pressed using the five-term notation in (2.22) as follows

Π1(p)|UV =

(

4

3
− 4

3
nf − 1

3
ns +

p2

(θp)4
(3trθθ(θp)2 + 4(θθp)2)

)(

2

ǫ
+ ln(µ2(θp)2)

) ∣

∣

∣

∣

nf=ns=2

,

(4.4)

Π2(p)|UV =
p2

(θp)2

(

2− p2(trθθ)

(θp)2

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (4.5)

Π3(p)|UV =
p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

, (4.6)

Π4(p)|UV = −4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

, (4.7)

Π5(p)|UV = 4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

. (4.8)

4.2 The one-loop 1PI two-point function for the scalar φ

The one-loop 1PI two-point function, Σ(φ)(p), of field φ is the sum of the four diagrams (fig-

ure 9, figure 10, figure 11 and figure 12). The first two are already given as equations (3.14)
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Figure 13. N=2 photino-scalar bubble: Σα̇α(p)scal.

and (3.15) in the last section. The values of the third and fourth diagrams read

Σ(φ)(p)4sc−tad = − e2

(4π)2
4T0, (4.9)

Σ(φ)(p)f−bub = 8e2µ4−D

∫

dDℓ

(2π)D
pℓ− ℓ2

ℓ2(ℓ− p)2
sin2

ℓθp

2

= −4e2µ4−D

∫

dDℓ

(2π)D
1

ℓ2
sin2

ℓθp

2

(

2− p2

(ℓ− p)2

)

=
e2

(4π)2

[

− 8T0 + 2p2
(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 2I0K

)]

. (4.10)

Hence, one gets the following full scalar two-point function:

Σ(φ)(p) = Σ(φ)(p)tad +Σ(φ)(p)bub +Σ(φ)(p)4sc−tad +Σ(φ)(p)f−bub, (4.11)

which is again quadratic IR divergence free, as

Σ(φ)(p)|IR =(Σ(φ)(p)tad +Σ(φ)(p)bub +Σ(φ)(p)4sc−tad +Σ(φ)(p)f−bub)|IR

=
e2

(4π)2
(12T0 − 8T0 − 4T0) = 0.

(4.12)

The UV divergence reads

Σ(φ)(p)|UV =
(

Σ(φ)(p)bub +Σ(φ)(p)f−bub

)

|UV

=− 2
e2

(4π)2
p2
(

1 + trθθ
p2

(θp)2
+ 2(θθp)2

p2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

.
(4.13)

4.3 The one-loop 1PI two-point function for photinos λα and ψα

In the N=2 theory there is a scalar-photino loop (figure 13) alongside the photon-photino

loop contribution which is identical to the N = 1 theory value (2.46) for each of the two

photinos.

The scalar-photino loop integral gives the following contribution

Σα̇α(p)scal =8e2µ4−D

∫

dDℓ

(4π)D
sin2

ℓθp

2

ℓµ − pµ

ℓ2(ℓ− p)2
σ̄α̇α
µ

=− e2

(4π)2
pµσ̄α̇α

µ 2

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 2I0K

)

. (4.14)
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Total photino two-point function is finally given as a sum:

Σα̇α
(λ,ψ)(p) = Σα̇α(p)tad +Σα̇α(p)bub +Σα̇α(p)scal. (4.15)

It is quadratic IR divergence free and it has the following UV divergence

Σα̇α
(λ,ψ)(p)|UV = − e2

(4π)2
σα̇α
µ pµ

(

2 + trθθ
p2

(θp)2
+ 2(θθp)2

p2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

. (4.16)

5 Noncommutative N = 4 SYM U(1) theory and the θ-exact SW map

Let (Aµ,Λα i,Φm), i = 1, . . . , 4, m = 1, . . . , 6 define the noncommutative U(1) N=4

supermultiplet; then, the action of the noncommutative U(1) N = 4 super Yang-Mills

theory reads

SN=4 =

∫

−1

4
Fµν ⋆ F

µν + iΛ̄iσ̄µDµ[A]Λi +
1

2
Dµ[A]ΦmDµ[A]Φm +

(e

2
[Φm

⋆, Φn]
)2

+ i
e

2
(σ̃−1)ijΛi[Λj

⋆, Φm]− i
e

2
(σ̃)ijΛ̄

i[Λ̄j ⋆, Φm].

(5.1)

The matrices 4 × 4, (σ̃)ij and (σ̃−1)ij give rise to the IRREP of the Dirac matrices in 8

Euclidean dimensions; further details can be found in [22]. Let us recall that Aµ is the

noncomutative gauge field, that Λα i is a noncommutative Weyl field and that Φm is a

noncommutative real scalar field. The noncommutative U(1) acts by the adjoint action

on Λα i and Φm, and hence Dµ[A] = ∂µ − i[Aµ
⋆, ].

By replacing, in SN=4 above, the fields Aµ, Λα i and Φm with the corresponding θ-exact

Seiberg-Witten maps — namely, Aµ[aρ; θ], Λα i[aρ, λα; θ] and Φm[aρ, φ; θ], respectively, we

obtain an action which defines an interacting deformation of the ordinary N = 4 SYM

theory in the Wess-Zumino gauge. This deformed action is expressed in terms of the

fields of the ordinary N = 4 Yang-Mills supermultiplet (aµ, λα i, φm), i = 1, . . . , 4, m =

1, . . . , 6 and it is invariant (on-shell) under the deformed supersymmetric transformations

of the ordinary supermultiplet (aµ, λα i, φm) which give rise to the N = 4 supersymmetric

transformations of the fields in (Aµ,Λα i,Φm). As in the N = 1 and N = 2 cases, the

supersymmetry transformations of the ordinary fields that leave SN=4 in (5.1) invariant

gives rise to on-shell nonlinear realization of N = 4 supersymmetry algebra.

The contributions to the action in (5.1) that are needed to compute one-loop

1PI two-point function of each field in (aµ, λα, ψα, φ) can easily be obtained by us-

ing (2.18), (2.19), (3.3) and

∫

(e

2
[φm

⋆, φn]
)2

+
ie

2
(σ̃−1)ijλi[λj

⋆, φm]− ie

2
(σ̃)ij λ̄

i[λ̄j ⋆, φm]. (5.2)

The terms in (5.2) yields the Feynman rules given in appendix D.

Below we shall display the value of each one-loop Feynman diagram contributing to

the two-point functions of the ordinary fields of the theory.
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Figure 14. N=4 scalar-photon tadpole: Σmn(p)tad.

5.1 The one-loop 1PI two-point function for massless vector field aµ

The N = 4 aµ 1PI two-point function follows the general formula (2.21), only with nf =

4 and ns = 6. One can immediately recognize clean cancelation of the quadratic IR

divergences after substituting N = 4 → nf = 4, ns = 6 into (4.3).

5.2 The one-loop 1PI two-point function for the scalar φm

The one-loop 1PI two-point function, Σmn(p), of the field φm is the sum of five diagrams

figures 14, 15, 16 and 17, whose values read

Σmn(p)4sc−tad =
e2

(4π)2
20δmnT0, (5.3)

Σmn(p)f−bub = 32e2µ4−Dδmn

∫

dDℓ

(2π)D
pℓ− ℓ2

ℓ2(ℓ− p)2
sin2

ℓθp

2

=
8e2

(4πµ2)2
δmn

[

− 4T0 + p2
(

(4π)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 2I0K

)]

, (5.4)

hence

Σmn(p) = Σmn(p)tad +Σmn(p)bub +Σmn(p)4sc−tad +Σmn(p)f−bub, (5.5)

is again IR divergence free, only this time we have

Σmn(p)|IR =(Σmn(p)tad +Σmn(p)bub +Σmn(p)4sc−tad +Σmn(p)f−bub) |IR

=
e2

(4π)2
δmn(12T0 − 32T0 + 20T0) = 0.

(5.6)

The UV part reads

Σmn(p)|UV =
e2

(4π)2
δmnp

2

(

4− 2trθθ
p2

(θp)2
− 4(θθp)2

p2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

. (5.7)

5.3 The one-loop 1PI two-point function for λα i

The one-loop 1PI two-point function, Σα̇α i
j(p), of the field λα i is the sum of the three

diagrams figure 18, figure 19 and figure 20 whose values read

Σα̇α i
j (p)tad = 0, (5.8)

Σα̇α i
j (p)bub = − e2

(4π)2
σ̄α̇α
µ δij

[

pµ N1(p) + (θθp)µ N2(p)
]

, (5.9)
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Figure 15. N=4 scalar-photon bubble: Σmn(p)bub.

