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ABSTRACT The task of redescription mining explores ways to re-describe different subsets of entities
contained in a dataset and to reveal non-trivial associations between different subsets of attributes, called
views. This interesting and challenging task is encountered in different scientific fields, and is addressed by
a number of approaches that obtain redescriptions and allow for the exploration and analyses of attribute
associations. The main limitation of existing approaches to this task is their inability to use more than
two views. Our work alleviates this drawback. We present a memory efficient, extensible multi-view
redescription mining framework that can be used to relate multiple, i.e. more than two views, disjoint sets
of attributes describing one set of entities. The framework can use any multi-target regression or multi-label
classification algorithm, with models that can be represented as sets of rules, to generate redescriptions.
Multi-view redescriptions are built using incremental view-extending heuristic from initially created two-
view redescriptions. In this work, we use different types of Predictive Clustering trees algorithms (regular,
extra, with random output selection) and the Random Forest thereof in order to improve the quality of final
redescription sets and/or execution time needed to generate them.We provide multiple performance analyses
of the proposed framework and compare it against the naive approach to multi-view redescription mining.
We demonstrate the usefulness of the proposed multi-view extension on several datasets, including a use-
case on understanding of machine learning models - a topic of growing importance in machine learning and
artificial intelligence in general.

INDEX TERMS Knowledge discovery, multi-view redescription mining, redescription set, predictive
clustering trees, random forest, extremely randomized trees, random output selection.

I. INTRODUCTION
Redescription mining [30] aims to find multiple characteri-
zations (re-descriptions) of different subsets of entities in a
set of available data, i.e. to identify subsets of instances that
can be re-described. These characterizations are expressed
in a rule-like form which makes them easy to understand.
Entities can be re-described using, e.g. information about
entities obtained from different data sources or using different
types of data, using data describing different aspects of the
entities, or describing entities at different points in time.
The result of analysis performed by redescription mining
is a set of redescriptions - tuples of logical formulas (also
called queries), where queries of a redescription depict the
same, or very similar subsets of entities - the intersection of
which is called a redescription support set.
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The ability of redescription mining to provide tuples of
rules re-describing entities in a support set (using multi-
ple sources of data, used to form views) distinguishes this
approach from related fields, e.g. clustering [8], [16], [36],
conceptual clustering [7], [22] and multi-view clustering [2],
[13]. Redescription mining as an unsupervised technique is
different from subgroup discovery [12], [14], [19], [35] and
its ability to find bi-directional associations distinguishes it
from association rule mining [1], [15], [38] that provides uni-
directional associations.

Existing redescription mining algorithms, cf. [10], [11],
[26], [29], [30], [37], [39] produce redescriptions using max-
imally two different views. This significantly limits the appli-
cability of redescription mining to more complex problems.

The main contribution of this work is a memory and time-
complexity efficient framework for multi-view redescription
mining, able to find redescriptions on datasets containing an
arbitrary number of views. The methodology builds upon
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and extends our preliminary work [24], which demonstrated
the feasibility of this approach. In addition to providing
thorough results of a framework’s performance and compar-
ison to the naive way of creating multi-view redescription
mining algorithms by utilizing existing two-view approaches,
we provide experiments of using supplementing forest of
Predictive Clustering trees (PCTs) [28], with [5] (PCT-ROS)
and without [18] random output selection and using a sup-
plementing forest of Extra multi-target Predictive Clustering
trees [17] (EPCT) to increase the overall performance. Using
a supplementing model obtained by training a Random Forest
of PCTs was shown to increase accuracy and diversity of
produced redescriptions when two views are used [28]. In this
work, we test the same hypothesis on datasets using more
than two views and test supplementing models produced
by training PCTs with random output selection and using
random forest of Extra multi-target Predictive Clustering
trees. We further test the feasibility of using Extra multi-
target Predictive Clustering trees as a main rule-generating
methodology, instead of using ordinary PCTs (which reduces
the overall time complexity of the framework). As an addi-
tional technique that provides trade-off between accuracy and
complexity, we test the framework’s performance when using
random projections on different subsets of pairs of initial
views, instead of using all possible view pairs to create initial
redescriptions (these that are later expanded to redescrip-
tions containing queries constructed on all available views).
Finally, we show examples of how this methodology can be
used to increase the overall understanding of the outputs of
different predictive machine learning models, which is an
important contribution for the fields of machine learning and
explainable data science.

Section II contains explanations, notation, definitions and
provides an illustrative redescription example, Section III
contains the related work and motivates the use of tech-
niques and models presented. Section IV provides a detailed
description of the proposed framework for multi-view
redescription mining, while Section V contains the results
of the complexity analyses of the framework. Section VI
describes the data used to perform the experimental eval-
uation presented in Section VII. This evaluation tests the
ability of the proposed framework to discover new knowledge
on three different datasets, compares its performance with
naive implementation that uses existing two-view redescrip-
tion mining approaches to create multi-view redescriptions
and demonstrates the use of the proposed framework to
increase the understanding of various machine learning mod-
els. Finally, Section VIII contains conclusions and possible
directions for future work.

II. NOTATION AND DEFINITIONS
Input to the redescription mining algorithm consists of a
set of entities (E) and a set of attributes (V ), which are
logically grouped in one or more views, denoted Wi, i ≥ 1.
Each variable Vj, j ≥ 1 belongs to one of the views Wi.
A redescription R is a tuple of queries R = (q1, q2, . . . , qn),

where each query qi describes a set of entities using only
variables belonging to the corresponding view Wi and all
queries contained within a redescription must describe the
same or very similar sets of entities. Similarity of these sets is
measured by some relation, denoted as∼. Queries are logical
formulas built using variables and the logical operators of
conjunction, disjunction and negation. These are the building
blocks of a query language Q (see [9] and [23] for more
details). A formal definition of the redescription mining task
from [9] is directly applicable in the multi-view setting:
Definition 1: Given a set of entities E, a set of attributes V

describing these entities, a set of viewsW , a query language
Q, a similarity relation ∼ and a constraint set C, the task of
redescription mining is to find all redescriptions that satisfy
the constraints in C.
The most commonly used similarity relation is the Jaccard

index. Constraint set C includes conditions on the redescrip-
tion support, the Jaccard index and the p-value (which
we define in this section) but can also include constraints
on the average redescription element and attribute Jaccard
index (description and support redundancy) and complex-
ity, defined as the normalized redescription query size (see
Section VII for formal definition). Even with a reasonable
set of constraints, following the original definition of a task
can potentially lead to creation of a large amount of patterns.
Because of this, we aim to find a much smaller subset of
patterns that satisfy the set of constraints C and optimizes
broader set of measures, leading to representative and high
quality subset that might be interesting to the end user.

The support set of a query qi (supp(qi)) is the set of
all entities satisfying its conditions. The redescription R =
(q1, q2, . . . , qn), n ∈ N describes the entity e if e ∈
supp(qi), ∀i ∈ {1, 2, . . . , n}. All entities described by a
redescription compose a redescription support set (supp(R) =
supp(q1) ∩ supp(q2) ∩ · · · ∩ supp(qn)). R describes entities
using n queries built using attributes from n different views,
thus nViews(R) = n.

As an example, we present a redescription of a set of
countries by using a trading view (view 1), a population view
(view 2), an energy view (view 3) and a country develop-
ment and wealth view (view 4). The redescription Rex =
(qex1 , qex2 , qex3 , qex4 ) contains four queries. It is presented
in Table 1. Variables of each query of the example redescrip-
tion (e.g., E/I_Cork_Wood - export to import contribution
ratio of cork and wood, E/I_Road_Vehicles - export
to import contribution ratio of road vehicles etc.), are con-
nected with the conjunction (∧ - AND) operator. Numerical
constraints denote the range of attribute values for entities
contained in the redescription support set.

Higher similarity among the sets of entities described by
each of redescription’s queries represents higher redescrip-
tion accuracy. The Jaccard index quantifies this similarity and
is used as a measure of redescription accuracy. It is defined
as:

J (R) =
|supp(q1) ∩ supp(q2) ∩ · · · ∩ supp(qn)|
|supp(q1) ∪ supp(q2) ∪ · · · ∪ supp(qn)|

(1)
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TABLE 1. Example redescription Rex = (qex1 , qex2 , qex3 , qex4 ), with nViews(Rex ) = 4, that re-describes five countries: France, Germany, Italy, Japan and
Spain.

A statistical significance of some redescription R =

(q1, q2, . . . , qn) is determined by testing the following null
hypothesis: supp(R) is obtained by joining randomly gener-
ated queries q1, . . . qn, where the probability of obtaining qi
equals |supp(qi)|/|E|. The decision to accept or reject the null
hypothesis is made by computing pval(R). This p-value repre-
sents the probability of obtaining a support set of a size equal
to or larger than that of supp(R), by combining n randomly
generated queries with marginal probabilities corresponding
to the marginal probabilities of queries q1, q2, . . . , qn. pval
[24] is computed from the binomial distribution:

pval(R) =
|E|∑

k=|supp(R)|

(
|E|
k

)
(
n∏
i=1

pi)k · (1−
n∏
i=1

pi)|E|−k (2)

|E| denotes the number of entities, p1 = |supp(q1)|/|E|, p2 =
|supp(q2)|/|E|, . . . , pn = |supp(qn)|/|E| are the marginal
probabilities of obtaining q1, q2, . . . , qn.
Redescription presented in Table 1 describes 5 countries,

has a Jaccard index value of 1.0 and a p-value of 0.0.
We use Alg to denote an arbitrary multi-target regression

(multi-label classification), machine learning algorithm. M
denotes a model obtained after training the algorithm Alg
on some dataset. The rule-transformable model denotes a
model that can be transformed into a set of rules. The supple-
menting model is a secondary (auxiliary) rule-transformable
model used to create additional rules. These rules are used
to increase accuracy and diversity of produced redescriptions
and are discarded after redescription creation.
attrs(R) denotes a set of attributes used in redescription

queries and attr(R) the multi-set of all (potentially multiple)
attribute occurrences in the queries of R.

III. MOTIVATION AND RELATED WORK
Strong trends in different scientific domains encourage data
collection in such a way that a set of entities or objects is
measured, characterized or annotated from different contexts.
This results in increased availability of large and complex
datasets with multi-view aspects of objects.

