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Abstract: Histamine fish poisoning is a foodborne illness caused by the consumption of fish prod-
ucts with high histamine content. Although intoxication mechanisms and control strategies are
well known, it remains by far the most common cause of seafood-related health problems. Since
conventional methods for histamine testing are difficult to implement in high-throughput quality
control laboratories, simple and rapid methods for histamine testing are needed to ensure the safety
of seafood products in global trade. In this work, the previously developed SERS method for the
determination of histamine was tested to determine the influence of matrix effect on the performance
of the method and to investigate the ability of different chemometric tools to overcome matrix effect
issues. Experiments were performed on bluefin tuna (Thunnus thynnus) and bonito (Sarda sarda)
samples exposed to varying levels of microbial activity. Spectral analysis confirmed the significant
effect of sample matrix, related to different fish species, as well as the extent of microbial activity
on the predictive ability of PLSR models with R2 of best model ranging from 0.722–0.945. Models
obtained by ANN processing of factors derived by PCA from the raw spectra of the samples showed
excellent prediction of histamine, regardless of fish species and extent of microbial activity (R2 of
validation > 0.99).

Keywords: histamine; fish; matrix effect; SERS; silver colloid; PLS regression; principal component
analysis; artificial neural network; rapid methods

1. Introduction

Histamine fish poisoning is an allergy-like form of food poisoning caused by con-
sumption of different foods containing high concentration of histamine. In fish products,
histamine is formed due to bacterial decarboxylation of free histidine caused by poor
handling, i.e., time—temperature abuse of fish [1]. Majority of histamine fish poisoning
incidents are associated with consumption of fish species containing high amount of free
histidine in their tissues, such as tuna, mackerel, mahi-mahi, sardines and anchovies, al-
though species with lower amount of free histidine, e.g., salmon and swordfish, are often
reported as causative agents in histamine fish poisoning incidents [2,3]. Regulatory limits
for histamine content of fishery products are established in many countries and range
from 50 mg/kg of fish in the USA [4] to 100 mg/kg of fresh fish or 200 mg/kg of enzyme
matured products in EU [5].

Traditional methods for histamine analysis and testing include high-performance
liquid chromatography (HPLC), gas chromatography (GC), thin layer chromatography
(TLC), enzymatic-linked immunosorbent assay (ELISA) and fluorometric methods [2,6] and
are often time consuming, require expensive equipment and skilled laboratory personnel.
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Although intoxication mechanisms, control strategies and hazardous products are well
known and documented, histamine is still the far most common cause of health problems
associated with seafood [7–9] which leads to a conclusion that simple and rapid methods
for histamine testing are required, in order to ensure safety of fish products in global trade.
This is, in addition, confirmed by large number of recent scientific papers dealing with
improvement of traditional histamine testing methods [10–15] or development of novel
approaches such as different sensors [16–20] and application of different spectroscopic
methods [21–27].

Among various spectroscopic techniques examined for rapid food analysis, Surface
Enhanced Raman Spectroscopy (SERS) has gained significant interest due to high sensi-
tivity, short analysis time and suitability for on-field analysis [28]. SERS combines Raman
spectroscopy, which obtains molecular “fingerprint” of sample through measurement of
inelastic light scattering, with nanotechnology. Enhancement of Raman signals is accom-
plished through electromagnetic and chemical mechanisms, when molecules of analyte are
deposited onto metallic substrate with nanoscale surface roughness (SERS substrate) [29].
Electromagnetic enhancement originates through strong electromagnetic field generated by
localized surface plasmons excited on metallic nanostructure by incident light beam while
chemical enhancement arises from increased polarizability of molecule adsorbed onto SERS
substrate [30,31]. In certain cases, combination of these enhancement mechanisms gener-
ates Raman enhancement factor up to order of 1014, enabling detection of single molecule
of analyte [32–34]. However, application of SERS, for analysis complex matrices such
as food, still faces challenges in terms of enhancing sensitivity and selectivity, reduction
of matrix interferences, non-destructive sampling techniques and in-situ application. In
addition, interpretation of spectral readings obtained by SERS often isn’t straightforward
and requires use of different chemometric modelling tools to produce satisfactory results.

