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Abstract

Amultiscale approach to the dynamics of resonant energy transfer is presented, com-

bining DFT and TD-DFT results on the energy donor (D) and acceptor (A) moieties

with an extensive equilibrium and non-equilibrium molecular dynamics (MD) analysis

of a bound D-A pair in solution to build a coarse-grained kinetic model. We demon-

strate that a thorough MD study is needed to properly address RET: the enormous

configuration space visited by the system cannot be reliably sampled accounting only

for a few representative configurations. Moreover, the conformational motion of the

RET pair, occurring in a similar timescale as the RET process itself, leads to a sizable

increase of the overall process efficiency.
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1 Introduction

Resonance energy transfer (RET) describes a process where energy is transferred from an

excited molecule, called the energy donor, to an acceptor molecule, in a process:

D∗A→ DA∗ (1)

where the star indicates an excited state of the energy donor D or acceptor A molecule. The

process is called resonant because the excitation and deexcitation processes occur simulta-

neously without energy dissipation, so that, as first recognized by Förster,1 perturbation

theory can be exploited to calculate the RET probability. Specifically, RET occurs between

pairs of molecules that are far enough to neglect the overlap between the orbitals on D

and A moieties (Dexter energy transfer is negligible) but whose distance is shorter than the

wavelength of the photon needed to excite A or deexcite D, so that the radiative energy

exchange is irrelevant. In this regime, intermolecular interactions are electrostatic in nature

and can be considered as a pertubation on the states of the non-interacting DA system. The

Fermi golden rule then gives the RET probability:

kRET =
2π

h̄
|VDA|2δ(ωD − ωA) (2)

where VDA = 〈D∗A|Hint|DA∗〉 and ωD and ωA are the frequencies of the D → D∗ and

A→ A∗ processes. RET plays a major role in nature, where among other things, it governs

the physics of photosynthesis,2,3 but also defines the color of the bioluminescence of some jel-

lyfish.4 Inspired by nature, RET is exploited in artificial photosynthesis,5,6 in optoelectronic

devices,7,8 and finds extensive application in bioimaging,9,10 and bioanalysis.11–13

The main merit of Förster theory was to express Eq. 2 in terms of experimentally

accessible data. The first observation is that RET is typically a slow process if compared

with internal relaxation that is usually completed in the first few hundreths of femtosecond
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following excitation. It follows that RET occurs from the relaxed D∗ state, the same state

responsible for D fluorescence. Moreover, if intermolecular electrostatic interactions are

described in the point dipole approximation, the squared interaction can be written as:

|VDA|2 = | 1

4πε0η2r3
[(~µD · ~µA)− 3

r2
(~µD · ~r)(~µA · ~r)]|2 =

1

(4πε0)2
κ2

η4r6
|µD|2|µA|2 (3)

where ~µD/A are the transition dipole moments associated with the D fluorescence and A

absorption, ~r is the intermolecular distance (vector) and η is the medium refractive index.

In the second equality, the squared interaction term is factorized into a term that contains

(a) the squared amplitude of the two transition dipole moments, that can be estimated

from the integrated intensity of absorption transitions in the isolated D and A molecule,

(b) the intermolecular distance that enters at the sixth power in the denominator and (c)

a geometrical factor κ2 that only depends on the mutual orientation of the two dipoles and

ranges from 0 to 4.14 Finally, the Dirac-δ in Eq. 2, ensuring energy conservation, can be

approximated as the overlap J between the (normalized) D fluorescence spectrum and the

A absorption spectrum, so that the final expression for the RET probability reads:

kRET = (h̄2c)−1|VDA|2J (4)

where J =
∫∞
0
FD(ν̃)AA(ν̃)dν̃ is the spectral overlap between the donor absorption spectrum

and the acceptor emission spectrum, each normalized to unit area, expressed in cm and c is

the speed of light in cm·s−1. The RET rate in Eq. 4 can be translated into a RET-efficiency

once the velocities of competing processes are known:

ΦRET =
kRET

kDrad + kDnr + kRET
(5)

where kDrad and kDnr are the probability of D∗ radiative and non-radiative decay, respectively.

