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Abstract We study decoherence effects on mixing among
three generations of neutrinos. We show that in presence of
a non-diagonal dissipation matrix, both Dirac and Majorana
neutrinos can violate the CPT symmetry and the oscillation
formulae depend on the parametrization of the mixing matrix.
We reveal the CP violation in the transitions preserving the
flavor, for a certain form of the dissipator. In particular, for
such dissipators, theCP violation affects all the transitions in
the case of Majorana neutrinos, unlike Dirac neutrinos which
still preserve the CP symmetry in one of the transitions fla-
vor preserving. The precise form of the dissipation matrix is
not known a-priori as it depends on the nature of the phe-
nomenon that originates it. However, our theoretical results
show that decoherence effects, if exist for neutrinos, could
allow to reveal the neutrino nature and to test fundamental
symmetries.

1 Introduction

Nowadays the concept of neutrino mixing/oscillation rep-
resent one of the main missing ingredient in the Standard
Model of particles, indeed its experimental verifications [1–
6] stimulated lots of new investigations aimed to extend the
standard theory by including a non-zero mass for neutrinos.
One of the most important open issues, at both theoretical
and experimental levels, is to determine the values of neu-
trino masses and to understand their real nature, i.e. whether
they are Dirac or Majorana particles.
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b e-mail: capolupo@sa.infn.it
c e-mail: sgiampa@irb.hr
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The most known and studied physical effect which could
shed some light on neutrino nature is the neutrinoless double
beta decay for which several experiments have been pro-
posed [7], but so far no results have been obtained. Recently,
to discriminate between Dirac and Majorana neutrinos also
other scenarios have been proposed in which the fundamen-
tal physical quantity is not the decay rate of a process but, for
instance, the Leggett–Garg K3 quantity [8] and the geometric
phase for neutrinos [9]. Moreover, it is also well known that
the neutrino oscillation formulae in the presence of decoher-
ence can depend on the Majorana phase [10,11]. This feature
was used by the authors in Ref. [12] in the case of two flavors
neutrinos to explicitly show how an off-diagonal dissipator
can distinguish between the two kind of neutrinos and that
one of the physical implications is the violation of CPT
symmetry.

According to the CPT theorem, the Hamiltonian of a
Lorentz invariant local quantum field theory is invariant
under a simultaneous transformation of charge conjugation
C , parity inversion P and time reversal T , so that CPT turns
out to be an exact fundamental symmetry [13]. However, such
a theorem is based on the crucial assumption that any kind
of decoherence and dissipation effects are negligible.

The phenomena of dissipation and decoherence could
be consequences of the interaction between neutrinos and
the surrounding environment, or space–time fluctuations
induced by quantum gravity effects. Many efforts have been
already made in order the study dissipation and its origin in
neutrino oscillations [10,11,14–25].

Here, we extend the study performed in [12] to the case
of three flavors neutrinos and we reveal new features due to
the presence of Dirac and Majorana phases in the mixing
matrix. We consider diagonal and off-diagonal dissipators
and we analyze the time evolution of the density matrix for
neutrinos. We show that for an off-diagonal dissipator, in the
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three flavor mixing case,CPT symmetry can be broken both
for Dirac and Majorana neutrinos because of the presence of
different phases in the mixing matrix. This result is differ-
ent with respect to that obtained in the case of two flavor
mixing for which CPT symmetry is violated only by Majo-
rana neutrinos [12]. Another characteristic behavior of the
mixing among three families here revealed is that, for a sim-
ple off-diagonal dissipator, Majorana neutrinos can violate
CP symmetry in all the flavor preserving neutrino transitions
because of the presence of three phases (the Dirac phase and
the two Majorana phases) in the mixing matrix. On the con-
trary, Dirac neutrinos can break CP symmetry only in two
of the three flavor preserving transitions.

Moreover, we show that the oscillation formulae for Majo-
rana neutrinos depend on the parametrization of the Majo-
rana mixing matrix. Indeed, in the absence of decoherence,
we know that the mixing matrix contain three phases: one for
Dirac and two for Majorana, and the latter are not observ-
able in neutrino oscillations. However, we show that for some
choice of the dissipation matrix the Majorana phases turn out
to be observable quantities as the oscillation formulae explic-
itly depend on them. As a consequence different parametriza-
tions of the mixing matrix will give different results for the
oscillation formulae.

An important point to keep in mind throughout the paper
is that a-priori both the form of the dissipator and the real
nature of neutrinos (Dirac or Majorana) are unknown. How-
ever, these two ingredients are generally independent of each
other. The precise form of the dissipator depends on the
nature of the environment and, in principle, it can be fixed
with other measurements/experiments which are not related
with neutrino physics. Indeed, in our theoretical setup we
will assume the existence of a precise dissipator and conse-
quently analyse the behavior of neutrinos in the correspond-
ing environment, which already provides a suitable frame-
work to discriminate (at least theoretically) between Dirac
and Majorana neutrino. Therefore, if the decoherence affects
neutrino evolution, the oscillation formulae could be able to
reveal the neutrino nature and, if the neutrinos are Majorana
fermions, one could also determine the right parametrization
of the Majorana mixing matrix.

In this paper we only consider neutrino oscillations in
vacuum in which case the violation of CP and CPT sym-
metries due to the decoherence are not affected by other
phenomena. In fact, for neutrinos travelling, for example,
through Earth, the MSW effect [26–28] already introduces
an additional degree of CPT violation [29]. Therefore, one
has to be careful to identify the right contribution responsi-
ble for violations purely induced by decoherence. Since we
are mainly interested in highlighting the difference between
Dirac and Majorana neutrinos, for simplicity we compare
them in the vacuum. It is worthwhile mentioning that matter
effects might be negligible or even vanishing if we assume

neutrino propagation in empty space where the source of
decoherence could be attributed, for example, to spacetime
fluctuations [30–36]. However, in a forthcoming paper we
will extend our treatment in the presence of matter.