In recent years, several studies dealing with SERS detection and quantification of
histamine in fish products have been published [21,22,26,27,35]. Majority of these studies
were conducted on single fish species or on fish samples spiked with different concentration
of histamine. Although this approach is valid for method development, it does not give
much information on influence of sample matrix on method performance and overall
applicability of such method for real-life applications. Sample matrix can differ significantly
among different fish species. In addition, it may vary depending on extent of microbial
activity within the sample since microbial activity isn’t restricted solely to histamine
production but includes degradation of majority of components present in fresh fish and
formation of wide array of chemical components. Since our previous study showed
significant influence of sample matrix on performance of developed SERS method for
determination of histamine in fish [22,36], this work was focused on testing the method
on different fish species and on fish samples containing naturally formed histamine. In
addition, different chemometric tools including Partial Least Squares Regression (PLSR)
and Artificial Neural Networks (ANN) coupled to Principal Component Analysis (PCA)
were employed to obtain prediction models (quantitative and qualitative) and test method
performance with different fish samples.

2. Materials and Methods
2.1. Chemicals and Reagents

Silver nitrate (AgNO3, 99.9%), trisodium citrate (Na3C6H5O7×2H2O, 99.0%), sodium
hydroxide (NaOH, 98.0%) and 1-butanol (C4H9OH, 99.5%) were purchased from Kemika
d.d. (Zagreb, Croatia). Perchloric acid (HClO4, 65.0%) and sodium chloride (NaCl, 99.0%)
were purchased from Carlo Erba Reagents (Milano, Italy). Sodium borohydride (NaBH4,
99.0%) was purchased form Acros Organics (Morris Plains, NJ, USA). Histamine dihy-
drochloride (C5H9N3 × 2HCl, 99.5%) was purchased from Applichem GmbH (Damstadt,
Germany). All chemicals were of analytical grade and were used without further purifica-
tion. High-purity water with a resistivity of 18 MΩcm was used in all experiments.
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2.2. Fish Samples

Fresh samples of bluefin tuna (Thunnus thynnus) and bonito (Sarda sarda) were collected
from the local market and transported to the laboratory. Skin, bones and viscera were
removed and muscle tissue was minced using a stick blender. The histamine content of the
fresh samples was analyzed by the reference HPLC method and the analysis confirmed
that the fresh samples did not contain histamine. Minced samples of each species were
divided into two groups. The first group (“calibration samples”) was spiked with histamine
dihydrochloride to obtain final concentrations of 0, 25, 50, 75, 100, 125, 150, 175, 200, 250
and 300 mg/kg fish. The second group (“real samples”) was stored at room temperature to
allow natural formation of histamine. Two samples were taken every 6 h and frozen until
further analysis by HPLC and SERS method.

2.3. Determination of Histamine by Reference HPLC Method

Samples were analyzed according to the method of Malle et al. [37] officially recom-
mended by the EU authorities. Briefly, 500 µL of internal standard (imidazole, 5 mg/mL)
was added to 5.0 g of sample and homogenized in 50 mL of 0.4 M HClO4. The homogenate
was centrifuged (3500× g/3 min) and 100 µL of the supernatant was mixed with 200 µL of
saturated Na2CO3 solution and 500 µL of dansyl chloride solution (5 mg/mL in acetone).
The prepared mixture was kept in a water bath at 60 ◦C for 60 min. Then, 100 µL of
L-proline (100 mg/mL) was added and the mixture was left in the dark for 30 min. 500 µL
of toluene was added and mixed with a vortex. After separation, 200 µL of the upper layer
was transferred to a vial, evaporated in a stream of nitrogen until dry and dissolved in
200 µL of acetonitrile. The prepared samples were analyzed on an Agilent 1200 series liquid
chromatograph using a LiChrospher C-18 column, 5 µm, 250 × 4.6 mm (Merck, Darmstadt,
Germany) at 25 ◦C. Solvent A (water: acetonitrile, 40:60) and solvent B (acetonitrile) were
used for gradient elution at a flow rate of 1 mL/min. Histamine was detected with DAD
detector at a wavelength of 254 nm.

