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Abstract: Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational
peptide design. It was deduced from empirical observations that peptides consisting of complemen-
tary (sense and antisense) amino acids interact with higher probability and affinity than the randomly
selected ones. This phenomenon is closely related to the structure of the standard genetic code table,
and at the same time, is unrelated to the direction of its codon sequence translation. The concept of
complementary peptide interaction is discussed, and its possible applications to diagnostic tests and
bioengineering research are summarized. Problems and difficulties that may arise using APT are
discussed, and possible solutions are proposed. The methodology was tested on the example of
SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense pep-
tides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site.
It is concluded that the benefits of APT outweigh the costs of random peptide screening and could
lead to considerable savings in time and resources, especially if combined with other computational
and immunochemical methods.

Keywords: antisense; complementary; peptide; binding; genetic code; technology; bioengineering;
SARS-CoV-2

1. Introduction

The concept of sense and antisense (i.e., complementary) peptide interaction was
developed in the early 1980s by Root-Bernstein, Biro, Blalock, Mekler, Siemion, and oth-
ers [1–20]. First, it was theoretically assumed and later empirically observed that peptides
consisting of amino acids specified by sense and antisense sequences interact with higher
probability and affinity than randomly selected peptides (Tables 1 and 2, Figure 1). This
approach was successfully applied to the investigations of more than 50 ligand–acceptor
(receptor) systems, including the immune response to viral subunits and related manipula-
tions with an epitope and paratope design [1–22].

Sense peptides are essential and specific parts of viral and other proteins that elicit
normal and pathologic immune responses [6–9,14,19–21]. Using antisense peptide technol-
ogy, they could be utilized to derive targeted tests for different antibody (Ab), hormone,
growth factor, or cell subpopulations [4–9,13,14,17–23]. The potential of antisense peptides
is twofold: 1. as future diagnostic tests targeting protein epitopes or paratopes of interest,
or 2. as future therapeutic agents that target specific parts of antigens to selectively modify
host immune response (e.g., an antisense peptide may disrupt or modify different factors
like virulence, replication or host defense) [6–9,13,14,18–21]. Consequently, sense-antisense
peptide interactions may serve as a useful starting point for: 1. the development of bio-
chemical assays for the evaluation of the immune response, and 2. modeling and design of
new peptide binders for specific proteins and their receptors.
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Table 1. Standard genetic code table.

First Letter
(5′)

Second Letter Third Letter
(3′)U C A G

U

F S Y C U

F S Y C C

L S stop stop A

L S stop W G

C

L P H R U

L P H R C

L P Q R A

L P Q R G

A

I T N S U

I T N S C

I T K R A

M T K R G

G

V A D G U

V A D G C

V A E G A

V A E G G

Table 2. Direction of translation specifies amino acid pairing.

Amino Acid Antisense 3′ → 5′ Antisense 5′ → 3′ Consensus

F K K, E K

L D, E, N E, Q, K E

I Y N, D, Y Y

M Y H

V H, Q H, D, N, Y H

S S, R G, R, T, A R

P G G, W, R G

T W, C G, S, C, R C

A R R, G, S, C R

Y M, I I, V I

H V V, M V

Q V L

N L I, V

K F F, L F

D L I, V L

E L L, F L

C T T, A T

W T P

R A, S A, S, P, T A, S

G P P, S, T, A P
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Figure 1. Modeling of sense-antisense peptide binding and related epitope-paratope interactions.

2. Antisense Peptide Technology (APT)

The antisense peptide binding preference for the complementary sense sequence
provides the opportunity to build a technology platform for the development and imple-
mentation of new immunochemical procedures and assays which use antisense peptides
instead of the primary and/or secondary antibodies. APT is based on a heuristic algorithm
for rational peptide design of the interacting ligand-receptor (acceptor) sequences specified
by the complementary codons (Tables 1 and 2, Figure 1) [1–24]. Heuristic methods reduce
solution space by focusing on results based on the reduced set of criteria—in this case,
complementarity rules defined by the standard genetic code (SGC) table [19,24].

Four main problems of sense and antisense peptide applications in immunochemistry
are comparable to the reasons for the lack of success of the synthetic peptide vaccines [25],
while the fifth topic addressed is related to the application of antisense/complementary
sequences in bioengineering [18–20,24]:

1. reliance on continuous epitopes,
2. overconfidence in ligand specificity,
3. amino acid bias in characterizing ligand-acceptor (receptor) interactions,
4. difficulties in the estimation of structure-function relationships between specific

ligand–acceptor (receptor) pairs,
5. amino acid coding, complementarity, and frameshifts.

Each of these specific problems is worth addressing.

2.1. Reliance on Continuous Epitopes

Epitopes and paratopes are not structural features of molecules [25,26]. They are
entities characterized by a recognizable identity and defined by mutual complementar-
ity [25,26]. Edmundson et al. [25–27] proposed the contact model of “flexible keys and
adjustable locks” for epitope and paratope interaction. An epitope may be characterized
as continuous and discrete [25,26]. Modeling of continuous epitopes by means of APT
is often used for the sequences between 5 and 15 amino acids. The application of APT
to discontinuous epitopes, between 10 and ≈20 amino acids, is more complicated, and
similarly to Abs, often requires complex procedures that involve precise definition in
structural terms, i.e., X-ray crystallography [7,20,25]. Discontinuous epitopes consist of



Int. J. Mol. Sci. 2021, 22, 9106 4 of 18

amino acid side chains of two to five separate protein fragments that are brought together
by the folding of the peptide chains—which act as a scaffold [25].