Eq. 4 relates the RET rate to the geometry of the RET pair and to experimentally
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accessible quantities, opening the way to exploit RET as a molecular ruler. The price to be

paid is the description of intermolecular electrostatic interactions in the point-dipole approx-

imation, a crude approach for large molecules at short distances, as extensively discussed in

recent literature.15–18 In this respect, more sophisticated approaches have been proposed ex-

ploiting transition point-charges,18 transition cube electron densities19 or transition density

matrices,20 with further control on the accuracy of VDA depending on the level of theory.21

A delicate issue arises in systems where the geometry of the RET pair is not known or not

constrained. In these situations κ2 is typically averaged assuming an isotropic distribution

of D and A orientations. Two estimates of κ2 are adopted in the static and dynamic regimes,

corresponding to the two limiting cases where the mutual orientation of the pairs has a

very slow or very fast dynamics with respect to the intrinsic RET dynamics.14 However,

the factorization of the distance r and of a orientational factor κ2 is not always accurate,22

and, more generally, closed expressions for κ2 are not available for systems in constrained

geometry. Some of these issues have been dealt with MD, to calculate average κ2 values

when closed analytical expressions for the orientational averages are not possible.22–25

There is also an additional important factor involving the interplay between RET dy-

namics and the dynamics of the chromophoric units and their environment. Indeed VDA,

depending on the intermolecular distance and on the mutual orientation of the two chro-

mophores, is strongly affected by the dynamics of the system, that, depending on specific

conditions, may occur on comparable timescales as RET, leading to a complex interplay of

different decay pathways.26–28 Here, we exploit molecular dynamics (MD) numerical simu-

lations to describe the dynamics of the system at hand. The intermolecular interactions,

VDA, is calculated in the point dipole approximation, using the transition dipole moments

obtained from quantum chemical calculations on the isolated D and A species. Following

the MD trajectories, VDA acquires therefore a precise time-dependence that is explicitly ac-

counted for in the calculation of the system dynamics. The dynamical treatment of RET

is similar to the approach recently proposed by Hoefling et al.,29,30 but our study allows to
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make a direct connection, through MD, between results of quantum chemical calculations

and RET dynamics and efficiency for a DA pair in solution.

Figure 1: Left: D-clx-A structure; the donor and acceptor are highlighted respectively in
blue and red blocks. Right: chromophoric unit structures: 7-nitrobenz-2-oxa-1,3-diazol-4-yl
(NBD) and Nile Red (NR).

We consider a supramolecular system where the energy donor, 7-nitrobenz-2-oxa-1,3-

diazol-4-yl (NBD), is loosely bound to the energy acceptor, Nile Red (NR), through the

flexible bridge offered by a calixarene structure (clx), as in Fig. 1. For this system, a large

amount of experimental data collected in different solvents is available.31 Specifically, the

RET dynamics evolves on a wide temporal window ranging from 1 ps to a few ns. Attempts

to relate the different timescales to VDA obtained via TD-DFT for different configurations

of the system were unsuccessful, with theoretically estimated timescales ranging from a few

tenths to a few hundreds fs.31 Here, while adopting the same approach to the VDA estimate,

we are able to properly simulate RET timescales thanks to our fully dynamical approach

to RET. We will demonstrate that the RET process is governed by a complex interplay

between different competing dynamical processes that include not just the D radiative and

non-radiative relaxation, but also the conformational and solvation degrees of freedom of

the system that, modulating VDA on similar timescales as RET, cannot be neglected in the
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description of this dynamical phenomenon.

In the next section we will shortly describe the proposed dynamical approach to RET

that combines an extensive use of MD with TD-DFT estimates of transition dipole moments

to calculate time-dependent RET probabilities. This information is then fed into a kinetic

model for RET. Results are then shown for the chosen DA pair in two different solvents. In

the last section, we will discuss obtained results against available experimental data, showing

that the dynamics of the system largely affects observed lifetimes and RET efficiencies,

with effects that cannot be recovered via a simple statistical average over different initial

configurations.

2 Theoretical and computational approach

We present here the multiscale scheme adopted for this work. It can be structured in four

steps and it combines MD simulations, excited state calculations and a kinetic coarse-grain

model (Fig. 2.).

First, we investigate our reference system NBD-clx-NR (Fig. 1) in chloroform and DMSO.

