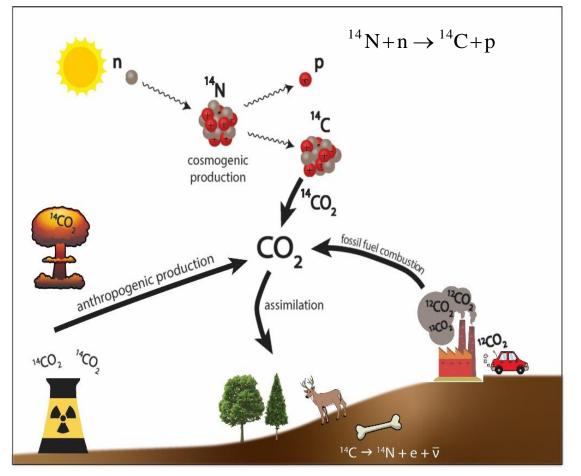


Carbon isotope composition (¹⁴C and ¹³C) of the atmospheric CO₂ at several locations in Croatia

Ines Krajcar Bronić¹, Damir Borković¹, Emma Hess², Tjaša Kanduč³, Jadranka Barešić¹, Andreja Sironić¹

¹Department of Experimental Physics, Ruđer Bošković Institute, Zagreb, Croatia ²Department of Physics (student), University of Rijeka, Rijeka, Croatia ³Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia

krajcar@irb.hr


Kuala Lumpur – Malaysia, 6 — 10 December 2021

¹⁴C

Radiocarbon is of both cosmogenic and anthropogenic origin.

- **Cosmogenic** or natural radiocarbon is formed in the atmosphere in nuclear reactions
- Anthropogenic carbon is produced in (1) various nuclear facilities and (2) during atmospheric nuclear and thermonuclear bomb testing.
- Anthropogenic source of carbon (¹⁴C-free) – use of fossil fuels for energy production

Naturally produced CO_2 and that formed by fossil fuel combustion are characterized by different content of the stable isotope ¹³C (δ^{13} C values) in addition to their different ¹⁴C content.

Krajcar Bronić, I. et al. (2020) <u>Properties, behavior and</u> potential health effects of 14C..

Aim

- The carbon isotope composition (¹³C and ¹⁴C) of the atmospheric CO_2 can indicate sources of CO_2 at each location, if it is far from nuclear facilities.
- ¹⁴C activity in the atmospheric CO₂ in Zagreb, Croatia, has been monitored since 1985.
- Recently we have started monitoring carbon isotope composition at several other locations in Croatia (city of Rijeka and rural areas around Zagreb and Rijeka)

Aim: to determine influence of fossil fuel combustion on atmospheric ¹⁴C activity and δ^{13} C values at different locations

Hypothesis: urban sites are affected by fossil fuel uses, which is reflected in the carbon isotope composition of atmospheric CO_2

Sampling sites

Monitoring of ¹⁴C activity concentration in monthly atmospheric samples of CO₂ at **Zagreb (Croatia)** has been performed since 1985, regularly since 1994.

Characteristic of sampling locations

location	type	Lat.	Long.	Alt. m a.s.l.	T annual mean (°C)	P (mm)
Zagreb- RBI	urban	45° 49′	15° 58′	165	1986-1995 11.2 ± 0.7* 1996-2006 12.1 ± 0.8 2012-2018 13.5 ± 0.4	880
Cvetković	Rural / clean	45° 39′	15° 39′	90		
Rijeka	Urban	45° 20′	14° 26′	85	13.8	1530
Gornje Jelenje	Rural + road	45° 23′	14° 28′	300	12	1700
Parg	Rural / clean	45° 35′	14° 37′	840	7.2	1840

* Krajcar Bronić et al., Water-12-00226

Three sampling methods

- a) Static absorption of atmospheric CO₂ on NaOH
- **b)** Dynamic absorption of atmospheric CO₂, pumping air thought NaOH solution. Constant temperature and air flow maintained.
- c) Spot atmospheric CO₂ sampling; air collected in "bags"

integral sample - represents average value over the period and place at which the sample is taken;

spot sample - a discrete sample representative at the time and place at which the sample is taken;