Recent computational docking methods for protein and peptide interactions, and
progress in peptide library-use concerning synthetic and/or structurally modified peptides,
enable comparative studies and engineering of both continuous and discontinuous peptides
and selection of potential motifs/lead compounds [20,28–31]. Novel protein-peptide
docking procedures are based on different aspects of interaction studies, including inhibitor
screening, model prediction, experimental data interpretation, specificity of prediction, and
design of interfering peptides [28].

2.2. Overconfidence in the Ligand Specificity

Selective targeting of peptide motifs (epitopes) could be achieved via APT (Figure
2a), with certain advantages, disadvantages, and differences with respect to the antibodies.
When an antisense peptide is used, its small size—in comparison with the antibody—
enables depth of tissue penetration [20]. The binding affinity measurements for antisense
peptides are often in the micromolar Kd range, while the values for the antibodies are in
the nano- to micromolar range, and maximum care must be applied to the selection of
peptides with optimal affinity, i.e., the lowest possible Kd [19,20].
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Figure 2. (a) Possible interactions of the complementary peptides: (I) acceptor-antisense binding, and (II) sense-antisense
binding. (b) Schematic representation of peptide-based magnetic particle enzyme immunoassay (MPEIA) according to
Štambuk et al. [20].

Different methods have been used to evaluate sense-antisense peptide interactions,
ranging from microtiter plate assay methods (immunoassays) to high-performance affinity
chromatography, and other related techniques [2–6,12–15,18–20].

Standard biochemical methods for this type of analysis include enzyme-linked im-
munosorbent assay (ELISA), magnetic particle enzyme immunoassay (MPEIA, Figure 2b),
and microscale thermophoresis. Meanwhile, the use of other methods, usually depending
on the experimental design, includes tryptophan fluorescence spectroscopy, biosensor-
based surface plasmon resonance, resonant mirror (RM) biosensor assays, electrospray
ionization mass spectrometry, and NMR spectroscopy [2–6,12–15,18–20,32]. Although
the results of binding affinity measurements may vary from method to method, recent
comparative measurements involving tryptophan fluorescence spectroscopy, microscale
thermophoresis (MST), and MPEIA showed consistent results for these simple, quick, and
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inexpensive methods that could be used for high-throughput screening [18–20]. However,
binding affinity and biological activity are not synonymous because high affinity is not
necessarily accompanied by high activity [32,33].

2.3. Amino Acid Bias in Characterizing Ligand-Acceptor (Receptor) Interactions

The huge difference in the number of possible antisense peptides available for se-
quence selection and possible database screening depends on the direction of the mRNA
translation. The standard genetic code table specifies the translation of antisense (or com-
plementary) peptides in two directions. Table 2 shows that 27 antisense amino acid pairs are
derived by the 3′ → 5′ translation direction and significantly more (52 pairs) are obtained
using the 5′ → 3′ direction algorithm [16–20]. The latter result is due to the fact that 5′ →
3′ antisense translation of the genetic code is based on 16 groups of codons, while 3′ →
5′ antisense translation depends on only four codon groups [19]. According to Siemion
et al. [13,19], there are three main hypotheses concerning the interaction of sense-antisense
peptides based on complementary coding principles.

The Mekler-Blalock antisense hypothesis is based on the hydropathic complementarity
principle of sense and antisense peptide interactions, named Molecular Recognition Theory
(MRT), which is independent of the direction of triplet reading, since the central (second)
base of the coding triplet specifies the hydropathy of the amino acid [7–9,13,19].

According to Root-Bernstein, the antisense approach in the 3′ → 5′ direction ap-
plies to peptides of <20 amino acids that may lack specific secondary and tertiary struc-
ture [3–6,18–20]. Such design leads to significantly fewer antisense peptides and represents
a plausible solution for the screening of bioactive ligands [3–6,18–20].

The Siemion hypothesis of sense-antisense peptide interaction is based on the pe-
riodicity of the genetic code, i.e., the Siemion one-step mutation ring of the code, and
the resulting sense-antisense amino acid pairs are in most cases similar to the 3′ → 5′

translation direction [13,19].
The clustering of amino acid pairs, according to interaction preference, is defined

by the complementary U↔ A and C↔ G bases of the second codon base. The second
codon base, according to Woese, specifies the physicochemical properties of the amino
acids [24,34]. Therefore, it is not surprising that diverse amino acid properties—like
hydrophobicity, hydrophilicity, lipophilicity, and molecular descriptors of contact potential
(Miyazawa-Jernigan), hydrophobic moment, and intrinsic disorder—follow the identical
sense and antisense complementarity clustering scheme that is associated with molecular
interaction at the peptide level (≥4 aa) [7–24]. In a recent article, Štambuk et al. [19]
emphasized that “the natural genetic coding algorithm for sense and antisense peptide
interactions combines elements of amino acid physico-chemical properties, stereochemical
interactions, and bidirectional transcription”. The relationship of the genetic code and
amino acid polarity with respect to protein structure and temperature conditions are
discussed in reference [24] and the related Data in Brief article.

