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ABSTRACT The largest area first parsing of a string often leads to the best results in grammar compression
for a variety of input data. However, the fastest existing algorithm has 2(N 2 logN ) time complexity, which
makes it impractical for real-life applications. We present a new largest area first parsing method that has
O(N 3) complexity in the improbable worst case but works in the quasilinear time for most practical purposes.
This result is based on the fact that in the real data, the sum of all depths of an LCP-interval tree, over all of
the positions in a suffix array of an input string, is only larger than the size of the input by a small factor α.
We present the analysis of the algorithm in terms of α, and the experimental results confirm that our method
is practical even for genome sized inputs. We provide the C++11 code for the implementation of our method.
Additionally, we show that by a combination of the previous and new algorithms, the worst-case complexity
of the largest area first parsing is improved by a factor of 3

√
N .

INDEX TERMS Greedy grammar compression, largest area first parsing, dynamic text indexing, enhanced
suffix array.

I. INTRODUCTION
Finding the repetitions in a string is among the most
researched tasks in stringology. One important usage is the
representation of a string with the smallest context-free gram-
mar (CFG), either for compression purposes or for obtaining
insight into the string’s structure [1]–[3], or for a construc-
tion of grammar-based compressed indices [4]. Grammar
text compression is a compression procedure where repeated
substrings in a string are replaced with the production rules
(non-terminals), and the string is represented with a CFG that
has the exact input string as the only product. To achieve a
compression, the replaced substrings must have the length of
at least two symbols and occur at least twice in the string.
Finding the smallest CFG is a problem known to be NP hard
[5]–[7]. As a result, various heuristics are used in order to
find the set of repeated substrings that would yield the best
approximation of the smallest grammar. In practice, there
are three prominent global strategies for the parsing of a
string: most frequent first (MFF), longest first (LF), and
largest area first (LAF) [2]. Additionally, a grammar can be
obtained from the output of some members of the LZ family
of online algorithms, which can be described as the longest
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previous sequential parsing, and has been used in theoretical
analysis of the approximation bounds [6], [8]. In addition
to parsing, the actual compression requires the additional
coding of the output, which is beyond the scope of this article.
A comprehensive overview of parsing methods for grammar
text compression can be found in [6], [9]. Here, we shall
summarize the time complexity results for the three listed
variants.

MFF parsing replaces substrings with rules in order of
their frequency. A recursive algorithm for this task that starts
with the most frequent pairs of characters and runs in lin-
ear time was introduced in [10]. The LF method finds the
current longest repeated substrings at any point in the algo-
rithm execution and iteratively replaces them with rules [11].
A linear time worst-case algorithm that uses a suffix tree and
allows for the creation of shorter rules within the already
existing rules was first described in [12]. The LAF method
iteratively replaces the substrings that provide the highest
compression gain at any point in the execution [13]. The
existence of a worst-case linear time algorithm for this task
is an open problem. The best existing method, based on [14],
has 2(N 2 logN ) time complexity.
In this paper, we present an algorithm that performs largest

area first parsing in quasilinear time on a variety of real-life
data. The algorithm has O(N 3) worst-case time complexity
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in the case of an input that consists of a repetition of only
one symbol, but it exhibits approximately linear behavior in
experiments on a wide range of standard test files. We pro-
pose that, under some realistic assumptions, the average time
complexity of our method is O(N log2 N ).
In addition, we show that by combining our algorithm with

that from [13] into a hybrid method, we can obtain a better
worst-case complexity for LAF parsing.

In the Section II, we give a short outline of the largest
area first method as well as the problem of the dynamic
indexing of a text. In Section III, we describe our algorithm,
and in Section IV, we present the time complexity analysis
together with the experimental results. The proof of the new
worst-case result is presented in Section V. We conclude in
Section VI.

II. LARGEST AREA FIRST GRAMMAR TEXT
COMPRESSION AND DYNAMIC TEXT INDEXING
The LAF parsing method was introduced in [13], where it
was referred to as the method of steepest descent. Alternative
names used in the literature to describe the same concept
include greedy and compressive. The area that is covered by
a specific repeated substring is defined as the product of the
number of nonoverlapping occurrences of the substring and
its length. Replacing all instances of a substring that covers
the largest area with a rule gives the largest compression gain
at each iteration. Due to the cost of storing a rule, in the cases
when the same area is covered by different substrings, a better
compression is achieved with longer substrings and fewer
instances. The method is reported in [13] and [2], and more
recently in [15], as the best among grammar compression
methods, in terms of the compression efficiency, for the most
types of input data. A recent practical result is reported in
[16], where LAF parsing has been used as the first step in a
competitive general purpose compressor.

As with the other parsing methods, the main problem
regarding the time complexity of the procedure is how to
efficiently find the next set of repeated substrings at the top of
the priority queue according to the given criteria. In this case,
after the replacement of all the occurrences of one substring
with a rule, we need to recalculate the areas of all remaining
repetitions that were affected in the current iteration and find
the new largest area.