2.4. Preparation of Citrate Reduced Silver Nanoparticles (AGC)

The AGC colloid solution was prepared using the chemical reduction method accord-
ing to the slightly modified method of Lee and Meisel [38]. Briefly, 90 mg of AgNO3 in
500 mL of miliQ H2O was poured into a four-necked glass flask and heated to boiling
with constant stirring using a glass stirrer in an oil bath (120 ◦C) under reflux and nitrogen
bubbling. 50 mL of 1% trisodium citrate was added rapidly to the boiling solution and
stirred vigorously throughout. The solution was refluxed at 120 ◦C for 90 min and then
removed from the oil bath and stirred until it cooled to room temperature.

2.5. SERS Measurements

Samples were prepared according to our previously developed method [22], which
included homogenizing 5.0 g of minced fish muscle in 50 mL of 0.4 mol/L perchloric acid
using the Ultra Turrax T-18 (IKA-Labortechnik, Staufen, Germany) laboratory homogenizer
for 2 min at maximum speed and filtering through Whatman No. 4 filter paper. Then,
2 mL of the filtered extract was transferred to a glass test tube with a screw cap and 0.4 mL
NaOH (5 mol/L), 1.4 g NaCl, and 2 mL of 1-butanol were added. The mixture was shaken
on a laboratory shaker for 10 min at 70 rpm and allowed to stand for a few minutes to
allow the layers to separate. 100 µL of the top butanol layer was transferred to a 1.5 mL
capped micro centrifuge tube and evaporated under a stream of nitrogen at 60 ◦C until
completely dry. 80 µL of AGC colloid, 10 µL of water and 10 µL of aggregating agent
(0.23 mol/L NaBH4) were added to the dried sample, vortexed for 30 s, placed in a glass
capillary (25 × 2 mm) and positioned in the macro chamber of the Raman instrument.

2.6. Instrumentation

Raman spectra were recorded using the Jobin Yvon T64000 triple Raman spectrometer
(Horiba, Oberursel, Germany) in subtractive mode equipped with an argon ion laser with
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an excitation wavelength of 514.5 nm. The laser beam was focused with a 100 mm lens
in 90◦ geometry and the laser power on the sample was approximately 60 mW. Raman
scattering experiments were performed at room temperature. Spectra were recorded with
30 s accumulation and three replicates unless otherwise stated. The spectrometer was
calibrated using the Raman spectrum of the transversal optical mode at 520.7 cm−1 of an
undoped silicon wafer with (111) surface orientation.

2.7. Spectral Analysis and Chemometric Modelling
2.7.1. Partial Least Squares Regression

In developing the models, specific regions of the SERS spectra were selected, all
based on previous literature data examining the vibrational spectra of histamine, i.e., the
intensity of the specific vibrational band of the histamine molecule [39] and four different
wavelength combinations were selected. Thus, model M1 was developed in the wave-
length range: 1140–1618 cm−1; for model M2, two ranges were chosen: 1240–1350 cm−1

& 1500–1600 cm−1; for model M3, six significant wavelengths were selected: 1264, 1268,
1304, 1320, 1437 & 1570 cm−1; and for the last model, M4, three following wavelengths
were selected: 1268, 1320 & 1570 cm−1.

PLSR models [24] were developed on set of calibration samples spiked with his-
tamine concentrations ranging from 0–300 mg/kg and containing 2048 wavelengths
(1068.7–1618.1 cm−1) of each of the 479 SERS spectra. Prior to modeling, various prepro-
cessing methods were applied to the SERS spectra including (i) Normalize (N); (ii) Baseline
(B); (iii) Standard Normal Variate (SNV); smoothing methods such as (iv) Moving Average
(MA); (v) Gaussian filter (GF); (vi) Median filter (MF); (vii) Savitzky-Golay Smoothing
(SG_Sm) as well as combinations of two preprocessing methods such as (viii) Baseline
coupled with the Savitzky-Golay derivation (S-G, B+dSG) & (ix) SNV combined with the
Savitzky-Golay derivation (SNV+dSG). The efficiency of the model was evaluated using the
root mean square error of cross validation (RMSEC) and the coefficients of determination
(R2).