The work is organized as follows. In Sect. 2 we briefly
review the concepts of Dirac and Majorana neutrinos and
introduce the mathematical tools of the density matrix needed
to compute all the oscillation formulae for three flavors neu-
trinos in presence of decoherence. In Sect. 3, we consider a
diagonal dissipator and show that in this case the oscillation
formulae are independent of the neutrino nature. In Sect. 4,
we show the effects of an off-diagonal dissipator on the oscil-
lation formulae and on the violation of CP and CPT sym-
metries. Moreover, we show the dependence of these quan-
tities on the representation of the Majorana mixing matrix.
In Sect. 5, we make a more quantitative but still theoretical
comparison between Dirac and Majorana neutrinos and leave
for future works a more realistic phenomenological analysis
including matter effects. In Sect. 6 we summarize the con-
tents of this paper by emphasizing the relevance of the main
results, and draw our conclusions.

2 Neutrino mixing and decoherence

The main distinction between Dirac and Majorana neutrinos
relies on the fact that Dirac Lagrangian is invariant under
the global transformation of U (1) so that all the associated
charges (like electric, leptonic, etc.) turn out to be conserved,
while Majorana Lagrangian breaks the U (1) symmetry. A
process in which the lepton number is violated and therefore
would be allowed only for Majorana neutrinos and not for
Dirac is the neutrinoless double beta decay.

The breaking of theU (1) global symmetry has also conse-
quences on the form of the mixing matrix [37] which contains
a different number of physical phases for the two kind of neu-
trinos. Indeed, in the general case of the mixing with n Dirac
fields, there exist ND = (n−1)(n−2)

2 physical phases, while for

n Majorana fields, one has additional NM = n(n−1)
2 phases.

The n − 1 extra phases are called Majorana phases and their
detection would allow to identify the nature of neutrinos.

Let us recall that the Lagrangian density for Dirac neutri-
nos in flavor basis is given by

L(x) = �̄ f (x)
(
i /∂ − M

)
� f (x), (1)

where �T
f = (νe, νμ, ντ ) and M† = M is the mixed mass

term. The mixing relations are [37–39]:

� f (x) = UD�m(x)

=
⎛

⎝
c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ �m(x),

(2)
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where UD is the Dirac mixing matrix, δ is the Dirac phase,
ci j = cos(θi j ) and si j = sin(θi j ), with θi j being the mixing
angles between the fields with definite masses νi , ν j with
i, j = e, μ, τ, and �T

m = (ν1, ν2, ν3). Eq. (1) is diagonalized
by using Eq. (2), so that we obtain the Lagrangian for free
Dirac fermions with masses m1, m2 and m3 :

L(x) = �̄m(x)
(
i /∂ − Md

)
�m(x), (3)

where Md = diag(m1,m2,m3).

For Majorana neutrinos, different parametrizations of the
mixing matrix UM , exist. In fact, when decoherence is negli-
gible, and even in the case of a diagonal dissipator, all the tran-
sition probabilities turn out to be invariant under the rephas-
ing Uαk → eiφkUαk (α = e, μ; k = 1, 2). This means that
the Majorana phases φi do not affect the oscillation formu-
lae which are the same as for Dirac neutrinos [40,41]. For
instance, one can write

UM = UD · diag
(

1, eiφ1 , eiφ2
)

, (4)

where φ1 and φ2 are the two Majorana phases. Another pos-
sible parametrization is the following:

UM =
(

1, e−iφ1 , e−iφ2
)

· UD · diag
(

1, eiφ1 , eiφ2
)

=
⎛

⎝
c12c13 s12c13eiφ1 s13ei(φ2−δ)

−s12c23e−φ1 − c12s23s13ei(δ−φ1) c12c23 − s12s23s13eiδ s23c13ei(φ2−φ1)

s12s23e−iφ2 − c12c23s13ei(δ−φ2) −c12s23ei(φ1−φ2) − s12c23s13ei(δ+φ1−φ2) c23c13

⎞

⎠ ,
(5)

and other choices leading to the same oscillation formulae
are presented in Ref. [42].

This fact is no longer true when there are off-diagonal ele-
ments in dissipation matrix and also in the case of diagonal
dissipator with γ1 �= γ2, or γ4 �= γ5, or γ6 �= γ7. Indeed,
one can obtain oscillation formulae for Majorana neutrinos
depending on the phases φi , and on the parametrization of the
mixing matrix, as shown in Ref. [12] for two flavor mixing
and non-diagonal dissipator. In the following we will con-
sider the case of three flavor neutrino mixing and reveal new
aspects of neutrino oscillations which are absent in the case
of mixing between two neutrinos. In the rest of the paper, we
mainly focus on the matrix given in (5), which will be very
useful to highlight the main features in presence of decoher-
ence.

By treating the neutrino as an open quantum system, we
analyze the physical implications of decoherence in flavor
mixing. In particular, we study the time evolution of the den-
sity matrix corresponding to the neutrino state in the flavor
basis and compute several transition probabilities for both
diagonal and non-diagonal dissipation matrix.

The state evolution of neutrinos seen as an open system,
can be described by the Lindblad–Kossakowski master equa-
tion [43,44]:

∂ρ(t)

∂t
= −i [H, ρ(t)] + D[ρ(t)], (6)

where H = H† is the total Hamiltonian of the system and
D[ρ(t)] is the dissipator defined as

D[ρ(t)] = 1

2

N2−1∑

i, j=0

ai j
([

Fiρ(t), F†
j

]
+

[
Fi , ρ(t)F†

j

])
,

(7)

with ai j Kossakowski coefficients whose form is related to
the characteristics of the environment [10,11]. The operators
Fi , with i = 1, . . . , N 2 − 1, satisfy the relations Tr(Fi ) = 0

and Tr
(
F†
i Fj

)
= δi j , and in the case of three flavor neu-

trinos they are the Gell-Mann matrices λi which satisfy the
following properties:

λ
†
i = λi , [λi , λ j ] = 2i fi jkλk,

fi jk = − i

4
Tr

(
λi [λ j , λk]

)
. (8)

Here the non-vanishing fi jk are given by f 123 = 1, f 147 =
f 165 = f 246 = f 257 = f 345 = f 376 = 1

2 , f 458 = f 678 =√
3

2 .