To gain better insight into some underlying phenomenon of
interest, our first task is to identify some regularities or cor-
respondences that exist between these different aspects of
objects. For example, one might want to characterize world
countries through a correspondence between their demo-
graphic properties and economic trends. This is the motivat-
ing principle behind redescriptionmining [30], a data analysis
task that aims at finding multiple characterizations of subsets
of objects, where each subset is simultaneously characterized
with descriptions constructed from different views.

Introduced by Ramakrishnan et al. [30], who also pro-
posed the first algorithm for obtaining redescriptions called
CARTwheels, this task was initially performed using one
view containing Boolean attributes. Such a setting was also
adopted by Zaki [37], whose approach is based on a lattice
of closed itemsets, and Parida and Ramakrishnan [29], who
developed an approach based on a relaxation lattice. The
problem with using only one view is that there is no way
to make a logical separation between variables and explore
associations between such sets of attributes. Early redescrip-
tions contained a mix of attributes in both queries (which
was also the maximal number of possible queries). Later
work by Gallo et al. [11] introduced the logical separation of
attributes into views, ensuring that each query contains vari-
ables only from the corresponding view. The greedy andMID
algorithms [11], based on frequent closed itemset mining,
work by using maximally two views of Boolean attributes.
Galbrun andMiettinen [10] extended the Greedy approach by
Galo et al. [11] to using Boolean, categorical and numerical
attributes, with maximally two views. The same constraints
on the number of views apply for the Split trees and Layered
trees algorithms, developed by Zinchenko [39], Zinchenko
et al. [40] and the CLUS-RM algorithm, based on Predictive
Clustering trees, developed by Mihelčić et al. [26].

As can be seen, all state-of-the-art redescription mining
paradigms are limited to mining redescriptions from two
views, and this work is the first attempt to construct effi-
cient multi-viewed redescription mining approach. The ben-
efits expected from truly multi-viewed redescription mining
approach are related to: (i) more accurate, complementary
description of data, (ii) efficient pruning of patterns which
leads to smaller execution times and more efficient memory
consumption compared to the exhaustive approaches or naive
extensions of the two-view redescription mining approaches
to the multi-view setting, and (iii) improved knowledge dis-
covery through possibility to discover higher order interac-
tions and more rich explanatory capabilities. For example,
finding sets of river locations where there exist simultaneous
co-habitation of distinct subsets of different plant and differ-
ent subsets of animal species and describing these habitats by
their chemical characteristics (a valid task in ecology research
[21]) is very hard to obtain using current state of the art
approaches. As developed, current approaches offer possibil-
ity to create redescriptions on pairs of views - currently there
is no way to focus the search of these approaches to find
explicitly only redescriptions with properties as described
in the example above. Redescriptions obtained on different
pairs of views would mostly be mutually unrelated making
it very difficult to obtain the required information. Naive
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extensions of these approaches to multi-view setting result
in exponential increase of number of sub-queries and queries
that need to be tested and combined into redescriptions, which
makes this approach highly inefficient. A general multi-view
redescription mining approach can also be utilized in the
context of explainable machine learning and data science
as it can be applied for understanding of relations between
different models and incorporating their results in the data
exploration process in an interpretable manner. Here, multi-
view extensions allow relating multiple models and explain-
ing them and their relations with one or more distinct sets of
original data attributes (not possible using only two views).
When observing model-computed attribute importance for
predicting some target concept, the general approach allows
relating importance’s obtained from multiple disjoint feature
sets or relating importance’s obtained from different mod-
els. Observing features deemed important (or predictive) by
two or more different models increases confidence in the
value of these features and can be used to prioritize potential
experimental validation.

A. THE GCLUS-RM ALGORITHM
As a part of the related work, we present a slightly mod-
ified generalized version of the CLUS-RM algorithm [27]
which we call the GCLUS-RM. The generalized CLUS-RM
algorithm (GCLUS-RM), presented in Algorithm 1, contains
memory constraints on the maximal size of the redescription
set and allows using an arbitrary, rule-transformable, model
M obtained using some multi-target regression (multi-label
classification), machine learning algorithm Alg (lines 1 to
10). In this work Alg equals the Predictive Clustering trees
algorithm [3]. PCTs are a generalization of Decision trees
algorithm that are able to simultaneously predict multiple tar-
get variables. It uses variance reduction to determine the splits
and uses information about cluster centroid which allows it
to perform simultaneous clustering in the attribute and in the
target space.

Method createInitialMs takes as input the initial
dataset (obtained by creating |E| artificial examples by per-
muting the values of attributes of original examples, see
[25]) and trains the initial models using the algorithm Alg to
distinguish between the original and the artificial examples.
Method extractRulesFromM transforms the obtained
models into a set of rules and adds the non-redundant rules
into rule-sets. It also marks which rules can be used for
redescription construction (newly constructed and these from
the previous iteration, see [25]). constructTargets con-
structs target variables to be used by the algorithms in each
algorithm iteration. Each rule produced onWi in the previous
iteration is used as target to produce rules with similar support
on Wj (for more details see [25]). Since the maximal size
of a redescription set is limited, it is not allowed to have
duplicate redescriptions in the set. This necessitates redun-
dancy checks, which are performed when the conjunctive
refinement procedure is used (see [27]). Thus, this proce-
dure (which iteratively improves redescription accuracy by

joining its queries with queries of redescriptions whose sup-
port set is a superset or equal using a conjunction operator)
is always included during redescription construction. The
algorithm can be applied to an arbitrary pair of views from
the set MW = {W1,W2, . . . ,Wn}. In case maximal size
of the redescription set is reached, the algorithm exchanges
the newly produced redescription with the worst incomplete
candidate from R (lines 11 to 19 in Algorithm 1). Method
createRedescriptions (lines 12 and 14) combines
marked rules into redescriptions using logical operators∧, ∨

and¬. The method computesO(|R|·|rmWi
|·|rmWj

|) set intersec-
tions to obtain redescriptions, where rmWi

, rmWj
are the marked

subsets of rules.
Lines 8-10 and 19-20 demonstrate the use of supplement-

ing rules derived from any rule-transformable supplement-
ing model M′ [28]. In this work we use three models: a)
The random forest of multi-target regression (multi-label
classification) PCTs [18], b) The Random Forest of Extra
randomized multi-target PCTs [17] and c) The Random For-
est of multi-target regression PCTs with Random Output
Selections [5] (see Section IV-D for motivation and more
details). Supplementing rules are removed from the rule sets
using the removeSupplementRules method. This is
done because these rules are only used to create and improve
redescriptions and not to guide creation of new rules.

All multi-view approaches presented in this manuscript
are based on the observation that for any redescription R =
(q1, . . . , qn) ∈ R constructed using n views, J (R) ≤ J (R∗S )
for S ⊆ {1, . . . , n}, where R∗S = (q1∗, q2∗, . . . , qn∗) and
qi∗ = qi, i ∈ S, qi∗ =?, i /∈ S. qi∗ =? denotes that the query
is missing, as a consequence redescription R∗S is incomplete -
nViews(R∗S )= |S|. This gives a way to prune the redescription
space.

Following the guidelines above, our framework for multi-
view redescription mining uses the GCLUS-RM algorithm
to create satisfactory two-view redescriptions and then com-
pletes these redescriptions to n views.

IV. A GENERAL FRAMEWORK FOR MULTI-VIEW
REDESCRIPTION MINING
In this section, we describe a generalized, memory-efficient
framework for multi-view redescription mining that signifi-
cantly extends the algorithm proposed in [24]. As all general,
previously developed algorithms for redescription mining,
capable of working with different types of variables and
missing values, this framework is also heuristic in nature.
The framework is based on the generalized version of the
CLUS-RM algorithm [26] called GCLUS-RM introduced in
Section III and the generalized redescription set construction
procedure [27] that allows creating multiple redescription
sets of user-defined size, which satisfy various user-defined
preferences.

A. PRELIMINARIES
In the continuation we present the notation used to shorten the
pseudocode of the framework. GCLUS_RM(Wi,Wj, C, S, Alg,
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Algorithm 1 The GCLUS-RM Algorithm
Require: First view data (Wi), Second view data (Wj), Constraints C, Settings S, Model generating algorithm Alg, Supple-

menting model generating algorithm Alg′

Ensure: A set of redescriptionsR
1: procedure GCLUS-RM
2: [MWiinit ,MWjinit ]← createInitialMs(Wi, Wj, Alg)
3: [rWi , rWj ]← extractRulesFromM(MWiinit ,MWjinit )
4: while RunInd<S.maxIter do
5: [DWi ,DWj ]← constructTargets(rWi ,rWj )
6: [MWi ,MWj ]← createMs(DWi ,DWj ,Alg)
7: [rWi , rWj ]←extractRulesFromM(MWi ,MWj )
8: if (C.numSupplementModels > 0) then
9: [M′

Wi
,M′

Wj
]← createMs(DWi ,DWj ,Alg

′)
10: [rWi , rWj ]← extractRulesFromM(M′

Wi
,M′

Wj
)

11: if (|R| ≤ C.MaxExpansionSize) then
12: R← R ∪ createRedescriptions(rWi , rWj , C)
13: else
14: R′← createRedescriptions(rWi , rWj , C)
15: for (R ∈ R′) do
16: Rk ← argmaxR′∈R(J (R)− J (R′)− (1− elemJ (R,R′))), J (R) > J (R′), nViews(R′)< S.n
17: R← R \ Rk ∪ R
18: if (C.numSupplementModels > 0) then
19: [rWi , rWj ]←removeSupplementRules(rWi , rWj )

20: returnR

Alg′) - denotes the execution of the two-view GCLUS-RM
algorithm (see Algorithm 1 and [26] for the original CLUS-
RM algorithm), with given view input parameters Wi and
Wj, the redescription constraint parameters C, settings set S
and the rule-transformable multi-target (multi-label classifi-
cation) model generating algorithms Alg and Alg′. The con-
straint set C includes the minimal redescription Jaccard index
(redescription accuracy), maximal p-value (redescription sig-
nificance, usually set to 0.01), minimal (mostly ≥ 5) and
maximal redescription support size (usually ≤ 0.9 · |E|) and
the number of supplementing models (if a forest or an ensem-
ble is used). Maximal support set size disables production of
very general redescriptions or tautologies that are legal in the
sense of the problem definition, but are usually not interest-
ing. The constraint set also contains constraints on memory
usage. The parametersWorkSetSize andMaxRSSize are
user-defined parameters defining the maximum number of
redescriptions that can be held inmemory (MaxRSSize) and
the maximum number of redescriptions to be held in memory
between iterations and to be used to create the final set of
redescriptions (WorkSetSize). The model M obtained
using algorithm Alg is used to generate targets that connect
two views and is transformed to rules used to create redescrip-
tions (more detailed explanation can be seen in [26]). Rules
obtained from a model M′, obtained using Alg′, are used to
increase diversity and accuracy of produced redescriptions
[28]. In this work, we only test Predictive Clustering trees
and Extra multi-target PCTs (M) as models fromwhich main
rules are generated. Using Extra multi-target PCTs as the

model from which the main rules are generated has a signif-
icant implication on the time complexity of the GCLUS-RM
algorithm and the framework for multi-view redescription
mining (see Section V).