This is an instance of the problem of dynamic text index-
ing. The standard structures used for static text indexing are
the suffix tree (ST) and suffix array (SA) [17] (all string algo-
rithm data structures mentioned in the article will be defined
in subsection III.B). Both ST and SA can be constructed in
linear time and used to efficiently find all occurrences of a
substring in a string. However, in dynamic settings, when the
text changes, the index must be updated, and the best method
for the updates depends on the application.With LAF parsing,
there are two problems. First, the sizes of areas are calculated
only from the number of nonoverlapping occurrences, and
second, the index must be updated after each substitution.

In the original paper [13], a structure called the minimal
augmented suffix tree (MAST) is used to find the set of
repeated nonoverlapping substrings that covers the largest
area of the text in time linear with the number of substring
occurrences. This augmented suffix tree can be constructed in
O(N logN ) time following [14]. However, after each substi-
tution of an area, updating the indexmeans rebuilding the suf-
fix tree from scratch. Therefore, the expected time complexity
for this approach cannot be less thanO(N 2 logN ). A different
approach is possible using the method for nonoverlapping
indexing described in [18] by employing a slightly modified
suffix tree, which can be constructed in O(N ) time. However,
this approach does not include the time necessary to find the
substring that covers the largest area. As a result, no known
method exists based on the reconstruction of a suffix tree that
is faster than 2(N 2 logN ).
For some applications, an ST can be updated in amortized

linear time when the updates are localized or otherwise
restricted as in [12]. Unfortunately, this does not seem to be
the case with LAF parsing since a method for an efficient
(amortized constant time) global suffix tree update (of all
occurrences of a substring) is not known. Standard suffix
arrays are even harder to update because they require the
reordering of a contiguous array [19], [20].

We propose that for a subset of dynamic problems,
the difficulty of dynamic index updates can be overcome
by using a static suffix array in conjunction with auxiliary
structures that may support updates in constant time. This
approach is possible when each substitution of a substring
with a rule affects only a limited area of the string (and its
index).

A suffix array, enhancedwith the additional data structures,
can support every type of search over a string within the same
time complexity as that of a suffix tree [21]. Since an SA
is simpler and requires considerably less space than an ST,
the SA has become the structure of choice in string processing
applications. Nevertheless, the ST still has an advantage in
some dynamic applications because less work is required
to update the links of a branch of a tree than to reorder
an array. Favoring the SA approach, we have found that in
some dynamic applications, it is possible to use a suffix array
without the need for changes in the array itself, and instead,
the updates may be performed in the fast auxiliary structures.
We have established that this approach is possible when an
application does not require fully random updates but when
the changes follow a predefined order instead. We focus
on the cases where the number of algorithm steps can be
determined using the sum of depths in LCP-interval tree [21]
over all of the positions in the suffix array. We have previ-
ously explored this property to develop algorithms that run in
quasilinear time for two of the other dynamic string parsing
problems, the longest first grammar compression using SA
[22] and the longest previous with updates used in a variant
of LZ parsing [23]. In the present work we show how, for the
most practical purposes, LAF parsing can be performed in the
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number of steps that is bounded within a polylog by the input
size.

III. THE ENHANCED SUFFIX ARRAY ALGORITHM
FOR LAF PARSING
A. OVERVIEW OF THE NEW ALGORITHM
The high-level organization of our method is presented with
the following steps:

1) Find the initial areas that can be replaced with a rule
and sort them according to their size into a list.

2) Replace all instances of a substring that cover the
largest area with a rule.

3) At each replacement of an instance of a substring with
a rule, modify the size of all areas that are affected and
move the affected areas to maintain the sorted order in
the list.

4) Remove the largest area from the list.
5) Repeat starting from step 2 until there are nomore areas

in the list.
The main difference between our algorithm and the

original algorithm from [13] lies in step 3. Instead of rebuild-
ing the whole index after the replacement of the entirety of
the largest area with rules, we perform the local updates after
the replacement of each single substring belonging to the
currently largest area. These updates consist of the following:

• Find all areas that are affected with the replacement of
one substring with a rule.

• For each affected area, calculate the reduction in the
area size and update the area position in the sorted list
accordingly.

The key to efficiently performing local updates is in
efficiently finding all affected areas. To do so, we use the
suffix array enhanced with additional data structures, where
the areas covered by the same substring correspond to the
intervals in the LCP-interval tree. In addition, we use the
suffix array, in conjunction with some additional data struc-
tures, to find the area sizes without overlaps. Cumulatively,
this approach leads to the low amortized complexity of our
method.

B. INTRODUCTORY REMARKS AND NOTATION
We define the standard string algorithm structures used in
our method. Let T be an input string of the length |T | over
an alphabet A of the size |A|. A common procedure with
string algorithms is to append to T a character from A that
does not appear elsewhere in T and is lexicographically the
smallest (or the largest) of all the characters in T . If we
denote this character with #, then a suffix array SA(T#) is
an ordered table of integers from 0 to |T | that correspond
to the lexicographical ordering of the suffixes of T#. The
inverse suffix array SA−1 is a table of integers such that
SA−1[SA[i]] = i, for 0 ≤ i ≤ |T |. The longest common
prefixes (LCPs) of the suffixes at the consecutive positions in
SA(T#) are stored in the LCP array. LCP[0] = 0, and LCP[i]
is the length of the shared prefix of the suffixes of T starting at
positions SA[i] and SA[i−1]. A set of successive positions in

SA that has an LCP value equal to, or larger than, the given
threshold minimal value constitutes an LCP-interval. Inter-
vals that have a higher LCP value can be nested in intervals
that have lower values. The hierarchy of the LCP-intervals is
presented with the LCP-interval tree [21]. In the rest of the
text, we use the term interval to denote an LCP-interval in a
suffix array.