The obtained PLSR calibration models were applied to SERS spectra of real samples
for all fish samples together (n = 196) and separately for bluefin tuna (Thunnus thynnus)
(nT = 160) and bonito (Sarda sarda) (nB = 36). Data for all PLSR models were randomly
divided into 60:40 ratio for calibration and validation. The efficiency of histamine concentra-
tion prediction was evaluated using the error of estimation (RMSEV) and Rv

2 (representing
predictive ability). The Unscrambler X software (CAMO Software, Oslo, Norway) was
used for preprocessing and modeling data in developing PLSRs.

2.7.2. Principal Component Analysis

Although often used to detect similarities/differences between samples and to detect
adulteration of samples [40], in our case, PCA was used to shorten the data matrix because
it has the ability to extract important information from the data matrix and express it as
factors (principal components). From the eigenvalues, the signifficant factors were selected
and later used as input for the ANN modeling. Raw spectra without any preprocessing
method were used for PCA analysis using Statistica v.13.0 software (StatSoft, Tulsa, OK,
USA).

2.7.3. Artificial Neural Networks

ANNs in combination with PCA were used to predict histamine concentration in
different fish samples. The first 10 factors obtained by PCA were used as input for ANNs
with hidden layer consisting of 3–14 neurons and histamine concentration as output. In
addition, random separation of data into different ratios for training, testing, and validation
was tested so as not to overfit or underfit ANNs. In all cases, random separation of data into
60:20:20 ratios for training, testing, and validation proved to be optimal. From the multiple
layer perceptron networks that were developed in Statistica v.13.0 software (StatSoft, Tulsa,
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OK, USA), the ANNs presented in the results were selected based on the highest R2 values
for training, testing, and validation along with the lowest root mean square errors.

3. Results and Discussion
3.1. Histamine Content and Spectral Features of Fish Samples

Reference HPLC analyses of sample sets containing naturally formed histamine
showed significant formation of histamine in the samples during storage at room tem-
perature. Since our SERS method has been shown to be suitable for the determination of
histamine in the concentration range 0–300 mg/kg [22], samples with histamine contents
above 300 mg/kg were excluded from further analysis. The histamine content of the real
samples used for method testing is shown in Table 1.

Table 1. Histamine content of samples with naturally formed histamine determined by the reference
HPLC method expressed as mean (n = 3) ± SD (tuna samples: T1–T7, bonito samples: B1–B5).

Sample Histamine Content
(mg/kg) Sample Histamine Content

(mg/kg)

T1 8.6 ± 3.3 T7 248.1 ± 11.7
T2 9.6 ± 1.4 B1 33.6 ± 0.6
T3 23.0 ± 6.3 B2 41.1 ± 1.0
T4 33.3 ± 0.8 B3 76.1 ± 0.5
T5 81.8 ± 6.2 B4 136.2 ± 0.4
T6 173.7 ± 10.1 B5 184.9 ± 10.2

From the SERS spectra of the histamine spiked calibration samples shown in Figure 1,
it can be concluded that the characteristic SERS bands of histamine at 1264, 1320 and
1570 cm−1 and the citrate band at 1437 cm−1 [22,36] are clearly visible in the spectra of
both fish species. Histamine SERS bands are of higher relative intensity and regular shape
in the spectra of tuna sample, which can be explained by the intrinsic characteristics of the
different fish species. It is possible that the matrix of the bonito samples contains a higher
amount of interfering substances, resulting in slight spectral shifts and partial masking of
the visible histamine bands.