B. HIGH LEVEL OVERVIEW
The proposed framework formulti-view redescriptionmining
contains two important, mutually interleaving sets of algo-
rithms:
• Algorithms for redescription and redescription set cre-
ation, which entail all algorithmic aspects required to
create redescriptions, prevent the blow-up in number
of created patterns and finally to obtain the output
redescription sets.

• Algorithms for memory management, which entail all
algorithmic aspects required to minimize the overall
memory usage of the framework and to provide a sat-
isfactory trade-off between memory consumption and
quality of the desired output.

A high level overview explaining the set of procedures
used to create redescriptions and the output redescription sets
can be seen in Fig. 1. The main idea is to: a) iteratively
select pairs of available views (until all pairs are exhausted),
b) create two-view redescriptions using these views and the
GCLUS-RM algorithm (Section III, [26]), c) form targets
from the available incomplete redescriptions and use them
to train an arbitrary rule-transformable multi-target regres-
sion (multi-label classification) model on the consecutive
available views, d) transform newly obtained models to rules
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and use them to complete the incomplete redescriptions, e)
use the obtained complete redescriptions to create output
redescription sets.

A high level overview of the memory management is
depicted in Fig. 2. The available memory consists of two
parts, the work set and the diversity set. Sizes of
these memory components are defined as the maximum
number of redescriptions that they can store. Newly cre-
ated redescriptions are first stored in the work set and
in the diversity set only after work set memory
is depleted. At the end of each iteration of the frame-
work, all incomplete 2-view redescriptions are cleared if
the whole work set memory is full. There is a special
threshold t = (C.MaxExpansionSize + C.WorkSetSize)/2
where C.MaxExpansionSize is the total amount of memory
that can be used to store redescriptions (the red line in Fig. 2).
If the number of stored redescriptions crosses this number,
incomplete redescriptions are discarded starting from 2-view
redescriptions, 3-view redescriptions etc. until memory con-
sumption is smaller than this threshold. The logic is to keep
redescriptions that are very close to being complete as long
as possible in memory. However, if the amount of complete
redescriptions stored in memory is larger than t , the general-
ized redescription set construction procedure [27] is called to
reduce the number of redescriptions contained in memory to
the predefined output set size.

C. DESCRIPTION OF THE FRAMEWORK FOR MULTI-VIEW
REDESCRIPTION MINING
This section contains analyses of two important algorithms
(Algorithm 2 and Algorithm 3) constituting the proposed
framework for multi-view redescription mining. In the con-
tinuation of the text, all line numbers refer to the corre-
sponding lines of Algorithm 2 until the description of the
procedure completeRedescriptions, where all line
numbers refer to the corresponding lines of Algorithm 3.

1) REDESCRIPTION AND REDESCRIPTION SET CREATION
The general framework for multi-view redescription mining
(see Algorithm 2) is run over S.NRndRest random initializa-
tions of input dataset (lines 3 − 4, see also explanation of a
method createInitialMs). The GCLUS-RM algorithm
is used to produce two-view redescriptions on each pair of
available views (lines 5−9). The key step that allows efficient
multi-view redescription mining is to use these incomplete
redescriptions as targets to producematching rules on remain-
ing views. Matching rules are obtained using any multi-target
regression or multi-label classification algorithm able to pro-
duce rule-transformable modelsMk andM′

k (lines 11-13).
The described procedure allows solving the task by com-

puting O(
(n
2

)
· |R| · |rmWi

| · |rmWj
|) set intersections instead

of O(R ·
∏n

i=1 |r
m
Wi
|) that would be needed if rules were

computed on each view and then combined into multi-view
redescriptions. Naive extension of the CLUS-RM algorithm
requires either computing many rules using pairwise CLUS-
RM (e.g compute rules onW1 using rules fromW2 as targets,

then computing rules on W3 using rules from W2 as targets
etc. and than exhaustively combining these rules - which
is time and memory consuming) or adding rules from all
views as targets at each step of the algorithm. This still
does not guarantee obtaining rules satisfying constraints from
all views but can cause significant technical problems. Very
large number of simultaneous targets is hard to satisfy, thus
attempts to use it usually result in inaccurate models.

The function constructTargets (line 11) works sim-
ilarly as the target construction procedure defined in [26].
Each incomplete redescription in the setRall constitutes one
target variable in a newly constructed multi-target regres-
sion (classification) task. Every entity redescribed by some
redescription Rk ∈ Rall has a value 1.0 for the k-th target
variable. If an entity is not redescribed by a redescription
Rk it has a value 0.0 for this variable. A multi-target regres-
sion or multi-label classification rule-transformable model
(Mk and potentially M′

k ) are trained on a dataset con-
taining attributes of the k-th view and the aforementioned
target variables, to construct rules which are used to com-
plete redescriptions. Rules obtained from the supplementing
model (lines 14-16) are used to increase the diversity and
the accuracy of the produced redescriptions [28]. The newly
produced rules are used to complete potentially incomplete
redescriptions (line 17 ). Following the established proce-
dure of using supplementing models [28], rules obtained
from the supplementing model are discarded after redescrip-
tion creation (lines 18 − 19). The fast growth of the num-
ber of produced redescriptions is controlled with the two
earlier explained parameters, MaxExpansionSize and
WorkSetSize inside method normalizeMemory (line
20). This procedure is described in Section IV-B and Figure 2.
All incomplete redescriptions are discarded before the cre-
ation of the final result sets (lines 21 and 22). The redescrip-
tion query size is reduced by using the query size mini-
mization procedure introduced in [26] (line 23). Finally, the
generalized redescription set construction procedure (GRSC)
is used to create a resulting set of reduced redescription sets
(line 24). GRSC(R,W ,r) [27] takes as input a redescription
set R, a user-defined quality measure importance weight
matrix W and an integer r denoting the required size of
output redescription set. The procedure returns one or more
optimized redescription sets of size equal to or smaller than r .
The quality measure importance weight matrix allows users
to influence the structure of the resulting redescription sets
by giving higher emphasis to a subset of redescription quality
measures (e.g., giving higher weight to redescription Jaccard
indexwill cause the procedure to favor redescription accuracy
over diversity or reduced complexity). By default,W is a 1×5
matrix assigning equal weight 1

5 to each quality measure (see
Section VII for a list of measures and their definition).

2) COMPLETING INCOMPLETE REDESCRIPTIONS
The procedure completeRedescriptions from Algo-
rithm 3 iterates over all incomplete redescriptions (line
2) and attempts to complete them with some rule from
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Algorithm 2 A General Framework for Multi-View Redescription Mining
Require: Available views MW = {W1, . . . ,Wn}, Constraints C, Settings S, Model generating algorithm Alg, Supplementing

model generating algorithm Alg′

Ensure: A set of reduced redescription setsR
1: procedureMW-RM
2: Rall ← ∅

3: for (nrand = 0; nrand<S.NRndRest; nrand++) do
4: MW ′ = {W ′1, . . . ,W

′
n} ←initializeViews()

5: for (i=0; i<|MW | − 1; i++) do
6: for (j=i+1; j<|MW |; j++) do
7: RunInd← 0
8: Ri,j← GCLUS_RM(W ′i , W

′
j , C, Alg, Alg′, S)

9: Rall ← Rall ∪ Ri,j
10: for (k=0, k /∈ {i, j}; k<|MW |; k++) do
11: DWk ←constructTargets(Wk ,Rall)
12: Mk ← createMs(DWk , Alg)
13: rk ←extractRulesFromM(Mk)
14: if (C.numSupplementModels > 0) then
15: M′

k ← createSupplementingMs(DWk , Alg′)
16: rk ←extractRulesFromM(M′

k)

17: Rall ←completeRedescriptions(Rall, rk , S.Op, C, W ′k )
18: if (C.numSupplementModels > 0) then
19: rk ←removeSupplementRules(rk )
20: Rall ←normalizeMemory(Rall , C, S)
21: for (nws = 2; nws < |MW |; nws++) do
22: Rall ←removeIncomplete(Rall , nws)
23: Rall ←minimizeQueries(Rall)
24: RS ←GRSC(Rall , S.W , S.r)
25: returnRS

rule set r (line 3). If adding a new query to some exist-
ing incomplete redescription R satisfies the accuracy con-
straints, a new redescription is created (lines 4-5). Since the
conjunctiveRefinement procedure is used (a proce-
dure that can increase redescription accuracy using existing
redescriptions with support set equal to a target redescrip-
tion or a superset thereof, see [27]), a redescription is added
to the set of redescriptions only if there is no redescription
with equal support and maximal accuracy (line 6). If the
newly created redescription has the required accuracy and
support set size characteristics, it is non-redundant and there
is sufficient amount of memory available, it is added to the set
of all redescriptions through the addDiscardOrReplace
method (line 10). It the available memory is full, the newly
produced redescription aims to replace the most similar
redescription with the largest difference in accuracy. If such
candidate can not be found, newly produced redescription is
discarded.