Let Ii.lcp denote the LCP length of interval Ii. We say that
a substring si is a member of an LCP-interval Ii if it has the
length of Ii.lcp and starts at the position p in T such that
a = SA−1[p], a ∈ Ii. We also say that such positions p and
substring members starting at p belong to Ii.
Let Ii.weight denote the weight of Ii. The weight of an

interval is calculated as the sum of the lengths of all nonover-
lapping members of the interval. In our algorithm, we reduce
the lengths by 1, i.e., we sum up (Ii.lcp − 1), in order to
account for the cost of storing the symbols for the rules that
replace interval members.

Let S denote the sum of depths of the LCP-interval tree for
all positions in SA, excluding the nodes that have LCP values
smaller than 2. Let di denote the depth of the LCP-interval tree
at the position i in SA. Then, S is defined as:

S =
|T |∑
i=1

(di − ci)

ci =

{
1 if there exists a node with LCP value = 1 at position i
0 otherwise

The factor ci compensates for the intervals with an LCP
value of 1 since the repeated substrings are meaningful only
if they are at least two symbols long. The value of S is
essential to our approach because we have established that
some problems requiring dynamic string indexing can be
solved in the number of steps that is linear with S. The size
of S depends on the characteristics of the source of T . In the
worst case, when |A| = 1, S is O(|T |2). However, in most
practical cases, S is conveniently small. If we denote with α
the factor by which S is larger than |T |, then S = α|T | and
α � |T | for all of the tested real-life data sets. α is equivalent
to the average depth of the LCP-interval tree, corrected by the
factor ci. Furthermore, the structure of the LCP-interval tree
is equivalent to the structure of a suffix tree for a given T .
Therefore, αT ≈ (average depth of ST (T )) - 1.

C. EXAMPLE GRAMMAR PRODUCTION
Fig. 1 shows the suffix array, the corresponding LCP-interval
tree, the initial parsing of the areas, the final grammar and
the compressed representation of an example input string.
To facilitate the explanation of the algorithm, we establish
the equivalence between the rules and the intervals in the
LCP-interval tree. The areas covered by the repeated sub-
strings in the string correspond to the LCP-intervals in the
SA. The area sizes are represented by interval weights. For
the areas with the same weight, the order of priority is arbi-
trary. Such is the case with R1 and R2 in Fig. 1. We recall
that we calculate weights by summing up the length of
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FIGURE 1. The example of the employed data structures and the output of the largest area first parsing of a string. The areas
covered by the same substring correspond to the intervals in the LCP-interval tree. The final grammar consists of three rules
R1−3 and four terminals b, c, x and y. For the formation of a shorter rule that is a part of the already formed longer rules,
the existing rules are modified to include the new rule. Intermediate steps between the initial parsing and the final grammar
are shown in Fig. 2.

repeated substring - 1. Therefore, although rule R3 covers a
larger area than rules R1 and R2, it achieves less compression
when we factor in the cost of storing the rule symbol.1

1The calculation of the achieved compression should take into account the
cost of storing the definition of the rule, too, therefore reducing the summed
up weight by Ii.lcp. In that case, R3 would have priority over R1 and R2
in Fig. 1. However, we choose to ignore the cost of storing the definition of
a rule since we do not know their final sizes in advance.

The grammar consists of rules that correspond to
LCP-intervals listed in order of their weight and the explicit
set of terminals that are not a part of any rule. In each iteration,
a new rule overwrites the previous shorter rule if the previous
rule is entirely included in the new longer rule. The intervals
are annotated with their corresponding weights as well as
with the explicit substring that corresponds to the interval,
together with the list of the positions in the string where the
substring is replaced with the rule.
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A position in T may belong to multiple LCP-intervals
with different lengths. For example, the position 6 in T that
corresponds to position 4 in SA belongs to the intervals I3 (bc)
and I4 (bcd).

As an example for the calculation of S, the depth of the
LCP-interval tree at position 7 in the suffix array is 3, but
this position contributes with 2 to S since the tree includes
the interval I6 that has an LCP value of 1. Summing up over
all positions in Fig. 1 gives S = 22. The sum of the depths
of the LCP-interval tree is equal to the sum of the number
of positions that belong to an interval with LCP > 1 over
all LCP-intervals; i.e., S equals the number of all repeated
substrings in a string.

The three intermediate steps between the initial parsing
and the final grammar are presented in Fig. 2. Fig. 2 shows
the state of the sorted list of intervals after the replacement
of the whole of an interval with a rule. The first step shows
the state after the replacement of substrings abcd with rule
R1, the second step shows the state after the replacement of
substrings cdef with rule R2, and the third step shows the
state after the replacement of substrings cd with rule R3. The
substrings are replaced with a rule both in the input string
and in the definitions of the previous rules. Only the repeated
substrings can form a rule, and therefore, the weight is cal-
culated only if more than one instance of a substring exists,
counting both the instances of a substring in the text and in
the definitions of previous rules. Replacing a member of an
interval with a rule deletes members of other intervals. If an
interval is reduced to only one member, or none, the weight
is set to zero, which effectively removes this interval from the
list. In the first step in Fig. 2, intervals I2, I3 and I8 are reduced
to one or zero members and consequently removed from the
list. In the second step, this happens with I7, I12 and I10.