As illustrated in Fig. 2, our procedure starts from a classical MD of the ground state (GS) for

the D-clx-A system (step 1). Simulations were performed with GROMACS package32 using

generalized Amber force field (GAFF33) and restrained electrostatic potential atomic partial

(RESP34) charges. A two-step equilibration phase (1 ns NPT plus 10 ns NVT) is followed

by a long (1 µs) production run in the NVT ensemble. For the production runs a velocity

Verlet integrator with all-bond constraint and a simulation timestep of 0.5 fs is employed,

combined with a velocity-rescale thermostat coupled via a τT=0.1 ps.35 (more information in

section S1.1 and S1.2). This long GS trajectory simulates the statistical distribution of the

system configurations at equilibrium (step 1 in Figure 2). DMSO and chloroform solvents

were also consistently described by GAFF force field, which has been shown to correctly

predict many properties of bulk solvents.36
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Figure 2: A sketch of the 4-step multiscale model used for this work. See text for a detailed
description of step 1-4.

Excited-state calculations were performed on isolated (gas phase) D and A species (step

2) to determine i) excited state charges for D at HF-CIS, 6-31G(d,p) basis set and ii)

transition dipole moments at TD-DFT with B3LYP functional and 6-31G(d,p) basis set forD

and A. TD-DFT gas phase transition energies are overestimated with respect to experiment

(see Table 1), as expected due to solvation effects, and in any case are consistent with the

adopted GAFF approach. Further details about TD-DFT results, including solvation effects

can be found in Sect. S1.3. D excitation is simulated by instantaneously switching the

molecular force field and geometry from those relevant to D to those relevant to D∗ (see

S1.4). To account for the excitation of a statistically relevant distribution of D molecules in

solution, the GS trajectory is sampled to generate N non-equilibrium (NE) trajectories of

D∗A (step 3), each trajectory starting upon instantaneous excitation of the D molecule. In

our NE MD we neglect the molecular geometry relaxations when switching to the excited

state. Moreover, the choice of the velocity-rescale thermostat with a coupling value around

τT ∼ 10−1 ps and a very short timestep (0.5 fs) properly simulate fluctuations and dynamical

properties as relevant to the NVE ensemble,35 giving us confidence on the quality of our NE

MD simulations.
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Along each NE trajectory, the t-dependence of VDA is then calculated according to Eq.

3, setting η = 1.45, and using the transition dipole moments µA and µD obtained form

TD-DFT in step 2. Specifically, µA and µD are obtained from TD-DFT calculation (B3LYP

6-31g(d,p) (see S1.3) and their magnitude is maintained constant during the simulation, while

their orientation is anchored to the chromophore plane (see S1.5). The t-dependence of VDA

is therefore only due to the relative motion of the two molecular sub-units. We then exploit

Eq. 4 to calculate the t-dependent RET-probability kRET (t), setting JCHCl3 = 1.95 · 10−4

cm and JDMSO = 1.77 · 10−4 cm, as obtained from the overlap of the experimental emission

profile for D and absorption profile for A.31

Table 1: TD-DFT absorption and emission energies and squared transition dipole moments
relevant to the lowest excited state of NBD (D) and NR (A) in the gas phase (emission
energy refers to relaxed excited state geometry) and corresponding experimental transition
energies.31

NBD NR
absorption emission

Exp. trans. energies (eV)31 2.38 2.30
TD-DFT B3LYP trans. energies (eV) 2.75 2.71
TD-DFT B3LYP µ2

t (Debye2) 1.50 9.55

Having obtained N independent and statistically representative profiles for the VDA(t)

and kRET (t) dependence, we are now in the position to address the system relaxation as

governed by the interplay between the radiative and non radiative decay of D∗ and RET

through our stochastic kinetic model (step 4), inspired to kinetic Monte Carlo. Much as

with the transition dipole moments, we assume that the radiative and non-radiative decay

rates of D∗, kr and knr respectively, are molecular properties and are therefore barely affected

by the dynamics. These quantities are experimentally accessible through the fluorescence

lifetime τfl:
1

τfl
= kr + knr (6)