Figure 16. N=4 four-scalar tadpole: Σmn(p)4sc−tad.

Figure 17. N=4 scalar-photino bubbles: Σmn(p)f−bub.

with N1,2(p) being given in (2.47) and (2.48), respectively, and

Σα̇α i
j (p)scal =24e2µ4−Dδij

∫

dDℓ

(4π)D
sin2

ℓθp

2

ℓµ − pµ

ℓ2(ℓ− p)2
σ̄α̇α
µ

=− 6e2

(4π)2
δijp

µσα̇α
µ

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 2I0K

)

. (5.10)

Hence,

Σα̇α i
j(p) = Σα̇α i

j (p)tad +Σα̇α i
j (p)bub +Σα̇α i

j (p)scal, (5.11)

is quadratic IR divergence free, and the total UV divergences is presented below

Σα̇α i
j(p)|UV = − e2

(4π)2
δijσ

α̇α
µ pµ

(

6 + trθθ
p2

(θp)2
+ 2(θθp)2

p2

(θp)4

)(

2

ǫ
+ ln(µ2(θp)2)

)

.

(5.12)
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Figure 18. N=4 photino-photon tadpole: Σα̇α i
j (p)tad.

Figure 19. N=4 photino-photon bubble: Σα̇α i
j (p)bub.

Figure 20. N=4 photino-scalar bubble: Σα̇α i
j (p)scal.

6 Effect of gauge fixing on photon two point function

In the prior sections we have shown that the quadratic IR divergent contribution to the

photon two point function can be canceled by introducing supersymmetry. Yet we have

still two unanswered question: first, all of our computations above are carried out in the

commutative Feynman gauge, which, albeit convenient, is just one specific choice. We do

not know whether the cancelation we found would be changed by a change of gauge fixing.

Second, we have quite complicated UV divergence in the Feynman gauge in general, which

may be modified by changing gauge fixing, as in the commutative gauge theories. To study

these two issues we introduce in this section a new, non-local and nonlinear gauge fixing

based on the Seiberg-Witten map then evaluate its effect to the photon two point function.

6.1 The noncommutative Feynman gauge fixing action

We introduce a new gauge fixing for non-local U(1) gauge theory via the θ-exact Seiberg-

Witten map. In terms of BRST language, this gauge fixing contains BRST-auxiliary field

B, and it is given by

S = SU(1) + Sgf = SU(1) + s

∫

ω̄

(

∂µA
µ(aµ, θ

ij) +
B

2

)

,

Sgf =

∫

B

(

∂µA
µ +

B

2

)

− ω̄s(∂µA
µ) =

∫

1

2
(B + ∂µA

µ)2 − 1

2
(∂µA

µ)2 − ω̄∂µ(sA
µ),

(6.1)

with s being regular U(1) BRST transformations saµ = ∂µω, where ω is the U(1) ghost.

Next we use consistency condition for SW map to get sAµ(aµ, θ
ij) = DµΩ, where Ω is

U⋆(1) ghost and Dµ the U⋆(1) covariant derivative in the adjoint representation Dµ =

∂µ + i[Aµ
⋆, ].
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Figure 21. Gauge fixing L: 3-photon bubble.

Since the SW map for Ω is actually the same as for the NC gauge parameter Λ from [15]

we can derive the photon-photon and photon-ghost coupling in this gauge. So by using the

following BRST transformations

sω̄ = B, sB = 0,

sAµ(aµ, θ
ij) = sNCA

µ = DµΩ,
(6.2)

from (6.1) is produced the following gauge fixing action

Sgf =

∫

1

2
(B + ∂µA

µ)2 − 1

2
(∂µA

µ)2 − ω̄∂µD
µΩ, (6.3)

which after the application of the SW map resulting Feynman rules for the gauge fixing

and ghost induced diagrams given in appendix F. We name this gauge as “noncommuta-

tive (NC) Feynman gauge” as it is formally identical to the Feynman gauge in a U⋆(1)

gauge theory.

6.2 One-loop contributions from the new NC gauge fixing action

The new gauge fixing action (6.3) introduces additional terms to the three and four pho-

ton self-couplings as well as photon-ghost couplings, as summarized in (F.1). Unlike the

three and four photon couplings in the commutative Feynman gauge [16, 18], these new

interaction terms are no longer transverse. It then becomes intriguing how the sum of the

resulting loop integrals behave.

From Feynman rules (F.1) we find the following diagrams figures 21–26 contributing

to the one loop photon two point function. Denoting the total sum of figures 21 to 26 as

Πµν
gftotal

, it turns out to be convenient to split it into two partial sums

Πµν
gftotal

= Πµν
gfmix

+Πµν
gf . (6.4)

Here Πµν
gfmix

presents the sum over figures 21 and 22, which contain one 3-photon vertex

from the classical action and the other from gauge fixing action, while Πµν
gf sums over the

rest of them which are solely from the gauge fixing.2

The evaluation of diagrams in figure 21–26 follows substantially the standard proce-

dure used in the prior section, except the rising of the two new types of tadpole integrals.

2One more reason is that gauge fixing (6.1) and/or (6.3) can be added to any U(1) gauge invariant

action, particularly the free U(1) action Sfree = − 1
4

∫
fµνf

µν . In this case Πµν
gf would present the whole

contribution to the one loop 1-PI photon two point function. Thus it is convenient to isolate it out.
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Figure 22. Gauge fixing R: 3-photon bubble.

Figure 23. Gauge fixing L&R: 3-photon bubble.

Figure 24. Gauge fixing T: 4-photon tadpole.

Figure 25. Photon-ghost bubble.

Figure 26. 2Photons-ghost tadpole.
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The first one takes the form of the second term in (2.44) so it can be removed by our

regularization prescription. The second one is a tadpole integral without any loop mo-

menta in the numerator i.e.
∫

dDk
(2π)D

k−2f⋆2(k, p)
2. This integral contains total effective

loop momenta power ℓ−4 because of the additional denominator (kθp)−2 from the nonlocal

factor f⋆2(k, p)
2, which is below the minimal power for the commutative tadpole integral

to vanish [23]. Consequently we observe unregularized UV divergence when computing

this integral by transforming it into the bubble or applying the n-nested zero regulator

method [23]. We develop an alternative prescription (B.21) based on the parametriza-

tion (2.40) which is capable of dimensionally-regularizing this integral into a 1/ǫ divergence

plus the logarithmic UV/IR mixing term ln(µ2(θp)2) at the D → 4− ǫ limit (B.22).

We are able to express both Πµν
gfmix

and Πµν
gf appropriately once T−2 is added to the

prior basis integral set T0, I
0
K , I1K and IH . The outcome is listed as below

Πµν
gfmix

=
e2

(4π)2

(

2pµpν + p{µ(θθp)ν}
p2

(θp)2

)

· (4 + 4IH) , (6.5)

Πµν
gf =

e2

(4π)2

(

pµpν ·ΠA + p{µ(θθp)ν}ΠB

)

, (6.6)

ΠA =− 1

2

[

(4πµ2)2−
D
2 (p2)

D
2
−2 · 4 · Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

·
(

1− p2

(θp)2

(

trθθ(θp)2 + (θθp)2
)

)

+
1

2
p2trθθT−2 − 8I0K (6.7)

+ 2
p2

(θp)2

(

trθθ(θp)2(4I0K + 4IH) + (θθp)2(8I0K + 4IH)
)

]

,

ΠB =− 1

2

(

(4πµ2)2−
D
2 (p2)

D
2
−2 · 2(D − 1) · Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 1

4
p2T−2 −

p2

(θp)2
· 3 · (4I0K + 4IH)

)

. (6.8)

One can immediately notice that Πµν
gftotal

contains only two tensor structures pµpν and

p{µ(θθp)ν} which can not be combined into a transverse sum. The loss of transversality

appears to be, of course, surprising. However we are going to develop reasoning/arguments

for this seeming odd behavior in the next section and show that it is in fact understandable.

7 Gauge fixing contribution without integrating out BRST-auxiliary

field

In order to achieve simple transversality we conclude that one has to keep BRST auxiliary

field B from being integrated out. Arguments for that are as follows.