Figure 1. SERS spectra of calibration samples spiked with 75 mg/kg histamine and real samples T5
and B3 with similar histamine content.
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Comparison of SERS spectra of calibration and real samples reveals significant changes
in their spectral characteristics. While the baseline of the spectra of the calibration samples is
flat, the baseline of the real samples shows higher intensity, which is especially observed in
the lower wavenumber region. Moreover, significant shifts and distortions of the histamine
SERS bands can be observed in the spectra of both fish species, although this effect is
more pronounced in the spectra of the bonito samples, which contain naturally formed
histamine. The described effect is a consequence of decomposition of the sample matrix
due to various factors which include microbial activity, activity of endogenous enzymes
and chemical reactions resulting in the formation of various degradation products, which
may exhibit higher fluorescence when present in the extract. In addition, the SERS bands
of the degradation products contribute to the SERS spectra of the sample and may cause
spectral shifts or mask the characteristic SERS bands of histamine.

3.2. PLSR Models

The primary objective of applying PLSR models was to quantitatively predict his-
tamine concentration in real fish samples with naturally formed histamine based on the
collected SERS spectra. From the results presented in Figure 2, it is evident that the quality
evaluation parameters of quantitative prediction are best for the model where the Base-
line method was used to preprocess the spectral data (Table 2). Therefore, the baseline
preprocessing method was subsequently applied to SERS spectra used for other models
(Table 3).

Figure 2. Validation results of PLSR equations for different input data, obtained by different prepro-
cessing of SERS spectra of combined fish samples (Fish) and individual fish species (tuna, bonito)
with corresponding root mean square errors (RMSE).
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Table 2. Results of model evaluation parameters (R2 and RMSE) for different preprocessing methods
used for calibration data (model M1 in the range of 1140–1618 cm−1).

Calibration

Pre-Processing Method Rc
2 RMSEC

Normalize, N 0.966 16.072
Baseline, B 0.978 13.169

Standard Normal Variate, SNV 0.984 11.127
Moving Average, MA 0.966 16.125

Gaussian filter, GF 0.971 14.969
Median filter, MF 0.967 15.904

Savitzky-Golay Smoothing, SG_Sm 0.966 16.129
Baseline + der. S-G, B+dSG 0.959 17.805
SNV + der. S-G, SNV+dSG 0.972 14.747

Pre-processing method 0.966 16.072

Table 3. Parameters of PLSR models based on different spectral regions (M2: 1240–1350 &
1500–1600 cm−1; M3: 1264, 1268, 1304, 1320, 1437 & 1570 cm−1; M4: 1268; 1320, 1570 cm−1).

Model
Calibration Fish Bonito Tuna

Rc
2 RMSEC Rv

2 RMSEV Rv
2 RMSEV Rv

2 RMSEV

M1 0.978 13.169 0.800 237.741 0.482 52.578 0.913 242.606
M2 0.945 20.701 0.786 140.529 0.722 43.262 0.912 131.231
M3 0.764 42.842 0.691 67.589 0.3775 56.698 0.879 68.901
M4 0.504 73.525 0.409 68.045 0.4022 50.376 0.422 71.555

Despite good qualitative indicators, prediction is not equally successful for both fish
species (Table 2) and in different ranges of spectral wavelengths (Table 3). Equal prediction
efficiency for bluefin tuna samples was obtained with model M1 (1140–1618 cm−1) and
model M2 (1240–1350 cm−1 & 1500–1600 cm−1), which achieved Rv

2 of 0.913 and 0.912,
respectively. The best results for the bonito samples and the combined bonito and tuna
samples were obtained with model M2, achieving Rv

2 of 0.722 and 0.786, respectively.
As expected, the best predictive capabilities were obtained for the M2 model, since it is

based on spectral regions containing vibrational modes of medium and strong intensity of
the histamine molecule, i.e., the 1255–1324 cm−1 and 1480–1570 cm−1 regions, as previously
reported [22,36,39,41]. Less acceptable predictive capabilities are determined for the M3
and M4 models based on a fewer individual strong vibrational bands of the histamine
molecule, indicating that weaker vibrational bands present in a broader spectral range
contain information that contributes significantly to the overall quality of the PLSR model.