Let us now expand Eqs. (6) and (7) in the basis of SU (3):

ρ̇μ(t) = fi jμHiρ j (t) + Dμνρν(t), (9)

where ρμ = Tr
(
ρλμ

)
, with μ = 0, . . . , 8. Given the mass

differences m2
21 = m2

2 − m2
1 and m2

31 = m2
3 − m2

1, the
Hamiltonian reads

H = 1

2E

⎛

⎝
0 0 0
0 m2

21 0
0 0 m2

31

⎞

⎠ ≡
⎛

⎝
0 0 0
0 21 0
0 0 31

⎞

⎠ , (10)

where 21 = 1
2E m2

21 and 31 = 1
2E m2

31. One can show
that the only non-vanishing components Hμ are

H0 = 21 + 31, H3 = −21,

H8 = 1√
3

(21 − 231) . (11)
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The dissipator in Eq. (9) is given by

Dμν = −

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎜
⎝

0 0 0 0 0 0 0 0 0
0 γ1 α1 β1 δ1 χ1 ξ1 ζ1 η1

0 α1 γ2 α2 β2 δ2 χ2 ξ2 ζ2

0 β1 α2 γ3 α3 β3 δ3 χ3 ξ3

0 δ1 β2 α3 γ4 α4 β4 δ4 χ4

0 χ1 δ2 β3 α4 γ5 α5 β5 δ5

0 ξ1 χ2 δ3 β4 α5 γ6 α6 β6

0 ζ1 ξ2 χ3 δ4 β5 α6 γ7 α7

0 η1 ζ2 ξ3 χ4 δ5 β6 α7 γ8

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎟
⎠

. (12)

where we considered the probability conservation which
implies Dμ0 = D0ν = 0. All the elements in the matrix
(12) are real and the ones on the diagonal are positive in
order to satisfy the relation Tr (ρ(t)) = 1. Hence, from Eq.
(9) it is now clear that we have nine equations among which
the μ = 0 component is trivial. Indeed, since fi j0 = 0 and
D0ν = 0 we obtain ρ̇0(t) = 0 ⇒ ρ0(t) = 1.

The density matrix written in terms of the components ρμ

in the basis λμ reads

ρ(t) = 1

3
ρ0(t)λ0 + 1

2

8∑

i=1

ρi (t)λi

= 1

2

⎛

⎜⎜
⎜
⎜⎜
⎝

2

3
ρ0 + ρ3 + ρ8√

3
ρ1 − iρ2 ρ4 − iρ5

ρ1 + iρ2
2

3
ρ0 − ρ3 + ρ8√

3
ρ6 − iρ7

ρ4 + iρ5 ρ6 + iρ7
2

3
ρ0 − 2√

3
ρ8

⎞

⎟⎟
⎟
⎟⎟
⎠

.

(13)

With this expression of the density matrix, the neutrino oscil-
lation formulae reads

Pνa→νb = 1

3
+ 1

2

8∑

i=1

ρa,i (t)ρb,i (0). (14)

Generally, the dissipation matrix can depend on whether we
consider neutrino or anti-neutrino. In fact, if the nuclear inter-
actions are also sources of decoherence, then, it exists the
distinction between the dissipation matrices of particles and
antiparticles. In this paper we analyse neutrino oscillations
in vacuum where the neutrino weak and strong interactions
are negligible, so that decoherence effects do not discrimi-
nate between neutrino and anti-neutrino and we can assume
the dissipator to be the same in both cases. The difference
between neutrinos and antineutrinos is expressed only by
the opposite sign of the Dirac phase and of the Majorana
phases for particles and antiparticles. Moreover, throughout
our study we assume that the elements of the dissipation
matrix are given a-priori and we do not question what kind
of model or experiment can determine their specific values.
Indeed, in our theoretical setup we assume the existence of a
precise dissipator and consequently analyse the behavior of

neutrinos in the corresponding environment, and this proce-
dure already provides a suitable framework to discriminate
between Dirac and Majorana neutrinos. To further motivate
our analysis let us also mention that our assumption can
be relevant at the phenomenological level when considering
decoherence effects induced by spacetime fluctuations which
are predicted by several models of quantum gravity [30–36];
see also Ref. [45] where a specific form of dissipator was
derived in the context of decoherence induced by a quantum
gravitational field. In this case the only relevant interaction
is gravity which is universal and cannot distinguish between
particles and anti-particles.

Notice that, the CP symmetry violation is defined as
CPab ≡ Pνa→νb − Pν̄a→ν̄b �= 0 and the T violation is
given by Tab ≡ Pνa→νb − Pνb→νa �= 0. The CPT sym-
metry is violated when CP �= T .

3 Diagonal dissipator

We now study decoherence effects considering the mixing
matrix (5). We analyze both cases of zero and non-zero Majo-
rana phases. We start by solving the set of equations (9) in
the simpler case of a diagonal dissipator:

Dμν = −diag (0, γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8) . (15)

Then, the system of differential equations (9) becomes

ρ̇0(t) = 0,

ρ̇1(t) = 21ρ2(t) − γ1ρ1(t),

ρ̇2(t) = −21ρ1(t) − γ2ρ2(t),

ρ̇3(t) = −γ3ρ3(t),

ρ̇4(t) = 31ρ5(t) − γ4ρ4(t),

ρ̇5(t) = −31ρ4(t) − γ5ρ5(t),

ρ̇6(t) = 32ρ7(t) − γ6ρ6(t),

ρ̇7(t) = −32ρ6(t) − γ7ρ7(t),

ρ̇8(t) = −γ8ρ8(t), (16)

where 32 = 31 − 21 = m2
32

2E .