1) OVERLAPS
Consider the string abababa$. Although there are three rep-
etitions of substring aba, only two can be replaced with a
rule. In our algorithm, we denote the instances of the repeated
substrings, from left to right, as active if they do not overlap
with the previous active instance of the same substring. Only
the active members of the intervals are summed up in the
calculation of the interval’s weight; i.e., only the first and the
third aba in abababa contribute to the area covered by aba.

D. INITIALIZATION PHASE OF THE ALGORITHM
The first task in our method is to calculate interval weights
and sort the intervals in order of diminishing weights.
To do so, we need to set up necessary data structures, the most
important of which we list below.
• SA and LCP array - Temporary data structures. A suffix
array is constructed as the first step for producing the
inverse SA and LCP array and then discarded. An LCP
array is used for the construction of the LCP interval tree
and then discarded. We use the sais [24] method for SA
construction and the Kasai [25] method for LCP array
construction, both in linear time.

FIGURE 2. The example grammar production in steps.

• Inverse SA - Constructed in linear time from SA and
used in LCP array construction. At each position p in
T , we use the inverse SA and LCP-interval tree to find
which LCP-intervals SA−1[p] belongs to.

• LCP-interval tree - The LCP-interval tree is imple-
mented as two arrays: TerminalNode, which stores the
index of the deepest interval that a position in SA belongs
to, and Parent , which stores the interval’s ancestor in the
tree. The number of nodes in the LCP-interval tree is
bounded by O(|T |). However, the number of steps in the
construction of the LCP-interval tree is O(S) since that
involves iteration over all nodes at each position in the
LCP array.

• IntervalMember - Interval member data are stored in
a two-dimensional array of structures IntervalMember ,
where for each interval member, we store its position in
T and the active/inactive status. The number of interval
members (repeated substrings in a string) equals S.

• InversePositions - A two-dimensional array that for each
p stores the ranks of interval members starting at p for
each interval that p belongs to. It is used to find the
positions of two consecutive members of an interval.
This approach is necessary in the weight update phase
when we need to verify whether the deactivation of one
interval member activates another member. A rank is
stored for every member of each interval, and therefore,
the size of InversePositions is S.

• MemberIndex - An array that stores the current member
of an interval during the initialization process. It is
discarded after the initialization.
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Algorithm 1 Initialization phase. overlap(I , i) returns
true if a member of I at the position i overlaps with the
last previous active member of I .
Input: T, InverseSA(T), LCP interval tree:

TerminalNode and Parent arrays
1 int IntervalMember[interval][MemberIndex].position ;
2 bitflag IntervalMember[interval][MemberIndex].
active ;

3 int InversePositions[position][offset] ;
4 int MemberIndex[interval]; (initialize to zeros)
5 int Weight[interval]; (initialize to zeros)
6 for i = 0 to |T|-1 do
7 offset = 0 ;
8 I = TerminalNode[InverseSA[i]] ;
9 while I do
10 IntervalMember[I][MemberIndex[I]].

position = i ;
11 if not overlap(I, i) then
12 Weight[I] + = I.lcp - 1;
13 IntervalMember[I][MemberIndex[I]].

active = 1 ;

14 else
15 IntervalMember[I][MemberIndex[I]].active

= 0 ;

16 InversePositions[i][offset] = MemberIndex[I] ;
17 MemberIndex[I] ++; offset ++ ;
18 I = Parent[I] ;

19 using pigeonhole sort on Weight table create
IntervalsByWeights array;

• IntervalsByWeights - An array that stores intervals sorted
by their weights. We implement this as a two dimen-
sional array, where the rows are indexed by interval
weight and the columns by the position of an interval
in the row. Both of these indices are updated when the
weight of an interval changes. The positions in a row
for each interval are stored in a separate table. This
implementation allows changes in the interval’s location
in the IntervalsByWeights in constant time.

Some more obvious auxiliary data structures are omitted
for clarity. The essential pseudocode for the preprocessing
phase is presented in Algorithm 1. The weight of each inter-
val can be calculated in one pass over all of the substrings
belonging to the interval if we access them in order of their
positions in the string. In this way, it is possible to include
only the nonoverlapping substring instances in the weights.
Each substring in every interval that participates in the inter-
val weight is marked as active. This information will be used
later to determine the weights that need updates. To test for
overlaps during the initialization, we need to keep an account
of only the previous active position for each interval.

After the initial weights are calculated, the final step of the
initialization is to sort the intervals according to their weights.

This is done using the pigeonhole sort on the weights to
produce the new IntervalsByWeights (IBW ) array. The initial
parsing of potential rules, sorted by area size shown in Fig. 1,
is an example of the initial state of an IBW array.

