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Citation: Jović, O.; Šmuc, T. Search

for Novel Lead Inhibitors of Yeast

Cytochrome bc1, from Drugbank and

COCONUT. Molecules 2021, 26, 4323.

https://doi.org/10.3390/

molecules26144323

Academic Editor: Micholas

Dean Smith

Received: 10 June 2021

Accepted: 14 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).
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Abstract: In this work we introduce a novel filtering and molecular modeling pipeline based on
a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular
dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with
the aim of determining the same or different chromophores to usual. The study was carried out using
the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from
FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds.
The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides
and molecular docking (MD) simulations with final QM/MM binding energy determination, while
aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester
functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test
were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D
descriptor similarity condition and had either an amide or an ester group were submitted to docking
where they further had to satisfy both Chemscore fitness and specific conformation constraints.
This rigorous selection resulted in a very limited number of candidates that were forwarded to
MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this
final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction
energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM
binding energy scores were applied to further filter candidate inhibitors. This elaborate search
pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural
(COCONUT database) lead compounds—tentative new inhibitors of cytochrome bc1. These eleven
lead compounds were additionally validated through a comparison of MM/PBSA free binding
energy for new leads against those obtatined for 19 QoIs.

Keywords: fingerprints; 3D descriptors; similarity; molecular docking; drug repurposing; QM/MM
optimization; molecular dynamics

1. Introduction

Cytochrome bc1 is an important anaerobic respiratory chain component, where the
electron transfer from substrate ubiquinol to cytochrome c is catalyzed with proton transfer
across the membrane of bacteria or fungi [1]. Qo site of cytochrome bc1 is the subject of an-
tifungal agents such as inhibitors such as azoxystrobin, coumoxystrobin, kresoxim-methyl,
and fluoxastrobin [2], where inhibitors prevent ubiquinol from binding to the active site [1]
(in later text Qo inhibitors, QoI). The basis of such QoI’s mode of action is their higher
binding affinity to cytochrome c than ubiquinol [3], and for that reason researches for
stronger binding QoI-s have been carried out. So far, ultrapotent site QoI-s have been
computationally recommended using the fragment-based drug discovery method [4]. That
study was based on finding the strongest binding of the methoxyacrylate mode of ac-
tion (MOA) antifungal inhibitors when optimizing the fragment attached to fungicide’s
pharmacophore with protein side-chain residues in the Qo site. The best hydrophobic
aromatic interactions yielded picomolar range Qo site fungicides, which also corresponds
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to important aromatic–aromatic interactions of famoxadone with the studied side chains [3].
A recent study [5] considers fragment improvements of pyraclostrobin analogs, that con-
tain methoxycarbamate pharmacophore as a MOA chemical group within the same site
and target as methoxyacrylate inhibitors. Again, the study reveals optimal fragments
having ring–ring hydrophobic interactions between the inhibitor and the protein side-
chain residues [5]. Frac-code list [2] contains 21 fungicides altogether as cytochrome bc1
inhibitors at the Qo site labeled as C3 MOA, while listing more than 50 fungicides within
the respiration MOA as a general MOA group. The mentioned 21 fungicides at the Qo site
cover the following chemical functional groups: methoxyacrylates, methoxyacetamides,
methoxycarbamates, oximinoacetates, oximinoacetamides, oxazolidine-diones, dihydro-
dioxazines, imidazolinones, benzylcarbamates and the most recent tetrazolinone group.
Investigations for new lead antifungal compounds while using one very specific chemical
functional group within each corresponding article have already been published [4,5].
The searches are necessary to counter the resistance of mutants found in different crop
species [2,6], e.g., azoxystrobin and pyraclostrobin are sensitive to G143A mutations [6,7].
Among the mentioned chemical groups, there are, however, either a few or even only
a single fungicide for the corresponding group [2], which raises a question of whether
there are still other undiscovered pharmacophore functional groups for C3 MOA. One of
the novel C3 fungicides is metyltetraprole, reported to be mostly unaffected by mutant
pathogens [7], and also stigmatellin, which has a different mode and is unaffected by
some mutations [6]. The very recent article considers the use of novel sulfonamides with
no positive cross-resistance to eight commercial fungicides (including azoxystrobin) [8].
Whether there are more confounding QoI-s within the known and approved drugs is
unknown. For this reason, drug repurposing of the Drugbank compounds for new lead
proposals of Qo site inhibitors while searching for new MOA functional groups is still
lacking in the literature to the best of our knowledge and should be carried out. Moreover,
we consider lead compounds of the newest open natural products database (COCONUT
database) [9] to be a very interesting source as well, given that natural compounds have
already provided an important role in the discovery of cytochrome bc1 inhibitors [10].

In this work we examined the whole Drugbank (9680 compounds) and COCONUT
Database (401,624 compounds) in order to find the subset that was most similar to the C3
group of fungicides, and to allow for new potential pharmacophore groups to be considered
in this drug repurposing pipeline. The similarity between the databases and the C3 MOA
compounds will be based on molecular fingerprints and stable 3D descriptors of docked
conformations. We further decided to restrict selection to compounds with at least an ester
or an amide group because those without carbonyl group studies report no significant
activity [4,11]. The reason for this is the fact that either one of the two ester oxygen
atoms can be involved with the H-bond with amide N-H of the backbone active group in
cytochrome bc1. In the case of chain C of yeast Saccharomyces cerevisiae (2ibz), it is about
Glu-272 residue [1,3]. For the compound to be an active inhibitor, it is necessary either (1)
to find a very high scored binding energy hit compound with sufficient H-bond frequency
very near the binding site and with any H-bond conformation, or (2) to find a significantly
high-scored binding energy compound with a stable and strong conformation precisely
containing H-bonds bound to amide N-H Glu272. For Drugbank repurposing, we took into
account both approaches ((1) and (2)), but for drug recognition of the COCONUT database,
only approach (2) was considered because approach (1) would mean an in-depth search
common for repurposing, which is not the case for the COCONUT database containing
several hundered thousand compounds, many without stereochemical information, for
which no repurposing but only a drug discovery procedure can be considered. The
docked compound must have both high docking scores compared to QoI-s and at least
one conformation must involve an already precisely defined H-bond. Furthermore, such a
compound, when submitted to MD simulation, must have high H-bond statistics and yield
relatively strong interactions with the protein when compared to QoI-s. Finally, QM/MM
binding energy between hit ligand and protein must be above the margin determined
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from C3 fungicides; then and only then can such a compound be claimed as an in-silico
proposed cytochrome Qo inhibitor lead compound. Determing possible lead compounds
with this stringent similarity and modeling filtering pipeline from a large set of synthetic
and natural compounds from Drugbank and COCONUT databases is the primary aim of
this study. For drug repositioning of the Drugbank database, slightly less stringent criteria
will be taken into account in the first part of the pipeline.

While chicken cytochrome bc1 (3TGU) has been already assessed with molecular
docking and molecular dynamic simulations [4,5], yeast cytochrome has only been used
for experimental studies either as a model system for a variety of plant organisms [6] or in
some toxicity and wine-making tests [12,13]. In-silico studies of chicken cytochrome bc1
have been performed but only on several C3 modes of action FRAC fungicides. Mostly, we
are speaking of azoxystrobin [4], pyraclostrobin [5], and to some small extent, kresoxim-
methyl [11,14], metominostrobin [11], and metyltetraprole [15], while the other 16 QoI-s [2]
have not yet been both thoroughly assessed and mutually compared through MD studies
to the best of our knowledge. Therefore, describing the H-bond (particularly to Glu-272) of
yeast cytochrome bc1 with FRAC QoI-s, and other hydrophobic interactions with MD will
be carried out in this study too.