We consider now the diagonal dissipator Eq. (15) with the
conditions: γ1 = γ2 = γ12, γ4 = γ5 = γ45, γ6 = γ7 = γ67.
This choice is consistent with that of Ref. [46]. The system
of equations can be solved as follows:

ρ0(t) = 1,

ρ1(t) = e−γ12t [ρ1(0)cos(21t) + ρ2(0)sin(21t)] ,

ρ2(t) = e−γ12t [ρ2(0)cos(21t) − ρ1(0)sin(21t)] ,

ρ3(t) = e−γ3tρ3(0),

ρ4(t) = e−γ45t [ρ4(0)cos(31t) + ρ5(0)sin(31t)] ,

ρ5(t) = e−γ45t [ρ5(0)cos(31t) − ρ4(0)sin(31t)] ,

123
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ρ6(t) = e−γ67t [ρ6(0)cos(32t) + ρ7(0)sin(32t)] ,

ρ7(t) = e−γ67t [ρ7(0)cos(32t) − ρ6(0)sin(32t)] ,

ρ8(t) = e−γ8tρ8(0). (17)

The initial conditions ρi (0) can be found by employing the
following relations:ρa(0) = |νa〉 〈νa | , a = e, μ, τ.For elec-
tronic neutrino we have

ρe,0(0) = 1,

ρe,1(0) = sin(2θ12)cos2θ13 cos φ1,

ρe,2(0) = sin(2θ12)cos2θ13 sin φ1,

ρe,3(0) = cos2θ13

(
2cos2θ12 − 1

)
,

ρe,4(0) = sin(2θ13)cos θ12cos(φ2 − δ),

ρe,5(0) = sin(2θ13)cos θ12sin(φ2 − δ),

ρe,6(0) = sin(2θ13)sin θ12cos(φ2 − φ1 − δ),

ρe,7(0) = sin(2θ13)sin θ12sin(φ2 − φ1 − δ),

ρe,8(0) = √
3

(
1

3
− sin2θ13

)
. (18)

For muon neutrino we obtain

ρμ,0(0) = 1,

ρμ,1(0) = −sin(2θ12)cos2θ23cos φ1

−sin(2θ23)sin θ13cos2θ12cos(δ − φ1)

+sin(2θ23)sin2θ12sin θ13cos(δ + φ1)

+sin(2θ12)sin2θ23sin2θ13cosφ1,

ρμ,2(0) = −sin(2θ12)cos2θ23sin φ1

+sin(2θ23)sin θ13cos2θ12sin(δ − φ1)

+sin(2θ23)sin2θ12sin θ13sin(δ + φ1)

+sin(2θ12)sin2θ23sin2θ13sinφ1,

ρμ,3(0) = −1 + sin2θ23cos2θ13 + 2sin2θ12cos2θ23

+2cos2θ12sin2θ23sin2θ13

+sin(2θ12)sin(2θ23)sin θ13cos δ,

ρμ,4(0) = −sin(2θ23)sin θ12cos θ13cos φ2

−sin(2θ13)cos θ12sin2θ23cos(φ2 − δ),

ρμ,5(0) = −sin(2θ23)sin θ12cos θ13sin φ2

−sin(2θ13)cos θ12sin2θ23sin(φ2 − δ),

ρμ,6(0) = sin(2θ23)cos θ12cos θ13cos(φ2 − φ1)

−sin(2θ13)sin θ12sin2θ23cos(φ2 − φ1 − δ),

ρμ,7(0) = sin(2θ23)cos θ12cos θ13sin(φ2 − φ1)

−sin(2θ13)sin θ12sin2θ23sin(φ2 − φ1 − δ),

ρμ,8(0) = √
3

(
1

3
− sin2θ23cos2θ13

)
; (19)

and finally for tau neutrino

ρτ,0(0) = 1,

ρτ,1(0) = −sin(2θ12)sin2θ23cos φ1

+sin(2θ23)sin θ13cos2θ12cos(φ1 − δ)

−sin(2θ23)sin2θ12sin θ13cos(δ + φ1)

+sin(2θ12)cos2θ23sin2θ13cosφ1,

ρτ,2(0) = −sin(2θ12)sin2θ23sin φ1

+sin(2θ23)sin θ13cos2θ12sin(φ1 − δ)

−sin(2θ23)sin2θ12sin θ13cos(δ + φ1)

+sin(2θ12)cos2θ23sin2θ13cosφ1 ,

ρτ,3(0) = −1 + cos2θ23cos2θ13

+2sin2θ12sin2θ23 + 2cos2θ12cos2θ23sin2θ13

−sin(2θ12)sin(2θ23)sin θ13cos δ,

ρτ,4(0) = sin(2θ23)sin θ12cos θ13cos φ2

−sin(2θ13)cos θ12cos2θ23cos(φ2 − δ) ,

ρτ,5(0) = sin(2θ23)sin θ12cos θ13sin φ2

−sin(2θ13)cos θ12cos2θ23sin(φ2 − δ),

ρτ,6(0) = −sin(2θ23)cos θ12cos θ13cos(φ1 − φ2)

−sin(2θ13)sin θ12cos2θ23cos(δ + φ1 − φ2),

ρτ,7(0) = sin(2θ23)cos θ12cos θ13sin(φ1 − φ2)

+sin(2θ13)sin θ12cos2θ23sin(δ + φ1 − φ2),

ρτ,8(0) = √
3

(
1

3
− cos2θ23cos2θ13

)
. (20)

The neutrino oscillation probabilities, as said above, are
obtained through the relation Pνa→νb = Tr [ρb(t) · ρa(0)] .