It is of course possible to separate radiative and nonradiative decay rates exploiting the ex-

perimental fluorescence quantum yield,14 but RET efficiency is governed by the competition
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between RET and the overall decay of D, making the discrimination between radiative and

non-radiative decay irrelevant. For τfl of D we use the experimental values of 7 and 9 ns in

chloroform and DMSO solutions, respectively.31

For each one of the N NE trajectories (step 3) we then have constant kr + knr and time-

dependent kRET (t) defining (for a given time and trajectory) the probability of the concurrent

D-relaxation pathways. At each timestep this global decay probability is compared with a

random number to decide the fate of the system that may either stay unaffacted or decay

(either by a radiative or non-radiative process, or undergo RET). Of course each of such

kinetic-model run (decay simulation) will stop as soon as D∗A decays following any of the

possible channels, defining in this way a decay time. Additional technical details may be

found in Sect. S1.6 of the S.I.. To improve the statistical significance of the results, m

independent stochastic decay simulations are run on each one of the N independent NE

trajectories. By collecting results obtained for the N × m decay runs, a time-dependent

profile of the D∗ population is finally obtained.

3 Results and Discussions

3.1 Ground state dynamics

Extensive ground state dynamics were run for NBD-clx-NR in chloroform and DMSO up to 1

µs to ensure that the whole configurational space is explored by the system. A representative

and strongly relevant variable for our problem is the distance d between the centers of mass

(COM) of the D and A units. The probability distributions from these dynamics can be

converted to reconstruct the free energy profiles along d, as in Fig. 3. In both solvents, a deep

minimum is observed at d ∼ 4 Å, corresponding to a configuration named "closed/stacked"

that maximizes the intermolecular π − π interactions, as confirmed by a detailed analysis

of the correlation between d and the two angles defining the mutual orientation of the

chromophores. Specifically, we define θµ as the angle formed between the dipole moments
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on D and A fragments and θπ as the angle between the two vectors perpendicular to the

molecular planes. In the "closed/stacked" configuration indeed θµ ∼ 0 and θπ ∼ ±180 (see

section S2 of S.I.). In chloroform, two other minima are observed namely, a "closed/NH"

conformation, where a hydrogen bond bridges the D and A molecules, and a "closed/open"

conformation where the two dyes are relatively free (wider minimum) and the maximum

distance is only constrained by the clx scaffold in closed flattened cone conformation. In

DMSO, these two minima observed in chloroform merge into a single very broad minimum

denoting the larger conformational flexibility of the system, related most probably to a

stronger solute-solvent interaction that weakens intramolecular interactions. This results

support the previous analysis,31 based on experimental NMR data, pointing to a larger

weight of open-flattened conformations for the clx structure in DMSO, with respect to the

closed-flattened conformations dominating in chloroform. Our results are also in line with

the DFT analysis of stable structures,31 even if our explicit-solvent MD simulations do not

assign a significant population to the open/CH conformer (open flattened clx cone with weak

interactions between A and the clx methylene bridge).

To probe the characteristic timescales of the conformational motion we calculate the time-

autocorrelation functions associated to the three main geometrical variables characterizing

the system, d, θµ and θπ. For each generic variable A the time-autocorrelation function is

defined as:

CAA(tk) =
1

Ns − k

Ns−k∑
j=1

A(tj)A(tj+k) k = 1, 2, 3, . . . , Ns (7)

where Ns is the total number of steps and tj = (j − 1)∆t, with ∆t measuring the time

step. The results in Fig. 4 confirm a strong similarity of behaviour in chloroform for the

intermolecular distance and the orientational motions, with all variables dynamically active

on a timescale of ∼10 ns. In contrast, in DMSO the orientational motion occurs on a faster

timescale (∼ 1 ns) that the variation of intermolecular distances (∼ 5 ns).
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Figure 3: Free energy potential curves constructed against the distance between D and A
COM for D-clx-A in chloroform (left) and DMSO (right). Representative structures are
shown for each energy minimum in chlorofrom (a,b,c) and DMSO (a,d).
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Figure 4: Autocorrelation functions of distance, θµ and θπ between D and A for D-clx-A in
chloroform (left) and DMSO (right).