Two measurement techniques:

LSC-B – Liquid Scintillation Counting, benzene synthesis **AMS** – Accelerator Mass Spectrometry

LSC Quantulus 1220

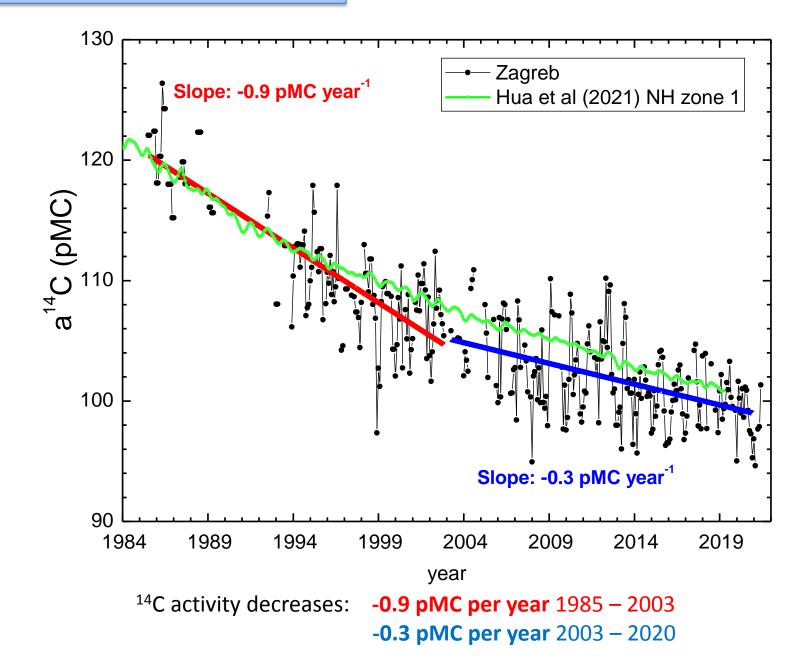
AMS at CAIS, Univ. Georgia, Athens, GA, USA

Comparison of methods

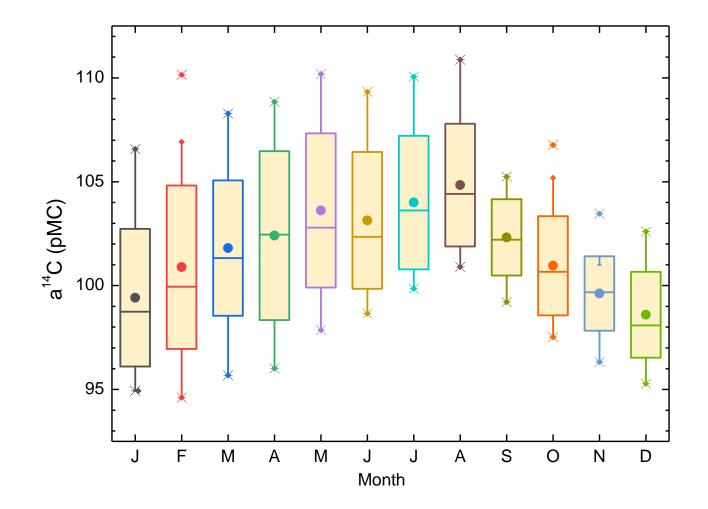
Sampling method	Period	Measurement method	δ ¹³ C	Comment
Static	Integral	LSC & AMS	No	Simple, can be performed at remote sites
Dynamic	Integral	LSC & AMS	Yes	Adjustable flow rate and temperature
Spot	Discrete	AMS	Yes	discrete sample