By computing the transition probability in the case of a diag-
onal dissipator as in Eq. (15), for flavor preserving transitions
we obtain

CPaa = Pνa→νa − Pν̄a→ν̄a = 0 , a = e, μ, τ. (21)

In similar way, Taa = 0. These result are the same of those
obtained in the absence of decoherence. Moreover, like in the
standard case, CP and T symmetries are violated because
of the presence of the Dirac phase δ, while the presence of
diagonal elements in the dissipation matrix only introduces
a damping factor which is physically expected. For instance,
the three channels responsible for CP violations read

CPeμ = Pνe→νμ − Pν̄e→ν̄μ

= sin δ cos2θ13sin(θ12)sin(2θ23)sin θ13

123
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× [
sin(32t)e

−γ67t + sin(21t)e
−γ12t

−sin(31t)e
−γ45t

]
,

CPeτ = Pνe→ντ − Pν̄e→ν̄μ = −CPeμ,

CPμτ = Pνμ→ντ − Pν̄μ→ν̄τ = CPeμ. (22)

Note that the sum of CP violations for fixed family is van-
ishing, as expected, i.e. we have

CPeμ + CPeτ = 0, CPμe + CPμτ = 0,

CPτe + CPτμ = 0. (23)

Moreover, they not depend on γ3 and γ8. Similar behaviors
also manifest for T violating channels:

Teμ = Pνe→νμ − Pνμ→νe = CPeμ

Teτ = Pνe→ντ − Pντ →νe = CPeτ

Tμτ = Pνμ→ντ − Pντ →νμ = CPμτ . (24)

Hence, in presence of a diagonal dissipation matrix, CP and
T are violated, but CPT is still preserved as in the standard
case where no decoherence effects are present, i.e. CPab =
Tab.

Furthermore, it is clear that in such a case, the Majorana
phases φ1 and φ2 do not play any role, indeed all oscillation
formula are independent of them. The violation ofCP and T
is related only to the presence of the Dirac phase, indeed if we
set δ = 0 we recover CP and T invariance also in presence
of a diagonal dissipator. Different results can be obtained for
the following specific choices of the diagonal elements of the
dissipator: γ1 �= γ2, or γ4 �= γ5, or γ6 �= γ7. In these cases,
one can show that the oscillation formulae and the CP and
T violations depend on the Majorana phases.

4 Non-diagonal dissipator

We now study the scenario with a non-diagonal dissipator.
In this paper, for simplicity, we consider the case for which
only two symmetric off-diagonal elements are non-zero, in
particular we focus on following form for the dissipator:

D11 = D22 = −γ12, D33 = −γ3, D44 = D55 = −γ45,

D66 = D77 = −γ67, D88 = −γ8, D12 = D21 = −α1

(25)

while the remaining components are zero; we will also com-
ment on what happens if other off-diagonal elements are
switched on. For the dissipator in Eq. (25) by solving the
set of equations (9), we obtain a system of differential equa-
tions similar to that in Eq.(16), where the components ρ̇1 and
ρ̇2 reported in Eq. (16) are now replaced by the following dif-
ferential equations

ρ̇1(t) = 21ρ2(t) − γ12ρ1(t) − α1ρ2(t),

ρ̇2(t) = −21ρ1(t) − γ12ρ2(t) − α1ρ1(t). (26)

respectively, and whose solutions read

ρ1(t) = e−γ12t
[
ρ1(0)cosh(�t) + ρ2(0)sinh(�t)

�+
�

]
,

ρ2(t) = e−γ12t
[
ρ1(0)sinh(�t)

�−
�

+ ρ2(0)cosh(�t)

]
,

(27)

while the other components are the same the ones in (17).

We have defined the quantities � ≡
√

α2
1 − 2

21 and �± ≡
α1 ±21. The initial conditions ρi (0) are the same as in Eqs.
(18), (19) and (20) for electronic, muon and tau neutrinos,
respectively.

Let us now distinguish two cases: (A) first, we consider a
mixing matrix with zero Majorana phases to show the role
played by the Dirac phase in the violation of CP and CPT
symmetries; (B) subsequently, we compute the oscillation
probabilities considering non-zero Majorana phases and ana-
lyze the effects on CP and CPT violations.

4.1 Zero Majorana phases

We set φ1 = φ2 = 0, which means that we work with the
mixing matrix UD in Eq. (2), i.e. with Dirac neutrinos. We
have the following results for the transitions preserving the
flavor:

CPee = Pνe→νe − Pν̄e→ν̄e = 0 ,

CPμμ = Pνμ→νμ − Pν̄μ→ν̄μ

= 2α1e
−γ12t sinδ

�
sin(2θ23)sin θ13sinh(�t)

×
[
cos2(θ23)sin(2θ12)

+sin θ13 (cos(2θ12)sin(2θ23)

−sin(2θ12)sin2θ23sin θ13

)]
,

CPττ = Pντ →ντ − Pν̄τ →ν̄τ

= 2α1e
−γ12t sinδ

�
sin(2θ23)sin θ13sinh(�t)

×
[
cos2(θ23)sin2θ13sin(2θ12)

−sin(2θ12)sin2θ23 + cos(2θ12)sin θ13sin(2θ23)
]
.

(28)

In Eq. (28) it is shown that the violation of CP appears in
the transitions νμ → νμ and ντ → ντ . On the contrary,
the transition νe → νe preserves such a symmetry. Notice
that CPμμ and CPττ does not appear either in absence
of decoherence or in presence of a diagonal dissipator. As
we will see in the next subsection, for Majorana neutrinos
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CPee �= 0. Therefore, the analysis of such a violation
could be crucial in order to discriminate between Dirac and
Majorana neutrinos in presence of an off-diagonal dissipation
matrix.

