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Abstract: Repetitive DNA sequences, satellite DNAs (satDNAs) and transposable elements (TEs)
are essential components of the genome landscape, with many different roles in genome function
and evolution. Despite significant advances in sequencing technologies and bioinformatics tools,
detection and classification of repetitive sequences can still be an obstacle to the analysis of genomic
repeats. Here, we summarize how specificities in repetitive DNA organizational patterns can lead
to an inability to classify (and study) a significant fraction of bivalve mollusk repetitive sequences.
We suggest that the main reasons for this inability are: the predominant association of satDNA
arrays with Helitron/Helentron TEs; the existence of many complex loci; and the unusual, highly
scattered organization of short satDNA arrays or single monomers across the whole genome. The
specificities of bivalve genomes confirm the need for introducing diverse organisms as models in
order to understand all aspects of repetitive DNA biology. It is expected that further development
of sequencing techniques and synergy among different bioinformatics tools and databases will
enable quick and unambiguous characterization and classification of repetitive DNA sequences in
assembled genomes.

Keywords: repetitive DNA classification; satellite DNA; transposable element; Helitron/Helentron;
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1. Introduction

Despite the exponential number of genome sequencing projects arising and spanning
all taxa, genomic regions largely composed of repetitive DNA sequences still present
substantial technical issues in the assembly of genomes [1]. Repetitive DNAs are mainly
constituted of satellite DNAs (satDNAs), formed by sequences repeated in tandem, and
of mobile elements, interspersed throughout the genome [2]. According to the estab-
lished classical view, satDNAs are associated with constitutive heterochromatin which
is commonly located at pericentromeric and subtelomeric chromosomal domains and at
interstitial loci of the chromosomal arms. They build long arrays of monomers repeated in
tandem, comprised of hundreds to thousands of highly similar repeat units [3]. However,
more recent work has introduced new data and showed that satDNA sequences can also
be located outside of heterochromatin, where they can be found in different organizational
forms: as monomers or monomer fragments, in arrays of diverse length or incorporated
into mobile elements, for example [4–10]. In addition, many links show that satDNAs
and mobile elements are often tightly interconnected. For example, tandem repeats can
be created from mobile elements or their segments, or satDNAs can expand from short
internal arrays carried by mobile elements (reviewed in [11]).

Sequencing problems arise in attempts to reconstruct repetitive genomic segments,
and, subsequently, these regions are still regularly omitted or are misassembled in the
available genomic data [12]. Ongoing improvements in sequencing technologies (e.g.,
long-read PacBio and Nanopore sequencing) are opening the possibility to obtain insights
into these missing fractions of assembled genomes [13]. At the same time, a number of
programs and software aimed to forward repeat detection and characterization are being
generated and/or upgraded (reviewed in [14]), substantially changing our knowledge on

DNA 2021, 1, 84–90. https://doi.org/10.3390/dna1020009 https://www.mdpi.com/journal/dna

https://www.mdpi.com/journal/dna
https://www.mdpi.com
https://orcid.org/0000-0002-5570-4238
https://doi.org/10.3390/dna1020009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/dna1020009
https://www.mdpi.com/journal/dna
https://www.mdpi.com/article/10.3390/dna1020009?type=check_update&version=2


DNA 2021, 1 85

the inventory of repetitive sequences in genomes, satellitomes and repeatomes [15–20].
However, clear and unambiguous classifications of repetitive fractions of genomes still
present a challenge, as described here for bivalve mollusks.

2. Repetitive Sequences in Bivalve Genomes

Bivalve genomes show many peculiarities in the content and composition of repetitive
DNA sequences and heterochromatin and can be valuable sources of information as model
organisms in studying repetitive DNA biology [21]. The overall contribution of repetitive
DNAs to bivalve genomes is relatively high, in some species reaching 50% [22–25] or
even 60% [26] of the genome. In contrast, the estimated content of sequences classified as
satDNAs is very low according to genome sequencing projects, usually <2% [24,26–29].
This differs significantly from the organisms in which up to 40% of the genome is composed
of satDNAs [30–32].

Interestingly, a large number of repetitive sequences, >70%, remain unassigned in
many bivalve species ([28,29,33,34], etc.), differing again from the organisms where the suc-
cess in repeat classification is significantly higher, reaching 98% in some plant species [35].
At the same time, it was noticed that Helitron/Helentron mobile elements constitute a sub-
stantial part of bivalve genomes, frequently being by far the most abundant type of DNA
transposons in a certain genome [26,28,36]. Mobile elements of the Helitron/Helentron
superfamily consist of conserved sequence segments at element ends that hold subtermi-
nal inverted repeats and a short palindromic sequence at the 3′ end of the right flanking
sequence, while in the central part, they frequently contain arrays of tandem repeats,
preceded by a microsatellite sequence ([37], Figure 1a).

Figure 1. The structural characteristics of Helitron mobile elements and the result of RepeatExplorer clustering. (a) Helitron
mobile elements contain conserved sequence segments at element ends that hold subterminal inverted repeats, an inverted
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repeat in the 5′ conserved segment and a short palindromic sequence at the 3′ conserved segment. The central part of the
element frequently contains arrays of tandem repeats preceded by a microsatellite sequence. (b) In RepeatExplorer analysis,
different parts of Helitron mobile elements are placed in separate clusters. In this example, central repeats were assigned to
cluster CL2 and classified as low-confidence satellite DNAs (satDNA), while sequence segments flanking central repeats
were assigned to clusters CL4 and CL18, both remaining unclassified. The position of contigs, obtained after the clustering,
is shown in respect to the Helitron-N2_Cgi consensus sequence.