Starting with the action (6.1) we write a generating functional

Z
[

Jµ, j, j̄, h
]

=

∫

DaµDωDω̄ DB · exp
[

i
(

S +

∫

(

Jµaµ + j̄ω + jω̄ + hB
)

)]

= exp
[

iW
[

Jµ, j, j̄, h
]

]

,

(7.1)
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from where we have effective action in terms of “currents”:

Γ
[

Jµ, j, j̄, h
]

= W
[

Jµ, j, j̄, h
]

+

∫

(

Jµaµ + j̄ω + jω̄ + hB
)

. (7.2)

Regular BRST transformation s acting on Z vanish, thus we have:

sZ = 0 = i

∫

DaµDωDω̄ DB
(

Jµ∂µω − j ·B
)

· exp
[

i
(

S +

∫

(

Jµaµ + j̄ω + jω̄ + hB
)

)]

=⇒
∫

( δΓ

δaµ
∂µω +B

δΓ

δω̄

)

=

∫

(

− ω∂µ
δΓ

δaµ
+B

δΓ

δω̄

)

= 0. (7.3)

Since the transversality condition means ∂µ
δΓ
δaµ

= 0, which is satisfied in equation (7.3)

only for B = 0. This however is not allowed if we integrate out the B field. Thus we do

not perform that, instead we construct a propagator from the following doublet combina-

tion

(

aµ
B

)

.

7.1 Formal analysis

In order to compute the two point function(s) within the presence of the B-field, we must

define the propagator(s) for the “kind of strange” vector-scalar field

(

aµ
B

)

doublet. Start-

ing with

SU(1) =

∫

−1

4
fµνf

µν =
1

2

∫

aµ
(

∂2gµν − ∂µ∂ν
)

aν , (7.4)

we get a quadratic part of S

Squadratic =
1

2

∫

(

aµ
(

∂2gµν − ∂µ∂ν
)

aν + 2B · ∂µaµ +B2
)

, (7.5)

whose Fourier transform is as follows

S̃quadratic =
1

2

∫

d4k

(2π)4

(

ãµ(−k)
(

− k2gµν + kµkν
)

ãν(k)

+ iB̃(−k)kµã
µ(k)− ikµã

µ(−k)B̃(k) + B̃(−k)B̃(k)
)

=
1

2

∫

d4k

(2π)4

(

ãµ(−k), B̃(−k)
)

T0

(

ãν(k)

B̃(k)

)

.

(7.6)

The Hermitian matrix

T0 =

(

Tµν
011

Tµ
012

T ν
021

T022

)

=

(

−k2gµν + kµkν − ikµ

ikν 1

)

, (7.7)

is then the inverse of the propagator in the momentum space. Next we inverse T0 to obtain

T−1
0 =

(

Gρµ Aρ

Bµ G

)

=⇒ T−1 · T0 = 1 =

(

δνρ 0

0 1

)

. (7.8)
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Figure 27. Illustration of the above procedure in computing photon propagator. BRST-auxiliary

field B (Bauxiliary) is denoted by a double full line.

From (7.7) and (7.8) we have four equations:

δνρ = −k2Gρν + kµGρµk
ν + iAρk

ν , 0 = −ikµGρµ +Aρ

0 = −k2Bν + kµBµk
ν + iGkν , 1 = −iBµk

µ + 1, (7.9)

which we solve by using simple Ansatz: Aρ = A · kρ, Bµ = B · kµ =⇒ G = 0, B =
i
k2

=⇒ A = B† = −i
k2

=⇒ Gρµ = − gρµ
k2

. Taking into account a text book convention

(−k2gµν+kµkν)Gµν = iδµρ for the phase factor we add overall factor i and obtained correct

photon propagator, as illustrated in figure 27.

One can write down the usual field redefinition B′ = B + ∂µa
µ in (6.3) in the Fourier

transformed context as

(

ãµ(k)

B̃′(k)

)

= A0 ·
(

ãµ(k)

B̃(k)

)

=

(

1 0

ikµ 1

)

·
(

ãµ(k)

B̃(k)

)

. (7.10)

The A−1
0 then diagonalizes the bilinear form (7.7) into

T ′
0 = A−1

0
†
T0A

−1
0 =

(

−k2gµν 0

0 1

)

. (7.11)

It is easy to see that inverting this T ′
0 gives the expected Feynman propagator. From

that viewpoint the B-integration can be achieved by diagonalization. One can formally

generalize the tree level diagonalization procedure to the one loop. Consider in general the

one loop corrections as another Hermitian matrix T1 adding to the T0 matrix, we write the

quadratic part of the 1-loop corrected effective action in the momentum space as

Γ̃1
quadratic =

1

2

∫

d4k

(2π)4

(

ãµ(−k), B̃(−k)
)

(T0 + T1)

(

ãν(k)

B̃(k)

)

. (7.12)
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Next we express T1 in terms of its components

T1 =

(

Tµν
111

iTµ
112

= −iTµ
121

iT ν
121

T122

)

. (7.13)

The Slavnov-Taylor identity (7.3) then requires that Tµν
111

= δΓ̃1

δãµδãν
has to be transverse,

while others not. One can now replace A0 by a new transformation

A =

(

1 0

i(kµ + Tµ
121

) (1 + T122)

)

, (7.14)

with A−1 diagonalizing the 1-loop corrected bilinear form T0 + T1

T ′ = A−1†(T0 + T1)A
−1 =

(

−k2gµν + Tµν
111

+Π′µν 0

0 (1 + T122)
−1

)

, (7.15)

where

Π′µν = kµkν −
(

kµ + Tµ
121

) (

kν + T ν
121

)

1 + T122

. (7.16)

We then conjecture that the formal leading order expansion of Πµν with respect to the

coupling constant e corresponds to the gauge fixing corrections to the 1-loop 1-PI photon

two point function, i.e.

Πµν
gftotal

= Π′µν (kµ → pµ) |e2 = pµpν · T122 − p{µT
ν}
121

. (7.17)

And, as we shall see below, this relation/conjecture indeed holds.

7.2 The action of the gauge and BRST-auxiliary fields and Feynman rules

We define the noncommutative photon-auxiliary field action by using the first and the

second order SW maps for the NC gauge field, A
(1)
µ and A

(2)
µ , respectively:

SB−aµ =

∫

−(∂µB)(A(1)
µ +A(2)

µ )

=

∫

−(∂µB)
1

2
θijai ⋆2 (∂jaµ + fjµ)+(∂µB)

1

8
θijθkl

(

[

ai∂j
(

ak(∂laµ + flµ)
)

]

⋆3′

− 2
[

ai(fjkfµl − ak∂lfjµ)
]

⋆3′
+
[

(∂jaµ + fjµ)ak(∂lai + fli)
]

⋆3′

)

,

(7.18)

from where we obtain the corresponding photon-auxiliary field interaction vertices. Cor-

responding Feynman rules from the above action generate one-loop correction to the

quadratic effective action and are given in appendix G.
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Figure 28. Bubble contribution to photon polarization: Bµν
B−aµ

(p), with B − aµ propagators

running in the loop in opposite directions.

Figure 29. The 3gauge-1Bauxiliary fields tadpole contribution to photon polarization: Tµν
B−aµ

(p).

Figure 30. Two bubbles with mixing aµ and B − aµ propagators emerging from SW-interacting

U(1).

7.3 One-loop contributions to the photon effective action up to the quadratic

order, from the BRST auxiliary field B

Based on our vertex read-out convention, ∂µ = ipµ, we obtain the following correspondence

rule between the matrix elements of one loop correction T1 and the 1-PI loop diagrams

Tµν
111

=Πµν +Πµν
B−aµ

,

Πµν
B−aµ

=figure 25 + figure 26 + figure 28 + figure 29 + figure 30,

iTµ
121

= iΠµ + iΠµ
mix, iΠµ = figure 31 + figure 32,

T122 =figure 33, iΠµ
mix = figure 34.

(7.19)

Note that Πµν denotes all contributions from the classical action, which is the same as

summing over all contributions to the photon two point function computed in sections 2–5

and thus transverse. Explicit computation first revolves that

Πµν
B−aµ

= 0, (7.20)

thus the Slavnov-Taylor identity is actually trivially fulfilled.

The rest of the matrix elements listed in (7.19) are nonzero and boil down to the

following expressions

Πµ =
e2

(4π)2

(

pµΠI + (θθp)µΠII

)

, (7.21)
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Figure 31. Bubble contribution to iT121 , with B − aµ-propagator in the loop.

Figure 32. Tadpole contribution to iT121 , with photon-loop.

Figure 33. Bubble contribution to T122 , with photon-loop.