The comparison of PLSR model parameters presented in Table 3 shows that the
effect of sample matrix has a significant impact on the predictive capabilities of the PLSR
models, as the best overall results were obtained for histamine spiked calibration samples
(Rc

2 = 0.945). The lower performance of the models applied to SERS spectra of real fish
samples with naturally formed histamine can be explained by the microbial activity that
leads to the decomposition of the fish sample and the formation of various degradation
products in addition to histamine formation. Since the sample preparation procedure
for SERS measurement involves partial removal of matrix components from the extract,
the vibrational bands of the compounds present in the extract may partially mask the
SERS signals of histamine and affect PLSR model performance. The matrix effect can
also be observed when comparing the results obtained for different fish species. The best
results were obtained for bluefin tuna samples (Rv

2 = 0.912), while bonito samples may
contain higher amounts of interfering compounds, resulting in lower model performance
(Rv

2 = 0.722). In the case of applying the PLSR model to combined tuna and bonito
samples, the result obtained (Rv

2 = 0.786) is intermediate between the results obtained
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for the individual fish species due to lower model performance for predicting histamine
concentration in bonito samples.

3.3. Artificial Neural Network Models

To predict histamine concentration in fish samples, ANN were used in combination
with PCA. Our experience in modelling with ANN in combination with PCA [40,42,43]
has shown that preprocessing of spectral data before PCA analysis can sometimes improve
the final result in terms of model performance [43]. Since preprocessing large amounts of
data is time-consuming, laborious and requires modeling experience, in this work PCA
was performed using the raw SERS spectra of the fish samples in order to minimize the
required time for overall data analysis and thus provide faster method.

Furthermore, PCA is able to cope with small baseline variations from spectrum to
spectrum [44] and it can perform very well with variety of spectroscopic data that are
related [45]. In this case, PCA was used primarily to compress the data matrix used as
loading for ANN. For example, the data matrix for combined fish samples in model M1
(wavelength range of 1140–1618 cm−1) is 196 × 1792, where 196 is the number of fish
sample spectra and 1792 is the number of wavelengths in the range of 1140–1618 cm−1.
From the derived eigenvalues obtained by PCA, it is possible to determine the number of
factors necessary for further analysis. In our case, the first 10 factors were responsible for
99.99% of all variations in the samples, which means that none of the important information
was lost, compressing our data matrix from 196 × 1792 to 196 × 10. Therefore, the first ten
factors generated by PCA were later used as inputs for ANN, and single output for ANN
was histamine concentration.

The first ANN models were developed for calibration sample sets, for each fish species
individually and for combined fish samples (bonito and tuna). Calibration of the combined
fish samples was performed using data from both individual fish species in the same matrix.
Different ANN models were tested to determine which data separation could be used for
all further analyses to avoid overfitting or underfitting of ANNs. Among the different data
separations tested (70:15:15; 50:30:20; 60:20:20; 70:20:10), the best results were obtained by a
random data separation of 60:20:20 for training, testing and validation, respectively. The
results of ANN model predictions of histamine concentration for common fish samples
and for each species separately are shown in Table 4.

Table 4. Artificial neural network models for histamine prediction of calibration sample sets for combined fish samples
(Fish) and individual fish species (Tuna, Bonito).

Fish Model Network
Architecture

Training
Perf. Test Perf. Validation

Perf.
Training

Error Test Error Validation
Error

Hidden
Activation

Output
Activation

Fish

M1 10-12-1 0.9975 0.9828 0.9754 6.3774 15.3578 20.4546 Tanh Exponential
M2 10-6-1 0.9960 0.9911 0.9906 7.8974 11.2420 13.2226 Tanh Identity
M3 10-10-1 0.9897 0.9614 0.9585 12.6903 23.3557 28.1661 Exponential Logistic
M4 10-9-1 0.8045 0.7117 0.6644 52.6201 58.9764 71.8243 Logistic Logistic

Bonito

M1 10-12-1 0.9964 0.9955 0.9910 7.6300 9.0898 13.0946 Exponential Logistic
M2 10-5-1 0.9981 0.9954 0.9916 5.6370 9.2371 10.1250 Tanh Exponential
M3 10-7-1 0.9964 0.9939 0.9870 7.8028 10.8345 12.6816 Logistic Exponential
M4 10-8-1 0.9047 0.8928 0.8507 39.4613 44.2791 49.3624 Tanh Exponential