2. Results and Discussion
2.1. Similarities and Docking

Among the 763 Drugbank compounds that had passed fingerprint similarity condition,
20 compounds have passed descriptor similarity. All details are depicted in Supplementary
Table S1. When these compounds were submitted to flexible docking, Table 1 displays the
results of the highest scored conformation (HSC) and of SHB conformation. Regarding
the Drugbank repurposing pipeline, 9 hit compounds out of 20 meet the condition of
higher HSC Chemscore fitness than average fungicide HSC and two of them, DB09199 and
DB04930, had different H-bonds to those already defined in SHB, but were still considered
for MD simulations following the approach (1) due to the attained docking score higher
than obtained for the top 1/3 QoIs (which was fenaminstrobin) (Table 1).

Among 863 COCONUT compounds that passed the fingerprint condition, 211 com-
pounds satisfied the 3D descriptors criterion (0.95) and were submitted to flexible docking.
Of these 211,62 compounds attained both HSC > 36.2 and at least one SHB conformation
was therefore satisfactory and could be further submitted to MD simulations. Table S2
displays the results for these 211 COCONUT compounds. It should be noted that in
Table S2, few compounds were excluded from consideration due to very high Chemscore
fitness differences between HSC and SHB conformation. Moreover, a significant number
of compounds, although considered for MD runs, have a relatively high gap between the
HSC score and the SHB score (Table S2).

For QoI-s, in 8 out of 21 cases, HSC corresponds to SHB. In 21 cases, stigmatellin
does not count because its binding mode does not cover binding with the amide group of
Glu-272 residue, but it was submitted to MD runs because it is a protein-docked ligand and
assessing its total H-bond frequency and interaction energy is necessary. In the fenamidone
case, even after repeated docking with 200 ga runs was performed, no SHB conformation
was attained, while fluoxastrobin does not contain a carbonyl group, so these two QoI-s
were the only ones which were not submitted to MD runs.

Table S3 displays the number of occurrences with H-bonds including any electronega-
tive ligands’ atoms (or oxygen atom exclusively) and amide HN of Glu-272, where it can
be seen that metyltetraprole has the highest number of such conformations among QoI-s,
41 (38) of 100 possible with definition of d(X. . . H-N) < 3.2 Å and d(X. . . H) < 2.2 Å. Among
hit compounds, CNP0049103 has the highest number of occurrences (80).

The whole 3D descriptor similarity was performed based on solely rigid docking.
Therefore, we made additional similarity tests by using top SHB conformations for building
their Padel 3D descriptors and using 280 stable descriptors for calculating the similarity
between rigid and flexible docking. The median similarity value between rigid-flexible
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dockings was 0.971, while between all rigid dockings themselves (rigid-rigid) it was 0.984.
This means that descriptor values describing the flexible docking conformations are not
significantly different to the values obtained for rigidly docked conformations, so the
descriptor similarity part of the study does not have to be repeated with flexible docking.

Table 1. Gold Chemscore Fitness table of the highest scored conformation (HSC) and of the best scored specific H-bond
(SHB) (ligand C=O...H–N Glu-272) conformation (see Section 3.5.1 for clarification). For 211 COCONUT samples, see
Table S2.

Compound HSC SHB Compound HSC SHB Compound HSC SHB

azoxystrobin 32.3 30.4 picoxystrobin 30.4 27.3 famoxadone 40.8 40.8 (a)

metominostrobin 31.7 31.7 (a) pyrametostrobin 34.9 34.9 (a) coumoxystrobin 42.7 35.4
pyraclostrobin 35.4 35.3 pyribencarb 39.0 37.5 enoxastrobin 40.8 34.2
fenamidone 33.7 - (c) triclopyricarb 29.5 29.5 (a) mandestrobin 36.7 36.7 (a)

kresoxim-methyl 33.7 32.5 fluoxastrobin 32.0 - dimoxystrobin 37.8 37.8 (a)

trifloxystrobin 35.8 35.8 (a) pyraoxystrobin 39.9 34.8 flufenoxystrobin 36.3 36.3t (a,b)

orysastrobin 30.9 27.3 fenaminstrobin 41.2 (a) 35.6 metyltetraprole 37.7 37.7 (a)

stigmatellin 46.1 - fungicide average 36.2 (a)

DB Hits (0.95 similarity):
DB00682 31.8 - DB07831 42.3 37.8 DB09199 42.0 (d)

DB00946 33.2 - DB07943 37.4 34.2 DB12398 33.3 -
DB01418 33.9 - DB08242 38.4 35.2 DB13657 30.9 -
DB02660 31.3 - DB08268 33.9 - DB14055 31.9 -
DB04930 43.3 - (d) DB08315 33.7 - DB14668 39.5 37.5
DB07132 32.3 - DB08439 36.9 34.8 DB07181 44.1 42.9
DB07704 33.6 - DB08557 39.8 39.8t

(a) HSC conformation is at the same time SHB conformation. (b) Attained only with repeated docking with 200 ga runs and within
20Å. (c) No conformation (among 100 + 200 possible) with specific H-bond and will not be MD simulation runs. (d) DB09199: No SHB
conformation, but hit is obtained with HCS > 41.2 and HSC has an H-bond with the protein (Tyr-279), so exceptionally it will be considered
for MD runs. DB04930: Only in one conformation out of 100, chlorine forms an H-bond with amide Glu-272.

2.2. Results of MD Runs

Results of MD runs are displayed in Table 2 where total H-bond count considers all
possible H-bonds established between any ligands’ (O, N, Cl or F) or proteins’ (O or N)
atoms either being proton donor or acceptor through all 10,001 trajectory points as an
average interaction frequency per snapshot. SHB conformations were mostly submitted.
From this table it can be seen that among QoI-s, only stigmatellin and coumoxystrobin
have a negligible frequency of interactions with amide Glu-272 but they at least have a
significant frequency (>10%) of total strong H-bonds (d(X...H) < 2.2 Å, d(O..H-X) < 3.2 Å,
in further text ‘Total H2.2’). On the other hand, triclopyricarb has a negligible frequency of
Total H2.2 but has more than 10% weak H-bond interactions with amide Glu-272 (X. . . H–X
< 4.0 Å, X. . . H < 3.0 Å, in further text ‘H3.0 Glu272’). Picoxystrobin and pyrametostrobin
have a low frequency of total H2.2 but also more than 10% H3.0 Glu272. All other 15 QoI-s
in Table 2 have more than 10% strong H-bonds, almost exclusively with amide Glu-272.
It is interesting to note that trifloxystrobin (H3.0 100%) and metyltetraprole (H3.0 100%)
constantly hold H-bond interactions with amide Glu-272 during the whole MD simulation.
Something very similar might be true for dimoxystrobin, flufenoxystrobin, enoxastrobin,
mandestrobin, pyribencarb, and kresoxim-methyl. For that reason, a simple rule for hit
compounds can be set that hits must have either more than 10% frequency of total H2.2
or more than 10% of H3.0 Glu-272. For some DB hit compounds, we took into account
more conformations, i.e., both SHB conformation and HSC conformation (void of H-bond
with Glu-272) if its HSC Gold score (Table 1) was higher than the third top fungicide’s
fitness score. Therefore, DB07831 HSC conformation would pass, but SHB would not. The
reason for this is that we are testing two approaches with Drugbank compounds, not only
SHB conformations (as we do for COCONUT compounds). DB04930 and DB9199 are very
high-scored pipeline hits and were therefore exceptionally considered for MD simulations
with their conformation having any other H-bond, but the result of the simulation seems to
lack both total H2.2 and H3.0 Glu272. DB08439 has conformations of both carbonyl and
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sulfuryl H-bonds with amide Glu-272, so MD simulations were carried out for both, and
both seem to satisfy the set criteria. DB07943, DB08557, DB14668 and DB07181 have very
solid H-bond results. DB07181, besides with backbone Glu-272, also attained a very high
frequency of H-bonds with its ligand’s amide NH group to Met-139 backbone carbonyl
oxygen atom. DB08242 is saved regarding H-bonds with sufficient frequency of H3.0
Glu272. A heat map for Table 2 is depicted in Supplementary information as Figure S1.