Figure 34. Bubble contribution iΠµ
mix to iT121 , with photon-loop.

where

ΠI =(4πµ2)2−
D
2 (p2)

D
2
−2 · (D − 2) · Γ

(

3− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− (4I0K + 6IH),

(7.22)

ΠII =
p2

(θp)2

(

(4πµ2)2−
D
2 (p2)

D
2
−2 · (D − 1) · Γ

(

3− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− 1

8
(θp)2T−2 − (6I0K + 6IH)

)

, (7.23)

and

Πµ
mix = − e2

(4π)2

(

pµ + (θθp)µ
p2

(θp)2

)

(4 + 4IH) . (7.24)
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Finally we have

T122 =
1

2

e2

(4π)2

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

· 4 ·
(

(D − 3) +
p2

(θp)2

(

trθθ + 2(θθp)2
)

)

− 1

2
p2trθθT−2

− 8I0K − 24IH − p2

(θp)2
· 2 ·

(

trθθ(θp)2(4I0K + 4IH) + (θθp)2(8I0K + 4IH)
)

)

.

(7.25)

Next we start to verify our conjecture (7.17). First we derive the following relations

from it,

ΠA = (4π)2e−2T122 − 2ΠI, ΠB = −ΠII, Πµν
gfmix

= −p{µΠ
ν}
mix. (7.26)

One then immediately observes that the second and third relations do fulfill. As for the

first one we can compute its right hand side

(4π)2e−2T122 − 2ΠI =
1

2

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

· 4 ·
(

(D − 3) +
p2

(θp)2

(

trθθ + 2(θθp)2
)

)

− 1

2
p2trθθT−2

− 8I0K − 24IH − p2

(θp)2
· 2 ·

(

trθθ(θp)2(4I0K + 4IH) + (θθp)2(8I0K + 4IH)
)

)

− 2

(

(4πµ2)2−
D
2 (p2)

D
2
−2 · (D − 2) · Γ

(

3− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

− (4I0K + 6IH)

)

=
1

2

(

(4πµ2)2−
D
2 (p2)

D
2
−2Γ

(

2− D

2

)

B

(

D

2
− 1,

D

2
− 1

)

∣

∣

∣

∣

∣

D→4−ǫ

· 4 ·
(

−1 +
p2

(θp)2

(

trθθ + 2(θθp)2
)

)

− 1

2
p2trθθT−2

+ 8I0K − p2

(θp)2
· 2 ·

(

trθθ(θp)2(4I0K + 4IH) + (θθp)2(8I0K + 4IH)
)

)

= ΠA,

(7.27)

which is in agreement with (6.7). Thus the conjectured relation (7.17) is proven.

Retrospectively, we see that the gauge fixing contribution to the 1-loop correction is a

shift from the on-shell value of the gauge fixing functional. Therefore it does not need to

be transverse. The fact that the pure gauge fixing and mixing contributions satisfies (7.17)

independently is because the former can be considered as gauge fixing to a free U(1) gauge

theory.

Finally let’s briefly discuss the divergences in the gauge fixing configuration(s). Using

the results from the appendix B we can see that Πµν
gftotal

contains no quadratic IR divergent
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term, therefore the quadratic IR divergence cancelation we found from the prior sections

are also preserved under this gauge fixing choice. We can also extract the UV & logarithmic

divergence at the D → 4− ǫ limit

ΠA|UV = −
(

2− p2

(θp)2

(

3trθθ(θp)2 + 4(θθp)2
)

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.28)

ΠB|UV = −7

2

p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.29)

while the Πµν
gfmix

is finite at this limit. We conclude our analysis by listing of all UV plus

logarithmic divergences in Πµν
total = Πµν + Πµν

gftotal
, which can be decomposed into seven

symmetric tensor structures

Πµν
total|UV =

e2

(4π)2

(

gµν · Ξ1 + pµpν · Ξ2 + (θp)µ(θp)ν · Ξ3

+
[

gµν(θp)2 − (θθ)µνp2 + p{µ(θθp)ν}
]

Ξ4

+
[

(θθ)µν(θp)2 + (θθp)µ(θθp)ν
]

Ξ5 + (θp){µ(θθθp)ν}Ξ6

+ p{µ(θθp)ν} · Ξ7

)

.

(7.30)

Explicit computation then yields

Ξ1|UV = p2
(

4

3
− 4

3
nf − 1

3
ns +

p2

(θp)4

(

3trθθ(θp)2 + 4(θθp)2
)

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.31)

Ξ2|UV =

(

−2− 4

3
+

4

3
nf +

1

3
ns

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.32)

Ξ3|UV = B2|UV = 2
p2

(θp)2

(

2− p2(trθθ)

(θp)2

)(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.33)

Ξ4|UV = B3|UV = 2
p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.34)

Ξ5|UV = B4|UV = −4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.35)

Ξ6|UV = B5|UV = 4
p4

(θp)4

(

2

ǫ
+ ln(µ2(θp)2)

)

, (7.36)

Ξ7|UV = ΠB|UV = −7

2

p2

(θp)2

(

2

ǫ
+ ln(µ2(θp)2)

)

. (7.37)

8 Summary and discussion

In this paper we have computed the one-loop contributions to all the propagators of the

noncommutative super Yang-Mills U(1) theory with N=1, 2 and 4 supersymmetry and

defined by the means of the θ-exact Seiberg-Witten map. We have shown that for N=1, 2

and 4 the quadratic noncommutative IR divergence,

(θp)µ(θp)ν

(θp)4
,
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a trade-mark of noncommutative gauge theories — which occur in the bosonic, fermionic

and scalar contributions to photon propagator cancel each other, rendering a photon prop-

agator free of them as befits Supersymmetry. Indeed, from (4.3) for N = 1, 2, 4, one gets:

N = 1 : nf = 1, ns = 0,

N = 2 : nf = 2, ns = 2,

N = 4 : nf = 4, ns = 6,

Πµν
total(p)|IR =

e2

(4π)2

[

(32

3
+

64

3

)

− 32 · nf + 16 · ns

]

(θp)µ(θp)ν

(θp)4
= 0. (8.1)

This cancellation, occuring in the case at hand, is nontrivial since Supersymmetry acts

nonlinearly — see (2.16) — on the ordinary fields. Let us recall that the cancellation of

quadratic noncommutative IR divergences is also a feature of noncommutative super Yang-

Mills theories when formulated in terms of noncommutative fields [1–5]. Hence, our result

concerning the cancellation of the quadratic noncommutative IR divergences really points

into the direction that the θ-exact Seiberg-Witten map really provides quantum duals of

the same underlying theory.

We have shown — see (4.11) and (5.6) — that the characteristic quadratic noncom-

mutative IR divergences,
1

(θp)2
,

which arise in the individual contributions to the one-loop propagators of the scalar fields

in the N=2 and 4 Supersymmetry, also cancel each other at the end of the day. The same

holds for the photino field as well.

Since the previous cancellations occur both in the ordinary Feynman gauge and in the

noncommutative Feynman gauge — see section 7, our computations further indicate that

the cancellation is robust against changing the gauge fixing and may have real physical,

and therefore gauge invariant, content. Let us recall that independence of gauge-fixing

parameter of the cancellation of noncommutative IR divergences in the dual theory, i.e.,

in N=1 U(1) super Yang-Mills theory formulated in terms of the noncommutative fields,

has been shown to hold — see ref. [2].

In this paper we have also worked out explicitly the one-loop UV divergent con-

tributions — which show as poles at D = 4 — to all propagator of the theory:

see (2.49), (2.33)–(2.34), (4.13), (4.16), (5.7), (5.12) and (7.30)–(7.37). It is noticeable

that the pole parts displayed in the equations we have just quoted contain non-polynomial,

i.e., non-local, terms whose denominator isa power of θp. With respect to this we would

like to point out that, in keeping with Weinberg’s power counting theorem [24], Feynman

integrals whose degree of UV divergence are not the same along all directions are liable to

give rise to the pole contributions which are non-polynomial. This is exactly our situation

since our integrands contain factors of the type

1

(q2)n ((q + p)2)m (qθp)s
, s = 1, 2,
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and these factors approach zero as Λ(−2n−2m−s) along the direction parallel to θp, and

as Λ(−2n−2m) along any direction orthogonal to θp. Hence UV divergences with a non-

polynomial dependence on the momenta may occur and our computations show that indeed

they do occur. We would like to recall that a similar situation, — i.e. the non-polynomial

UV divergences — happens in ordinary Yang-Mills theories in the light-cone gauge [25, 26].

Now, the UV divergences of two-point functions are in general gauge dependent quan-

tities. We have verified that this is so in our case by computing the one-loop propagator

of the gauge field both in the ordinary Feynman gauge and in the noncommutative Feyn-

man gauge — see section 6. The result for the first type of gauge is in (2.33)–(2.34) and

in (7.30)–(7.37) for the second type of gauge fixing term: their differences stand out. Hence,

extracting gauge invariant information from the UV divergences is our next challenge along

this line of research and it will require the computation of three and higher point functions.