Lines 11 − 13 demonstrate the use of negation operator.
If there are no incomplete redescriptions remaining in the
redescription set after completing lines 2 to 13 and there is no
available memory, all redescriptions not tested or completed
in lines 2 to 13 are refined using remaining queries (these
not used in lines 2 to 13, obtained with used() function).

This is done by exchanging their query (for the corresponding
view) with some rule from r or it’s negation if this increases
redescription accuracy (lines 14 and 15). Use of the refine-
ment by query replacement is limited to preserve overall
query diversity. Method refineDisjunctive (line 17)
takes as input a redescription setR, a rule set r , a given view
Wi and it tries to improve the accuracy of each redescription
using rules from a set r constructed on view Wi. Some rule
rj ∈ r is used as a disjunctive refinement rule of a redescrip-
tion Rp ∈ R if it maximizes: J(∩qk∈Rp,k 6=isupp(qk )\supp(Rp),
supp(rj)) or if its negation maximizes: J(∩qk∈Rp,k 6=isupp(qk )\
supp(Rp), supp(¬rj)) and the newly obtained redescription R′j
( with R′.qWi ← R′.qWi ∨ rindMax1 or R′.qWi ← R′.qWi ∨

¬rindMax1) satisfies constraints C. Finally, the extended set
of redescriptions is returned in line 18. Adhering to memory
constraints, this procedure potentially extends incomplete
redescription throughout multiple iterations, creating diverse
set of candidates which reduces the effects of seemingly
greedy updates.

D. MOTIVATION FOR USING ADDITIONAL TREE-BASED
MODELS
It is expected that by adding rule-transformable models
obtained using different machine learning algorithms, thus
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Algorithm 3 Complete Redescriptions
Require: RedescriptionsR, Rules r , Operators op, Constraints C, ViewWi
Ensure: A set of redescriptionsR
1: procedure completeRedescriptions
2: for (R ∈ R, R.qi = ∅) do
3: for (rj ∈ r) do
4: if (J(supp(R) ∩ supp(rj),∪qi∈Rsupp(qi) ∪ supp(rj))≥ C.minJS) then
5: Rnew← R.insertQuery(rj,Wi)
6: Rnew←conjunctiveRefinement(Rnew,R)
7: if Rnew = ∅ then
8: continue
9: if (supp(Rnew) ∈ [C.minSupp, C.maxSupp] ∧ J (Rnew) ≥ C.minJS) then

10: R←addDiscardOrReplace(Rnew, R)
11: if (¬ ∈ op ∧ J (supp(R) ∩ supp(¬rj),∪qi∈Rsupp(qi) ∪ supp(¬rj)) ≥ C.minJS) then
12: Rnew← R.insertQuery(¬rj,Wi)
13: R←addDiscardOrReplace(Rnew, R)
14: if (6 ∃R ∈ R, nViews(R) < n ∧ C.MaxExpansionSize = |R|) then
15: R←refineByQueryReplacement(R\(used(R)), r\(used(r)))
16: if ∨ ∈ op then
17: R←refineDisjunctive(R, r, Wi)

18: returnR

FIGURE 1. The framework uses a generalized version of the CLUS-RM algorithm (Section III, [26]) to create
two-view redescriptions on all pairs of views. Views are combined as denoted by numbers (W1,W2) first,
(W1,W3) second, (Wn−1, Wn) last. The produced redescriptions form targets used to construct an arbitrary
rule-transformable multi-target (multi-label) prediction model utilized to obtain corresponding rules on
other views. Rule-producing models can be enhanced by using a Random Forest of arbitrary
rule-transformable models as a supplementing model [28] (we use PCTs with [5] and without [18] random
output selections and the Extra multi-target PCTs [17]). The final redescription set Tn is used to create a set
of redescription sets R using the generalized redescription set construction procedure (GRSC) [27].

having differing characteristics, we can facilitate creation of
new and diverse redescriptions. We focus here on algorithms
that can provide models with diverse properties: the Extra
multi-target PCTs [17] and the PCTs with random output
selection [5].

1) EXTRA MULTI-TARGET PREDICTIVE CLUSTERING TREES
Extra multi-target PCTs [17] introduce random split selection
into the construction of Predictive Clustering trees for multi-
target prediction [18]. For each split, the extra multi-target
PCTs select k random attribute-value pairs and then compute
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FIGURE 2. The memory model used in the framework for multi-view redescription mining. The available
memory is divided in two initially empty parts: the work set and the diversity set. The example shows
memory management during iterations on data containing three views. After the number of redescriptions
(complete and incomplete) in the redescription set exceeds the work set size, incomplete 2-view
redescriptions are discarded (after iteration 2). Discarding of incomplete redescriptions continues until the
number of redescriptions in the set is smaller or equal t = (C.MaxExpansionSize+ C.WorkSetSize)/2 (the
red mark). If the number of complete redescriptions exceeds t , the generalized redescription set
construction procedure is called, selecting r = 2 redescriptions (iteration 5).

the best candidate using the variance reduction. The same
measure is used in the regular PCTs to determine the best
split, however PCTs test all possible attribute-value pairs.
Because of the high randomization, the extra multi-target
PCTs are weak models, but they have been shown to work
well in the ensemble setting [17]. The main advantage of
the Extra multi-target PCT approach is the reduced time
complexity compared to the regular PCTs.

In this work, we investigate using the Extra multi-target
PCTs for creating redescriptions. There are two potential
benefits of using this algorithm: a) due to high level of ran-
domization, Extra multi-target PCTs may produce different
redescriptions from PCTs (increasing diversity), b) when
used as a generating model, the Extra multi-target PCTs
decrease the overall time complexity of the framework for
multi-view redescription mining (see Section V). There are
also some drawbacks, the main is caused by the large width
of the Extra multi-target PCTs (also discussed in [17]), which
potentially creates a higher number of rule-pairs to be tested
as compared to regular PCTs or ensembles thereof. Thus,
the development of efficient approaches for rule selection to
obtain accurate redescriptions is of high priority.

2) PREDICTIVE CLUSTERING TREES WITH RANDOM OUTPUT
SELECTIONS
The ensembles of Predictive Clustering trees with random
output selections [5] train each PCT on a randomly selected

subset of the target labels. Such procedure has been show
to be able to outperform the ensemble of regular PCTs on
several different datasets [5].

Using a methodology that can utilize subsets of target
labels is especially important in the step of the proposed
multi-view redescription mining framework tasked with the
completion of the incomplete redescriptions. Completion is
done by using redescriptions as targets and training multi-
target regression (multi-label classification)model to produce
rules that allow accurate completion of these incomplete
redescriptions. Since redescriptions do not generally have
a strictly hierarchical structure, but are overlapping (many
pairs have even disjoint support sets), multi-target regression
models trying to simultaneously satisfy all targets mostly fail
to do so for a subset of targets.

Using ensembles of Predictive Clustering trees with ran-
dom output selections may increase the overall accuracy of
the framework. The main disadvantage of this approach is
a slightly higher execution time due to sampling of a target
space (although it does not affect the overall computational
complexity of the approach, see Section V).

V. COMPUTATIONAL COMPLEXITY
We present the worst-case and the average-case time com-
plexity analyses for the framework capable of performing
multi-view redescription mining with the use of multi-target
PCTs [18], multi-target PCT-ROS [5] and the EPCTs [17]
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as algorithms used to create the supplementing models and
using PCTs and EPCTs as algorithms that produce the main
rule generating models (these models are transformed to rules
used to explore the search space).

A. COMPLEXITY USING PCTs TO CREATE THE MAIN
RULE-GENERATING MODEL
The time complexity of creating a Predictive Clustering tree
model is O(m · |E| · log22(|E|)) + O(S · m · |E|log2|E|) +
O(|E|log2(|E|)) (see [17]), where m denotes the number
of attributes, |E| the number of entities contained in the
data and S the number of target variables. The number of
target variables is constrained in our framework with |R|,
number of rules z or user defined parameter NumTarget<

|R|. In case user-defined parameter is used, PCT is trained
b

z′
NumTarget c + 1 times (where z′ represents the total number

of targets - rules or redescriptions). Taking this into account,
the average case time complexity of a GCLUS-RM algo-
rithm, using PCTs as generating model and the conjunctive
refinement procedure isO((|V1| + |V2|) · |E| · log22(|E|)+ S ·
(|V1| + |V2|) · |E| · log2|E| + z3 · |E|), where |Vi| denotes
the number of attributes in the i-th view. The worst case
time complexity (given inadequate hashing function) equals
O((|V1| + |V2|) · |E| · log22(|E|) + S · (|V1| + |V2|) · |E| ·
log2|E| + z3 · |E|2). The time complexity of the GCLUS-
RM dominates the time complexity of the PCT. It is also
worth noting that in between GCLUS-RM executions, max-
imal size of a redescription set is constrained and can be
considered a constant. Thus, the time complexity of a general-
ized redescription set construction procedure equals O(|E|).
Using this, the average case time complexity of the algorithm
for multi-view redescription mining, using GCLUS-RMwith
PCT generating model isO(

∑n−1
i=1

∑n
j=i+1((|Vi|+ |Vj|) · |E| ·

log22(|E|) + S · (|Vi| + |Vj|) · |E| · log2|E| + z
3
· |E |), which

is O((n− 1) · ((
∑n

i=1 |Vi|) · |E| · log
2
2(|E|)+ S · (

∑n
i=1 |Vi|) ·

|E| · log2|E|)+ (n · (n − 1)/2) · z3 · |E |), where n denotes
the number of views. Since n � min|Vi|, |E|, i ≤ n and
n2 � |E| in most real applications it can be considered
a constant. Thus, the average case time complexity of the
algorithm isO((

∑n
i=1 |Vi|)·|E|·log

2
2(|E|)+S·(

∑n
i=1 |Vi|)·|E|·

log2|E|)+ z3 · |E|). Similarly, the worst case time complexity
of the framework equals:O((

∑n
i=1 |Vi|) · |E| · log

2
2(|E|)+ S ·

(
∑n

i=1 |Vi|) · |E| · log2|E|)+ z
3
· |E|2).