Table 2. Molecular dynamics result in an H-bond table. By default are shown compounds with SHB conformations (unless it
is stated that it is about highest scored conformation (HSC). ‘Total H2.2’ represents the percentage of time H-bond (X. . . H–X
< 3.2 Å, X. . . H < 2.2 Å) and is established in an MD trajectory, ‘H2.2 Glu272’ and ‘H3.0 Glu272’ are respectively defined as
strong and weak H-bonds (X. . . H–X < 3.2 Å, X. . . H < 2.2 Å and X. . . H–X < 4,0 Å, X. . . H < 3.0 Å) between ligand atoms
(O,N,Cl,F) and H-N of Glu-272.

Compound Total
H2.2

H2.2
Glu272

H3.0
Glu272 Compound Total

H2.2
H2.2

Glu272
H3.0

Glu272

azoxystrobin 43.68 43.68 88.52 dimoxystrobin 60.82 60.38 99.74
metominostrobin 34.61 33.48 73.98 flufenoxystrobin 84.32 84.32 99.53
Pyraclostrobin 16.68 16.68 58.65 fenaminstrobin 49.95 49.95 92.27
kresoxim-methyl 76.38 76.38 99.34
trifloxystrobin 85.03 85.03 100 DB04930 0 0 0.02
orysastrobin 10.63 10.63 15.15 DB07831 5.72 5.71 7.41
picoxystrobin 2.28 2.28 15.20 DB07831 (c) 3.98 3.91 5.20
pyrametostrobin 5.74 5.74 69.54 DB07831 * 15.48 0 0
pyribencarb 63.32 63.21 99.38 DB07943 25.01 23.65 82.50
triclopyricarb 0.29 0.29 12.71 DB08439 (C=O) 59.50 59.50 97.79
Stigmatellin (a) 13.43 0.01 0.50 DB08439 (S=O) 39.89 39.89 100
famoxadone 35.78 33.98 97.60 DB08557 36.70 3.85 14.72
pyraoxystrobin 13.11 13.11 79.09 DB14668 43.28 43.28 67.38
Coumoxystrobin (b) 30.55 0.27 1.04 DB07181 100 64.83 99.84
enoxastrobin 81.94 81.94 99.95 DB08242 2.54 2.12 21.70
mandestrobin 52.46 52.29 98.23 DB09199 2.34 0 0
metyltetraprole 95.10 95.10 100

(a) Ligand’s group -O-H...O=C Glu-272 sidechain, 1466 H-bonds with d(O–H...O) < 3.6 Å and d(H...O) < 2.6 Å. (b) Ligand’s carbonyl
C=O...H-O Tyr-279. 3160 H-bonds with with d(O–H...O) < 3.6 Å and d(H...O) < 2.6 Å. (c) repeated MD simulation. * HSC.

Table 3 displays the calculated interaction energies with a Gromacs program during
the 1 ns MD simulations. Interaction energy is here defined as the sum of Van der Waals
interaction and Coulomb interaction between the ligand and the protein. Here are given
average values with standard errors through the whole trajectory (10001 data points
considered). T-test statistic (<0.01) results show that generally, QoI-s outperform DB hit
compounds by comparing their average values (Supplementary Table S4). This is expected
since most of the hit compounds are not even lead compounds. The simulation of protein–
ligand interactions is in water solution under standard dynamic conditions and QoI-s
are surely expected to display higher scores. To set a rule for acceptable hit interaction
scores, both standard errors of QoI-s and hits must be taken into account. The average
QoI interaction energy divided by heavy atom count (HAC) is 7.59 kJ mol−1/HA, while
the average standard error is 0.52 kJ mol−1/HA. Therefore, for QoI-s, the overall (simple)
statistic is −7.59 ± 0.52 kJ mol−1/HA, while for hit compounds it is 6.72 ± 0.46. The sum of
the average standard errors (0.52 and 0.46 kJ mol−1/HA) gives 0.98 kJ mol−1/HA. Average
QoI minus that sum (in absolute terms) gives −6.61 kJ mol−1/HA. This will be the cut-off
criterion for further pipeline selection to binding QM/MM energy estimations, so all hit
compounds with Eint ≤ −6.61 kJ mol−1/HA and with sufficient H-bond statistics have
passed this pipeline step. These compounds are DB07831, DB07943, DB08439, DB08557,
DB14668, and DB07181.

Regarding the MD results with COCONUT hit compounds, for the rules set above,
among 62 COCONUT hit compounds, 16 pass to QM/MM. Here, besides interaction
energy and H-bond counts, we also took into account RMSD between ligand heavy atoms



Molecules 2021, 26, 4323 6 of 21

and backbone protein with elimination of >3 Å. Table S5 displays all the details. Of course,
we could inspect more conformations for COCONUT hit compounds with more SHB
conformations, but due to the relatively large number of compounds (i.e., 62) put under
MD runs in this study, we used only one top-scored SHB conformation. This means that
among the 46 failed cases (62 minus 16), some false negatives are possible, e.g., those with
a high number of SHB conformations and high RMSD at the same time (Tables S2 and S5).

All the mentioned results considered 1 ns trajectories. Experiments with longer MD
simulation (10 ns, 40 ns and 100 ns) were carried out too, but results do not significantly
differ (in interaction energy and H-bonds) when compared to 1 ns experiments (see Table S6
for detailed results), which is worth noticing.

Schemes 1 and 2 display a drug repositiong pipeline for DB compounds (Scheme 1)
and drug recognition pipeline for COCONUT compounds (Scheme 2). The pipelines are
similar, but are different because as already stated, both strong SHB conformation and very
strong HSC with HB are considered for Drugbank database, on the other hand only strong
SHB is searched for drug recognition of COCONUT compounds. The consequence of this
is sligthly different criteria (i.e., more flexible) regarding fingerprints, molecular descriptors
and molecular docking are considered for Drugbank repositing workflow. Moreover, the
prefiltering step of COCONUT compounds was necessary as mostly these are not drugs
but simply natural compounds.
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Scheme 2. Obtaining lead QoI of cytochrome bc1 for COCONUT drug recognition (drug discovery)
pipeline.

Table 3. Average interaction energy between ligand and protein through the whole MD (1 ns) trajectory. By default
shown are compounds with SHB conformations (unless stated that it is about HSC (a) or rigidly docked conformation
(b)) Protein–ligand interaction energy (E(int)) is calculated following some guidelines in Ref. [16] (HAC denotes heavy
atom count).