The maximum weight an interval can have is O(|T |);
therefore, the sorting is performed inO(|T |+|I |) steps, where
|I | is the number of LCP-intervals. |I | is equal to the number
of internal nodes in a suffix tree, which is bounded by |T |.
Consequently, the overall number of steps for the production
of the array of intervals sorted according to their weights
excluding overlaps is O(S + |T |).
It should be noted that although the LCP-interval tree does

not include explicit nodes for all repetitions in a string as does
the MAST structure used in the original paper [13], it can be
shown that at each iteration, the area covered is of the same
size when using both structures. The crux of the proof is the
following: while with a string such as ababa$ there wouldn’t
exist a node for the substring ab, a node would certainly exist
that would lead to the same size area coverage, in this case
for the substring ba. Since the LAF paradigm does not rank
the areas of the same size, our algorithm is correct. More
formally,
Lemma 1: The largest areas found in each iteration using

the LCP-interval tree are of the same size as those found using
MAST.

Proof:
Let T [i, i + 1, . . . , i + j − 1] denote the substring of

T of length j starting at the position i in T . Then, let
T [p1 . . . p1 + l − 1], . . . ,T [pk . . . pk + l − 1] denote a set of
k nonoverlapping substrings of T with length l starting at the
positions p1, p2 . . . pk that covers the currently largest area
with the size of kl. Let c be the largest nonnegative integer
such that T [p1+l . . . p1+l+c−1] = . . . = T [pk+l . . . pk+
l + c − 1]. Then, the substring T [p1 + c . . . p1 + c + l − 1]
is present in the LCP-interval tree, and therefore, in our algo-
rithm, we shall consider the set of nonoverlapping substrings
T [p1+ c..p1+ c+ l − 1], . . . ,T [pk+ c..pk + c+ l − 1]with
the same area size of kl.

�

E. MAIN SUBSTRING REPLACEMENT PROCEDURE
Let si,j denote a substring of T that is a member of Ii and
starts at the position j in T . Then, stop,j denotes a member of
interval Itop that is currently at the top of the IBW. The main
algorithm procedure consists of the following: 1) replacing
each active instance j of a substring stop,j with a rule and
2) at each replacement, updating IA.weight and IBW for each
interval IA that is affected by the replacement. The potentially
affected intervals are the following:
• All intervals IA that have members starting at positions
in T that are included in every active instance of stop,j.
These are the positions replaced with a rule.

• All intervals IA that have members starting at the posi-
tions pl to the left of j such that pl + IA.lcp ≥ j.
We call such positions the affected left neighborhood.
The affected left neighborhood extends up to the first
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FIGURE 3. Positions and lengths of the members of the possibly affected
intervals after the replacement of stop,j with a rule.

position that does not belong to any interval whose
members overlap with stop,j.

We list six different cases of intervals in the affected
area regarding the position and the length of a string that
belongs to the potentially affected interval relative to the
replaced substring stop,j. The cases of the affected intervals
that occur within the replaced substring (A1-A3) are illus-
trated in Fig. 3a), and the cases that occur in the affected
left neighborhood (A4-A6) are illustrated in Fig. 3b). With
startposA and endposA, we denote the starting and the ending
positions of the substring that is a member of the affected
interval, respectively.
• A1: startposA1 = j; endposA1 ≥ j+ Itop.lcp;
affected interval weight change: −(Itop.lcp− 1)

• A2: j < startposA2 ≤ (j + Itop.lcp − 1); endposA2 ≥
j+ Itop.lcp;
affected interval weight change: −(IA2.lcp− 1)

• A3: j ≤ startposA3 < (j + Itop.lcp − 1); startposA3 <
endposA3 ≤ j+ Itop.lcp− 1;
affected interval weight change: −(IA3.lcp− 1)

• A4: startposA4 < j; endposA4 ≥ j+ Itop.lcp− 1;
affected interval weight change: −(Itop.lcp− 1)

• A5: startposA5 < j; j ≤ endposA5 < j+ Itop.lcp− 1;
affected interval weight change: −(IA5.lcp− 1)

• A6: startposA6 < j; startposA6 < endposA6 < j;
affected interval weight change: none

Updating the weight of the affected interval IA consists of
reducing IA.weight by IA.lcp − 1 or Itop.lcp − 1, but only if
the substring at the processed position is active in IA. If it is
not, then IA.weight remains unchanged.
The active interval members in the affected area are deac-

tivated in the cases A2, A3, and A5, and IA.weight is reduced

by IA.lcp − 1. Each time that a member of an affected
interval IA is deactivated, we must check if this activates
some of the following substrings belonging to IA that were
inactive because of the overlap. If that is the case, IA.weight
remains unchanged. Because of the overlaps, deactivation of
an interval member can activate another member, which in
turn can deactivate the following member of the interval. This
effect propagates until the first nonoverlappingmember. If the
number of activations/deactivations is even, then the weight
remains the same, and the interval remains in its position
in the IBW array. To determine the activation/deactivation
parity, we use the sequential search, which we have discov-
ered to be the best practical solution. However, solely for
theoretical reasons, in the Appendix, we describe a formally
more efficient solution that we use to improve bounds in the
worst-case proof presented in Section V.