B. COMPLEXITY USING EPCTs TO CREATE THE MAIN
RULE-GENERATING MODEL
The time complexity of creating the Extra multi-target PCTs
is O(k · S · log2|E|) + O(|E| · log2(|E|)) [17], where k
denotes the number of randomly selected attribute splits that
are evaluated to determine the best candidate. Given this,
the average case time complexity of the GCLUS-RM isO(k ·
S · log2(|E|)+ |E| · log2|E| + z3 · |E|), or the worst case time
complexityO(k ·S ·log2(|E|)+|E|·log2|E|+z3 ·|E|2). Despite
having much lower complexity compared to the GCLUS-
RM with PCT generating model, due to the bushiness and

width of the Extra multi-target PCTs (as described in [17]),
using this model causes significant increase in the z constant
compared to using regular PCTs. The overall complexity of
the framework for multi-view redescription mining, using
Extra multi-target PCTs as rule-generatingmodel has average
time complexity: O((n · (n− 1)/2) · (k · S · log2(|E|)+ |E| ·
log2|E| + z3 · |E|)). Given n� min|Vi|, |E|, i ≤ n and n2 �
|E|, the overall complexity is identical to the complexity of
theGCLUS-RMalgorithm using the Extramulti-target PCTs,
O(k · S · log2(|E|)+ |E| · log2|E| + z3 · |E|).

C. COMPLEXITY OF USING RANDOM FOREST OF
SUPPLEMENTING MODELS
We use three types of supplementing models: a) Random
Subspaces of Predictive Clustering trees, b) Random For-
est of Extra tree multi-target models and c) Random Forest
of Predictive Clustering trees with output selections. When
Random Subspaces of Predictive Clustering trees are learned,
first a random attribute subset of size as = max(d|Vi| ·
(1 − z
√
(1− p))e, log2(|Vi|)) is selected [28], where p equals

the desired probability of obtaining an attribute in a split
of every tree in a forest. Next, the regular PCT model is
learned on each attribute subset. Thus, the overall complexity
of building such a Forest is: O(as · |E| · log22(|E|)) + O(S ·
as ·|E|log2|E|)+O(|E|log2(|E|)). Learning a Random Forest
of Extra PCTs has equal complexity O(k · S · log2(|E|) +
|E| · log2|E| + z3 · |E|), but here k ≤ as. Learning a
Random Forest of Predictive Clustering trees with output
selections has a complexity of O(as · |E ′| · log22(|E

′
|)) +

O(S ·as · |E ′|log2|E ′|)+O(|E ′|log2(|E ′|))+O(|E|), where E ′

denotes the fraction of the input training data used in Bagging
(usually, |E ′| = 0.632 · |E| (see [18]). Thus, learning PCT
generating models has higher time complexity than learning
supplementing models. Using supplementing models does
not increase overall complexity when PCTs are used as a rule
generating model. When Extra multi-target PCT algorithm
is used as a generating model, using Forest of PCTs as
supplementing model increases the time complexity of the
approach but nomore than the time complexity of using PCTs
as generating model. The main problem in using large forests
is potentially large increase in the constant z.

VI. DATA DESCRIPTION
We use three different datasets to evaluate and illustrate the
proposed multi-view redescription mining methodology: a)
the Country dataset, b) the River water quality dataset and c)
the Phenotype dataset. The last two datasets are also used in
a use case depicting the application of the proposed method-
ology to increase the understanding of machine learning pre-
dictive models, to help in model selection or in construction
of an ensemble of machine learning models.

a) The Country dataset contains 141 entities (world coun-
tries) which are described with 4 different views. The
information is about the countries for the year 2012.
Country trade, consisting of 309 numerical attributes and
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obtained from the UNCTAD database [33] makes the
first view. The second view, describing the population of
these countries, consists of 21 numerical attributes. Part
of this data was obtained from the World bank [34] and
part from the UN [32] database. The third view contains
47 numerical attributes describing energy production
and consumption of these countries. The fourth view
describes different aspects of country development and
wealth (agriculture, work, financial and ecological indi-
cators) with 33 numerical attributes. The data contained
in the third and the fourth view was obtained from the
UN database [32]. All views have missing values.

b) The River water quality dataset (Slovenian Water) [6]
contains 3 views describing 1061 water samples taken
from the Slovenian rivers by the Hydrometeorologi-
cal Institute of Slovenia. The first view contains 16
numerical attributes representing physical and chemical
measurements of water quality (e.g. biological oxygen
demand, chlorine concentration, etc). The second view
contains the occurrence frequency of 7 different plant
species, whereas the third view contains occurrence fre-
quency of 7 different animal species. The frequencies
are coded as: 0-not present, 1-incidental occurrence,
3-frequently occurring and 5-abundantly occurring.

c) The phenotype dataset [4] has three views, all contain-
ing numerical attributes with missing values. Attributes
contained in these views describe 92 entities (phe-
notypic properties of different microbial species). All
811 attributes contained in the first view are positive
feature importance scores. Features are metagenomic
co-occurrences (co-occurrence of species across envi-
ronmental sequencing data sets) used by the Random
Forest algorithm to predict the presence of these pheno-
typic properties in different microbial organisms. Simi-
larly, the second view contains 419 attributes that rep-
resent the feature ranking scores, where the features
represent proteome composition - relative frequencies
of amino acids. The third view contains 990 attributes
that represent feature ranking scores, where features
represent genomic signatures of translation efficiency in
gene families.

VII. EXPERIMENTS AND RESULTS
In this section we present the naive implementation of
multi-view redescription mining algorithm using existing
2-view redescription mining approaches. We define addi-
tional redescription and redescription set evaluationmeasures
required to provide full information about method perfor-
mance and present the evaluation results of the proposed
framework for multi-view redescription mining.

A. NAIVE ALGORITHM FOR MULTI-VIEW REDESCRIPTION
MINING
The naive implementation of a multi-view redescription min-
ing algorithm includes mining 2-view redescriptions on all
pairs of available views and combining these incomplete

redescriptions into redescriptions containing all available
views. Definition of two operators is required to construct the
pseudocode of the algorithm for naive multi-view redescrip-
tion mining.
Given two incomplete redescriptions R∗1,S1 and R

∗

2,S2
, where

S1, S2 6= ∅ we define the operation:

R∗1,S1 ⊕ R
∗

2,S2 =



{R∗new,S ′}, S
′
= S1 ∪ S2, S1 ∩ S2 = ∅,

qnew,i∗ = qj,i∗, i ∈ Sj, j ∈ {1, 2}
{R∗new1,S ′

, R∗new2,S ′
}, S ′ = (S1 ∪ S2),

k = argmins
s ∈ (S1 ∩ S2) 6= ∅
S1 + S2,

qnew1,i∗ = q1,i∗, i ∈ S1,
qnew1,i∗ = q2,i∗, i ∈ S2 \ {k},
qnew2,i∗ = q1,i∗, i ∈ S1 \ {k},
qnew2,i∗ = q2,i∗, i ∈ S2
∅, S ′ = S1 ∪ S2, S1 ⊇ S2

Given two sets of incomplete redescriptions: R1 containing
views S1 6= ∅ andR2 containing views S2 6= ∅, we define:
R1 ⊗R2 = {R∗1,S1 , R

∗

1,S1
∈ R1} ∪ {R∗1,S1 ⊕ R∗2,S2 , R

∗

1,S1
∈

R1, R∗2,S2 ∈ R2}.
The naive algorithm for multi-view redescription min-

ing is presented in Algorithm 4. The algorithm uses any
2-view redescription mining algorithms to construct incom-
plete redescriptions containing two queries (lines 5, 6 and
7) in Algorithm 4. The resulting two-view redescription
sets are denoted R∗k,{i,j}, where k ≤

(n
2

)
denotes the

index of a set and i, j ≤ n, i < j denote indices
of views used to create incomplete redescriptions. The
algorithm creates incomplete sets sequentially in order
R∗1,{1,2}, R

∗

2,{1,3}, . . .R
∗

n,{1,n}, . . . , R
∗

(n2),{n−1,n}
. These incom-

plete sets are combined in multi-view redescriptions using
earlier defined operator of incomplete redescription set join-
ing (⊗) in lines 8 and 9. This operator combines only those
redescriptions so that the number of views of the resulting
redescription is larger than the number of views of the ini-
tial redescriptions (notice that the second operand always
contains exactly two views). When a pair of incomplete
redescriptions contains one query from the same view, there
are twoways to join them to increase the number of views and
they are both explored by the algorithm. Since the resulting
set contains many incomplete redescriptions, these are first
filtered out (line 10). Redundant redescriptions are filtered
out (those describing very similar entities, having entity Jac-
card index > than a predefined threshold perc, as some other
more accurate redescription contained in the set). Finally,
a redescription set containing complete multi-view redescrip-
tions is returned to the user.

The main intuition behind Algorithm 4 is that if views are
mutually connected and we find sufficient number of high
quality pairwise two-view redescriptions, there should exist
those that can be successfully joined to form a complete
multi-view redescription. Since there is no guided way in
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Algorithm 4 Naive Multi-View Redescription Mining
Require: Available viewsMW = {W1, . . . ,Wn}, Constraints C, Settings S, Two-view RM algorithm AlgRM
Ensure: A set of reescriptionsR
1: procedureMW-RMNaive
2: Rincomplete← ∅

3: Rall ← ∅

4: R← ∅
5: for ((Wi, Wj) ∈ MW , i, j = 1 . . . n, i < j) do
6: R∗k,{i,j}← AlgRM (Wi,Wj, C,S), k ≤

(n
2

)
7: Rincomplete← Rincomplete ∪ {R∗k,{i,j}}
8: for ((R∗i,Si , R∗j,Sj ) ∈ Rincomplete, i, j = 1 . . .

(n
2

)
, i < j) do

9: Rall ← Rall ∪ (R∗i,Si ⊗R∗j,Sj )

10: Rall ←filterIncomplete(Rall)
11: R←filter(Rall,S.perc)
12: returnR

which incomplete redescriptions can be joined using this
naive extension, Algorithm 4 exhaustively tests all possible
two-view redescriptions that can result in the increase of the
number of views and finally in a completion of a redescrip-
tion.