Compound HAC E(int)/kJ/mol E(int)/HAC Compound HAC E(int)/kJ/mol E(int)/HAC

azoxystrobin 30 −228 ± 18 −7.60 ± 0.60 enoxastrobin 28 −247 ± 16 −8.82 ± 0.57
metominostrobin 21 −156 ± 15 −7.43 ± 0.71 Enoxastrobin (b) 28 −149 ± 15 -
fenaminstrobin 29 −227 ± 14 −7.83 ± 0.48 mandestrobin 23 −187 ± 12 −8.13 ± 0.52
Pyraclostrobin 27 −195 ± 15 −7.22 ± 0.56 metyltetraprole 28 −233 ± 12 −8.32 ± 0.43
Pyraclostrobin (b) 27 −167 ± 12 - dimoxystrobin 24 −226 ± 13 −9.42 ± 0.54
kresoxim-methyl 23 −206 ± 12 −8.96 ± 0.52 flufenoxystrobin 27 −221 ± 14 −8.19 ± 0.54
trifloxystrobin 29 −232 ± 14 −8.00 ± 0.48
orysastrobin 28 −192 ± 13 −6.86 ± 0.46 DB04930 26 −173 ± 10 −6.65 ± 0.38
picoxystrobin 26 −183 ± 13 −7.03 ± 0.50 DB07831 31 −169 ± 13 -
pyrametostrobin 28 −205 ± 13 −7.32 ± 0.46 DB07831 (c) 31 −175 ± 13 -
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Table 3. Cont.

Compound HAC E(int)/kJ/mol E(int)/HAC Compound HAC E(int)/kJ/mol E(int)/HAC

Pyrametostrobin (b) 28 −177 ± 13 - DB07831 (a) 31 −211 ± 13 −6.81 ± 0.42
pyribencarb 25 −203 ± 12 −8.12 ± 0.48 DB07943 28 −198 ± 13 −7.07 ± 0.46
Pyribencarb (b) 25 −180 ± 13 - DB08439 (C=O) 26 −188 ±11 −7.23 ± 0.42
triclopyricarb 24 −156 ± 11 −6.50 ± 0.46 DB08439 (S=O) 26 −174 ± 11 -
Stigmatellin (b) 37 −219 ± 17 −5.92 ± 0.46 DB08557 28 −185 ± 13 −6.61 ± 0.46
famoxadone 28 −202 ± 11 −7.21 ± 0.39 DB14668 26 −172 ± 16 −6.62 ± 0.62
Famoxadone (b) 28 −164 ± 10 - DB07181 26 −191 ± 14 −7.35 ± 0.54
pyraoxystrobin 29 −219 ± 15 −7.55 ± 0.52 DB08242 27 −175 ± 12 −6.48 ± 0.44
coumoxystrobin 32 −172 ± 22 −5.38 ± 0.69 DB09199 27 −152 ± 11 −5.63 ± 0.41

(a) highest scored conformation (HSC). (b) Rigidly docked conformation. (c) Repeated molecular dynamics experiment.

2.3. QM/MM Binding Energy

QM/MM Binding energies at different levels of theory have been estimated for (a)
rigid docking conformations of all 22 QoI-s (all 21 C3 plus stigmatellin); (b) Gold flexible
(HSC) conformations for all 22 QoI-s; for (c) top HSB conformations of 19 QoI-s (all QoI
except fluoxastrobin, fenamidone and stigmatellin) and all hit compounds that passed MD
simulation step; and for (d) some additional compounds with corresponding HSC or rigid
conformations; everything is fully presented in Supplementary Table S7. The total number of
compounds with calculated QM/MM binding energy equals 77 and, as stated earlier, many
of them include more than one conformation evaluated. We present here in Table 4 only
the most important results for SHB. We prove that on average SHB conformation binding
energies for all C3 fungicides significantly outperform rigid docking (p < 0.01) and HSC
flexible docking (p < 0.05) (Table S7). The fact that rigid docking is significantly outperformed
by flexible docking SHB conformation can be related to initial protein sidechain conformation
from crystal PDB with stigmatellin being the binding ligand as it favors the stigmatellin
type of binding, since it is contrary to famoxadone C3 type of binding related to most of the
analyzed C3 fungicides [1]. Flexible docking enables rearrangement of sidechains (including
Glu-272 sidechain) to accommodate C3 fungicides (with different binding than stigmatellin)
and establishes an H-bond from carbonyl oxygen to amide group of Glu-272. For rigid
docking, there is no SHB conformation for the top-scored QoI conformations. Furthermore,
for some rigidly docked conformations, MD simulations have been carried out on some QoI-s
(pyraclostrobin, pyrametostrobin, metominostrobin, pyribencarb, famoxadone, enoxastrobin)
and the results in most cases are (almost) complete absence of ligands’ formation of H-bonds
with any protein’s proton acceptors or donor groups. Binding energies are depicted both
with ∆E and with ∆G because estimating ∆G for a higher level of theory with frequencies
determined at the lower level of the theory is not very reliable. The difference between two
levels for estimating binding energy correction from ∆E and ∆G can highly vary between
different cases. When calculating partial hessian, many hindered rotations were treated as
vibrations. Therefore, additional scaled correction to the frequencies evaluated at the lower
level was estimated from several calculations at a higher level of theory. Still, final ∆G certainly
has a higher error margin than ∆Ebind. Due to the mentioned reasons, we only display ∆G
but use ∆E and ligand-size relative Escores for lead compound selections in determining
the cut-off level. Average ∆Ebind, Escore, and error margins are determined for QoI-s, for
both levels of theory. The difference between azoxystrobin’s HSC and SHB conformation is
taken as the error margin. It is roughly similar to stigmatellin’s ∆E difference between docked
and experimental crystal conformation. The final results reveal that compounds DB07831,
DB08557, DB08439, and DB14668 have higher absolute values of ∆Ebind and Escore than the
average for QoI-s or at least values within the error margin from the average which coincides
for both a lower and a higher level of theory (two levels—two different conformations). For
some reason, the result of selecting exactly these four Drugbank compounds coincides for
both levels with ∆G as these four compounds also either have a higher absolute ∆G or are
within the error margin compared to the QoI average, contrary to the other three Drugbank
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compounds. Therefore, these four mentioned Drugbank compounds have successfully passed
all pipeline selection conditions and are finally selected as QoI lead compounds. Among
the 16 COCONUT samples (Table S7), seven of them (Table 4) fulfill the already-stated (QoI
average) binding affinity requirements and are selected as lead compounds.

The obtained binding affinity for Pyraclostrobin of −36.2 kcal/mol seems to coincide
with the obtained −35.85 kcal/mol on a similar system (on 3TGU target) [5]. The obtained
binding affinities could be related to experimental IC50 values on yeast Saccharomyces
cerevisiae cytochrome bc1 (wild type) with Azoxystrobin 20 nM, pyraclostrobin 3 nM, and
stigmatellin 2.4 nM [6], which seem to roughly correlate to their ∆E and ∆G values, as
azoxystrobin shows weaker in-silico binding affinity relative to pyraclostrobin, metylte-
traprole and stigmatellin (Table 4). Metyltetraprole and pyraclostrobin also outperform
azoxystrobin regarding EC50 values in wild type Zymoseptoria tritici and Pyrenophora
teres [15,17]. Bovine cytochrome heart cytochrome bc1 shows higher experimental affinity
to pyraclostrobin with relatively similar pKi values of azoxystrobin and kresoxim-methyl,
which also approximately correlates with our binding affinity values (Table 4) (azoxystrobin
pKi = 8.92, pyraclostrobin pKi = 11.59, kresoxim-methyl pKi = 9.28) [14].