Let us finally remark that UV/IR mixing effects also work for the non-

polynomial UV divergent contributions we have obtained. Indeed, as seen

in (2.49), (2.33)–(2.34), (4.13), (4.16), (5.7), (5.12) and (7.30)–(7.37) every pole in 2/ǫ

comes hand in hand with the logarithmic noncommutative IR divergence ln(µ2(θp)2). The

reader is referred to the final part of appendix B for further information regarding this issue.
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A Seiberg-Witten differential equations for the SYM U(1)

Let Φ be a noncommutative field, either boson or fermion, in d dimensions, which gauge

transforms under the adjoint of U(N). Then its NC BRST transformation reads

sNCΦ = −i[Φ ⋆, Ω], (A.1)

where Ω is the noncommutative U(N) ghost field in d dimensions that parametrizes the

noncommutative BRST transformations of the U(N) gauge field Aµ in d dimensions:

sNCAµ = ∂µΩ− i[Aµ
⋆, Ω], sNCΩ = iΩ ⋆ Ω. (A.2)
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Let φ and aµ be an ordinary matter and gauge fields in d dimensions which take values

in the Lie algebra of U(N) in the fundamental representation. Let the BRST transforma-

tions of φ and aµ be

sφ = −i[φ, ω], saµ = ∂µω − i[aµ, ω], sω = iω · ω, (A.3)

where ω is the ordinary ghost field in d dimensions which also takes values in Lie algebra

of U(N) in the fundamental representation. Then, the SW map {Ω[e · a, ω; θµν ], Aµ[e ·
a; θµν ],Φ[e · a, φ; θµν ]} is a solution to the problem

sΩ = iΩ ⋆ Ω, Ω[e · a, ω; θij = 0] = ω,

sAµ = ∂µΩ− i[Aµ
⋆, Ω], Aµ[e · a; θij = 0] = e · aµ, (A.4)

sΦ = −i[Φ ⋆, Ω], Φ[e · a, φ; θij = 0] = φ.

It is known that the following set of differential equations — called the Seiberg-Witten

differential equations [11, 27] — furnish a solution to the problem in the system of equa-

tions (A.4):

d

dt
Ω = −1

4
θij
{

Ai
⋆t, ∂jΩ

}

, Ω[t = 0] = ω,

d

dt
Aµ = −1

4
θij
{

Ai
⋆t, ∂jAµ + Fjµ

}

, Aµ[t = 0] = e · aµ, (A.5)

d

dt
Φ = −1

4
θij
{

Ai
⋆t, ∂jΦ+DjΦ

}

, Φ[t = 0] = φ.

Note that µ runs from 0 to d− 1, while i runs from 1 to d− 1, respectively.

Now we show how a solution to the previous problem can be obtained by solving

Seiberg-Witten differential equations for a U(N) gauge field in d + 1 dimensions. Let

AM = (Aµ, Ad) be a noncommutative gauge field in d+1 dimensions and in the fundamental

representation of U(N) and let Ω̂ denote the corresponding noncommutative ghost field.

Then the Seiberg-Witten differntial equations for AM and Ω̂ read

d

dt
Ω̂ = −1

4
θIJ
{

AI
⋆t, ∂J Ω̂

}

, Ω̂[t = 0] = ω̂,

d

dt
AM = −1

4
θIJ
{

AI
⋆t, ∂JAµ + FJM

}

, AM [t = 0] = e · aM ,

(A.6)

where I and J run from 1 to d, and aM = (aµ, ad+1) and ω̂ are the corresponding ordinary

fields in d+ 1 dimensions.

Let us assume that the coordinate Xd commutes with all the others, i.e., θIJ is such

that θId = 0. Now, let AM [e ·a′M , ; θIJ ] and Ω̂[e ·a′M , ω̂; θIJ ] be the solution to (A.6) and let

us take now aM and ω̂ to be independent of xd, so that AM [e ·a′M , ; θIJ ] and Ω̂[e ·a′M , ω̂; θIJ ]

become independent of xd. Now, for these AM [e · a′M , ; θij ] and Ω̂[e · a′M , ω̂; θij ] the SW

differential equations in (A.6) boil down to

d

dt
Ω̂ = −1

4
θij
{

Ai
⋆t, ∂jΩ̂

}

, Ω̂[t = 0] = ω̂,

d

dt
Aµ = −1

4
θij
{

Ai
⋆t, ∂jAµ + Fjµ

}

, Aµ[t = 0] = e · aµ, (A.7)

d

dt
Ad = −1

4
θij
{

Ai
⋆t, ∂jAd +DjAd

}

, Ad[t = 0] = e · ad,
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where we have taken into account that Fµd = ∂µAd − i[Aµ, Ad] = DµAd, for Ad does not

depend on xd. It is plain that if we replace Ad with Φ and e · ad with φ in (A.7), one

obtains (A.5). We thus conclude that the SW map for Φ can be obtained from the SW

map Ad[e · aµ, e · ad; θij ] that solves (A.6) by replacing e · ad with φ. We also deduce the

following relation between the gauge field strength Fµd and the covariant derivative Dµ

Dµ[Aν ]Φ = Fµd[e · aµ, e · ad; θij ]|e·ad→φ. (A.8)

Next, let Aµ[aν ; θ
ij ], Λα[aµ, λα; θ

ij ] and D(nc)[aµ, D; θij ] be θ-exact Seiberg-Witten

maps given by the following expansions in terms of the coupling constant e:

Aµ[aν ; θ
ij ] = e (aµ + eA(1)

µ [aν ; θ
ij ] + e2A(2)

µ [aν ; θ
ij ]) +O

(

e4
)

,

Λα[aν , λα; θ
ij ] = λα + eΛ(1)

α [aν , λα; θ
ij ] + e2 Λ(2)

α [aν , λα; θ
ij ] +O

(

e3
)

,

D(nc)[aν , D; θij ] = D + eD(1)[aν , D; θij ] + e2D(2)[aν , D; θij ] +O
(

e3
)

.

(A.9)

Taking the n-th variations, of the m-th order of the NC gauge field Aµ, its supersymmetric

fermion partner Λα and of the NC auxiliary field D(nc), we obtain the following expressions

δnA(m)
µ = A(m)

µ [aν + δnaν ; θij ]−A(m)
µ [aν ; θ

ij ] +O
(

ξ2
)

,

δnΛ(m)
α [aν , λα; θ

ij ] = Λ(m)
α [aν + δnaν , λα + δnλα; θ

ij ]− Λ(m)
α [aν , λα; θ

ij ] +O
(

ξ2
)

,

δnD(m)[aν , D; θij ] = D(m)[aν + δnaν , D + δnD; θij ]−D(m)[aν , D; θij ] +O
(

ξ2x
)

.

(A.10)

Here m = 1, 2, while δnaν , δnλα and δnD for n = 0, 1, have been given in (2.20).

B Integrals

A fairly large number of special function integrals occur in studying NCQFT, with or

without SW map. Some description of the integrals relevant to this work was given in [16],

where we used a set of seven special function integrals to present the nonplanar part of

the bubble integrals at D = 4. During this work and our prior study on NC tadpole

integrals [18] we studied additional new integrals and found some new relations among all

of them. Here we present a new list of five integrals which are used to present all loop

integral results in the main text.

The original set of seven integrals include four Bessel K-function integrals and three

integrals over a function H[z] which can be expressed in terms of hypergeometric functions

H[z] = lim
D→4

[

(z

2

)D−2
Γ

(

1− D

2

)

1F2

(

1

2
;
3

2
,
D

2
;
(z

2

)2
)

+
1

3−D
· Γ
(

D

2
− 1

)

1F2

(

3−D

2
;
4−D

2
,
5−D

2
;
(z

2

)2
)]

.