Moreover, the CP violating channels for different neutri-
nos are modified as follows:

CPeμ = Pνe→νμ − Pν̄e→ν̄μ

= sin δ

�
cos2θ13sin(2θ12)sin(2θ23)sin θ13

× [
�

(
e−γ45t sin(31t) − e−γ67t sin(32t)

)

−e−γ12t (α1 − 21)sinh(�t)
]
,

CPeτ = Pνe→ντ − Pν̄e→ν̄τ = −CPeμ,

CPμτ = Pνμ→ντ − Pν̄μ→ν̄τ

= sin δ

4�
sin θ13sin(2θ23)

[
4�cos2θ13sin(2θ12)

× (−e−γ67t sin(32t) + e−γ45t sin(31t)
)

−2e−γ12t
(

sin(2θ12)
(

221cos2(θ13)

−α1 (cos(2θ13) − 3) cos(2θ23))

+4α1cos δcos(2θ12)sin θ13sin(2θ23)) sinh(�t)] .

(29)

The T violations also differ from the diagonal case and are
given by

Teμ = Pνe→νμ − Pνμ→νe

= sin δ

�
cos2θ13sin(2θ12)sin(2θ23)sin θ13

× [
�

(
e−γ45t sin(31t) − e−γ67t sin(32t)

)

−221e
−γ12t sinh(t�)

]
,

Teτ = Pνe→ντ − Pντ →νe = −Teμ,

Tμτ = Pνμ→ντ − Pντ →νμ = Teμ. (30)

Therefore, unlike the case of a diagonal dissipator, when
α1 �= 0, not only CP and T are violated, but also CPT
symmetry is not preserved:

CPeμ �= Teμ, CPeτ �= Teτ ,

CPτμ �= Tτμ. (31)

Such violations are related to the presence of the Dirac phase,
indeed by setting δ = 0, all the three symmetries are pre-
served even if α1 �= 0. Let us point out that such an effect is
not present in the two flavors case analyzed in [12] since in
that case no Dirac phase is present and one can not find any
relation between the phase δ and CPT violation. The CPT
violation induced by Dirac phase is a new feature in presence
of decoherence and dissipation. If we set α1 = 0 we recover
the case of diagonal dissipator where CPT symmetry is pre-
served.

Let us emphasize that so far we have only considered one
possible case of non-diagonal dissipator, in which only α1

is non-zero. Of course, also other kinds of dissipation matri-
ces can be studied in which other off-diagonal elements are
non-zero. By making computations similar to those presented
above, one can show that all the possible choices of the dissi-
pator (12) lead to CP and T violations, as it also happens in
the diagonal case. On the other hand,CPT is violated in most
of the cases; however, there are some off-diagonal choices
which still preserve it. Indeed, CPT symmetry is respected
when the only non-zero off-diagonal element is one of the
following: β1, α3, δ3, ξ3, η1, ζ2, χ4, δ5, β6, α7, γ8.

4.2 Non-zero Majorana phases

In this subsection we repeat the previous analysis for the mix-
ing matrix in Eq. (5) where the Majorana phases φ1 and φ2

are non-zero. We show that in presence of an off-diagonal
dissipator, the oscillation formulae, the CP and T violations
can depend on the Majorana phases, thus providing a new
framework in which the real nature of neutrino can be chal-
lenged.

By working with the dissipator in Eq. (25) and using the
parametrization in Eq. (5), we obtain the following CP vio-
lations for the transitions preserving the flavor:

CPM
ee = PM

νe→νe
− PM

ν̄e→ν̄e

= −2α1e−γ12t sin δ

�

×sin(2φ1)cos4θ13sin2(2θ12)sinh(�t) , (32)

CPM
μμ = PM

νμ→νμ
− PM

ν̄μ→ν̄μ

= 2α1e−γ12t sin δ

�

[
cos φ1 cos2θ23sin(2θ12)

−sin θ13

(
cos φ1 sin2(2θ23)sin θ13sin(2θ12)

+sin(2θ23)
(

cos(δ + φ1)sin2θ12

−cos(δ − φ1)cos2θ12

))]

×
[
cos2θ12sin θ13 sin(2θ23)sin(δ − φ1)

−cos2θ23sin(2θ12)sin φ1

+sin θ13

(
sin φ1 sin2θ23sin(2θ12)sin θ13

+sin2θ12sin(2θ23)sin(δ + φ1)
)]

sinh(�t) ,

(33)

CPM
ττ = PM

ντ →ντ
− PM

ν̄τ →ν̄τ

= 2α1e−γ12t sin δ

�

[
cos φ1 cos2θ23sin(2θ12)sin2θ13

−cos φ1 sin(2θ12)sin2θ23

+sin(2θ23)sin θ13

(
cos(δ − φ1)cos2θ12

−cos(δ + φ1)sin2θ12

)]
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×
[
cos2θ12sin θ13 sin(2θ23)sin(δ − φ1)

−cos2θ23sin2θ13sin(2θ12)sin φ1

+sin φ1 sin2θ23sin(2θ12)

+sin2θ12sin(2θ23)sin θ13sin(δ + φ1)
]

sinh(�t).

(34)

Here, with the letter M we mean the transition probabilities
for Majorana neutrinos. By comparing Eqs. (32), (33) and
(34) with the analogue in Eq. (28), we can immediately note
that the presence of non-zero Majorana phases introduces
new terms in the formulae, and in particular, generate a CP
violation also in the transition νe → νe. This violation is
absent for Dirac neutrinos, and depends on φ1 for the dissi-
pator considered.

The transition (32) has a very peculiar meaning: unlike
the case of zero Majorana phases, here CPee turns out to
be non-vanishing, and becomes zero only when φ1 = 0 (and
then the neutrinos are Dirac particles). Such a feature is cru-
cial in order to discriminate between Dirac and Majorana
neutrinos and could provide a completely new way to test
the real nature of neutrinos in future experiments. Indeed, by
considering the mixing matrix in Eq. (5) and the dissipator
in Eq. (25), we have CPee = 0 for Dirac neutrinos and
CPM

ee �= 0 for Majorana neutrinos. Let us also clarify that
such a difference in the CP violation for νe → νe transi-
tion, with respect to the other two, depends on the form of
the dissipation matrix and on the representation of the mix-
ing matrix for Majorana neutrinos. For instance, a different
correlation between the Dirac phase δ and the mixing angles
can give different formula for the oscillation probabilities.