Table 4. QM/MM binding energy table. ∆Ebind as electronic binding energy, Escore is the same scaled by heavy atom
count (HAC), ∆G is Gibbs-free binding energy with all enthalpy and entropy corrections to ∆E bind.

B97-D3/def2-SVP//B97-D3/def2-SVP B97-D3/def2-SVP//B97-D3/3-21G

Compound HAC ∆E Bind Escore
∆E/HAC ∆G HAC ∆E bind Escore

∆E/HAC ∆G

azoxystrobin SHB 30 −26.4 −0.88 −11.1 30 −24.3 −0.81 −1.0
azoxystrobin HSC 30 −32.4 −1.08 −17.1 30 −29.8 −0.99 −6.5
metyltetraprole 28 −48.2 −1.72 −34.7 28 −40.3 −1.44 −18.2
pyraclostrobin 27 −40.5 −1.50 −36.2 27 −42.0 −1.55 −29.0
trifloxystrobin 29 −29.7 −1.02 −6.8 29 −22.7 −0.78 +8.9
pyribencarb 25 −44.0 −1.76 −29.4 25 −41.0 −1.64 −19.5
fenaminstrobin 29 −29.0 −1.00 −3.1 29 −26.8 −0.92 −0.9
famoxadone 28 −54.1 −1.93 −57.1 28 −37.3 −1.33 −36.6
enoxastrobin 28 −36.9 −1.32 −19.2 28 −36.5 −1.30 −10.0
mandestrobin 23 −22.7 −0.99 −8.7 23 - - -
dimoxystrobin 24 −56.2 −2.34 −34.0 24 −49.6 −2.07 −21.4
flufenoxystrobin 27 −43.8 −1.62 −38.1 27 −36.8 −1.36 −22.4
kresoxim-methyl 23 −27.1 −1.18 - 23 −23.1 −1.00 -
Stigmatellin*(do) 37 −59.4 −1.61 −25.9 37 −48.9 −1.26 −12.2
Stigmatellin*(cr) 37 −66.6 −1.80 −37.1 37 −46.5 −1.32 −9.8
Average for QoI - −41.1 −1.45 −25.5 - −36.1 −1.27 −13.7
Error margin (a) - 6.0 0.2 >6 - 5.5 0.18 >6
Hits:
DB07831 * 31 −57.1 −1.84 −56.8 31 −59.5 −1.92 −50.6
DB07943 28 −31.0 −1.11 −16.7 28 −23.8 −0.85 −0.8
DB08439 * 26 −41.7 −1.60 −22.3 26 −36.3 −1.40 −8.3
DB08557 * 28 −38.7 −1.38 −25.2 28 −36.8 −1.31 −23.2
DB07181 26 −23.1 −0.89 −15.1 26 −17.9 −0.69 −1.2
DB14668 * 26 −54.9 −2.11 −30.8 26 −41.2 −1.58 −8.4
CNP0061106 * 25 −37.3 −1.49 −39.1 25 −34.1 −1.36 −27.2
CNP0083976 * 26 −55.2 −2.12 −53.2 26 −56.1 −2.16 −45.4
CNP0105092 * 28 −37.0 −1.32 −20.9 28 −34.4 −1.23 −9.6
CNP0153569 * 27 −42.2 −1.56 −29.3 27 −36.8 −1.36 −15.3
CNP0330896 * 25 −39.9 −1.59 −15.7 25 −38.0 −1.52 −5.2
CNP0361420 * 29 −43.0 −1.48 −36.7 29 −45.3 −1.56 −30.4
CNP0364473 * 26 −53.4 −2.05 −45.6 26 −43.0 −1.65 −26.6

* The compound outperformed azoxystrobin SHB in all three variables at both levels of theory, and its ∆Ebind and Escore is not lower
than average for QoI minus error margin. Therefore, the compound passed all five pipeline steps and is finally selected as a QoI lead
compound. (a) Error margin for the lower level of theory is calculated as the binding energy difference between Azoxystrobin HSC and
SHB conformations. Due to frequency calculation issues, the margin for ∆G is not easy to determine.
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Interaction energies of MD simulations in explicit water solution (Table 3) do not gen-
erally correlate with binding affinity estimation in PCM environment (Table 4). However,
they at least qualitatively coincide regarding the same compound conformation analysis,
where rigidly docked conformations of QoI always seem to have both weaker binding
affinity and also smaller interaction energy than their SHB conformation counterparts
(Figure 1).
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Figure 1. QM/MM binding energy and interaction energy graphs, score comparison between
HSC (blue) and top rigid (Adt) conformation (red) for (1) pyrametostrobin; (2) pyraclostrobin; (3)
pyribencarb; (4) famoxadone; and (5) enoxastrobin.

The selected 4 Drugbank and 7 COCONUT lead compounds all obey the rule of five,
for COCONUT lead compounds, information can be easily found on the COCONUT web
site [18] where each of them is also referenced (under a different name) on the PubChem
website, none of them is yet revealed as fungicide or QoI to the best of our knowledge.
Scheme 3 displays all selected lead compounds.
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Scheme 3. Novel QoI lead compounds. (a) DB07831; (b) DB08557; (c) DB08439; (d) DB14668; (e) CNP0061106;
(f) CNP0083976; (g) CNP0105092; (h) CNP0153569; (i) CNP0330896; (j) CNP0361420; and (k) CNP0364473. CNP0361420
contains a benzyl-carbamate chemical functional group which coincides with one of the groups of C3 modes of action,
namely pyribencarb, which also contains benzyl-carbamate important to bind to the Qo site.

Finally, this last QM/MM step might be questioned due to its relatively high com-
putational cost. In that case, the list of hit compounds which passed step 4 can be found
in Supplementary information list 1; they could all be potentially considered for future
in-vitro testings, in cases where they are afordable, although the complete in-silico pipeline
must entail predicted binding energies at the QM/MM level of theory.