B. ADDITIONAL EVALUATION MEASURES
In addition to the most-used redescription evaluation mea-
sures (presented in Section II), we use the followingmeasures
to evaluate redescriptions and redescription sets produced by
the tested approaches.

The attribute Jaccard index of two redescriptions, measur-
ing the overall description redundancy of these redescription,
is defined as:

attJ (R1,R2) =
|attrs(R1) ∩ attrs(R2)|
|attrs(R1) ∪ attrs(R2)|

(3)

Given a redescription set R containing |R| redescriptions,
the average attribute Jaccard index of a redescription Ri ∈
R (measuring the average description redundancy of this
redescription in the set) is defined as:

AAJ (Ri) =
∑

Rj∈R, j6=i

attJ (Ri,Rj)/(|R| − 1) (4)

By analogy, the entity Jaccard index of two redescriptions is
defined as:

elemJ (R1,R2) =
|supp(R1) ∩ supp(R2)|
|supp(R1) ∪ supp(R2)|

(5)

and the average entity Jaccard index as:

AEJ (Ri) =
∑

Rj∈R, j6=i

elemJ (Ri,Rj)/(|R| − 1) (6)

These measures provide information about the redundancy of
a redescription with respect to entities and attributes.

Redescription complexity, given the number of attributes
kc denoting complex queries, is computed as:

comp(R) =
{
|attr(R)|/kc, |attr(R)| < kc
1, kc ≤ |attr(R)|

(7)

The aforementioned measures are naturally extended to
scores used to evaluate sets of redescriptions (used in the
experiments section of the manuscript). We use AJ (R) to
denote the average Jaccard index of all redescriptions con-
tained in the redescription set R. All measures are further
transformed to have values in the [0, 1] range, so that 0
denotes the best possible outcome and 1 the worst possible
outcome. Given Jsc(R) = 1− J (R):

Jsc(R) =
|R|∑
i=1

(1− J (Ri))/|R| (8)

Apsc (R) =
|R|∑
i=1

(log10(pval(Ri))/17+ 1.0)/|R| (9)

Since 10−17 is the smallest pvalue we can compute exactly,
17 is used as a normalization factor (log10(pval(Ri))/17 is
used as a main part of Apsc ).

AAJsc(R) =
|R|∑
i=1

AAJ (Ri)/|R| (10)

AEJsc(R) =
|R|∑
i=1

AEJ (Ri)/|R| (11)

compsc(R) =
|R|∑
i=1

comp(Ri)/|R| (12)

The total score used to evaluate the redescription set is
obtained as a weighted-sum function that integrates the
aforementioned criteria with some predefined weights wi ∈
[0, 1],

∑5
i=1 wi = 1.0. Intuitively, increasing the value of wi

increases the importance of the measure scorei.

totalsc(R) = w1 · Jsc(R)+ w2 · Apsc (R)+ w3 · AAJsc(R)

+w4 · AEJsc(R)+ w5 · compsc(R) (13)

This combined score evaluates the quality of produced
redescription set with respect to redescription accuracy,
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significance, entity and attribute redundancy and rule com-
plexity. All measures used to compute totalsc are decreas-
ing, having value 0 for the best possible redescription set
(given a selected measure) and value 1 for the worst pos-
sible redescription set. The total redescription set score is
also decreasing achieving the same values 0 (1) for the best
(worst) possible redescription set given a combination of 5
different measures. In barplots and tables throughout this
manuscript we present a natural measure for redescription set
accuracy: the average redescription set Jaccard index J (R) =
(
∑|R|

i=1 J (Ri))/|R|. This measure follows natural values of
Jaccard index (which is used as a measure of redescription
accuracy) achieving value 0 for the least accurate set and
value 1 for the most accurate set of redescriptions. Explana-
tions of the listed measures can be seen in [27].

All previously described redescription set measures are
normalized by the size of the output redescription sets. Since
it is possible that different approaches output redescription
sets of different size, we have created scores that take this
information into account. Approaches that do not succeed in
producing the required number of redescriptions are penal-
ized in these scores, because it is easier to create a small
number of redescriptions satisfying the predefined criteria
than doing the same with a larger number of redescrip-
tions. We define an abstract redescription Rworst such that
∀i scorei(Rworst ) = 1.
Given a user-defined number of desired (expected) out-

put redescriptions |Rout | ∈ N and any previously defined
redescription evaluation measure scorei. If |Rout | ≥ |R|,
the corresponding redescription set measure taking into
account the number of actually produced redescriptions sat-
isfying constraints is defined as:

scorei(R)=

 |R|∑
i=1

scorei(Ri)+
|Rout |∑
i=|R|+1

scorei(Rworst )

 /|Rout |

(14)

Redescription sets of a size < |Rout | are penalized since
|Rout | − |R| is added to the numerator of scorei. scorei(R)
is a number in [0, 1]. For sets such that |R| ≥ |Rout |,
scorei(R) = scorei(R). The desired (expected) output
redescription set size depends on the type of the analyses that
is to be performed, level of knowledge required from the data,
necessity of redescription validation by a domain expert etc.

C. EXPERIMENTAL SETUP
The naive implementation of the multi-view redescription
mining algorithm is realized using two general 2-view
redescription mining algorithms: the ReReMi [10] and the
CLUS-RM [27]. The naive multi-view redescription mining
algorithm using the ReReMi approach was run only once on
each dataset, since the underlying algorithm creates the same
set every time using some predefined set of input parame-
ters. For the naive multi-view redescription mining algorithm
using the CLUS-RM and all other presented approaches,

we created 10 different redescription sets, starting from dif-
ferent initial clusterings obtained by using randomizations
with different seeds (see [26]). The parameters used in each
step of the evaluation process are listed in Table 2, where
we used identical parameters for the two-view CLUS-RM
algorithm and identical constraints for the ReReMi algo-
rithm. The framework for multi-view redescription mining
and the two-view CLUS-RM algorithm were set to output
maximally 200 redescriptions. Since such restrictions do
not exist for the ReReMi algorithm, all produced incom-
plete redescriptions were used in the naive approach using
this method. Specific parameters for the ReReMi algorithm
are provided in Section S5 of Supplementary document 1.
We used S.perc = 0.95 in all runs of the naive algorithm.
Unlike the proposed framework, it is not possible to explicitly
control the size of the output redescription set produced
by the naive approach (used in the QP experiments). For
the APP (see Section VII-H), we create one redescription
set by performing 10 runs with the parameters specified
in Table 2.
The presented barplots contain the average redescription

set: Jaccard index (J (R)), p-value score (Apsc(R)), totalsc(R),
execution time and memory consumption over 10 runs or the
exact value for the naive approach with the ReReMi algo-
rithm. The result tables of all experiments presented in this
manuscript, containing the (average) performance measures
achieved (over these 10 runs) for each of the 12 afore-
mentioned redescription set measures and the corresponding
standard deviations are available in the Supplementary docu-
ment 1.
JminA denotes the minimal Jaccard index required to use

redescriptions in the conjunctive refinement procedure (see
[27]), |ri| is the maximal rule length obtainable by trans-
forming PCTs to rules and the average rule length obtain-
able by transforming forest of tree-based models to rules, L
(op) denotes the query language (conjunction, disjunction,
negation, all operators), T the number of trees used in the
experiment and Iter . the number of iterations used in the
GCLUS-RM algorithm. Notation 1 + {20, 50} denotes two
settings, 1 PCTwith a supplementing forest model containing
either 20 or 50 trees. To demonstrate the difference between
using a single PCT model and the PCT model supplemented
by a Random Forest of models, we increased the strictness
of accuracy constraints in these experiments. To reduce the
overall execution time of these experiments and achieve faster
redescription generation when using supplementing models,
we reduced the number of iterations and tree depths as com-
pared to the experiments using a single PCT model. In all
experiments we used kc = 20, the expected redescription
set size |Rout | = 200, and the 1 × 5 matrix W having all
entries equal to 0.2. The expected redescription set size is set
to 200, since this is large enough for contained redescriptions
to capture quality share of knowledge contained in the data,
it is large enough to allow performing statistical analyses, but
is small enough to be examined by the domain experts in a
reasonable time.
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TABLE 2. Algorithm parameters used to create redescription sets on the Country dataset (C), River water quality dataset (W) and Phenotype dataset (P).
Different experiments are abbreviated as: QP - quality of produced sets, RFSM - random forest of supplementing models, RG - rule generation model,
VRSP - view random subset projection, APP - application. For a thorough explanation of dataset Wp see Section VII-H.

FIGURE 3. Comparison results on the Country dataset.

D. EVALUATING QUALITY OF PRODUCED REDESCRIPTION
SETS
We present the results of evaluating our framework for multi-
view redescription mining using one PCT as rule-generating
model and compare these results with the naive algorithms
for multi-view redescription mining. Statistical significance
of the difference of mean value of different redescription
quality measures, between the proposed framework and the
naive method using CLUS-RM two-view redescription min-
ing algorithm, was computed using one-sidedMann-Whitney
U test. The test assesses if the mean value achieved by
the proposed multi-view redescription mining framework is
significantly larger than achieved by the naive extension
using CLUS-RM for the J (R) and if it is significantly lower

for other measures. Comparative barplots presented in the
manuscript contain evaluation results of the framework using
(1000, 4000) memory configuration. The second experiment
compares the performance of the proposed framework using
different values of memory parameters (working and max-
imal allowed memory size). Detailed table can be seen in
Supplementary document 1 (Table S1).

Comparative evaluation results presented in Fig. 3 show
that the proposedmulti-view redescriptionmining framework
outperforms the naive algorithms with respect to redescrip-
tion accuracy (p = 5 · 10−4), significance (p = 5 · 10−4),
overall redescription set score (p = 0.0019), execution time
(p = 5.4 ·10−6) and maximal memory. Country dataset is the
prime example why naive extension is not suitable for general
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FIGURE 4. Comparison results on the Slovenian Water dataset.

use in multi-view redescription mining. The fact that it is
possible to find large number of accurate 2-view redescrip-
tions on this dataset necessitates more elaborate techniques
for pattern pruning and selection.