(B.1)
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Below is a list of these integrals

I1 =

1
∫

0

dx (x(1− x)p2)
1
2 ((θp)2)−

1
2K1

[

(x(1− x)p2(θp)2)
1
2

]

, (B.2)

I2 =

1
∫

0

dxK0

[

(x(1− x)p2(θp)2)
1
2

]

, (B.3)

I3 =

1
∫

0

dxxK0

[

(x(1− x)p2(θp)2)
1
2

]

, (B.4)

I4 =

1
∫

0

dxx2K0

[

(x(1− x)p2(θp)2)
1
2

]

, (B.5)

I5 =

1
∫

0

dxH
[

(x(1− x)p2(θp)2)
1
2

]

, (B.6)

I6 =

1
∫

0

dxxH
[

(x(1− x)p2(θp)2)
1
2

]

, (B.7)

I7 =

1
∫

0

dxx2H
[

(x(1− x)p2(θp)2)
1
2

]

. (B.8)

Later it is revolved that I1 is directly related to the tadpole integrals

A1 =

∫

dDk

(2π)D
(kθp)2

k2
f⋆2(k, p)

2 = −8
1

(4π)2
1

(θp)2

=− 1

(4π)2

(

8I1 + p2(4I2 − 12I3 + 8I4)
)

,

(B.9)

and

A2 =

∫

dDk

(2π)D
(k · p)2

k2
f⋆2(k, p)

2 =
8

3

1

(4π)2
p2

(θp)4

=
1

3

1

(4π)2
p2

(θp)4

(

8I1 + p2(12I2 − 92I3 + 104I4) + 4p2(3I5 − 26I6 + 32I7)
)

.

(B.10)

It is convenient to use the tadpole integral in lieu of the integral I1 since the tadpole integral

is quadratic IR divergent only. We select

T0 =
1

4
(4π)2A1 = (4π)2

∫

dDk

(2π)D
k−2 sin2

kθp

2
= −2

1

(θp)2

=− 2I1 − p2(I2 − 3I3 + 2I4),

(B.11)

to fulfill this task. We can also extract an identity

(4I2 − 12I4) + (5I5 − 16I7) = 0, (B.12)
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from the relation A1 = −3A2p
−2(θp)2. The other two useful relations are:

I2 − 2I3 = I5 − 2I6 = 0. (B.13)

Using these three relations we can reduce the rest six integrals I2−7 to three, which we

choose to be

I0K = I2 =

1
∫

0

dxK0

[

(x(1− x)p2(θp)2)
1
2

]

, (B.14)

I1K = I3 − I4 =

1
∫

0

dxx(1− x)K0

[

(x(1− x)p2(θp)2)
1
2

]

, (B.15)

IH = I5 =

1
∫

0

dxH
[

(x(1− x)p2(θp)2)
1
2

]

. (B.16)

Using the generalized power series expansions in the vicinity of z = 0,3

K0[z] = −
∞
∑

k=0

1

Γ[k + 1]2

(z

2

)2k (

ln
z

2
− ψ(k + 1)

)

, (B.17)

and

H[z] =− 1 +
∞
∑

k=0

Γ
(

k + 3
2

)

Γ
(

k + 5
2

)

Γ (k + 1)Γ (k + 2)

(z

2

)2k+2

·
(

ln
z

2
+

1

2
ψ

(

k +
1

2

)

− 1

2
ψ (k + 1)− 1

2
ψ

(

k +
3

2

)

− 1

2
ψ (k + 2)

)

,

(B.18)

it is not difficult to see that the integrals T0, I
0
K , I1K and IH bear distinctive asymptotic

behavior in the IR regime. The T0 is quadratically IR divergent by definition, while I0K and

I1K carry the dual logarithmic noncommutative IR divergence (logarithmic UV/IR mixing)

ln(p2(θp)2), with coefficients −1/2 and −1/12, respectively. The last integral IH is finite

at the IR limit.

A new type of tadpole integral, which is UV divergent at the D → 4 − ǫ limit occurs

repeatedly in the NC Feynman gauge computation part of this work. Here we provide an

account of its evaluation. This new tadpole, denoted as T−2, bears a very simple form

T−2 = (4π)2µ4−D

∫

dDk

(2π)D
1

k2
f⋆2(k, p)

2. (B.19)

On the other hand, it turns out that T−2 is not that simple to evaluate. Two usual regular-

ization methods used before, turning tadpole to bubble or using the n-nested zero regulator,

do not function here. The first one produces divergent special function integrals while the

second contains unfavorable powers of the regulator. The parametrization discussed in the

3ψ(z) = d
dz

ln Γ(z) denotes the zeroth order polygamma function.
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first section of this note offers us an alternative way to handle this problem. Using that

parametrization we can express T−2 as

T−2 = (4π)2µ4−D

∫

dD−1ℓ

(2π)D−1

+∞
∫

−∞

dx

2π

1

ℓ2 + x2
4 sin2 |θp|

2 x

x2(θp)2

= (4π)2µ4−D

∫

dD−1ℓ

(2π)D−1

1

(θp)2

(

− 1

|ℓ|3 +
2|θp|
|ℓ|2 +

e−|ℓ||θp|

|ℓ|3

)

.

(B.20)

Unlike A2, here we can only neglect the second term in the last parenthesis because the first

and last exceed the minimal value of the loop momenta power m = −2 in the dimensional

regularization prescription. Then one can introduce one more integrand y to make the first

and last terms into one

T−2 = (4π)2µ4−D

∫

dD−1ℓ

(2π)D−1

1

(θp)2

(

− 1

|ℓ|3 +
e−|ℓ||θp|

|ℓ|3

)

= −(4π)2µ4−D

1
∫

0

dy

∫

dD−1ℓ

(2π)D−1

1

|θp|
e−y|ℓ||θp|

|ℓ|2

= −(4π)
5−D
2 µ4−D 2

Γ
(

D−1
2

)

1
∫

0

dy

∞
∫

0

dl |θp|−1lD−4e−ly|θp|

= −(4π)
5−D
2 µ4−D 2

Γ
(

D−1
2

)

1
∫

0

dy |θp|2−Dy3−DΓ (D − 3)

= −(4π)
5−D
2 µ4−D 2

Γ
(

D−1
2

) |θp|2−DΓ (D − 3)

4−D

= (4πµ2)
4−D
2

(

(θp)2

4

)1−D
2 Γ

(

D
2 − 2

)

D − 3
.

(B.21)

Finally, a familiar pattern emerges once we compute the D → 4 limit

T−2 = − 4

(θp)2

(

2

4−D
+ ln(µ2(θp)2) + lnπ + γE + 2

)

+O(4−D). (B.22)

Here we see the logarithmic UV/IR mixing taking place via a single integral.

In the end all loop integrals are expressed via usual planar integrals plus nonplanar

integrals T−2, T0, I
0
K , I1K and IH .
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Figure 35. N=1 photino propagator, eq. (B.2).

Figure 36. N=1 photino-photon vertex: V e1
µ

ρ (p1, p2); p2 + p3 − p1 = 0.

Figure 37. N=1 photino-2photons vertex: V e2
µν

ρ (p2, p3, p4); p2 + p3 + p4 − p1 = 0.

C Photino-photon Feynman rules

The N=1 photino action Sphotino, (2.19), in the momentum space reads

Sphotino =

∫

d4p

(2π)4
λ̄α̇(p)pµσ̄

µ α̇αλα(p)

+

∫ 4
∏

i=1

d4pi
(2π)4

(2π)4δ(p1 − p2 − p3) λ̄α̇(p1)aµ(p2)λα(p3)σ̄
ρ α̇α V e1µ

ρ

[

p1,−p2,−p3
]

+

∫ 4
∏

i=1

1

2

d4pi
(2π)4

(2π)4δ(p1 −
4
∑

j=2

pj)

· λ̄α̇(p1)aµ(p2)aν(p3)λα(p4)σ̄
ρ α̇α V e2µν

ρ

[

p1,−p2,−p3,−p4
]

+O
(

e3
)

, (C.1)

where all three terms above are represented by figures 35, 36, and 37. For photino propa-

gator in particular, see [20]:

〈0|Tλα(x)λ̄β̇(y)|0〉 =
∫

d4p

(2π)4

i pµσ
µ

αβ̇

p2 + iǫ
e−ip(x−y). (C.2)

From the second line in (C.1) and figure 36 the photino-photon vertex reads as follows:

σ̄ρ α̇α V e1µ

ρ(p1, p2) = f⋆2 (p1, p2)

(

σ̄ρ α̇αp2ρ(θp1)
µ − σ̄µ α̇α(p2θp1)− (θp2)

µσ̄ρ α̇αp1ρ

)

, (C.3)

where (p2, µ) is the photon incoming (momenta, index) and the fermion momentum p1
flows through the vertex, as it should.
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From the third line in (C.1) and figure 37 the photino-2photons vertex reads as follows:

σ̄ρ α̇α V e2µν

ρ (p2, p3, p4) =

− i

(

(

θp2)
µ
(

σ̄ρ α̇αp3ρ
(

θp4)
ν − σ̄ν α̇α(p3θp4)

)

f⋆2 (p1, p2) f⋆2 (p3, p4)

+
(

θp3)
ν
(

σ̄ρ α̇αp2ρ
(

θp4)
µ − σ̄µ α̇α(p2θp4)