Table S8 displays the results of ligand–protein interaction frequencies <3.5 Å for spe-
cific protein residues and atoms to study hydrophobic interactions for MD simulations up
to 1 ns. C alpha atom (CA) of Gly-143 (CA-Gly143) seems to show on average almost more
than one interaction per snapshot for most QoI-s, except for metominostrobin, pyribencarb,
and triclopyricarb, but for all studied QoI-s CA-Gly143 > H2.2-Glu272. Only pyribencarb
and metyltetraprole H3.0-Glu have a somewhat higher frequency than CA-143. However,
only two lead compounds have a higher frequency of H2.2-Glu272 than CA-Gly143, and
these are DB08439 and CNP0153569 (H2.2 of 86.25%, Table S5), which is not the case
with any QoI. This proves that forming an H-bond between ligand’s carbonyl group and
backbone amide of Glu272 does not have to be followed by an interaction with the C
alpha atom of Gly143. DB08439 carries sulfonamide functional group while mutation of
Gly-143 to alanine carries a high risk of resistance to the known QoI-s [2,6]. The very
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recent article recommends the development of sulfonamides as new pesticides due to
established not-positive cross-resistance between sulfonamide and eight commercial fungi-
cides [8]. Moreover, lead compounds DB14668 and CNP0083976 have a higher interaction
frequency of H3.0-Glu272 than CA-Gly143, similar to metyltetraprole, which is known
to be unaffected by Gly143A mutation [7]. Compounds with a low interaction frequency
with H2.2-Glu272 (or without such H-bond) seem to show either very high frequency
with CE-Met295 (stigmatellin, orysastrobin, coumoxystrobin, DB07831) or with Ar-C1-
Phe278(triclopyricarb) or with ArC1-Phe129 (DB08557, picoxystrobin, coumoxystrobin,
stigmatellin). These mentioned atoms denote important hydrophobic interactions and
pi-pi stacking. Moreover, DB07831 and DB14668 show the record-high number of contacts
with C4-ILe125. Interactions with the groups in the similar targets have been described
already [4,5,14], but not on Saccharomyces cerevisiae using MD simulations on docked
conformations, which is a significantly different system due to initial stigmatellin-type
conformation of target sidechains contrary to famoxadone (C3 fungicide) type, especially
regarding the Glu-272 glutamate sidechain [1]. All described statistics consider differ-
ent high RMSDs between ligand-heavy atoms and backbone protein for different cases
(Table S8). Although conformation might vary considerably during the MD simulation,
the most QoI-s still seem to retain an H-bond with an amide group of Glu-272 through the
whole MD run. This is also true for longer MD simulations (10 ns). For stigmatellin it is
uncertain why RMSD is so high since its geometry was submitted to MD after QM/MM op-
timization with protonated side chain Glu-272 with which it forms an H-bond although in
the MD run, such a group is depronated, which definitely might cause significant changes
in geometry during the MD run. All other compounds do not form such an H-bond and
their RMSD is lower. It must be emphasized that it is difficult to take into account more
input conformations for each compound when filtering so many compounds through
a pipeline. However, on average, our pipeline approach is acceptable since most QoI-s
outperform non-QoI-s regarding the variables from MD simulation (Tables 2 and 3) and
QM/MM binding affinity (Table S7). Finally, Figures 2 and 3 display visually how the
QoI-s and novel lead compounds bind in the active center.
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The result of validation steps involving Amber MM/PBSA [19] free binding energy
(Table S9) shows that all 11 selected lead compounds are either within min-max values of
19 QoI-s, or are within one standard deviation of the two lowest-scored QoI-s, although
statistically, the average binding energy is slightly in favour of QoI-s (which is expected for
the literature established QoI-s). This result regards 1 ns simulation and the similar results
and the same conclusion can be established also for 5 ns simulations (Table S9).

3. Materials and Methods
3.1. Datasets

From all ca 13,000 Drugbank drugs, we considered structures which contained SDF
open structure data file format (i.e., 9680 compounds) (Table S10). Altogether, 8617 non-
missing value Drugbank compounds were taken into account for fingerprint analysis.
Azoxystrobin and famoxadone were intentionally excluded because these two already are
QoI-s. Regarding fingerprints, we considered all compounds with non-missing values for
the following Padel [20] fingerprints: Fingerprinter, Extendedfingerprinter, EStateFinger-
printer, MACCSFingerprinter, PubchemFingerprinter, SubstructureFingerprinter. Total
number of fingerprints: 4811.

For Drugbank compounds amide or ester functional group filtering was conducted at
descriptor similarity filtering, except for the COCONUT Dataset, which contains 401,624 nat-
ural compounds (accessed 2 February 2021), prefiltering of compounds was necessary in
the start and only compounds satisfying all the following conditions were considered:

PSA < 140 and (&)

Molecular weight < 600 Da &

Number of O atoms (N(O)) > 1 & (1)

2 < N(O) + N(N) < 11 &

14 < N(C) + N(O) + N(N) < 43 &

−0.4 < AlogP < 5.6

Furthermore, eligible compounds should contain any of the following 8 fragments
(SMILES notation): “COC(=O)”, “COC=O”, “C(=O)OC”, “O=COC”, “C(=O)N”, “O=CN”,
“NC(=O)”, “NC=O”. Total number of COCONUT compounds that satisfy all mentioned
conditiones above are 46,700 compounds and these were submitted to fingerprint analysis,
while all other compounds were discarded.

All Padel 3D descriptors were initially considered and used in this study while as-
sessing docked conformations. These 3D descriptors are the following: Autocorrelation3D,
CPSA, GravitationalIndex, LengthOverBreadth, MomentOfInertia, PetitjeanShapeIndex,
RDF, WHIM. 3D descriptor data were scaled.

3.2. Fingerprint Similarity Filtering

Padel molecular fingerprints were calculated for 20 C3 (all C3 except of the recent
metyltetraprole) and 1 C8 fungicide ametoctradin as it is also QoI to enable more structural
variety of compounds and to open the search for the two mentioned approaches. Jaccard
index was calculated between these 21 QoI-s obtaining altogether 210 (i.e., 20 + 19 + ... +
2+1 = 210) Jaccard similarity coefficients within the fungicides labeled as J-Qoin. Jaccard
index was also calculated between each inhibitor of these 21 QoI-s in pair with each of
8617 Drugbank compounds, obtaining altogether 21 × 8617 Jaccard similarity coefficients
between QoI-s and Drugbank compounds labeled as J-Qo-DB. For each of the 21 QoI-s,
the maximum value of the Jaccard similarity coefficient between all other 20 considered
QoI-s was taken as a reference obtaining 21 reference J-Qoin values. The first lower quartile
of these 21 reference J-Qoin was used for a similarity cut-off for selecting Drugbank com-
pounds similar to QoI-s. For 21 × 8617 J-Qo-DB values, the maximum Jaccard coefficient
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for each DB compound was selected among the 21 possible ones, obtaining a vector of
8617 maximum Jaccard similarity values for all DB compounds. DB compounds with a
maximum value higher than the first quartile of 21 J-Qoin passed this first fingerprint test
and were considered for further docking studies; 763 among 8617 passed such a condition
and all others were discarded.

The corresponding similarity procedure was carried out also for pre-filtered 46,700 CO-
CONUT compounds with the difference that no ametoctradin, but only 20 C3 fungicides,
were used for the first quartile elimination protocol. For 20 × 46,700 J-Qo-DB values,
the maximum Jaccard coefficient for each COCONUT compound was selected among
the 20 possible, obtaining a vector of 46,700 maximum Jaccard similarity values for all
COCONUT compounds. Those COCONUT compounds with a maximum value higher
than the first quartile of 20 J-Qoin passed this first fingerprint test and were considered
for further docking studies. A total of 863 among 46,700 passed such a condition and
all others were discarded. Note that at this stage, more would pass if ametoctradin was
taken into account and likely far more if prefiltering of the COCONUT database was not
conducted earlier.

3.3. Pretreatment of the Protein PDB File

Cytochrome bc1 Complex found in yeast species Saccharomyces cerevisiae in complex
with Stigmatellin was used as a target PDB for all docking studies, and was downloaded
as 2ibz.pdb [21] protein from Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (PDB). Using GaussView, all water molecules, ions, ligands, and other
free molecules were removed; all chains were deleted except Chain C. With Chain C of
2ibz.pdb, extensive and repeated docking studies were carried out for all 20 C3 fungicides
and selected hit compounds in both Autodock4 and Gold programs.

3.4. Descriptor Similarity Filtering

For 763 Drugbank compounds that passed fingerprint similarity filtering, 3D SDF
files were downloaded and converted to a PDB format using an openbabel program with
added hydrogens and were submitted to the Autodock4 docking program [22]. Out of
763 compounds, 29 did not contain a 3D SDF file and were evaluated one by one. All
results are in Supplementary Table S1.

For 863 COCONUT compounds, openbabel generated 3D conformations from flat
SDF. Since some compounds contain chiral centers, we carefully assigned stereochemical
information for all 863 structures in Table S11.