3.2 Non-equilibrium dynamics and RET

Out of the ground state trajectory, N independent configurations are selected randomly

(N=1000 and 100 for chloroform and DMSO simulations, respectively) as starting points

for the NE dynamics after impulsive D excitation. The most important information to be

extracted from the NE trajectories is the time-evolution of VDA. Very different behaviors are

observed for VDA(t) depending on the starting point, as exemplified by the three trajectories

in Fig. 5, selected out of the NE trajectories calculated for chloroform solution (analogous

examples for DMSO solution are shown in Section S3 of S.I.). Trajectory 1 refers to a system

where the dyes stay very close (d < 0.5 nm) all along the trajectory. Large VDA ∼ 300 cm−1

are calculated in this case with sizable oscillations ascribed to the orientational motion of

the dyes, that largely modulate the dipole-dipole interactions. In trajectory 2 the dyes are

far apart (d >1.5 nm) with negligible interactions, except for a couple of short time windows

where they come closer, leading to sizable interactions. Finally trajectory 3 starts with the

dyes far apart and negligible interactions, but after about 5 ns a configuration is reached

where the two dyes are much closer (d < 0.5 nm) and the interaction strength becomes

sizeable, basically regaining the same regime described by trajectory 1.
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Figure 5: For three selected NE trajectories extracted from the N=1000 calculated in chloro-
form, we plot the time-dependence profile of the DA interaction energy, VDA, (black) and the
distance d between D and A COMs (red). Top panels: full NE trajectory; bottom panels:
zoom over a short time-window.
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The qualitatively different behavior observed for RET pairs excited at different starting

conformations clearly demonstrates the impossibility to reliably predict the RET efficiency

of a disordered dynamical system by simply averaging over different conformational and

orientational states, as traditionally done when applying Eq. 3 to disordered systems using

an average κ2 value. To overcome this problem, we exploit the kinetic approach outlined in

Section 2: having obtained N time-dependent profiles for VDA and hence for κRET (one for

each NE trajectory), we perform for each trajectory m independent kinetic runs. Following

the information (i.e. the deactivation times) obtained from the resulting m × N kinetic

replicas, we obtain the time-dependence of the population of D∗ state as well as the RET

efficiency, calculated as the ratio of the RET events over the total RET and relaxation events.

Fig. 6 shows the time-dependence of the D∗A population and collects our main results.

Dashed lines show the simple exponential decay of the isolated D∗ species. The existence of

the RET channel obviously leads to a faster depopulation of the excited D and to a more

complex behavior that does not fit a single exponential. To further investigate the role of

dynamic degrees of freedom, for comparison purposes, we also performed static simulations

where the decay is calculated maintaining VDA constant to the value obtained at the initial

instant of each NE dynamics. Comparing the calculated D∗A relaxation obtained from the

fully dynamic calculation (black lines) vs the static calculation (red lines) is instructive.

It clearly shows that the conformational motion occurring after the excitation affects the

interactions in the RET pair and hence RET probabilities. The conformational motion,

occuring on comparable timescales as RET itself, strongly affects the relaxation dynamics

of the system. Specifically, RET is much faster in a fully dynamical calculation than in a

static approach. This can be easily understood: in the dynamical calculation in fact, the

system explores a wide conformational space - including regions with fast RET decay. When

these "hot spots" are reached, they offer preferential channels for relaxation.26–28 In a static

simulation, once the population of these hot spots is depleted, they become ineffective and

RET necessarily occurs along slower channels. On the contrary, in a dynamical model, the
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population is continuously transferred to replenish these hot spots, so that fast channels

stay active all along the process. Quite interestingly, the different results obtained in the

static and dynamic calculations cannot be ascribed to different distributions of VDA. Indeed

the VDA histograms calculated along the static and dynamic trajectories shown in Fig. 6

are very similar. As the static scenario only refers to a sampling through GS MD, while

the dynamic one is the results of the excited state (namely NE) dynamics, the similarity of

the two distributions suggests that the sources of non-equilibrium effects are actually rather

modest.

Overall MD simulations are crucial in order (i) to obtain a proper description of the

VDA distribution, not relying on a preselected set of conformations and (ii) to assess the

dynamical behavior of VDA and hence to account for the competition of the different decay

pathways, fully accounting for the conformational dynamics of the system and its effect on

the instantaneous RET probabilities.