2.4. Difficulties in the Estimation of Structure-Function Relationships between Specific
Ligand-Acceptor (Receptor) Pairs

The effects of an antisense ligand on its sense receptor (acceptor) may arise from
the biological modulation and/or neutralization of the sense peptide effects by means
of [6,7,17,35]:

• peptides binding into molecular complexes (leaving none or low levels of sense
peptide to elicit its own biological effects),

• total or partial antagonization of the sense peptide receptor by means of its complexa-
tion with an antisense ligand,

• combination of the first two factors,
• other biological or biochemical effects of an antisense peptide that cannot be explained

by the involvement of a sense peptide and its receptors (e.g., generation of bioactive
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antibodies to peptides and/or their complexes, cellular receptor, and growth factor
modulation).

Each of those points should be carefully analyzed in the context of receptor binding
and the biological effects observed under specific experimental designs. For example,
in proliferative and biochemical studies involving cellular receptors and serum/plasma
proteins, experimental results may be modified by the anticoagulant used—heparin, citrate,
or EDTA [36,37].

Amino acid isomerization may also be an important factor in modifying protein or
peptide structure, interaction, and receptor binding properties [16,19,33,38–40].

2.5. Amino Acid Coding, Complementarity, and Frameshifts

Amino acid coding with respect to complementary protein constructs, mutation, and
frameshifts have been studied by many authors, including Arques and Michel [41,42],
Bartonek et al. [43], McGuire and Holmes [21], Štambuk [44,45], Wichmann et al. [46,47],
and Youvan et al. [48–50].

A recent article by Bartonek et al. [43] showed that a frameshifting mechanism could
be an effective evolutionary strategy for generating novel proteins with mostly unchanged
physicochemical properties. Nevertheless, an important aspect of frameshift coding related
to antisense/complementary sequences needs to be addressed. In 1996, Arques and
Michel [41,42] identified a complementary circular code of trinucleotides (X) which on
average has the highest occurrence in the reading frame (X0) compared to the two shifted
frames (X1 and X2).

This code was found in the protein coding genes of bacteria, archaea, eukaryotes,
plasmids, and viruses [42,51]. It enables the reading frames to be retrieved in genes without
start codons and with a window length of ≥13 nucleotides [41,42]. The frame X0 consists
of 12 amino acids (A, N, D, Q, E, G, I, L, F, T, Y, V), while frames X1 (A, R, C, I, L, K, M, P,
S, T, V) and X2 (A, R, C, Q, G, H, L, P, S, W, Y) have 11 amino acids each [41,42,51]. With
respect to the antisense codon and amino acid translation in the 5′ → 3′ direction, the
X0 frame of the circular code is self-complementary, and X1 and X2 frames are mutually
complementary [41,42]. In 1999, Štambuk showed that the combinatorial necklace model
enables the use of coding theory arithmetic in the analyses of the genetic code and circular
code antisense translations [24,44,45,52].

Two seemingly opposite biological coding rules are characteristic for the interpretation
of the SGC frameshifts and related mathematics—including complementary transforma-
tions within frames. They both deal with the mechanisms of translation error-control and
flexibility and could have an important impact on SGC repertoire manipulations.

The first coding rule is that X0, X1, and X2 frames of the circular code distinguish three
possible reading frames of the protein-coding sequence since hidden stop codons in X1
and X2 prevent off-X0-frame protein translation—this procedure is often named ambush
hypothesis [53,54], and it is thought to ensure accurate translation.

Paradoxically, the second coding rule—related to SGC flexibility—is that stop codon
readthrough may be promoted by the nucleotide environment, with glutamine (Q), tyrosine
(Y), and lysine (K) inserted at UAA and UAG stop codons, whereas tryptophan (W),
cysteine (C), and arginine (R) could be inserted at a UGA stop codon [55,56].

Considering bioengineering modeling, a reduced number of amino acids in frames X0,
X1, and X2 match the criteria for the use of simplified amino acid alphabets for engineering
purposes and related sample space reductions [57]. Consequently, we measured the
relationships of the main amino acid (aa) properties addressed by Bartonek et al. [43]
in the frames X0, X1, and X2 of the complementary circular code [41,42]. The factors of
amino acid polarity, secondary structure, molecular volume, diversity, and electrostatic
charge by Atchley et al. [58] were correlated to scales of nucleobase/amino acid interaction
preferences for guanine (GUA), purines (PUR), and pyrimidines (PYR) [43,59].

A significant rise in the correlation of amino acid polarity to preference scales for
guanine GUA, PUR, and PYR was observed in frame X0 (Table 3). In frame X1 (shifts +1
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and −2), we found a strong correlation between codon and amino acid diversity factor
and GUA, PUR, and PYR scales (Table 3). This observation is not surprising, since Atchley
et al. [58] reported that diversity factor exhibits a highly significant correlation to amino
acid physiochemical attributes and substitution matrices, and the X1 frame is specified by
the second codon base, which is associated with the majority of such information [24,34,60].