Docking was performed on Chain C of 2ibz.pdb using all Autodock4 defaults except
the number of ga runs, which was 100 for QoI-s and 20 for Drugbank and COCONUT
compounds. Grid cube size was 30 × 30 × 30 Å with 0.375 Å spacings; the cube center
was arithmetic mean of the coordinates of Stigmatellin in 2ibz as x = −14.28, y = 38.02,
z = −16.80. The whole protein chain was set to be fixed. For 21 QoI-s (21 C3 including
metyltetraprole), among 100 ga runs, the top 10 conformations (lowest in energy) were
picked out and turned to SDF format and were submitted to a padel program for generation
of 3D descriptors. For Drugbank and COCONUT compounds, the same was done but
among 20 ga runs, the top 3 conformations were selected.

Among 431 3D descriptors, only 280 descriptors had a stability value of three, defined
as the ratio of average and its standard deviation for all 21 Qo fungicides. Three because
99.73% confidence interval covers mean plus or minus three times its standard error and
if such interval includes variable’s null value then the variable (descriptor) itself is not
considered to be statistically significant (i.e., stable). The cross-validation has shown that
in 17 out of 21 QoI cases, at least one conformation out of 10 had a similarity index of
0.95 among these 280 3D descriptors. Cross-validation similarity index for a tested cross-
validated conformation (left-out conformation) is defined as the ratio of those stable 3D
descriptors that are within two standard deviations from the average descriptor value of
the training fungicide set and all 280 stable descriptors considered, i.e., a similarity of 0.95
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means 0.95 × 280 = 266 descriptors (at least) for considered compounds that have values
within 2 standard deviations from the mean values of 21 (C3) QoI values.

For each Drugbank and COCONUT compound, the compound is determined to be
similar to QoI-s if any of the three conformations considered had a similarity of 0.95, and if
the compound has at least one X-C=O (X=O or N but not OH) functional group. Then, the
compound has passed to molecular docking studies. This is our pipeline procedure.

An additional internal test was carried out with azoxystrobin (as DB07401) included
in the set along with the rest 763 compounds, to see whether or not docking with only 20 ga
runs would yield 3D descriptors similar enough to those with 100 ga runs of azoxystrobin,
and the result was that azoxystrobin passed the pipeline with 0.971 similarity (>0.95).

To test for robustness only for the Drugbank dataset, the additional selection procedure
was carried out, this time, instead of metyltetraprole, stigmatellin was used with the rest
20 QoI-s for creating the stable descriptor set. With the stability of three, the same 3D
descriptor set of 280 variables was used, and the cross-validation has shown that in 18
out of 21 cases, at least one conformation out of 10 had a similarity index of 0.95 among
these 280 3D descriptors. The new set of Drugbank hit compounds with 0.95 similarity was
selected and was shown to be larger than the former set. All compounds in the new set
that would be selected in the former set with a similarity of 0.93 were also recognized as
hit compounds. This was not done for the COCONUT set.

Besides 0.95 similarity criteria (and its robust addition), some additional pipeline
routes were considered for drug repurposing of the Drugbank database, but it did not
finally lead to any new lead compund (for more details see Supplementary information
note 1).

3.5. Molecular Docking

Autodock4 served for all rigid dockings (especially regarding former Section 3.4)
while Gold was used for all flexible docking simulations. Please note that this was done
in order to clearly discriminate rigid docking from flexible docking, although for rigid
docking, the Gold program can also be used instead of Autodock4, as additional rigid
docking tests in Gold have shown almost the same results concerning both descriptor
similarity and RMSD.

3.5.1. Flexible Docking

All 21 C3 fungicides and stigmatellin (i.e., 22 QoI-s), along with all hit compounds
(of both datasets), were used for Gold docking simulations [23]. The same grid center
coordinates were used as in Autodock4 and all the atoms were selected within a 30 Å
distance using the detect cavity option. All H-bond donors/acceptors were forced to be
treated as solvent-accessible. A “chemscore_kinase” template was used and loaded and
the scoring function was ChemScore. The genetic algorithm settings were user-defined
with the default initial values. Opposite to the procedure where rigid protein was used
in simulations, all Gold runs were carried out using the following 10 flexible aminoacid
sidechain residues in Chain C 2ibz.pdb: Ile-125, Phe-129, Tyr-132, Met-139, Val-146, Ile-147,
Ile-269, Glu-272, Leu-275, and Met-295. The Glu272 sidechain COO– group was protonated
(COOH) in this Gold docking, since water molecules form an H-bond with a carboxylate
sidechain of Glu-272 and serve also as proton donors to fungicide famoxadone [1]. The
flexible sidechains are mandatory for C3 fungicides, especially in this case, because the
beginning conformation is stigmatellin conformation, and it is already known that the
sidechain position of Glu-272 in the case of stigmatellin is different than in the case of
famoxadone [1,3]. For both fungicides and hit compounds, the experiments were per-
formed using 100 ga runs (without earlier termination). Gold Chemscore fitness above the
average of QoI was used as a pipeline selection cut-off for hits priorly selected with 0.95
(or 0.93) similarity. Finally, hit compounds above the cut-off were further tested if at least
one out of the 100 conformations contain a possible H-bond between ligand’s carbonyl
(C=O) oxygen atom and proton donor amide group of Glu-272 residue with conditions of
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d(O. . . H-N) < 4.0 Å and d(O. . . H) < 3.0 Å. If it contains it, the conformation with such an
H-bond of the highest possible Chemscore fitness (if more H-bond conformations to Glu272
were obtained) was taken for further MD-simulation and labeled as a specific H-bond (SHB)
conformation (“SHB conformation” in further text). More precisely, firstly, the top-scored
conformation with d(O. . . H-N) < 3.2 Å and d(O. . . H) < 2.2 Å was searched and if no such
conformation was found then the search considered the conformation with d(O. . . H-N)
< 3.6 Å and d(O. . . H) < 2.6 Å and finally, the search took into account the last possibility
of the top-scored H-bond with criterion d(O. . . H-N) < 4.0 Å and d(O. . . H) < 3.0 Å. For
fenamidone and flufenoxystrobin, additional docking with 200 ga runs and with 20 Å
distance atom selection was utilized.

3.5.2. Rigid Docking

Rigid docking was performed using Autodock4 on Chain C of 2ibz.pdb using all QoI-s
and some Drugbank hit compounds with the same conditions mentioned in the previous
section but this time all docking experiments were carried out with 100 ga runs. Minimum
energy was used as input for further QM/MM optimization runs for QoI-s. It is very
important to note that repeated docking experiments were conducted to see RMSD for the
same compound between minimum energy conformations among 100 ga runs. Repeated
runs were carried out for stigmatellin, which had its crystal conformation in RCSB data
bank as 2ibz.pdb. The average obtained RMSD for seven dockings (6 using Gold and one
using Adt) between docked and experimental geometry of stigmatellin within the target
protein was 1.60 Å with a standard deviation of 0.40 Å.