The possibility to violate the CP symmetry in the transi-
tions flavor preserving, here revealed, is a new result which
can indicate the presence of decoherence and allow us to fix
the form of the mixing matrix, besides the neutrino nature.
We emphasize that the result CPee �= 0, exhibited in the
Majorana case, is not replicated by the Dirac case for any
value of the parameters (α, γi j , φi , etc) and for any value of
any of the coefficients entering in three flavor neutrino mix-
ing. It characterizes only Majorana neutrinos and it is absent
for Dirac neutrinos, for which φi = 0.

The CP violations for transitions between different neu-
trinos are:

CPM
eμ = PM

νe→νμ
− PM

ν̄e→ν̄μ

= − cosθ13

2�

[
�sin δ

(−e−γ67t sin(32t)

+e−γ45t sin(31t)
)

sin(2θ12)sin(2θ13)sin(2θ23)

+ e−γ12t

2

(
α1cosθ13

(
2cos2θ13 − (cos(2θ13) − 3)

× cos(2θ23)) sin(2φ1)sin2(2θ12)

+ (−2(21 + α1cos(2φ1))cos δsin(4θ12)) sin(2θ13)

× sin(2θ23)) sinh(�t)] ,

CPM
eτ = PM

νe→ντ
− PM

ν̄e→ν̄τ
= −CPM

eμ, (35)

We do not report explicitly the expression of CPM
μτ because

of its length. Its behavior is depicted in the left panel of Fig.
1.

The T violating channels are not affected by the Majorana
phases for our choice of the dissipator, indeed they are the
same as in Eq. (30):

T M
eμ = Teμ, T M

eτ = Teτ , T M
μτ = Tμτ . (36)

This fact induces an extra violation of the CPT symmetry
since we have

CPM
eμ �= Teμ, CPM

eτ �= Teτ ,

CPM
τμ �= Tτμ. (37)

In presence of an off-diagonal dissipator, Dirac and Majorana
phases induce two independent CPT violations. The results
here presented are obtained by considering the non-diagonal
dissipator in which only α1 is non-zero; see Eq. (25). Other
kinds of dissipation matrices can be studied with other off-
diagonal elements switched on. Like for the mixing matrix
in Eq. (2), also for the matrix (5), CP and T are always
violated, while CPT can be still preserved for some non-
zero off-diagonal elements. Indeed, CPT is respected if the
only non-zero off-diagonal element is one of among these:
β1, α3, δ3, ξ3, η1, ζ2, χ4, δ5, β6, α7, γ8.

Notice also that other choices of the Majorana matrix
would give different results. For instance the mixing matrix
UM in Eq. (4) give different expressions for the oscillation
formula as compared to Eq. (5). This implies that the physical
results depend on the chosen parametrization of the Majorana
mixing matrix.

Summarizing, in presence of an off-diagonal dissipator,
the neutrino oscillation formula depend on the parametriza-
tion of the mixing matrix. A physical implication is that Dirac
and Majorana neutrinos are two totally distinct entities and
their nature, together with CPT violation, could be tested in
future experiments.

5 Comparison between Dirac and Majorana neutrinos

In this section we make a more quantitative comparison
between Dirac and Majorana neutrinos considering some
specific transition probability.

Let us emphasize that a more realistic phenomenological
analysis would require the introduction of matter effects.1

The Earth is not charge-symmetric (it contains electrons,

1 It is worthwhile mentioning that in Ref. [47], the Mikheyev–Smirnov–
Wolfenstein (MSW) effect was generalized in presence of decoherence.
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(a) (b)

(c) (d)

Fig. 1 a Plots of the transition probability Pνμ→ντ as a function of
the energy E for a diagonal dissipator α1 = 0, for which Dirac and
Majorana neutrinos have identical behavior (orange dot-dashed line)
and for the off-diagonal dissipator for Dirac (blue solid line) and
Majorana (red dashed line) neutrinos. Inset: corresponding plots of
CPμτ . We consider the energy range (0–120) GeV corresponding
to the accessible energies in the IceCube DeepCore experiment and
set t = 6.58 × 1022 GeV−1. b Plots of Pνe→νe as a function of the
energy for an off–diagonal dissipator in the case of Dirac (blue solid
line) and Majorana (red dashed line) neutrinos. Notice that for this tran-
sition, the behavior of Dirac neutrinos in the off–diagonal dissipator
case is identical to that of the neutrinos in the case of a diagonal dis-
sipator. Inset: plot of the CP violation in the channel νe ↔ νe for

Majorana neutrinos. We consider the energy values (0.3–5) GeV char-
acteristic of DUNE experiment and we set t = 1.49 × 1021 GeV−1.

In both the plots we assume φ1 = π/4, φ2 = π/3, δ = −π/2,

we consider the following values of the elements of the dissipator:
γ12 = 1.2×10−23 GeV, γ45 = 4×10−24 GeV, γ67 = 4.7×10−24 GeV,
γ3 = γ8 = 7.9 × 10−24 GeV, α1 = 1.3 × 10−24 GeV, and use the fol-
lowing experimental values for the mixing angles: sin2 θ23 = 0.51,
m2

23 = 2.55 × 10−3 eV2, m2
12 = 7.56 × 10−5 eV2. Moreover, in

the c and d we have plotted the same oscillation formulae with the
same values of parameters except the time travel that is now equal to
t 
 1.7 × 1023 GeV−1, corresponding to the distance from the surface
of Earth and the geostationary orbit (35,786 km)

protons and neutrons but contain their antiparticles), then
the oscillations in matter involving electron neutrino already
induce the CP and CPT violations also in absence of deco-
herence. Therefore, one has to be careful to identify the right
contribution responsible for violations purely induced by
decoherence. Since we are mainly interested in highlight-
ing the effects of the decoherence from a theoretical point
of view, we consider the neutrino oscillations in vacuum.
Indeed, our study provides a starting point for future improve-
ments.