Tuna

M1 10-13-1 0.9981 0.9953 0.9945 5.3512 9.2580 9.3494 Tanh Exponential
M2 10-11-1 0.9979 0.9908 0.9902 6.0746 11.6041 13.0318 Tanh Logistic
M3 10-6-1 0.9959 0.9946 0.9919 7.8603 9.7427 11.2788 Logistic Exponential
M4 10-13-1 0.9295 0.8648 0.8269 31.8624 47.3664 49.4626 Logistic Exponential

As shown in Table 4, the M1 model (1140–1618 cm−1) for calibration set of tuna
samples showed the highest values in terms of R2 for validation (0.9945) with the lowest
root mean square error of 9.3494, while the lowest R2 value for validation was obtained
for the combined calibration sets of both species with a value of 0.9754 and an root mean
square error of 20.4546. From the network architecture, it can be seen that the M1 model
for tuna had 10 inputs which were 10 first factors derived from PCA, 13 neurons in the
hidden layer and one output which was histamine concentration, while the M1 model for
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bonito and combined samples had 12 neurons in the hidden layer. For the calibration of
the combined fish samples, the highest values of R2 for training, test and validation (0.9960,
0.9911 and 0.9906) were obtained with the M2 model (1240–1350 cm−1 & 1500–1600 cm−1)
with the lowest errors of 7.8974, 11.2420 and 13.2226, respectively. Slightly lower values
were observed for model M3 (1264, 1268, 1304, 1320 cm−1) and the lowest prediction of
histamine was obtained for model M4 (1268, 1320, 1570 cm−1).

As for the results obtained for bonito samples, the highest R2 values were also obtained
for model M2, followed by model M1, M3 and the lowest values for model M4. Models
M1, M3 and M2 obtained for tuna samples all had R2 values for validation above 0.99,
with M1 having the highest value of 0.9945. As in the previous cases, model M4 had the
lowest R2 value. To further test whether combining calibration samples with the addition
of real fish samples would yield similar results, ANN models were developed with the
same separation of data (60:20:20).

The results presented in Table 5 show that the models for combined calibration and
real tuna samples had higher R2 values for all tested models. In addition, model M2
showed the highest predictive ability of histamine concentration, followed by models M3
and M1. As for the models constructed for separate calibration samples, model M4 showed
the lowest ability to predict histamine concentration. For bonito samples, the highest values
were also obtained with model M2, followed by models M1 and M3, while model M4
showed the lowest quality.

Table 5. Artificial neural network models for histamine prediction for calibration sample sets combined with real sample
sets of each fish species.

Fish Model Network
Architecture

Training
Perf. Test Perf. Validation

Perf.
Training

Error Test Error Validation
Error

Hidden
Activation

Output
Activation

Bonito

M1 10-10-1 0.9965 0.9906 0.9874 7.5415 11.8646 12.7808 Logistic Exponential
M2 10-7-1 0.9964 0.9926 0.9883 7.6440 10.7651 13.4342 Tanh Exponential
M3 10-6-1 0.9931 0.9839 0.9797 10.6157 15.4946 16.6087 Exponential Exponential
M4 10-5-1 0.9350 0.8755 0.8564 32.2163 42.3773 49.1198 Logistic Logistic

Tuna

M1 10-10-1 0.9977 0.9933 0.9920 6.3520 8.8020 11.6935 Logistic Exponential
M2 10-12-1 0.9981 0.9931 0.9930 5.8671 9.0178 10.6760 Tanh Exponential
M3 10-10-1 0.9980 0.9933 0.9925 6.0089 9.0942 11.3809 Tanh Exponential
M4 10-11-1 0.9399 0.8698 0.8630 32.2323 39.1596 48.9777 Exponential Tanh

To test the ability of the ANN models to predict histamine concentration in real fish
samples, the data for the calibration sample sets were excluded and ANN models were
constructed using SERS spectra of real fish samples for individual fish species as well as
for combined samples (Table 6).

Table 6. Artificial neural network models for histamine prediction in real fish samples for combined fish samples (Fish) and
individual fish species (Tuna, Bonito).