Whole elements can also be repeated in tandem, with frequent truncation at the 3′

end of the element [38]. The number of central repeats found within Helitron/Helentron
elements in bivalves can vary significantly from 1 to ~90 [39], with arrays holding up to
6 monomers being the most frequent [4,9,40–42].

3. Problems in Classification of Repetitive DNA Sequences: The Case of the Pacific
Oyster Crassostrea gigas

The “hybrid” structure of mobile elements incorporating tandem repeats could, at
least partially, explain the difficulties in the precise classification of repetitive sequences,
and in determining the exact contribution of each type of repeat to the genome. For
example, in a RepeatExplorer [43] analysis of the Pacific oyster Crassostrea gigas, contigs
based on short-read sequences (Supplementary Data S1–S3) built separate clusters, which
corresponded to different parts of Helitron mobile elements. Tandem repeats derived
from the central parts of Helitrons were placed into one cluster and classified as satDNA,
while sequences corresponding to flanking sequences were allocated into two separate
clusters (Figure 1b) that remained unclassified [44]. Similar assignment problems were
also observed in Drosophila virilis and Drosophila americana, species containing structurally
similar elements of the same superfamily [45]. The inability to detect three formerly known
satDNAs of Rhodnius prolixus with RepeatExplorer analysis [46] could also be a consequence
of their association with certain sequence segments (potentially of transposable element
origin), resulting in their placement within clusters that remained unclassified. While such
problems are noticeable during analyses based on short-read data, repeat classification on
assembled genomes encounters different obstacles. Programs based solely on structural
characteristics found at the element ends (subterminal inverted repeats, short palindromic
sequence) would fail to characterize large numbers of truncated variants, while homology-
based classifications could be biased by several other factors. Among these factors, we
include: the extreme variation in the number of central repeats (observed in [39]), sequence
variations, the existence of two different types of repeats within an array (reported in [42])
and the existence of many complex loci. The Pacific oyster C. gigas genome is replete with
the last factor (Figure 2). Here, tandemization of repeats and of conserved boxes that are
usually found at the element ends, together with insertion, deletion and recombination
events, generates a very complex network of tandem repeats and Helitron components,
presenting a significant classification challenge.

In C. gigas, satellitome analysis revealed an unusual, highly scattered organization of
relatively short satDNA arrays across the whole genome, a pattern followed by all 52 satD-
NAs detected in this species [39]. Interestingly, the same species contains an extremely low
amount of heterochromatin, limited to the centromeric region of one chromosome pair and
the telomeric region of another, and predominantly composed of DNA transposons [44,47].
For this species, in strong contrast with the established concept of satDNA genomic organi-
zation, no significant accumulation of satDNAs has been observed in any chromosomal
loci. Additionally, a substantial number of satDNA sequences has been found in the form
of single, interspersed monomers. They were, in the same manner as arrays of monomers,
found either in standalone form, or associated with conserved boxes of Helitron mobile ele-
ments, from one or both sides [39]. We believe that this pattern, differing significantly from
the classical organizational concept of satDNA, is a significant contributor to the inability
to classify a large number of repetitive DNA sequences, especially standalone interspersed
monomers. If examined from the aspect of interspersed sequences, their classification
would be omitted due to a lack of some recognizable structural characteristics, while on the
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other hand, they would most probably remain unrecognized by satDNA-oriented tandem
repeat finders.

Figure 2. An example of complex loci found within the Crassostrea gigas genome. Vertical bars denote conserved boxes of
Helitron mobile elements. Boxes 1 and 2 represent conserved segments found at the 5′ and 3′ ends of Helitron-N2_Cgi,
while boxes 3 and 4 represent 5′ and 3′ conserved segments, respectively, shared among several Helitron mobile elements
of C. gigas. CgiSat01–06 and CgiSat10, 17, 24, 49 denote monomers belonging to some of the satDNAs described in [46].
Each arrowhead represents one monomer, with arrowhead sizes varying in respect to the monomer length of a particular
satDNA. In silico localization was performed on linkage groups/chromosomes of the currently representative genome
assembly GCA_902806645.1 [36].

4. Conclusions

While there are other circumstances that can contribute to the difficulties in the clas-
sification of repetitive elements in bivalves, e.g., the existence of species-specific variants
of known elements [33], we believe that a significant role is played by: (i) the absence
of classical satellite DNAs, (ii) the predominant existence of satDNA arrays of different
sizes within the complete and truncated Helitron/Helentron elements, (iii) the existence
of combined types of arrays within such elements, (iv) the presence of a large number
of single, interspersed monomers throughout the genome and (v) the existence of com-
plex loci generated by insertion, deletion and recombination events in combination with
tandemization of repeats and mobile element conserved boxes.

Comprehensive and accurate annotation and characterization of repetitive sequences
are necessary, as the contribution of this part of the genome is important for the under-
standing of the genomic/chromosomal architecture and function as a whole. We believe
that the combination of quickly evolving sequencing technologies, followed by the constant
development and improvement of bioinformatics tools and databases, supplemented with
manual curation and adaptation according to the specificities of each model organism of in-
terest, will significantly forward our abilities to correctly characterize and classify repetitive
DNA sequences and obtain novel insights into these important genomic components.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/dna1020009/s1, Data S1: Contigs belonging to cluster CL2, obtained after RepeatExplorer
clustering, Data S2: Contigs belonging to cluster CL4, obtained after RepeatExplorer clustering,
Data S3: Contigs belonging to cluster CL18, obtained after RepeatExplorer clustering.
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