For a quantitative analysis, we fitted the RET decay curves with multiple exponentials,

veryfing their statistical significance. We fitted the full-dynamical result for chloroform

solution with 4 exponentials with relaxation times: 1.8, 56, 313 and 1035 ps. The static

calculation cannot reproduce the very fast initial relaxation and only three relaxation times

fit the red curve in fig. 6: 9.8, 134 and 853 ps. The deviation of static results from the

fully dynamic calculations are even larger in DMSO, where the dynamic calculation has 4

exponential with relaxation times 7.4, 33, 546 and 2075 ps, while the static result can be fit

with three relaxation times: 9.64, 765, 3309 ps (more details about the analysis are reported

in section S4 of S.I.).

The different RET dynamics corresponds quite naturally to different RET quantum yield

that are estimated form the fully dynamical calculation as 0.96 and 0.88 for chloroform and

DMSO solutions, respectively, and reduce to 0.94 and 0.69 in the static calculation. The

faster and more efficient RET in chloroform solutions, if compared with DMSO solution can

be ascribed to the slower conformational dynamics of the RET pair in chloroform than in
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Figure 6: Left panels: decay of the D∗ population calculated in chloroform (top) and DMSO
(bottom). Dashed lines refer to the exponential decay of the isolated D species; the red lines
show static results (obtained neglecting the conformational motion of the excited RET pair
after excitation), the black lines show the full dynamical result. Right panels show the (area
normalized) distributions of RET rates, resulting from a static and dynamic calculations for
both solvents.
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DMSO (see Fig. 4) that brings it precisely in the time-scale of relevance to RET.

Our results are in very good agreement with experiment: three different exponentials

were extracted from experimental data,31 that amount to 2, 17 and 1800 ps in chloroform

solution, and to 4.0, 59 and 4500 ps in DMSO. Quite interestingly, our results solve an

issue left open by the theoretical analysis that accompanied the experimental work. In that

work,31 looking just at the two most probable configurations, the authors estimated VDA

of the same order of magnitude as we estimate in our work. Translating these interaction

strengths directly into RET probability, estimated lifetimes turned out in the 0.03-0.35 ps

range, at least one order of magnitude smaller than the smallest experimental time, and

several orders of magnitude smaller than the largest experimental lifetime. A complete MD

dynamics, allowing our flexible system to explore a large configuration space, is needed to

get sense of the experimentally observed relaxation times.

4 Conclusion

A multiscale computational protocol is proposed for the calculation of the RET dynam-

ics and quantum yields for a solvated donor-acceptor pair highlighting the importance of

conformational fluctuations. The proposed approach is validated against an extensive set

of experimental results available for a RET-pair bound via flexible links to a calixarene

scaffold. The comparison with the experiment is very good and indeed solves a theoretical

problem associated with this system, where estimates of VDA from TD-DFT calculations

on few preselected representative configurations of the D-clx-A system, underestimated the

RET lifetimes by several orders of magnitude.31

Our approach combines equilibrium and non-equilibrium MD calculations with TD-DFT

results, leading to a detailed description of the concurrent processes: D∗ decay, energy

transfer and conformational dynamics. The conformational motion modulates VDA, the

intermolecular interaction responsible for RET. In a fully dynamical picture the system af-
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ter photoexcitation is allowed to explore conformational regions where VDA is large, then

opening fast RET channels and leading to faster RET than in a static picture, where the

conformational motion is frozen.

RET in disordered systems is a delicate issue: the standard approach relying on the use

of an average κ2 value has been questioned in several ways. In the first place the factorization

of the VDA interaction in a term κ2 that only depends on the intermolecular orientation and

in a term that only depends on the intermolecular distance, is incorrect - particularly if the

system can explore regions where intermolecular distances are comparatively short. More

generally those approaches represent a too crude approximation to describe DA interactions

in systems, like the one investigated here, where a complex supramolecular structure poses

serious constraints to the mutual arrangements of the D and A moieties. We show that

these problems can be easily addressed by ground state MD calculations, that offer reliable

information on the conformational heterogeneity of the RET pair. However, we also demon-

strated that this is not sufficient in the case investigated here. In such flexible systems,

the conformational motion modulates intermolecular interactions on a timescale relevant to

RET, leading to important effects that cannot be accounted for through an orientational

average in either in the static or ultrafast regime.
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Supporting Information Available

Further computational details, Conformational analysis, NE trajectories, Exponential fitting

parameters, List of RESP atomic charges.
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