Table 3. Correlations between amino acid factors and preference scales in frames 0 and +1 (−2).

Parameter Polarity
(20 aa)

Polarity
(X0, 12 aa)

Diversity
(X1, 11 aa)

GUA—nucleobase preference −0.54 * −0.63 * 0.71 *
PUR—nucleobase preference −0.07 −0.49 * 0.82 *
PYR—nucleobase preference 0.06 0.49 * –0.85 *

* p < 0.05 (Pearson’s R); aa = amino acid.

However, in frame X2 (shifts +2 and −1), correlations between physiochemical factors
and nucleobase preference scales were not significant. This observation is in agreement
with recent findings that, contrary to X1, the frame X2 of the complementary circular code
is less optimized than the SGC to reduce the effects of +2 and −1 frameshifts, in particular
with respect to the physicochemical properties of amino acids [51].

A rise in correlation among amino acid factors and nucleobase preference scales in
frames X0 and X1 of the circular codes may reflect the importance of the first two bases
for the variables encoding scheme [24,34,60], and points to a possible application of GUA,
PUR, and PYR scales [43,59] to different genetic code analyses. In our opinion, comparative
investigations of complementary circular code and SGC—concerning frameshifts, error-
correction, evolution, and biological engineering—seem to be justified.

As emphasized by Choi et al. [61], “ribosome is intrinsically susceptible to frameshift
before its translocation and this transient state is prolonged by the presence of a precisely
positioned downstream mRNA structure”. Additionally, according to Rozov et al. [62], ribo-
some also “prohibits the G-U wobble geometry at the first position of the codon–anticodon
helix”. Therefore, it is not surprising that programmed ribosomal frameshifting enables
reverse-genetics approaches and the construction of modified viruses with engineered
deletions and/or foreign inserts [63].

Such engineering procedures could be used: 1. for artificial control of gene expression
at the translation level, and 2. to generate differentiable marker vaccines and modified
live virus vaccines [61,63]. More details on the challenges and perspectives of reverse
vaccinology (RV) approaches may be found in Van Regenmortel [64] and Moxon, Reche,
and Rappuoli [65].

3. An Example of SARS-CoV-2

One potential application of antisense peptide technology is related to the SARS-CoV-2
receptor-binding domain (RBD). The SARS-CoV-2 entry into human cells is characterized
by the binding between viral spike (S) protein RBD and its receptor protein, i.e., angiotensin-
converting enzyme II (ACE2) [66–69]. Consequently, a promising area of SARS-CoV-2
research is the disruption of SARS-CoV-2 binding to ACE2 by means of designer drugs
and/or peptides [70–72]. Glasgow et al. [73] applied a stepwise engineering approach and
generated enzymatically inactivated ACE2 variants, i.e., receptor traps, to potentially block
RBD-ACE2 binding and entry into host cells to prevent infection. They used a position
distant from the enzyme active site but situated at (or near) the place of enzyme contact
with the virus-binding domain [73].

A similar approach may be taken by using an antisense peptide design. The ACE
system was one of the classic targets for the investigation of sense-antisense peptide
interactions decades before the COVID-19 crisis [3,6,15–17,74], and Huang et al. [75] used
APT translation in the 5′ → 3′ direction to screen a potential inhibitor for SARS-CoV.
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Huang et al. [75] identified a dodecapeptide KKKKYRNIRRPG with high-binding
affinity and specificity to the S protein of SARS-CoV and concluded that it could be used
as a lead compound for further inhibitor studies. We additionally analyzed the docking
of KKKKYRNIRRPG to the S1 protein of SARS-CoV-2 by means of a CABS-dock server
(Figure 3, Table A1, Table A2 and Table S1). CABS-dock is a global docking procedure with
explicit fully flexible docking simulation and clustering-based scoring, in which receptor
flexibility is limited by default to small backbone fluctuations (but can be increased to
include selected receptor fragments) [28]. We observed docking of the peptide ligands
to the 190 residue fragments (aa 334–523) of S1 RBD known to be responsible for virus
binding (Table A1) [66,68,69]. The results presented in Figure 3 and Table A2 indicate
that KKKKYRNIRRPG binds RBD S1 of SARS-CoV-2 at positions Y156 (aa 489), L159 (aa
492), Q160 (aa 493), and S161 (aa 494)—that belong to the region relevant for receptor
binding [66,68,69,73]. This confirms the validity of the APT approach and applicability of
the methods of Huang et al. [75] for SARS-CoV-2 molecular design.
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Figure 3. (a) Docking of peptide KKKKYRNIRRPG to RBD of S1 SARS-CoV-2 protein by means of CABS-dock server (Table
S1: model 1) [28,75]. Pairs of peptide/receptor residuals shown in magenta or blue (3′ → 5′ antisense); (b) Contact map of
the interface between peptide and receptor residues in a complex closer than 4.5 Å (Table A2 and Table S1: model 1).