)

f⋆2 (p1, p3) f⋆2 (p2, p4)

+
i

2

(

σ̄ρ α̇αp2ρ

(

(

θp3
)µ(

θp4
)ν −

(

p3θp4
)

θµν
)

− σ̄ν α̇α
(

(

p2θp3
)(

θp4
)µ

+
(

p2θp4
)(

θp3
)µ
)

)

·
(

f⋆3′ (p2, p4, p3) + f⋆3′ (p4, p2, p3)
)

+
i

2

(

σ̄ρ α̇αp3ρ

(

(θp4)
µ(θp2)

ν + (p2θp4)θ
µν
)

+ σ̄µ α̇α
(

(p2θp3)(θp4)
ν − (p3θp4)(θp2)

ν
)

)

·
(

f⋆3′ (p3, p4, p2) + f⋆3′ (p4, p3, p2)
)

+
i

2
(θp3)

µ
(

σ̄ρ α̇αp3ρ(θp4)
ν − σ̄ν α̇α(p3θp4)

)

·
(

f⋆3′ (p4, p2, p3) + f⋆3′ (p2, p3, p4)− 2f⋆2 (p1, p2) f⋆2 (p3, p4)
)

+
i

2

(

θp4)
µ
(

σ̄ρ α̇αp3ρ
(

θp4)
ν − σ̄ν α̇α(p3θp4)

)

·
(

f⋆3′ (p3, p2, p4) + f⋆3′ (p2, p3, p4)− 2f⋆2 (p1, p2) f⋆2 (p3, p4)
)

+
i

2
(θp2)

ν
(

σ̄ρ α̇αp2ρ
(

θp4)
µ − σ̄µ α̇α(p2θp4)

)

·
(

f⋆3′ (p4, p3, p2) + f⋆3′ (p3, p2, p4)− 2f⋆2 (p1, p3) f⋆2 (p2, p4)
)

+
i

2
(θp4)

ν
(

σ̄ρ α̇αp2ρ
(

θp4)
µ − σ̄µ α̇α(p2θp4)

)

·
(

f⋆3′ (p2, p3, p4) + f⋆3′ (p3, p2, p4)− 2f⋆2 (p1, p3) f⋆2 (p2, p4)
)

+
i

2
σ̄ρ α̇αp1ρ

(

(

f⋆2 (p1, p2) f⋆2 (p3, p4) + f⋆2 (p1, p3) f⋆2 (p2, p4)
)

(θp2)
µ(θp3)

ν

− f⋆′3 (p4, p2, p3)
(

(p2θp3)θ
µν + (θp3)

µ(θp2)
ν
)

− (θp2)
µ
(

(p2θp3)(θp4)
ν + (θp2)

ν(p3θp4)
)

f(I) (p2, p3, p4)

+ (θp3)
ν
(

(p2θp3)(θp4)
µ − (θp3)

µ(p2θp4)
)

f(I) (p3, p2, p4)

− 1

2
(θp2)

µ(θp3)
ν(p2θp3)

(

f(I) (p2, p3, p4)− f(I) (p3, p2, p4)
)

)

,

(C.4)

with photon momenta (p2, µ), (p3, ν) and photino momentum p1 being incoming.
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Figure 38. Scalar-photon vertex: Sµ(p1, p2, p3); p1 + p2 + p3 = 0.

Figure 39. Scalar-2photons vertex: Sµν
rele(p1, p2, p3, p4); p1 + p2 + p3 + p4 = 0.

D Scalar-photon Feynman rules

From the scalar action (3.3) we obtain the following scalar-photon Feynman rule corre-

sponding to the figure 38:

Sµ(p1, p2, p3) =− ef⋆2(p1, p3)
(

(p1p2)(θp3)
µ − (p1p3)(θp2)

µ + (p2p3)(θp1)
µ

− pµ1 (p2θp3)− pµ3 (p2θp1)
)

,
(D.1)

and the following scalar-2photons Feynman rule corresponding to the figure 39:

Sµν
rele(p1, p2, p3, p4) = Sµν

1′ + Sµν
2′ + Sµν

3′ + Sµν
4′ , (D.2)

Sµν
1′ = ie2

{

f⋆2(p1, p2)f⋆2(p4, p3) ·
(

(p2p3)(θp1)
ν(θp1)

µ − pν2(θp4)
µ(p3θp4) (D.3)

− pµ3 (θp4)
ν(p2θp1) + gµν(p3θp4)(p2θp1)

)

+ f⋆2(p1, p3)f⋆2(p4, p2)

·
(

(p2p3)(θp1)
ν(θp4)

µ − pν2(θp4)
µ(p3θp1)− pµ3 (θp1)

ν(p2θp4) + gµν(p2θp4)(p3θp1)
)

−
(

(p1p3)(θp2)
ν(θp4)

µ − pν1(θp2)
µ(p3θp4)

− pµ4 (θp3)
ν(p2θp1) + (p4p2)(θp2)

ν(θp1)
µ
)

+ f⋆2(p2, p4)f⋆2(p3, p1)

·
(

(p4p3)(θp2)
µ(θp1)

ν − pν4(θp2)
µ(p3θp1)− pµ1 (θp3)

ν(p2θp4) + (p1p2)(θp3)
ν(θp4)

µ
)

}

,
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Sµν
2′ =

i

2
e2
{

[

f⋆3′ (p2, p3, p4)+f⋆3′ (p4, p2, p3)
]

·
(

(p1p2)(θp3)
µ(θp4)

ν−(p1p2)θ
µν(p3θp4)

− pµ1 (θp4)
ν(p2θp3)− pµ1 (θp2)

ν(p3θp4)
)

+
[

f⋆3′ (p2, p3, p1) + f⋆3′ (p1, p2, p3)
]

·
(

(p4p2)(θp3)
µ(θp1)

ν − (p4p2)(p3θp1)θ
µν − pµ4 (θp1)

ν(p2θp3)− pµ4 (θp2)
ν(p3θp1)

)

+
[

f⋆3′ (p3, p2, p4) + f⋆3′ (p4, p3, p2)
]

·
(

(p1p3)(θp2)
ν(θp4)

µ − (p1p3)(p2θp3)θ
µν (D.4)

− pν1(θp3)
µ(p3θp2)− pν1(θp3)

µ(p2θp4)
)

+
[

f⋆3′ (p3, p2, p1) + f⋆3′ (p1, p3, p2)
]

·
(

(p4p3)(θp2)
ν(θp1)

µ − (p4p3)(p2θp1)θ
µν − pν4(θp1)

µ(p3θp2)− pν4(θp3)
µ(p2θp1)

)

}

,

Sµν
3′ =

i

2
e2
{

[

f⋆3′ (p4, p2, p3) + f⋆3′ (p2, p3, p4)− 2f⋆2(p2, p1)f⋆2(p3, p4)
]

·
(

(p1p3)(θp3)
µ(θp4)

ν − pν1(θp3)
µ(p3θp4)

)

+
[

f⋆3′ (p1, p2, p3) + f⋆3′ (p2, p3, p1)

− 2f⋆2(p2, p4)f⋆2(p3, p1)
]

·
(

(p4p3)(θp3)
µ(θp1)

ν − pν4(θp3)
µ(p3θp1)

)

+
[

f⋆3′ (p4, p3, p2) + f⋆3′ (p3, p2, p4)− 2f⋆2(p3, p1)f⋆2(p2, p4)
]

·
(

(p1p2)(θp2)
ν(θp4)

µ − pµ1 (θp2)
ν(p2θp4)

)

+
[

f⋆3′ (p1, p3, p2) + f⋆3′ (p3, p2, p1)

− 2f⋆2(p3, p4)f⋆2(p2, p1)
]

·
(

(p4p2)(θp2)
ν(θp1)

µ − pµ4 (θp2)
ν(p2θp1)

)

+
[

f⋆3′ (p2, p3, p4) + f⋆3′ (p3, p2, p4)− 2f⋆2(p2, p1)f⋆2(p3, p4)
]

·
(

(p1p3)(θp4)
µ(θp4)

ν − pν1(θp4)
µ(p3θp4)

)

+
[

f⋆3′ (p2, p3, p1) + f⋆3′ (p3, p2, p1)

− 2f⋆2(p2, p4)f⋆2(p3, p1)
]

·
(

(p4p3)(θp1)
µ(θp1)

ν − pν4(θp1)
µ(p3θp1)

)

+
[

f⋆3′ (p3, p2, p4) + f⋆3′ (p2, p3, p4)− 2f⋆2(p3, p1)f⋆2(p2, p4)
]

·
(

(p1p2)(θp4)
ν(θp4)

µ − pµ1 (θp4)
ν(p2θp4)

)

+
[

f⋆3′ (p3, p2, p1) + f⋆3′ (p2, p3, p1)

− 2f⋆2(p3, p4)f⋆2(p2, p1)
]

·
(

(p4p2)(θp1)
ν(θp1)

µ − pµ4 (θp1)
ν(p2θp1)

)

}

,

(D.5)

Sµν
4′ =

i

2
e2(p1 · p4)

(

(

f⋆2 (p1, p2) f⋆2 (p3, p4)+f⋆2 (p1, p3) f⋆2 (p2, p4)
)

(θp2)
µ(θp3)

ν

− f⋆′3 (p4, p2, p3)
(

(p2θp3)θ
µν + (θp3)

µ(θp2)
ν
)

− (θp2)
µ
(

(p2θp3)(θp4)
ν + (θp2)

ν(p3θp4)
)

f(I) (p2, p3, p4)

+ (θp3)
ν
(

(p2θp3)(θp4)
µ − (θp3)

µ(p2θp4)
)

f(I) (p3, p2, p4)

− 1

2
(θp2)

µ(θp3)
ν(p2θp3)

(

f(I) (p2, p3, p4)− f(I) (p3, p2, p4)
)

)

.