To make the comparison, we choose three different set of
parameters as possible examples: the first two are taken from

the available data of IceCube [48] and DUNE [49], while
the third is inspired by a hypothetical experiment in which a
detector is located at the geostationary orbit. In the following
we approximate x ≈ t in Natural units.

In Fig. 1a, we plot the νμ → ντ oscillations in vacuum
and CPμτ as functions of the neutrino energy, by using
the range of energy of the IceCube DeepCore experiment
E ∈ (6–120) GeV [48,50] and a distance equal to Earth
diameter x = 1.3 × 104 km, corresponding to t = 6.58 ×
1022 GeV−1. We draw the oscillation formula Pνμ→ντ and
the quantity CPμτ obtained by using the diagonal and the
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off-diagonal dissipators with zero and non-zero Majorana
phases, respectively.

In panel (b), we plot the oscillation formula Pνe→νe and
CPee in the energy range (0.3–5) GeV which is typical
of DUNE experiment [46]. We consider the time scale t =
1.49×1021GeV−1. For both the plots, we assume φ1 = π/4,
φ2 = π/3, δ = −π/2; and we use the following values
for the elements of the dissipator: γ12 = 1.2 × 10−23 GeV,
γ45 = 4.0 × 10−24 GeV, γ67 = 4.7 × 10−24 GeV, γ3 =
γ8 = 7.9 × 10−24 GeV, α1 = 1.3 × 10−24 GeV, which
are compatible with the experimental upper bounds on γi
[46,50]. Moreover, we consider the following experimental
values of the parameters: sin2 θ23 = 0.51, m2

23 = 2.55 ×
10−3 eV2, m2

12 = 7.56 × 10−5 eV2 [50].
From the plots it is clear that, by using the current upper

bounds on the elements of the dissipation matrix, 5–10% rel-
ative differences appear between Dirac and Majoranas oscil-
lation formulae, providing smoking-gun signatures of the real
nature of neutrinos. We believe that with an improved and
more realistic phenomenological analysis these effects could
be detected in next long baseline experiments.

It is worthwhile mentioning that, although matter effects
are typically important and can even dominate over deco-
herence, there can be configurations in which the opposite
happens. In fact, in Ref. [12], at least for two neutrino fami-
lies, it was shown that some predicted matter effects in pres-
ence of decoherence (see Ref. [47]) are negligible in the
range of energies E ∈ [0.3–1] GeV in the context of Dune
experiment. Of course, further investigations are needed to
strengthen our argument for three neutrino families. Further-
more, let us emphasize that in short baseline experiments
like reactors our predicted effects would be negligible; long
baseline experiments are instead necessary for our purpose.
A promising scenario in which decoherence effects in vac-
uum could be relevant is given by spacetime fluctuations
[30–36] motivated by quantum gravity models. In this case,
neutrinos would propagate in vacuum and only feel their
interaction with the quantum fluctuations of the geometric
background. The configuration chosen in panels (c) and (d)
is indeed motivated by this last possibility, namely a hypo-
thetical experiment could consist in a detector located at the
geostationary orbit (35,786 km from Earth surface), and neu-
trinos that start propagating from Earth (in vacuum) with time
travel t 
 0.12 s 
 1.7 × 1023 GeV−1.

6 Summary and conclusions

In this work we have analyzed the physical implications of
decoherence and dissipation in the context of three flavors
neutrino mixing. We have computed the transition proba-
bilities for Dirac and Majorana neutrinos in the cases of a
diagonal and an off-diagonal dissipation matrix. By analyz-

ing Dirac neutrinos, we have shown that in presence of a
diagonal dissipator, the oscillation formula do not depend on
the parametrization of the mixing matrix and CPT symme-
try is still preserved. Subsequently, we have switched on an
off-diagonal elements in the dissipation matrix, and shown
that for Dirac neutrinos the oscillation formula can depend
on the parametrization of the mixing matrix. Moreover, we
have revealed the possibility of aCP violation in the neutrino
transitions preserving the flavor and the existence of a CPT
violation due to the Dirac phase δ. By performing analogue
computations for Majorana neutrinos, we have shown that in
presence of an off-diagonal dissipation matrix, the oscilla-
tion formulae can depend on the Majorana phases φi . These
formulae depend on the choices of the parametrization of the
Majorana mixing matrix. Indeed, different parametrizations
of the Majorana mixing matrix lead to different formulae.
We have also revealed a CPT violation term purely induced
by the Majorana phases, which generalize the result in [12]
obtained for two flavors neutrinos.

We have only tuned some of the available free parameters,
but the distinction between the two type of neutrinos is still
true also by tuning other parameters. Let us emphasis that,
in presence of an off-diagonal dissipator with only α1 �= 0,

we have shown that CPee = Pνe→νe − Pν̄e→ν̄e is zero for
Dirac neutrinos, while it is non-vanishing for Majorana ones.
This result holds for any value of the parameters (α, γi j , φi ,
etc) and for any value of any of the coefficients entering in
three flavor neutrino mixing: CPee �= 0 characterizes only
Majorana neutrinos.

Before concluding let us emphasize that a detection of
CPT violation induced by decoherence effects could be
attributed to fluctuations of the space-time [30–36], thus rep-
resenting a signature of quantum gravity. Moreover, the stud-
ies on neutrino mixing in curved space [51–54] could be also
generalized by including in them the decoherence and dis-
sipation effects here presented. Therefore, our study might
open new windows of opportunity to address several open
questions in fundamental physics. It is worthwhile note that,
non-perturbative field theoretical effects of particle mixing
[55–75] can be neglected in the our treatment.
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