Sampling atmospheric CO₂ for δ^{13} C determination

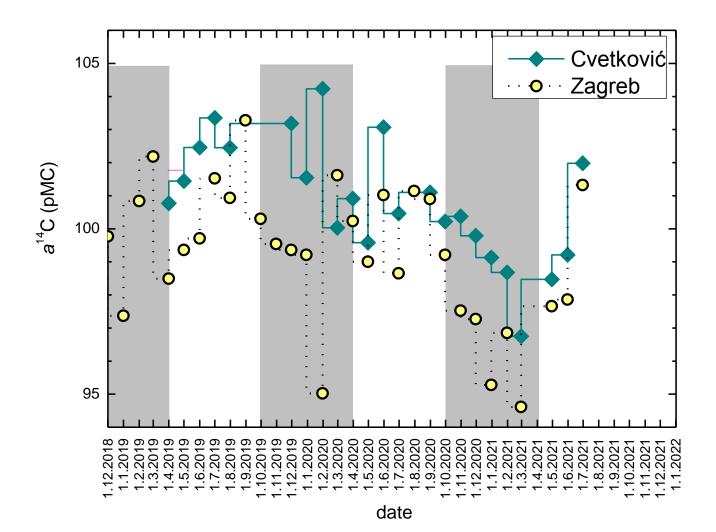
Measurement IRMS Europa Scientific 20-20 Continuous flow IRMS ANCA-TG preparation module J. Stefan Institute, Ljubljana, Slovenia (Tjaša Kanduč)

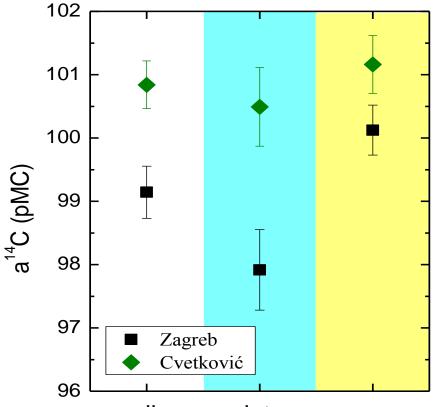

Comparison of measurement techniques

Location	Period	Sampling method	a ¹⁴ C (pMC) LSC-B	a ¹⁴ C (pMC) AMS	δ ¹³ C (‰)
Zagreb	3/2020	Static	100.23 ± 0.69	100.15 ± 0.27	-28.06
	8/2020	Static	100.90 ± 0.58	100.57 ± 0.28	-24.46
	10/2020	Static	97.52 ± 0.61	98.67 ± 0.27	-24.48
Cvetković	2/2020	Static	100.03 ± 0.70	101.01 ± 0.27	-29.36
	8/2020	Static	101.25 ± 0.60	101.10 ± 0.28	-23.41
	10/2020	Static	100.37 ± 0.82	100.20 ± 0.27	-25.84
	11/2020	Static	99.79 ± 0.48	99.59 ± 0.29	-25.44
Rijeka	2/2021	Static	97.48 ± 0.82	98.09 ± 0.27	-25.05
Parg	2/2021	Static	100.92 ± 0.71	100.30 ± 0.27	-26.25
G. Jelenje	2/2021	Static	100.17 ± 0.68	100.28 ± 0.27	-26.32