If the underlying data does not allow creating many accu-
rate redescriptions (as is the case for the Slovenian Water
dataset and in part with Phenotype dataset) the execution time
of the naive algorithm can be even smaller than the execu-
tion time of the proposed framework due to smaller number
of applications of the 2-view techniques -

(n
2

)
compared to

> n ·
(n
2

)
(see supplementary document 1, Section S3 for

more detailed explanation). Results in Fig. 4 show that the
proposed multi-view framework outperforms naive imple-
mentation with respect to redescription accuracy (p = 5.4 ·
10−6) and overall redescription set score (p = 3.79 · 10−5).
The difference in mean of redescription statistical signifi-
cance score, between the proposed framework and the naive
approach using the CLUS-RM algorithm, is not significant.
Naive implementation with CLUS-RM also uses larger max-
imum amount of memory. Naive approach using ReReMi
algorithm did not manage to produce any satisfactory multi-
view redescriptions on this dataset which explains overall low
memory consumption.

Comparison results on the Phenotype dataset, presented
in Fig. 5, show that the naive approach using ReReMi 2-view
algorithm produces themost accurate redescriptions, whereas
the proposed framework produces at average the most sig-

nificant redescriptions (difference in mean value compared
to the naive approach with CLUS-RM is not significant)
and redescription sets with the best overall redescription set
score (p = 5.4 · 10−6). It has significantly smaller execution
time than the naive implementation using the ReReMi algo-
rithm and significantly smaller maximal memory consump-
tion than the naive approach using the CLUS-RM algorithm.
Information about entity and attribute coverage of produced
redescription sets for all presented methods is available in
Supplementary document 1 (Table S11).

Overall, the proposed framework offers a well-balanced
trade-off between accuracy, memory consumption and exe-
cution time. It mostly outperforms the naive approach
with respect to accuracy, execution time and memory con-
sumption. Most importantly, unlike the naive approach that
depends on the properties of the underlying data, the proposed
framework is a generally applicable methodology.

The results presented in Table S1 of Supplementary docu-
ment 1 and Fig. 6 show that increasing the amount of memory
allows obtaining redescription sets of higher quality. The
difference in quality between the redescription set produced
with the smallest memory setting (200, 1700) and the largest
memory setting (3000, 6000) across 10 runs is not signif-
icant with 5 iterations for the Country (p = 0.423) and
the Water (p = 0.278) dataset but it is significant for the
Phenotype dataset (0.032) with the significance level 0.05.
Increasing the amount of iterations used to create redescrip-
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FIGURE 5. Comparison results on the Phenotype dataset.

FIGURE 6. Overall score totalsc (R) obtained for the redescription set using a single rule-generating PCT model with different memory and iteration
parameters.

tions mostly improves this result. This difference in accu-
racy is statistically significant on the Country dataset with

10 (p = 9.77 · 10−4) and 15 (p = 0.0244) iterations
and on the Phenotype dataset with 10 (p = 0.049), 15
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(p = 0.032) and 20 (p = 0.003) iterations. Although the
difference is not significant on the Slovenian Water dataset,
increasing the number of iterations increases the difference
in accuracy between the first and the last memory configura-
tion. Statistical significance was measured using Wilcoxon
signed-rank test. The final redescription set score is very
stable on the Slovenian Water and Phenotype datasets, but
its standard deviation is significantly higher on the World
Country dataset. Themain reason for this is the inability of the
framework to produce 200 complete redescriptions for each
of the 10 different runs. Increasing the number of iterations
(Iter .) resolves this problem.
The execution time analyses of the framework for multi-

view redescription mining with various number of views is
available in Section S3 of Supplementary document 1.

E. USING RANDOM FOREST OF SUPPLEMENTING
MODELS
This section evaluates the use of a Random Forest of supple-
menting models inside a framework for multi-view redescrip-
tion mining. Detailed analyses of the performed experiments
can be seen in Section S1.2 of Supplementary document 1.
It is visible from Tables S2 − S7 of Supplementary doc-

ument 1, as well as Fig. 7, that using supplementing mod-
els significantly increases the performance of the proposed
framework (both with respect to accuracy and stability). The
corresponding p-values of the difference in mean value of
the average redescription set score achieved using a sup-
plementing model compared to using only a single rule-
generating PCT at each memory setting, according to the
one-sided Wilcoxon signed-rank test, are: p(PCTSub,PCT ) =
7.8 · 10−3, p(PCTET ,PCT ) = 7.8 · 10−3, p(PCTROS ,PCT ) = 7.8 ·
10−3 on the World Country dataset, p(PCTSub,PCT ) = 0.011,
p(PCTET ,PCT ) = 7.8 · 10−3, p(PCTROS ,PCT ) = 7.8 · 10−3 on
the Slovenian Water dataset and p(PCTSub,PCT ) = 7.8 · 10−3,
p(PCTET ,PCT ) = 0.011, p(PCTROS ,PCT ) = 7.8 · 10−3 on the
Phenotype dataset. Fig. 7 shows that increasing the memory
parameters increases performance of the frameworkwith sup-
plementing model on the World Country and the Slovenian
Water dataset, while the performance slightly degrades when
the Extra multi-target PCTs are used as a supplementing
model, with the increased memory parameters, on the Pheno-
type dataset. This occurs due to themodel inability to produce
200 redescriptions at each run.

F. EXTRA TREES AS A MAIN RULE GENERATION MODEL
In this section, we consider the overall performance of a
framework for multi-view redescription mining when using
one or more Extra multi-target PCTs as a main rule-
generating model as compared to using one Predictive Clus-
tering tree as a main rule-generating model.

The experiments presented in Fig. 8 and Table S8 of Sup-
plementary document 1 demonstrate that using a few Extra
multi-target PCTs as the main rule-generating model in the
proposed multi-view redescription mining framework can
significantly outperform using one main rule-generating PCT

model. Using the Extra multi-target PCTs as a main rule-
generating model increases the overall performance, accu-
racy, diversity and the number of produced redescriptions
(given a set of predefined constraints defined in Section VII).
This is visible from the underline scores and correspond-
ing standard deviations presented in Fig. 8. Given the fact
that learning multiple Extra multi-target PCTs in parallel
can be achieved easily on any modern PC, the overall gain
can be substantial. More detailed analyses can be seen in
Section S1.3 of Supplementary document 1.

G. VIEW RANDOM SUBSET PROJECTIONS
The proposed framework applies the CLUS-RM algorithm
to each pair of available views and then completes the
obtained incomplete redescriptions using rules produced on
the remaining views. Although less computationally com-
plex than the naive generalization of redescription mining
algorithms, this approach requires performing

(n
2

)
CLUS-

RM applications and the same number of redescription com-
pletions (where n denotes the number of available views).
We test how much is lost by using and completing only
a fixed size subset of pairs of initial views - performing
random view subset projection. In the experiments performed
to obtain results presented in Fig. 9 and Table S9 of Sup-
plementary document 1, we used 2 pairs of initial views
to create redescriptions. Thus, performing such a random
view subset projection executes 3 times faster on the World
Country dataset and 33% faster on the Slovenian Water and
the Phenotype dataset as compared to a regular run of the
multi-view redescription mining framework.

The results presented in Fig. 9 and Table S9 of Supple-
mentary document 1 show that, expectedly the full run of the
multi-view redescription mining framework outperforms the
random view subset projection runs. However, the difference
in average redescription set score (after performing 10 runs)
is 0.1 (10% of redescription set score range, or full run obtains
a set that has∼ 18% better score than obtained by projection)
on the World Country dataset, 0.06 (6% of redescription set
score range, or ∼ 7% better) on the Slovenian Water dataset
and 0.01 (1% of redescription set score range, or ∼ 3%
better) on the Phenotype dataset. Higher deviation between
runs when using projection (approx. 2× on Country, 5×
on Water and almost identical on Phenotype dataset) must
be taken into account. However, if multiple runs are used,
as was done in this experiment (to reduce the effects of
deviation), random view subspace projection may be used as
a technique to alleviate the curse of dimensionality in multi-
view redescription mining.

H. APPLICATION - UNDERSTANDING OF MACHINE
LEARNING MODELS
In this subsection, we show the benefits of using multi-
view redescription mining in the context of developing and
interpreting machine learning models of data. Namely, it can
increase the understanding of any machine learning model
and interrelate predictions made by a set of different machine
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FIGURE 7. Overall redescription set score totalsc (R) obtained using a single rule-generating PCT model and a supplementing model containing 50 trees
with different memory parameters.

learning models. We also show how to gain new knowledge
by incorporating information obtained frommachine learning
models into multi-view redescription mining setting.

We use the Phenotype dataset, described in Section VI,
to demonstrate the use of feature ranking, obtained by the
Random Forest algorithm, in the multi-view redescription
mining setting. This allows relating feature importance’s for
predicting bacterial phenotypes of features obtained on dif-
ferent sets of attributes such as: metagenomic co-occurrences,
proteome composition and genomic signatures of translation
efficiency in gene families. Using this type of analyses reveals
properties about the underlying problem but also about the
model used to create the ranking (since observed redescrip-
tions summarize the model output). In our Phenotype use-
case dataset, redescription mining allows detecting subsets
of phenotypes and the corresponding subsets of features that
are predictive (to some degree) for all phenotypes in a given
subset. This information is not easily deducible from the
phenotype-specific long lists of feature importance scores.
The approach allows relating feature importance scores
obtained using multiple different models or feature ranking
approaches. It also allows relating model output (such as fea-
ture ranking) to the original sets of features, which provides
additional information to the domain experts (allows describ-
ing discovered subsets of phenotypes that share common
informative features using original attribute value range). The

insights provided by the approach can be used tomake correc-
tions, parameter tuning or model selection. If highly accurate
model is used, obtained feature scores can be used as a filter to
constrain search for redescriptions only on the selected subset
of predictive attributes (this can be achieved by applying
stricter threshold prior to application of the redescriptionmin-
ing algorithm). This significantly reduces execution time and
eliminates many potentially uninteresting patterns (reduces
the possibility of finding subsets of phenotypes that share
predictive features of low or medium importance). All this
makes the overall analyses more efficient.