The validity of the 3′ → 5′ antisense approach was tested using the same method-
ology. We designed a 3′ → 5′ antisense paratope motif KLTIKGDVSIPKVGWLPQPIV
complementary to the S1 RBD sequence of SARS-CoV-2 FNCYFPLQSYGFQPTNGVGYQ
at sequence positions spanning from F153 to Q173 of the RBD S1, i.e., its aa 486–506 region
(Figure A1). The docking was done using a CABS-dock server (Figure 4, Table A3). The
results, presented in Figure 4 and Table A3, accurately predict the binding of 3′ → 5′ anti-
sense peptide paratope KLTIKGDVSIPKVGWLPQPIV to its sense S1 RBD receptor epitope
FNCYFPLQSYGFQPTNGVGYQ. Important contact positions are Y156 (aa 489), L159 (aa
492), Q160 (aa 493), S161 (aa 494), G163 (aa 496), and Y172 (aa 505), which are within the
region that is relevant for receptor binding [66,68,69,73]—which points to the applicability
of APT for the modeling of sense-antisense peptide interactions in SARS-CoV-2 research.
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APT, as a heuristic method, may also contribute to the rationalization of peptide
library screening [18–20,24,32]. The heuristic approach to problem-solving is a practical
method that employs an empirical procedure that may not always be optimal or perfect but
is sufficient for finding a satisfactory approximate solution [76–78]. In computer science,
bioinformatics, and mathematical optimization, this technique is often used as a shortcut
for problem-solving in situations when classic methods are too slow or when they fail
to provide the exact solutions [76–78]. The genetic coding algorithm for complementary
(sense and antisense) peptide interactions [19] belongs to this class of so-called “heuristic
algorithms”. Their basic property is a trade-off between speed and completeness [78].
They are often used to solve NP-complete problems, i.e., decision problems without a
known way to find a solution that is quick and efficient. The solution obtained via a
heuristic algorithm can be used directly, or it may represent a good point for the application
of exact optimization algorithms. For example, to find all possible random amino acid
binders for a peptide 5 aa in length, we need to examine 3.2 × 106 solutions (205). On
the other hand, using APT, the range of possible solutions is 1–243 for the 3′ → 5′ and
1–1024 for the 5′ → 3′ translation, with ≈32 (≈25) as the average number of solutions.
This represents a reduction of solution space by a factor of 1 × 105. For longer sequences,
this difference is even more pronounced. A heuristic solution could be easily checked
experimentally, and APT is a typical example of that since it has been confirmed to be
valid for >50 ligand-acceptor systems [4–9,12–23]. Computational models have their cost
(approximately 10 USD/model) [79], which means that the reduction of possible solution
space has a significant influence on the search outcome.

For example, Pomplun et al. [29,30] identified a consensus peptide sequence LVMGLNVWL-
RYSK that binds RBD S1 of SARS-CoV-2 using random library screening with 800 million
synthetic peptides. The results of the CABS-dock procedure, presented in Figure 5 and Table A4,
show that LVMGLNVWLRYSK is likely to bind the RBD S1 fragment at positions identical to
the ones detected using the APT approach: Y156 (aa 489), L159 (aa 492), Q160 (aa 493), S161 (aa
494), G163 (aa 496), and Y172 (aa 505).



Int. J. Mol. Sci. 2021, 22, 9106 10 of 18

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 10 of 19 
 

 

For example, Pomplun et al. [29,30] identified a consensus peptide sequence 
LVMGLNVWLRYSK that binds RBD S1 of SARS-CoV-2 using random library screening 
with 800 million synthetic peptides. The results of the CABS-dock procedure, presented 
in Figure 5 and Table A4, show that LVMGLNVWLRYSK is likely to bind the RBD S1 
fragment at positions identical to the ones detected using the APT approach: Y156 (aa 
489), L159 (aa 492), Q160 (aa 493), S161 (aa 494), G163 (aa 496), and Y172 (aa 505). 

 
 

(a) (b) 

Figure 4. (a) Docking of antisense peptide KLTIKGDVSIPKVGWLPQPIV to RBD of S1 SARS-CoV-2 by means of a CABS-
dock server (Table S2: model 1) [28]. Pairs of peptide/receptor residuals: in 3′ → 5′ direction marked blue, in 5′ → 3′ direc-
tion marked red, otherwise magenta; (b) Contact map of the interface between antisense peptide and its receptor residues 
in a complex closer than 4.5 Å (Tables A3 and S2: model 1). 

 

 

(a) (b) 

Figure 5. Docking of peptide LVMGLNVWLRYSK to RBD of S1 SARS-CoV-2 protein by means of CABS-dock server 
(Table S3: model 1) [28,29]. Pairs of peptide/receptor residuals: in 3′ → 5′ direction marked blue, otherwise magenta; (b) 
Contact map of the interface between peptide and its receptor residues in a complex closer than 4.5 Å (Tables A4 and S3: 
model 1). 

4. Methods and Results (SARS-CoV-2 Peptide Modeling) 
4.1. Peptide Modeling and Peptide–Protein Docking  

The fragment of S1 RBD sequence aa 334–523 (190 aa, Table A1)—reported to be re-
sponsible for SARS-CoV-2 binding [66,68,69]—was used for protein modeling, design, 

Figure 5. (a) Docking of peptide LVMGLNVWLRYSK to RBD of S1 SARS-CoV-2 protein by means of CABS-dock server
(Table S3: model 1) [28,29]. Pairs of peptide/receptor residuals: in 3′ → 5′ direction marked blue, otherwise magenta; (b)
Contact map of the interface between peptide and its receptor residues in a complex closer than 4.5 Å (Table A4 and Table
S3: model 1).