The active interval members in the affected area are not
deactivated in the cases A1 and A4, when IA.weight is
reduced by Itop.lcp− 1. In these two cases, a member of Itop
is completely included into a member of IA, and the weight of
the affected interval changes only by the length Itop.lcp of the
shorter substring, minus the cost of storing the rule symbol.

After the replacement of all active substrings belonging to
Itop, Itop is removed, and the new interval with the currently
largest weight is at the top of the IBW array. The process
continues until there are intervals in the IBW. Output of
the compressed string and the rules is performed at the end
to include all rule updates. The definitions of the rules are
associated with the first (leftmost) occurrence of a substring
replaced with a rule.

1) INCLUSION OF RULES INTO RULES
The existing rules can be included in a new rule, and a new
rule can be formed as a part of an existing rule. Case A4 in
Fig. 3b) illustrates a possible longer rule that completely
includes the current rule. Case A3 in Fig. 3a) illustrates a
possible rule within the current rule that can emerge later in
the processing. If that occurs, the new rule must be incor-
porated into the previous longer rule. During the parsing,
the information about the potential rules within existing rules
is associated with the first occurrence of an interval member.

To perform a correct bookkeeping for the possibility of
forming a new rule within the existing rule, we need to adapt
the weight update process. When a new rule is formed from a
substring of an existing rule, the affected intervals are limited
only to those intervals whose members are shorter than the
existing rule. Considering the example in Fig. 4, upon the
formation of the new rule, only the weight of interval IB is
updated. The weight of interval IA is already updated to a
correct value upon the formation of the previous rule.

2) EMERGENCE OF NEW INTERVALS
In addition to updating the weights of the existing intervals,
we must allow for the emergence of new intervals that may
be created as a consequence of the shortening of the repeated
substrings. The shortening can occur in the left affected
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FIGURE 4. An example of the formation of a new rule inside the existing
rule. Only the weight of interval IB is updated.

neighborhood when the prefix of a substring that is a member
of the affected interval is not a member of any existing
interval, as illustrated in Fig. 3c). A new interval is formed
if the same shortened substring occurs at least twice. The
first candidates for the new intervals are stored separately and
associated with their original intervals. If a second candidate
occurs, a new interval is formed and placed in the appropriate
position in the LCP-interval hierarchy. This approach consists
of inserting the new interval in IBW inO(1) time and updating
LCP-interval tree in O(α) time.

IV. THE COMPLEXITY ANALYSIS AND EXPERIMENTAL
RESULTS
The preprocessing involves the construction of the SA,
SA−1, LCP array, LCP-interval tree, and IntervalMember and
InversePositions arrays. The SA can be constructed in O(|T |)
time [24] along with the SA−1 and the LCP array [26]. The
LCP-interval tree data are derived inO(S) time from the suffix
and LCP arrays. The IntervalMember and InversePositions
arrays are constructed in O(S) time from the LCP-interval
tree data and SA−1, as presented in Algorithm 1. The sum-
ming of the initial weights and sorting of the IBW array has
O(S+|T |) complexity. Therefore, the total preprocessing time
complexity is O(S + |T |) or O((α + 1)|T |).
In the main parsing procedure, at each replacement of a

substring in T with a rule, we have to visit each position p in T
that belongs to the replaced substring and to the affected left
neighborhood. The average number of the visited positions
per substring replacement is bounded by the average LCP
length lcpavg, and the average number of interval members
starting at each p is bounded by α. Since with each substi-
tution of a substring with a rule at least one symbol is lost,
there can be at most |T | substitutions. Therefore, the potential
number of weight updates is bounded by (α|T |lcpavg).

Theweight update procedure comprises twomore complex
operations: the first is the verification whether a deactivation
of an interval member changes the total weight or not,
and the second is the repositioning of the interval in the
(IBW ) array. To verify whether another member of an
interval becomes active, we use the sequential search and
InversePositions array to determine the consecutive positions
of interval members. With the array implementation that we
use, moving the interval in the IBW is performed in a constant
time. Let overlapavg denote the average number of overlapped
instances of a same substring starting at a position in T . Then,
the total time complexity of our method in the average case
is O(α|T |lcpavgoverlapavg).

In the worst case, we deal with the maximal sizes of αmax ,
lcpmax and overlapmax that are all O(|T |), which would lead
to O(N 4) complexity. This is amortized to O(N 3) since the
overlaps are checked only at the deactivation of an interval
member, and there are at most O(S = α|T |) members
of intervals. The worst case occurs in a pathological situa-
tion when the alphabet consists of only one symbol. Then,
the probability of that symbol being the next character is
always 1. For the real data, the distribution of symbol prob-
abilities is more normal. In such a case, some results on the
expected sizes of α, lcpavg and overlapavg exist in the liter-
ature, although mostly for the Bernoulli model of a source.
Except for the nodes at a depth of one, α is equivalent to the
average depth of a suffix tree, which is in [27] shown to be
O(logN/h), where h is the entropy of the source. Within the
samemodel, lcpavg is known to beO(logN ) [28]. On the other
hand, the size of overlapavg appears to be an open problem.
To our knowledge, a result regarding the expected number
of repeated substrings that overlap does not exist. However,
based on the results for the number of runs and repetitions
in a string (see, for example, [29] and [30]), it appears that
the number of overlapped instances of a same substring, in a
string produced by a Bernoulli source, tends to be a constant.
This is supported by the analysis of the real-life data; e.g., for
the DNA and the English texts, the values oscillate around
2 and 5, respectively, regardless of the input size.