3.6. Molecular Dynamics

Molecular dynamics was carried out in the Gromacs program [24] using the detailed
instructions in the Supplementary_MD_instructions folder (with all the input files), and
following the script ‘main’. Protein-ligand Gold (mostly SHB) docked conformations
were taken as input coordinates for MD simulation steps. The first step was to generate a
topology for protein and ligand and then to build the complex. The protein-ligand system
size of 4.731 nm × 8.057 × 5.721 nm cube box of edge length 10.792 nm was added, filled
with water molecules, and neutralized with chlorine ions (here Glu-272 sidechain was
deprotonated). Then, energy minimization was carried out, which was followed by NVT
equilibration and then NPT equilibration; finally, MD runs were carried out. Equilibration
runs lasted 100 ps for NVT and 100 ps for NPT, MD simulation lasted for 1 ns, with one
step period of 2 fs. Every 100 fs coordinates and energies were saved, obtaining altogether
10 001 simulation steps (starting from 0 to 1 ns). A Charmm36 + TIP3P force field was
used. With the MD simulation finished, a PDB file for the whole trajectory was created
and total H-bonds between ligand proton donor/acceptor atoms (O, N, F, and Cl) and
between protein proton donor/acceptor atoms (O and N) were searched with a criterion
of satisfying both d(X...H) < 2.2 Å and d(X...H−X) < 3.2 Å. Besides total H-bond count,
specific H-bonds were counted between the ligand and amide groups of Glu-272 with
more H-bond distance definitions. Specific contacts (and or H-bonds) between ligand and
residue atoms of Ile-125, Phe-129, Tyr-132, Gly-143, Phe-278, Tyr-279, and Met-295 residues
were also counted [4]. Finally, the average interaction energy between ligand and protein
was calculated through the whole trajectory, as the sum of Coulomb and Van der Waals
contributions and were used for pipeline evaluations.

Besides 1 ns MD simulation runs conducted for all QoI and Drugbank hit com-
pounds, 10 ns MD simulations were carried out with 10 ps snapshot step (i.e., altogether
1000 snapshots). In addition, for nine selected ligands (six QoIs and three hit ligands), 40 ns
experiments with 40 ps snapshot step and 100 ns experiments with step period of 100 ps
were conducted [25]. The results of prolonged simulations were used to validate our choice
to estimate binding affinities from short (1 ns and 10 ns) simulation runs.
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3.7. QM/MM Docking Optimization

For QoI-s and hit ligands (that passed all prior steps), SHB conformations and in some
cases top-scored Autodock4 conformations and/or top Gold scored conformations were
submitted to ORCA version 4.2.0 [26] DFT QM/MM docking optimization.

Chain C of 2ibz void of any other ligands, water molecules, and hemes was submitted
to a VMD program where Protein Structure Files (PSF) and PDB files were constructed
for the ORCA input. The ORCAFF.prms file for the protein was made using a Charmm
force field. The ligand charges were initially created with ‘makeff –PBE’ obtaining Chelpg
charges while retaining all the ligand coordinates from the Autodock4 docking log (DLG)
output file [27] in the case of rigid Autodock4 docking. In the case of the flexible Gold
docking, both the protein and ligand coordinates were extracted from Gold and converted
using Gaussian and our scripts (Supplementary_file_from_Gold_to_MD_and_orca.docx) to
match ORCA input files (PDB and ORCAFF.PRMS for protein and XYZ and ORCAFF.PRMS
for ligand). A ligand force field was later merged with the protein. The optimization
runs were set with the ORCA defaults, employing the keyword “Opt”. The Polarizable
Continuum Model (PCM) was used in all the calculations with water used as solvent. After
the convergence of the ligand–protein complex, the sole ligand and the sole protein were
optimized with initial input coordinates the same as those obtained for the converged
protein-ligand structure. The whole ligands were taken as QM active. For the protein, the
following amino acid side chains were used as QM: Ile-125, Phe-129, Tyr-132, Met-139, Val-
146, Ile-147, Leu-150, Ile-269, Glu-272, Leu-275, Tyr-279, Leu-282, Met-295, Ile-299. All these
mentioned were also taken as active with additional active amino acid side chains: Thr-122,
Val-270, Pro-271, Phe-278, Phe-296. The Glu272 sidechain COO– group was protonated
(COOH) and ligands were treated as neutrally charged species so that the complex was QM
neutrally charged (only in one case the sidechain was deprotonated due to the positively
charged amino ligand group of DB07181). Functional used was B97-D3 [28,29], the basis
set was 3-21G. After geometry convergence, the final single point energy was calculated
using a larger basis set (def2-SVP def2/J and Grid6) and using a geometry counterpoise
correction “GCP(DFT/SVP)”. Binding electronic energy (∆E) was calculated as a difference
between complex single point energy and the sum of sole protein and sole ligand single
point energies.

After obtaining binding energies at B97-D3/def2-SVP//B97-D3/3-21G, the procedure
was in the most important cases repeated at B97-D3/def2-SVP//B97-D3/def2-SVP, starting
at priorly optimized coordinates (at lower level). Binding energy was calculated again.

In the most important cases, harmonic frequency calculations were calculated for
B97-D3/3-21G optimized geometries to estimate Gibbs free binding energy by taking
into account vibrational zero-point energies, thermal enthalpy correction at 298 K, and all
entropy corrections. Only in few cases were very expensive frequency calculations carried
out at B97-D3/def2-SVP optimized geometries.

3.8. Amber MM/PBSA Binding Energy

All 19 considered QoI-s and 11 passed lead compounds were submitted with their “op-
timal” Gold docking conformation (mostly containing SHB conformation) to MM/PBSA [30]
free binding energy calculation in Amber program. Firstly, the protein’s coordinate and
topology files were created from ORCA PDB file using Ref. [31] with implicit solvent
model at pH = 7.4 and ionic strength = 0. With amber script and tleap program, the
cube system was formed with its PRMTOP and INPCRD files, containing: protein, ligand,
water molecules and (six) chlorine counter ions (to neutralize the system). Using ante-
MMPBSA.py script PRMTOP files for complex, protein and ligands were created. The
system was submitted to minimization step (maxcyc = 10,000), then to NVT equilibration
followed by NPT equilibration runs (each 100 ps long with 1 fs step). Optimized isokinetic
Nose-Hoover chain ensemble was used (ntt = 9) in equilibration runs [32]. After equilibra-
tion at 300 K and 1 bar, MD production runs were carried out for 1 ns (each step of 1 fs).
A total of 200 equidistant conformations were sampled (each mutually 5 ps distant) and
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submitted to MM/PBSA energy evaluation [33]. All scripts can be found in supplementary
MD instructions Amber_mmpbsa_in folder.

In addition to 1 ns MD simulations, we performed 5 ns MD simulations for 25/30 of
the QoI and lead compounds, using 25 ps as a snaphot step (i.e., altogether 200 snapshots)”.

4. Conclusions

We carried out extensive in-silico drug recognition of Drugbank and COCONUT
databases and found altogether 11 new compounds with potentially strong binding to
cytochrome bc1 Qo site. This binding might inhibit electron transfer from ubiquinol to
cytochrome c. Among the 11 identified compounds, one of them (CNP0361420) contains
the benzyl-carbamate chemical functional group, which is one of FRAC C3 MOA group [2],
other compounds contain not-yet-established MOA groups specific to the Qo site, but
the sulfonamide functional group (of identified DB08439) is already recognized as having
an antifungal mode of action [8]. Lead compounds picked out by the pipeline were
additionally successfully validated by Amber free binding energy calculation (MM/PBSA
energy). Novel studies can test our in-silico identified compounds in vitro and in vivo for
antifungal activity and can probably carry out candidate optimization of lead compounds’
fragments and/or experimentally test our compounds on mutated species.

Supplementary Materials: The following are available online. Include 11 Supplementary tables
(Tables S1–S11, with Table S7 including 3 sheets (one sheet for QoI and DB hit compounds post MD,
one for other compounds and one for COCONUT hit compounds post MD)), in a spreadsheet and
word tables, with possible notes and comments near them; 1 Supplementary figure, 1 Supplementary
information list, 1 Supplementary information note, 1 Supporting file instructions, and one folder
with detailed instructions and all input files necessary for MD run with example files.
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