4. Methods and Results (SARS-CoV-2 Peptide Modeling)
4.1. Peptide Modeling and Peptide–Protein Docking

The fragment of S1 RBD sequence aa 334–523 (190 aa, Table A1)—reported to be re-
sponsible for SARS-CoV-2 binding [66,68,69]—was used for protein modeling, design, and
docking [28]. Input PDB file, Table S4, was obtained using I-TASSER (Iterative Threading
ASSEmbly Refinement) [80].

Two important S1 epitopes were determined with Expasy Server—ProtScale [81,82]
using the hydrophobicity scale of Kyte & Doolittle, with a sliding block of 11 amino acids
(Figure 6a,b). The probable binding site in the region 153–173 was confirmed by the
Informational Spectrum Method (ISM, Figure 6c) using electron-ion interaction pseudopo-
tential (EIIP) [18,83,84]. The ISM located the bioactive hot spot at the exposed (E) position
Q165 (Q498) within the region of S1 RBD fragment 153–173, which corresponds to the
S1 amino acid motif 486–506, empirically shown to be important for the virus-receptor
binding [66,68,69,73]. Identification of B cell epitopes by means of the Bepi Pred Server [85],
presented in Figure 6d, confirmed the importance of this region and the result of ISM.

The docking of the 5′→ 3′ antisense peptide KKKKYRNIRRPG, 3′→ 5′ antisense peptide
KLTIKGDVSIPKVGWLPQPIV, and peptide LVMGLNVWLRYSK to the RBD of S1 SARS-CoV-
2 protein was done using the CABS-dock server (Figures 3–5 and Tables A2–A4) [28]. CABS-
dock is a useful tool in the exploration of possible peptide binding sites [28,86]. It is a global
docking procedure characterized by explicit, fully flexible docking simulation and clustering-
based scoring [28,86,87]. The CABS model is based on a knowledge-based parameterization
of the molecular interactions, which consist of several statistical potentials [28,86]. It describes
the excluded volumes of the united atoms, a model of the main chain hydrogen bonds, and
the side-chain contact potentials [86]. The results of the CABS-dock procedure accurately
predicted the binding of both antisense peptides and peptide LVMGLNVWLRYSK to the S1
RBD receptor epitope FNCYFPLQSYGFQPTNGVGYQ (Figures 3–5 and Tables A2–A4).
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Figure 6. S1 epitopes of SARS-CoV-2 RBD sequence fragment (aa 334–523) were determined with
Expasy—ProtScale tool using the hydrophobicity scale of Kyte & Doolittle and a sliding block of
11 amino acids [81,82] (a). Hydropathy scores for the epitope positions at aa 486–506 (153–173)
(b). Informational Spectrum Method analysis based on the electron-ion interaction pseudopotential
was used to determine the bioactive region (Q165) of the SARS-CoV-2 RBD sequence fragment (aa
334–523) [18,83,84] (c). Prediction of B cell epitopes of the SARS-CoV-2 RBD sequence fragment with
BepiPred Server—positions aa 486–506 (153–173), E = part of a linear B cell epitope (• represents a
residue predicted not to be part of an epitope) [85] (d).

4.2. Heuristic Antinsense Peptide Design (HAPD)

A simple heuristic antisense peptide design (HAPD) was completed using the opti-
mization procedure based on three steps for complementary, i.e., sense–antisense, pairs
selection (Scheme 1). The steps were denoted by colors (e.g., yellow, green, and turquoise).
The first step, yellow, was used to model the antisense peptide “consensus skeleton”, based
on the selection of pairs specified by both complementary translation directions (3′ → 5′

and 5′ → 3′, Table 2). The first step reduced the number of random peptides in the HAPD
model by the factor of 4.096 × 1015, i.e., from 2012 to 1. The second optimization step was
green, and it specified the direction of translation for the “skeleton” (3′→ 5′ or 5′→ 3′). For
the design of the antisense peptide KLTIKGDVSIPKVGWLPQPIV, we chose the 3′ → 5′ di-
rection. The green criterion was the maximal hydropathy distance between polar–nonpolar
amino acid clusters specified by the second base of the SGC table (A and U) and minimal
hydropathy distance between neutral–neutral amino acid clusters specified by the second
base of the SGC table (G and C) [7,8,17,19,24,88]. We applied the standard hydropathy
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distance criterion based on the Kyte and Doolittle scale [7,17,82]. For the clusters specified
by the 3′ → 5′ complements of the modeled S1 sequence FNCYFPLQSYGFQPTNGVGYQ,
the result is clear—QV, SS, and TW pairs were used (Table 2). The second (green) step
enabled further reduction of elements by the factor of 6.4 × 107, i.e., from 206 to 1. In the
third, turquoise, step there was only one possible antisense pairing left, containing the
letters N, D, or E at the peptide aa position No. 7. This last step further reduced the number
of random peptide pairs from 8000 (203) to only 3. Three amino acids (N, D, and E) have
an identical hydropathy value (−3.5) and hydropathy difference (∆ = 7.3) in relation to
their only matching 3′ → 5′ complementary transcript L (3.8) [7,82]. Consequently, we
randomly selected aspartic acid (D) for the final antisense sequence KLTIKGDVSIPKVG-
WLPQPIV. A similar strategy could also be applied to the 5′ → 3′ direction complements
or to combinations of both procedures. For specific applications in immunochemistry
and other disciplines, similar heuristic procedures for APD may also be combined with
other heuristic bioinformatic methods such as, e.g., the basic local alignment search tool
(BLAST) [18,20]. This procedure could also be used to model different natural or artificial
(de novo) gene and protein constructs.
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A useful heuristic algorithm reduces the size of the solution space for a problem and
also enriches the density of hits in the subset. Instead of 20n randomly generated peptides
for a sequence of length n within a full sample space, HAPD generates the average subset
number of 1.35n peptides in 3′ → 5′ and 2.6n peptides in 5′ → 3′ translation direction.
Consequently, the probability of deriving a pentapeptide binder using the random peptide
design approach should be 3.125 × 10−7. In contrast to the random library approach, the
average probabilities to detect pentapeptide binders using HAPD 3′ → 5′ and 5′ → 3′