Based on all of the above, we conjecture that the expected
time complexity of our algorithm on "nonpathological"
strings is O(N log2 N ), which is in accordance with the
experimental results.
For our experiments, we have used the Pizza&Chili

Corpus [31], the standard benchmark corpus for data com-
pression that covers a very wide variety of different data
types. Fig. 5 presents the processing times for six data sets
from Pizza&Chili Corpus; dna, proteins and english from
the main text corpus and tm, dna_rep and ecoli from the
artificial, pseudo-real and real parts of the repetitive cor-
pus, respectively. The results are obtained on a 3.6 GHz
Xeon Gold 5122 processor with 256 GB RAM using a
C++11 implementation of our method that can be down-
loaded from https://bitbucket.org/marrose/esa-laf compiled
with the -O2 option. The discontinuities occur when lcpavg
radically changes. The presented examples are representative
of the graphs and complexities obtained for every other data
set from Pizza&Chili and Canterbury2 corpora.
Fig. 6 and Table 1 illustrate the difference in performance

between our algorithm, based on the local index updates, and
the previousmethod, based on the reconstruction of the whole
index. As an example, the differences in time complexity
on two typical real data sets are presented in Fig. 6 for
the first 10 MB of the dna file from the main corpus and
sources file from the repetitive corpus. Table 1 presents the
times needed to process the first 10 MB of all file types
in the Pizza&Chili Corpus, both with the updates and the

2The older data compression benchmark [32].
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FIGURE 5. Processing times for the uniform subsets of the selected
Pizza&Chili Corpus files. The dashed lines represent Nlog2 N curves.

FIGURE 6. Compared execution times for the reconstruction and the
updates methods for 10 MB subsets of two files from Pizza&Chili Corpus.
sources_rep is a part of the sources file from the pseudo-real repetitive
part of the corpus.

reconstruction methods. The time required for the processing
of larger inputs with the reconstruction method was pro-
hibitive (the processing of 100 MB inputs would require
weeks).

The corresponding values of α and lcpavg are also included
in Table 1. The only cases where the reconstruction method
is faster than the updates are the three files from the artificial
part and one file from the pseudo-real part of the repetitive
corpus. These four files all have very large values of lcpavg
that are comparable to the size of the sample itself. Those
are the cases when the samples consist of a few repetitions
of very long substrings, and the artificial repetitive part is
the extreme part of the Pizza&Chili Corpus. For every other
data set, with the more realistic values of lcpavg, the updates
method is faster. On the processed 10 MB samples, the factor
by which the updates method is faster ranges from 1.85 for

TABLE 1. Processing times for 10 MB subsets of all files in the
Pizza&Chili Corpus. Where not stated otherwise, values are given
in seconds. M denotes the main corpus; AR, PR and RR denote the
artificial, pseudo-real and real parts of the repetitive corpus, respectively;
and w_l denotes world_leaders data set.

the einstein.en file to 2138 for the pitches file. Obviously, for
larger files, the reconstruction method would not be feasible
for most of the data sets.

It should be mentioned that we have not implemented the
reconstruction procedure with the MAST structure but with
a suffix array. We have used the code for SA construction
from [24], modified for large alphabets, which is possibly
somewhat faster than the suffix tree construction. With SA,
the time needed to determine the largest area in each iteration
is O(Nα), as opposed to O(N logN ) with MAST, which is
asymptotically the same. When the value of α is compara-
tively large, it is possible that some corrective factor should be
taken in the account. However, overall we do not believe that
any reconstruction method based on ST would be much, if at
all, faster than our implementation used in this experiment.

A. PRACTICALITY FOR LARGE INPUTS
The space requirement of our implementation is (84 + 13α)
bytes of memory per input character. To demonstrate the
feasibility of the new algorithm for processing large inputs,
we have performed experiments on a human genome DNA
sequence. We have used the human genome sequence file
downloaded from [33] and cleaned of "NNN" triplets. The
rest of the "N" characters (characters denoting unknown
bases) are left to preserve the reading frame. In the orig-
inal file, long runs of the "N" character increase α to a
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few thousand, which is an impractical level for such large
inputs. After the cleaning, the remaining file size is 3 GB,
and α = 17.07. With our software, we have been able to
process the 850 MB prefix (α = 15.62) of the genome on a
256 GB RAMmachine in 3 hours and 40 minutes. Therefore,
the whole genome can be processed with a TB of RAM in
approximately 15 hours.

It should be noted that our current implementation cannot
process files larger than 2 GB and that processing inputs
larger than 4 GB would involve increasing the space con-
sumption per character ratio. However, even if the space con-
sumption is doubled, which is a very loose bound, processing
of inputs of almost any size could be performed on a disk in a
matter of weeks. In comparison, extrapolating from the data
presented in Fig. 6, processing the human genome with the
previous method would require decades.