Comparison of sampling techniques

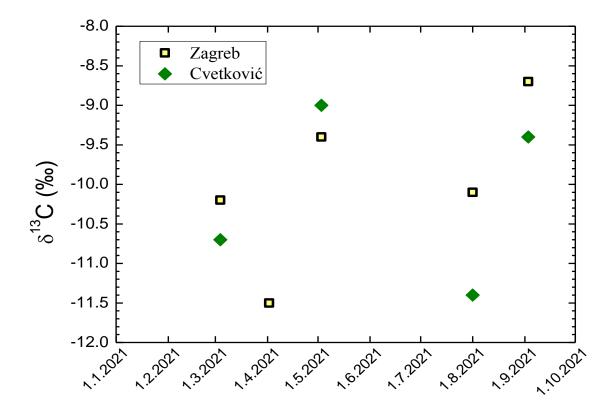
static		a ¹⁴ C (pMC)	spot	a ¹⁴ C (pMC)	dynamic	a ¹⁴ C (pMC)
5/2020		101.02 ± 0.65	26.5.2020.	101.19 ± 0.27		
10/2020		97.52 ± 0.61	13.10.2020.	99.48 ± 0.28		
1/2021		96.85 ± 0.61			4.11.2.	97.70 ± 0.26
					4.115.1	97.97 ± 0.26
	reb				15.11.2.	96.97 ± 0.27
3/2021	Zagreb		4.3.2021.	99.91 ± 0.27		
4/2021		97.66 ± 0.61	2.4.2021.	99.24 ± 0.27	1.430.4.	98.99 ± 0.27
					1.415.4.	98.96 ± 0.28
					15.430.4.	99.12 ± 0.27
5/2021		97.86 ± 0.43	3.5.2021.	99.66 ± 0.27		
12/2020	vić	99.13 ± 0.71	31.12.2020.	99.05 ± 0.27		
4/2021 C	Cvetković	98.47 ± 0.64	2.4.2021.	98.18 ± 0.30		
5/2021 C	Š	99.21 ± 0.79	3.5.2021.	99.71 ± 0.27		


Zagreb – long term ¹⁴C data


Seasonal fluctuations, 2003 – 2020, Zagreb

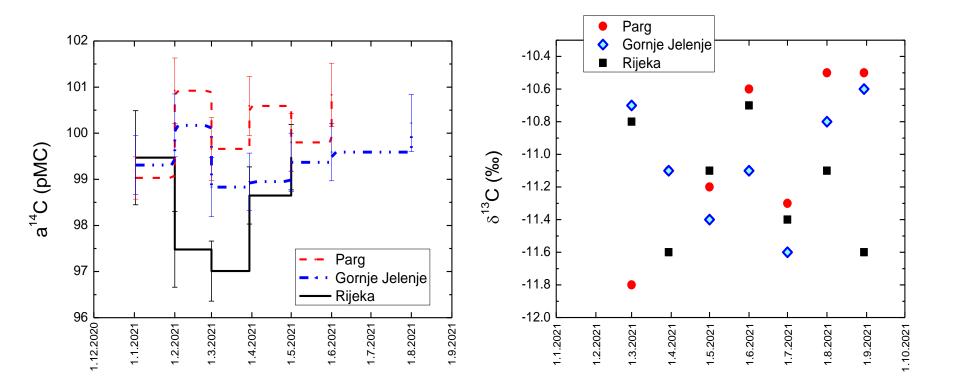
Zagreb and Cvetković, 2019-2021

- lower a¹⁴C values in Zagreb than at the clear site (Δ 1.69 pMC, p = 0.051)
- larger difference in winter (Δ 2.54 pMC, p = 0.013) than in summer (Δ 1.03 pMC, p = 0.059)



all

winter summer


		Cvetko	vić	Zagreb	
	Ν	mean	SE	mean	SE
All data	23/27	100.83	0.38	99.14	0.41
Summer Apr-Sept	12	101.15	0.46	100.12	0.39
Winter Oct-March	10	100.46	0.69	97.92	0.64

Zagreb and Cvetković, 2021

		Cvetković		Zagre	eb
	Ν	mean	SE	mean	SE
All data	4/5	-10.11	0.56	-9.98	0.47

Rijeka and surroundings, 2021

	a ¹⁴ C (pMC)	δ ¹³ C (‰)
Parg	100.1 ± 0.7	-11.00 ± 0.49
Gornje Jelenje	99.5 ± 0.5	-11.04 ± 0.37
Rijeka	98.4 ± 1.1	-11.18 ± 0.36

Concluding remarks

- Sampling techniques have been validated, and their dis/advantages determined
- Measurement techniques validated, depend on the mass of the collected carbon, results are comparable
- Rural locations show higher ¹⁴C activities
- The difference is larger during winter due to more intense fossil fuel combustion in the cities

Damir Borković – Ph.D. Thesis (Zagreb and Cvetković, and tree rings during last century) Emma Hess – master thesis (Rijeka and surroundings)

Work in Progress