(D.6)
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Figure 40. N=2 fermion propagator: Σαβ̇(p).

Figure 41. N=2 scalar-fermion vertex: Γα1α2(p1, p2); p1 + p2 − p3 = 0.

Figure 42. N=2 scalar-antifermion vertex: Γα̇1α̇2(p1, p2); p3 − p1 − p2 = 0.

E Scalar-fermion Feynman rules in the NC N = 2, 4 SYM U(1)

Feynman rules in N=2 from figures 40–43 are:

Σαβ̇(p) = i
σµ

αβ̇
pµ

p2
,

Γα1α2(p1, p2) = −2
√
2ie sin

p1θp2
2

ǫα1α2 ,

Γα̇1α̇2(p1, p2) = 2
√
2ie sin

p1θp2
2

ǫα̇1α̇2 ,

Γ(p1, p2, p3, p4) = 4ie2
[

sin
p1θp4
2

sin
p2θp3
2

+ {1 ↔ 2}
]

.

(E.1)

Feynman rules in N=4 from figures 44–47 are:

Σj
i (p) = i

σµ pµδ
j
i

p2
,

Γα1α2
i1i2m

(p1, p2) = 2ie
(

σ̃−1
m

)

i1i2
sin

p1θp2
2

ǫα1α2 ,

Γα̇1α̇2
i1i2m

(p1, p2) = 2ie
(

σ̃m
)

i1i2
sin

p1θp2
2

ǫα̇1α̇2 ,

Γm1m2m3m4(p1, p2, p3, p4)=−4ie2
[

sin
p1θp2
2

sin
p3θp4
2

(

δm1m3δm2m4 − δm2m3δm1m4

)

+c.p.

]

.

(E.2)
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Figure 43. N=2 four-scalar vertex: Γ(p1, p2, p3, p4); p1 + p2 − p3 − p4 = 0.

Figure 44. N=4 fermion propagator: Σj
i (p).

Figure 45. N=4 scalar-fermion vertex: Γα1α2

i1i2m
(p1, p2); p1 + p2 + p3 = 0.

Figure 46. N=4 scalar-antifermion vertex: Γα̇1α̇2

i1i2m
(p1, p2); p3 − p1 − p2 = 0.

Figure 47. N=4 four-scalar vertex: Γm1m2m3m4
(p1, p2, p3, p4); p1 + p2 + p3 + p4 = 0.
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Figure 48. Gauge fixing 3-photon vertex: Γµ1µ2µ3

gf (p1, p2, p3); p1 + p2 + p3 = 0.

Figure 49. Gauge fixing 4-photon vertex: Γµ1µ2µ3µ4

gf (p1, p2, p3, p4); p1 + p2 + p3 + p4 = 0.

F Feynman rules from the NC gauge fixing and ghost actions

From figures 48–51 we have the following Feynman rules:

Γµ1µ2µ3

gf (p1, p2, p3) = −1

2
f⋆2(p1, p2)

[

2pµ1
1 pµ3

1 (θp3)
µ2 − pµ1

1 (p1p3)θ
µ2µ3 + 2pµ1

1 pµ2
1 (θp2)

µ3

− pµ1
1 (p1p2)θ

µ2µ3 + 2pµ2
2 pµ3

2 (θp3)
µ1 − pµ2

2 (p2p3)θ
µ1µ3 + 2pµ2

2 pµ1
2 (θp1)

µ3 − pµ2
2 (p2p1)θ

µ1µ3

+ 2pµ3
3 pµ2

3 (θp2)
µ1 − pµ3

3 (p3p2)θ
µ1µ2 + (pµ3

3 pµ1
3 (θp1)

µ2 − pµ1
3 (p1p3)θ

µ1µ2

]

,

Γµ1µ2µ3µ4

gf (p1, p2, p3, p4)=− i

8
f⋆2(p1, p2)f⋆2(p3, p4)

[

(p1 + p2)
µ2(θp2)

µ1 − (p1 + p2) · p1θµ1µ2

]

·
[

(p3 + p4)
µ4(θp4)

µ3 − (p1 + p4) · p4θµ3µ4

]

+
i

8
f⋆3′ [p2, p3, p4]

[

2pµ1
1 pµ4

1

(

2(θp4)
µ2(θp4)

µ3 − (p3θp4)θ
µ2µ3

)

+ 2pµ1
1 pµ2

1

(

2(θp2)
µ4(θp4)

µ3 + (p2θp4)θ
µ3µ4

)

+ pµ1
1 (p1p2)

(

2(θp4)
µ3θµ2µ4 − (θp4)

µ2θµ3µ4
)

− pµ1
1 (p1p4)

(

3(θp3)
µ2θµ3µ4 + 2(θp3)

µ4θµ2µ3 + 2(θp4)
µ3θµ2µ4 + (θp4)

µ2θµ3µ4
)

]

+ {S4 permutations},

Γµ
gh(p1, p2) = f⋆2(p1, p2)

[

1

2
(p1 + p2)

2(θp2)
µ − (p1 + p2)

µ(p1θp2)

]

,

Γµ1µ2

gh (p1, p2, p3, p4) =

{

1

2
f⋆2(p1, p2)f⋆2(p3, p4)

[

2pµ2
4 (θp2)

µ1 − (p4p1)θ
µ1µ2

]

(p4θp3)

+
1

2
f⋆2(p2, p3)f⋆2(p1, p4)p

µ1
4 (θp3)

µ2(p1θp4)

}

+ {1 ↔ 2}.

(F.1)
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Figure 50. Ghost-photon vertex: Γµ
gh(p1, p2); p1 + p2 − p3 = 0.

Figure 51. Ghost-2photons vertex: Γµ1µ2

gh (p1, p2, p3, p4); p1 + p2 + p3 − p4 = 0.

Figure 52. The 2gauge-Bauxiliary field interactions: Γµ1µ2

Baa (p, q1, q2); p+ q1 + q2 = 0.

Figure 53. The 3gauge-Bauxiliary field interactions: Γµ1µ2µ3

Baaa (p, q1, q2, q3); p+ q1 + q2 + q3 = 0.

G Feynman rules from the gauge and BRST-auxiliary field interactions

Feynman rule corresponding to figure 52 is:

Γµ1µ2

Baa (p, q1, q2) =−
i

2
f⋆2(q1, q2)

(

2pµ2(θq2)
µ1−(pq2)θ

µ1µ2+2pµ1(θq1)
µ2+(pq1)θ

µ1µ2

)

, (G.1)

while the 3-gauge-B-auxiliary-field Feynman rule from figure 53 has the following form:

Γµ1µ2µ3

Baaa (p, q1, q2, q3) =
1

8
f⋆3′ (q1, q2, q3)

(

3(pq3)(θq2)
µ1θµ2µ3 + (pq1)(θq3)

µ1θµ2µ3

+ (pq3)(θq1)
µ1θµ2µ3 − 2(pq1)(θq2)

µ2θµ1µ3 + 2(pq3)(θq2)
µ3θµ1µ2

+ 2(pq3)(θq2)
µ2θµ1µ3 + 2pµ3(q2θq3)θ

µ1µ2 − 2pµ1(q1θq2)θ
µ2µ3

− 4pµ3(θq2)
µ1(θq3)

µ2 − 4pµ1(θq3)
µ2(θq1)

µ3

)

+ {S3 permutations}.

(G.2)
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