methods would be 0.223 and 0.0084, respectively. Therefore, it is not surprising that the
validity of HAPD was confirmed for more than 50 ligand-acceptor systems [1–22].

5. Conclusions

The applicability of APT was confirmed recently for the magnetic particle enzyme
immunoassay (MPEIA, Figure 2b) and immunohistochemical procedures [19,20]. This
opens a perspective for the development of a new class of efficient immunochemical assays
based on short peptide technology [18–20]. Additionally, it was also shown that modern
computational methods enable a new approach to the studies of sense and antisense
peptide interactions [20]. Several free web-based services for protein structure prediction
and modeling (e.g., I-TASSER, Phyre2, PEP-FOLD 3, CABS-dock) enable accurate protein-
peptide docking, i.e., in silico search for the peptide binding sites [20,28,80,86,87,89–91].

Small molecules and peptides may be also used for blocking protein-protein and
protein-peptide interactions. In addition to NMR and X-ray crystallographic methods and
mutational data, computational and virtual spectroscopy methods—such as the informa-
tional spectrum method (ISM)—could be also used to define hot spots in proteins [18,83,84].
An APT-based approach is also useful for peptide interaction and pharmacophore model-
ing [32,35]. The application of artificial proteins in the context of APT is also a plausible
method to derive new antisense modulators of the protein interactions [19,24,88,91,92].

APT could be easily adapted to magnetic and polystyrene bead assays, conventional
ELISAs, and multiplex assays, so it is possible to achieve two major lines of quick and
sensitive assay development: 1. MPEIAs read with appropriate absorbance readers, and 2.
Multiplex ELISAs read with appropriate imagers (e.g., with a high-resolution chemilumi-
nescence readers for printed microtiter plates) [19,20,93,94].
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Developing new immunoassays is important for situations such as the SARS-CoV-2
infection outbreak (and COVID-19 disease) due to the possibility to design—in a relatively
short time—quick, inexpensive, and simple assays that could be automated to obtain
medium/high throughput screenings of particular binders, peptide motifs, and antibodies,
etc. If carefully selected, such laboratory techniques enable the experimental application
of different laboratory procedures which, depending on the experimental design, may be
used for:

• selection of different targets and evaluation of complementary (sense–antisense) pep-
tide binding;

• quantification of specific antibodies, peptides, and proteins;
• design of MPEIAs and Multiplex ELISAs tailored for a specific purpose.

The benefits of APT outweigh the costs of medium/high throughput screening and
random peptide libraries and could lead to considerable savings in time and money.
Practical applications and benefits of APT application are:

1. Quick design and validation of the complementary ligands and acceptors;
2. Computational validation and virtual screening of different protein and peptide

structures;
3. Rationalization of peptide library screening;
4. The tests can be produced in a short period of time;
5. The tests will be made composite (according to the LEGO principle) and will consist

of less expensive and commercially available components;
6. The time required to obtain results is shorter (since no antibody production is needed);
7. The test enables large quantity sample testing using standard laboratory equipment

(since it does not require special reagents or complicated sampling processing);
8. The tests are likely to prove important for the investigation of the immune response,

disease pathogenesis, and clinical outcome of different infections;
9. Designed antisense peptides (and anti-antisenses [21]) may also provide a basis for

further development of vaccines and lead compounds for different diseases;
10. Detection of mutant strains is quicker since new antisense peptide motifs could be

synthesized, evaluated for binding, and easily linked to magnetic particles in a short
period of time, which avoids the antibody production process;

11. A green chemistry approach significantly reduces or avoids the loss of animal life.
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Appendix A

Table A1. Fragment of S1 RBD sequence aa 334–523 of SARS-CoV-2was used for CABS-dock analy-
ses [28].

NLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVY
ADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFR
KSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPAT

Table A2. Pairs of peptide/receptor residuals closer than 4.5 Å in the selected complex using the
CABS-dock method [28]. Peptide sequence was KKKKYRNIRRPG [75] and receptor region was aa
334–523 of RBD S1 SARS-CoV-2.