To demonstrate the use of multi-view redescription min-
ing to relate and understand predictions made by multiple
machine learning models and incorporate these predictions
into the redescription mining setting, we create a new dataset
derived from the SlovenianWater dataset.We use the physical
and chemical measurements of water quality as attributes and
predict the occurrence of 7 different plant and 7 different
animal species in waters from different locations in Slovenia.
First, we randomly shuffle the data and make 70% − 30%
split. We train a Random Forest of 600 Predictive Clustering
trees with and without random output selection and a Ran-
dom Forest of 600 Extra multi-target PCTs on a train set to
predict the occurrence of aforementioned species (these are
used due to their multi-label classification and multi-target
regression abilities but in principle any model can be used).
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FIGURE 8. The framework’s performance using one main PCT rule-generating model compared to using 1, 2, 4 or 6 Extra multi-target PCTs (ET)
as a main rule-generating model. A working set size of at most 3000 and a maximal memory size of 6000 are used in all experiments.

Our multi-view redescription mining dataset is comprised
of the 30% test split having 4 views. The first view is the
corresponding part of the Slovenian Water dataset containing
physical and chemical measurements for corresponding loca-
tions contained in the test split. The remaining three views are
predictions obtained by the aforementioned models (integer
{0, 1, 3, 5}, where 0 represents no occurrence and 5 represents
the abundant occurrence of the organism).

Using such datasets brings many advantages and benefits
for machine learning, explainable data science and redescrip-
tion mining. Since it allows relating predictions made by
the multiple approaches it effectively allows combining
approaches in a non-linear way, also allowing to understand
the similarities and the differences of obtained predictions
for various subgroups of data. Since it allows describing
the obtained subgroup with original attributes, it provides
means for analyses and verification by the domain experts.
Further, it allows detecting subgroups on which models make
mistakes or on which models disagree providing the inter-
pretable justification for model tuning or selection. Finally,
the obtained redescriptions can be used to locate subsets of
unseen examples onwhich it is highly expected that some pre-
defined property holds or they can be used as more complex
yet interpretable local predictors. There are also benefits of
adding views obtained by the machine learning models into
the multi-view redescription mining (when target labels are
available). It is often very hard to segment the data in the com-
pletely unsupervised manner (only using original attribute

values). Adding one or more views containing predictions
of machine learning models allows focusing redescription
creation to these redescriptions describing one or more target
classes of interest. Such a procedure can also be applied
when the target labels are available, however, using machine
learning models is a more general approach allowing for
focused redescription mining on both the annotated and the
unannotated part of data.

Very accurate redescriptions Rpheno1 and Rpheno3 from
Table 3 describe specific (Rpheno1 ) or large (Rpheno3 ) sub-
sets of phenotypes using subsets of features found impor-
tant by the Random Forest algorithm for predicting these
phenotypes. By using the full query language, as in Rpheno3 ,
redescription mining can describe very complex relations
between important features (as obtained from some predic-
tive model) for some subset of phenotypes. The predictive
importance of attributes contained in queries of Rpheno1 and
Rpheno2 for the described phenotypes is low to medium.
Rpheno2 contains features with medium to very high predictive
importance for the described subset of phenotypic traits. This
type of knowledge is not easy to find and it provides useful
information about the underlying model (what features does
it find predictive for a given subset of phenotypes) and the
underlying problem (given an accurate model, further anal-
yses can be made of connections between a given subset of
phenotypes and a selected subset of features).

Redescriptions Rsw1 - Rsw5 from Table 3 demonstrate the
use of multi-view redescription mining to explain predictions
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FIGURE 9. The evaluation of redescription sets created using two pairs of initial views on the World Country (C), Water Quality (W) and Phenotype
(P) datasets.

made by different machine learning models. Redescription
Rsw1 describes 16 water samples with the Jaccard index
0.4. This means that there are additional 24 water samples
described with a subset of queries but not all of them. This
redescription reveals that all models predict the occurrence
of species 49700 (Gammarus Fossarum) on the locations
contained in its support set, two out of three queries pre-
dict no-occurrence of species 19400 (Nitzschia Palea) on
these locations and the ROS model predicts moderate to high
occurrence of species 50390 (Baetis Rhodani) and no occur-
rence of species 25400 (Cladophora). Domain expert can
immediately see what properties hold from the descriptive
attributes (physical and chemical measurements). What is
interesting, and not easily derivable by only looking at the
predictions made by these models is that as species 49700
seems abundant (or at least present), species 19400 seems to
be predicted mostly absent. Indeed, by checking the selected
redescription with the ground truth (real target labels of enti-
ties from the support set of this redescription), 13 out of 16
locations contain species 49700 in abundance (5), 3 locations
contain medium occurrence of species 49700 (3). Thus, all
models rightfully predicted occurrence of this species in all
redescribed locations, and mostly even the abundance level.
15 out of 16 locations do not contain occurrence of species
19400 which is in a large accordance with predictions of the
Random Subsets and Extra multi-target PCTs. Species 25400
is also mostly absent (12 out of 15 locations) whereas species
50390 has medium to abundant occurrence (3 or 5) in 12

locations and rare occurrence in 2 locations. By using their
domain knowledge, a domain expert may choose to trust only
a subset of models or use some compromise as prediction
(which requires examining predictions of base classifiers).
When this is done, redescription predictive quality measures
can be computed in the same way as for any other classifica-
tion algorithm.

The redescription Rsw2 contains properties of one large
cluster of locations. As predicted by all models, these 94
locations should contain at least small presence of species
19400 (Nitzschia Palea). Ground truth target labels show that
82 out of 94 locations indeed have at least small presence of
this species and 58 medium to high presence. Checking real
accuracy of this redescription requires checking predictions
of underlyingmodels (which disagree on substantial subset of
locations), mostly, there are many substitutions of neighbor-
ing classes 0↔ 1, 1↔ 3, 3↔ 5 that occur in one or more
underlying models. A smart way of joining these models into
an ensemble, as using the obtained rules, may potentially
yield higher accuracy than that obtained individually by the
base models. 74 out of 94 locations have no occurrence of
species 50390 (Baetis Rhodani) and 84 out of 94 locations
have no occurrence of species 57500 (Rhyacophila).

Identifying subsets of entities on which multiple models
agree or have very good performance is not the only benefit
of this approach, since it can also be used to detect and
analyze problematic subsets (these on which used models
make mistakes or disagree upon). The redescription Rsw3
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TABLE 3. Example redescriptions illustrating the use of multi-view redescription mining to interpret machine learning models and incorporating
information obtained by these models to gain new insights in redescription mining. These redescriptions have been obtained on the Phenotype dataset
(pheno) and the modified Slovenian Water dataset (sw).

redescribes 10 locations for which all models made sig-
nificant classification errors. Although all models predicted
abundant occurrence of species 37880 (Tubifex), ground truth
target labels show that only 5 locations have medium occur-
rence of this species. The species 17300 (Melosira Varians)
which is predicted to have no occurrence in locations from

support set of redescription Rsw3 has small occurrence on 5
locations and the species 49700 (Gammarus Fossarum) has
small occurrence on 2 locations.

When using disjunctions, redescriptions can contain com-
plex descriptions of different locations with the different
measurements (as in Rsw4 ) or of occurrence and partial
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co-occurrence of different species (as in Rsw5 ). Although very
complex, such redescriptions may be used as a general filter
to identify entities with some complex property.

Technique for understandingmachine learningmodels pre-
sented in this section and its capabilities significantly differ
from the capabilities of the well known methods for explain-
ing predictions such as SHAP [20] or LIME [31]. Thesemeth-
ods aim to explain why some supervised machine learning
model made the obtained predictions. It does that either by
learning an interpretable model locally around the prediction
(LIME) or by assigning an importance value to each feature
for a particular prediction (SHAP).

VIII. CONCLUSION AND FUTURE WORK
The main goal of this work is to present a general, memory
efficient framework for multi-view redescription mining. The
proposed framework starts by creating two-view redescrip-
tions with the GCLUS-RM algorithm. The main idea behind
our efficient multi-view redescription mining algorithm is to
use redescriptions as targets in the redescription completion
phase, which extends two-view redescriptions to multiple
views. This significantly reduces the computational complex-
ity of the approach.

Comparison results with the naive extension of 2-view
redescriptionmining algorithms tomulti-view setting demon-
strate that unlike the naive extension, the proposed method-
ology is generally applicable, it mostly outperforms the naive
extensions with respect to redescription accuracy, signifi-
cance, overall redescription set score, memory consumption
and execution time and it heavily outperforms the naive
extensions with respect to all these measures on datasets
that allow creating large number of redescriptions. Detailed
evaluation of the proposed framework revealed:

1) Using a larger amount of memory tends to increase
the overall redescription quality. Increasing the number of
iterations inside the GCLUS-RM additionally increases the
difference in quality between redescription sets produced
using low and high amounts of memory.

2) Using a supplementing model significantly increases
the redescription accuracy, diversity, and overall number of
produced redescriptions satisfying some predefined quality
constraints. This leads to redescription sets with superior
properties as compared to those obtained using one rule-
generating model obtained using the PCT algorithm.

3) It is feasible to use the Extramulti-target PCTs algorithm
to create the main rule-generating model and that by using
additional trees such an approach outperforms the use of a
rule-generatingmodel obtained using one PCT. This is impor-
tant, because using the Extra multi-target PCTs algorithm to
produce the main rule-generating model reduces the overall
computational complexity of the approach.

4) Using the random subspace view projections may be
a feasible approach to reduce the computational cost of the
framework or to perform preliminary prototyping. Although
the produced sets have a slightly lower score (and are more
susceptible to random fluctuation), using projection allows

significant execution time savings (up to 3 times when 4
views are available).

5) There are large benefits in incorporating different
information from predictive models (such as feature rank-
ings or predictions) into multi-view redescription mining.

6) Multi-view redescription mining can be used to increase
the overall understanding of the studied problem domain and
the predictive models used to obtain predictions or feature
rankings.

Currently, the approach computes the Cartesian product of
two rule-sets to obtain redescriptions. Interesting direction
for future work includes efficiently reducing the number of
tests needed to compute this set. Other direction includes
discovering ways to choose a subset of initial views, in a
guided manner, that will produce the maximal number of
redescriptions, when random view subspace projection is
used. Contributions along these two directions will surely
enhance the efficiency of the approach.
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