Fish Model Network
Architecture

Training
Perf. Test Perf. Validation

Perf.
Training

Error Test Error Validation
Error

Hidden
Activation

Output
Activation

Fish

M1 10-7-1 0.9988 0.9937 0.9936 3.9688 8.8349 9.7735 Tanh Identity
M2 10-8-1 0.9993 0.9973 0.9935 2.9749 5.8620 9.6090 Exponential Tanh
M3 10-10-1 0.9978 0.9939 0.9935 5.4714 9.0641 10.4907 Logistic Tanh
M4 10-5-1 0.9831 0.9653 0.9602 15.1824 21.7015 23.3168 Logistic Exponential

Bonito

M1 10-10-1 0.9990 0.9976 0.9955 2.4070 5.3407 5.8885 Logistic Exponential
M2 10-10-1 0.9992 0.9972 0.9958 2.4093 4.8894 8.1239 Exponential Logistic
M3 10-4-1 0.9996 0.9989 0.9713 1.6074 5.1973 16.2568 Logistic Identity
M4 10-9-1 0.9982 0.9698 0.9603 3.8024 17.4051 21.3636 Tanh Logistic

Tuna

M1 10-6-1 0.9995 0.9990 0.9988 2.8103 3.6519 4.3021 Exponential Logistic
M2 10-12-1 0.9998 0.9990 0.9989 1.6327 3.6420 4.6434 Tanh Exponential
M3 10-11-1 0.9999 0.9996 0.9987 1.2763 2.3012 4.5641 Tanh Identity
M4 10-4-1 0.9959 0.9924 0.9912 7.7512 10.0073 12.8127 Tanh Tanh

It is interesting to see from the results in Table 6 that the R2 values of all ANN models
were higher than 0.9602. The M1, M2 and M3 models showed excellent prediction of
histamine concentration in the samples in all cases, while the M4 model, which previously
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had R2 values below 0.8630 (Tables 4 and 5), showed the lowest value of 0.9602 for combined
bonito and tuna samples in this case. As was the case with the ANN models for the
calibration sets and the combined calibration and real sample sets, the models showed the
highest possibility of histamine prediction for tuna samples. For bonito samples, it can be
argued that the sample size was too small for the application of ANN as only 36 samples
were tested. Although ANN models are more accurate for large datasets [46], this test was
conducted to test whether it would be possible to obtain good predictions on such a small
dataset. It can be clearly seen that better results were obtained for the tuna dataset, which
had 160 samples.

Comparing the results of ANN with PLSR models, it can be concluded that ANN in
combination with PCA is the more suitable method for the determination of histamine
in fish using SERS. This could be explained by the fact that the intensity changes of
histamine SERS bands do not show a linear trend with histamine concentration, but are
better described by the Langmuir adsorption isotherm, which describes the adsorption of
histamine molecules on SERS substrate [22,36]. Since PLSR models are better suited for
linear models, one might expect ANN models to be better suited for this type of predictions.

4. Conclusions

The results have shown that there is significant influence in certain wavelength ranges
of Raman spectra that were studied for both tuna and bonito samples due to the differences
between two species and the extent of microbial activity leading to the formation of
histamine and decomposition of the samples.

The observed changes in the spectra of the samples negatively affected the predictive
ability of the PLSR models, regardless of the different pre-processing methods applied
to the spectra. The best results were obtained by baseline correction of the raw spectra
for PLSR model built on combined spectral range (1240–1350 cm−1 & 1500–1600 cm−1),
resulting in Rv

2 of 0.912, 0.722 and 0.786 for the prediction of histamine concentration in
tuna, bonito and combined samples, respectively.

Processing of the raw spectra by PCA allowed the extraction of factors accounting for
99.99% of all variations in the samples and significant compression of the data matrix for
ANN modelling. The obtained ANN models showed an excellent prediction of histamine,
regardless of the fish species and the extent of microbial activity, and the best results
were also obtained for the model built on combined spectral range (1240–1350 cm−1 &
1500–1600 cm−1) with an Rv

2 greater than 0.99 in all cases studied.
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