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

SER A 161 ASN B 7 TYR A 162 TYR B 5 TYR A 162 ARG B 6
GLN A 160 PRO B 11 GLN A160 GLY B 12 SER A 161 ARG B 6
GLN A 160 LYS B 4 GLN A 160 ARG B 6 GLN A 160 ILE B 8
PHE A 157 ARG B 10 PHE A 157 PRO B 11 LEU A 159 ILE B 8
TYR A 156 GLY B 12 PHE A 157 ILE B 8 PHE A 157 ARG B 9
GLU A 151 ARG B 9 TYR A156 ARG B 10 TYR A156 PRO B 11
LEU A 122 GLY B 12 PHE A 123 GLY B 12 TYR A 140 GLY B 12
TYR A 116 ASN B 7 TYR A 118 ARG B 6 TYR A 120 ARG B 6
LYS A 84 LYS B 2 LYS A 84 LYS B 4 ILE A 85 ARG B 6
GLN A 76 LYS B 3 THR A 82 LYS B 2 GLY A 83 LYS B 2
ARG A 75 LYS B 1 ARG A 75 LYS B 2 GLN A 76 LYS B 2
GLU A 73 LYS B 3 GLU A 73 LYS B 4 GLU A 73 ARG B 6
ARG A 70 TYR B 5 ASP A 72 LYS B 2 ASP A 72 LYS B 3
ILE A 69 ARG B 6 ARG A 70 LYS B 3 ARG A 70 LYS B 4

Table A3. Sense-antisense pairs of peptide/receptor residuals closer than 4.5 Å in the selected com-
plex using CABS-dock method [28]. Antisense peptide sequence was KLTIKGDVSIPKVGWLPQPIV,
and the receptor sense region was aa 334–523 of RBD S1 SARS-CoV-2.

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

TYR A 172 ASP B 7 TYR A 162 ASP B 7 GLY A 163 SER B 9
SER A 161 ILE B 10 SER A 161 VAL B 8 SER A 161 SER B 9
GLN A 160 TRP B 15 GLN A 160 VAL B 8 GLN A 160 ILE B 10
LEU A 159 VAL B 13 PHE A 157 GLY B 14 LEU A 159 ILE B 10
PHE A 157 VAL B 13 TYR A 156 LEU B 16 TYR A 156 GLN B 18
TYR A 156 TRP B 15 TYR A 156 VAL B 13 TYR A 156 GLY B 14
CYS A 155 LEU B 16 ASN A154 PRO B 19 CYS A 155 GLY B 14
GLU A 151 GLY B 14 GLU A 151 LYS B 12 GLU A 151 VAL B 13
GLYA 143 PRO B 19 ALA A 142 PRO B 19 ALA A 142 ILE B 20

ALA A 142 GLN B 18 TYR A 140 GLN B 18 TYR A 140 ILE B 20
ARG A 124 LEU B 2 PHE A 123 LEU B 2 ARG A 124 LYS B 1
LEU A 122 TRP B 15 LEU A 122 LEU B 2 LEU A 122 THR B 3
TYR A 120 VAL B 8 TYR A 120 LYS B 5 TYR A 120 ASP B 7
ILE A 85 LYS B 5 LYS A 84 LEU B 2 LYS A 84 THR B 3
LYS A 84 LYS B 1 GLU A 73 LYS B 5 GLN A 76 LYS B 5
ARG A 70 LYS B 5
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Table A4. Pairs of peptide/receptor residuals closer than 4.5 Å in the selected complex using CABS-
dock method [28]. Peptide sequence was LVMGLNVWLRYSK [29] and receptor was region aa
334–523 of RBD S1 SARS-CoV-2.

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

Receptor
Residue

Peptide
Residue

TYR A 172 LYS B 13 GLY A 163 TYR B 11 TYR A 172 SER B 12
SER A 161 TYR B 11 SER A 161 LEU B 9 SER A 161 ARG B 10
SER A 161 TRP B 8 GLN A 160 SER B 12 SER A 161 VAL B 7
GLN A 160 ARG B 10 GLN A 160 VAL B 7 GLN A160 TRP B 8
LEU A 159 TRP B 8 LEU A 159 ASN B 6 LEU A 159 VAL B 7
LEU A 159 LEU B 5 PHE A 157 ASN B 6 PHE A 157 TRP B 8
TYR A 156 ARG B 10 CYS A 155 TRP B 8 TYR A 156 TRP B 8
GLU A 138 ASN B 6 THR A 137 LEU B 5 THR A 137 ASN B 6
THR A 137 GLY B 4 ILE A 135 VAL B 2 THR A 137 MET B 3
LEU A 119 VAL B 7 TYR A 116 VAL B 7 LEU A 119 VAL B 2
LYS A 84 LYS B 13 GLN A 76 LYS B 13 LYS A 84 SER B 12
GLU A 73 LYS B 13 ARG A 70 LYS B 13 ASP A 72 LYS B 13
ARG A 70 SER B 12 ARG A 70 ARG B 10 ARG A 70 TYR B 11
ALA A 19 VAL B 2 TYR A 18 VAL B 2 TYR A 18 MET B 3
ARG A 13 LEU B 1
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