B. VERIFICATION OF CORRECTNESS
The central idea of our method is to enumerate all possible
changes in a string that can occur when a substring is replaced
with a rule. Since it is difficult to formally prove that our algo-
rithm indeed accounts for all possibilities, we have included
the tester code for the verification of a single case, or a batch
of random strings, in our published software. The tester uses
brute force to test whether the choice of the next interval at
every stage of the process belongs to the set of the correct
choices. With this code, we have successfully tested the
processing of random files of up to 3 MB.

V. THE HYBRID ALGORITHM AND THE IMPROVED
WORST-CASE COMPLEXITY
A. ESTIMATE OF "PATHOLOGY"
In the context of our algorithm the "pathology" of a string is
related to the size of lcpavg compared to the expected log|A||T |
value. Ourmethod is fast when lcpavg is small compared to the
length of the string. We consider an input to be a pathological
input when the lcpavg is of the same order of magnitude as
|T |. Such strings almost never occur naturally and are often
informally referred to in the literature as the pathological
inputs.

Intuitively, a large lcpavg implies that a few initial iterations
of the LAF parsing must considerably reduce the size of the
string. Since the complexity of one iteration with the recon-
struction method is not dependent on the lcpavg, the recon-
struction must work faster than updates on strings with
large lcpavg. We illustrate this with the results of a simple
experiment presented in Fig. 7.

We have generated random binary strings of 106 characters
with a variable probability of symbols and measured the time
needed for processing the strings with our algorithm and with
the reconstruction method, averaged over five iterations. The
obtained times are presented in Fig. 7 for a range of proba-
bilities of a specific symbol from zero to 50%. The crossover
value is at 4%. Therefore, we can observe that a binary string
with length of 106 characters is pathological in the context of
our method if the probabilities of two symbols are p1 ≤ 4%

FIGURE 7. Processing times in seconds for different percentages of one
symbol occurrences in randomly generated binary strings with lengths of
106 characters.

and p2 ≥ 96%,3 and for such strings, the reconstruction
method works much faster than updates. This finding gives
rise to the possibility of employing the hybrid approach that
combines both methods.

The hybrid algorithm then involves the following:
• start with the reconstruction method and
• switch to the updates method when lcpavg falls to the
appropriate value.

We have used the hybrid algorithm to improve on the
worst-case complexity of LAF parsing, and we give the
proof in the next subsection. We do not, however, consider
the hybrid algorithm as practical for real-life applications,
except in cases when pathological inputs cannot be excluded.
Considering the results on the Pizza&Chili data sets, a quick
rule of thumb could be that a string can be efficiently pro-
cessed with the updates method if its lcpavg is within two
orders of magnitude greater than the expected log|A||T | value.
The value of lcpavg is computed in linear time during the
initialization of data structures, and therefore, it can be used
as a quick test to indicate how to continue with the processing.

B. WORST-CASE PROOF
At the beginning, we determine the worst-case complexity for
updates method.
Lemma 2: The verification of the number of overlapped

substrings in the updates algorithm can be performed in
O(logN ) time.

Proof: We give the appropriate algorithm in the
Appendix. �

Therefore, the complexity of the updates algorithm in the
worst case is O(lcpmaxαmaxN logN ) = O(lcp2max N logN ).
The reconstruction algorithm has a complexity ofO(N logN )
per iteration for a total of O(N 2 logN ) in cases where the
number of iterations grows linearly with N . We consider a
hybrid algorithmwherewe employ the reconstructionmethod
while lcpmax is larger than a boundary value B and then switch
to the updates algorithm when lcpmax ≤ B. The complexity
of the first phase is then

O(IBN logN ) (1)

where IB is the number of iterations of reconstruction
required to satisfy the boundary condition, and the

3These values changewith the string length; e.g., for the lengths of 105 and
107 characters, the crossover values are at 7% and under 2%, respectively.
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complexity of the updates phase is

O(B2N logN ) (2)

We use this model to prove the worst-case bound for the
hybrid algorithm.

First, we need to formally establish that a reduction in the
size of the string with each rule is at least linear with the value
of lcpmax . We do so through the following lemma.
Lemma 3: Any compressible string is compressed by at

least lcpmax4 with one rule.
Proof:

Let S be a repeated substring such that |S| = lcpmax .
Obviously, the largest area replaced with the rule at any point
in execution of the algorithm cannot be smaller than that
covered with S. Consider any two instances of S, Si and Sj,
at positions i and j, i < j. There are three possible cases:
1) Si and Sj do not overlap. In this case, we can use S as

a rule, and we obtain a compression of at least |S| − 1.
2) Si and Sj overlap, and j > i + |S|2 . The first half,

or more, of S is replaced with a rule, and the
compression is then at least |S|2 − 1.

3) Si and Sj overlap, and j ≤ i+ |S|2 . S is then a periodic
string with period j − i. The rule composed of the
first j − i characters compresses the string by at least
(j − i − 1)(b |S|/2j−i c). When j − i ≥ 2, this is trivially

bounded below by |S|4 . When j − i = 1, i.e., S is a
sequence of a same symbol, this case degenerates to
the first case with |S| = |S|2 .

Since |S| = lcpmax , the lemma is proved.
�

Next, we prove an important result on IB.
Lemma 4: The number of iterations IB necessary to

reduce lcpavg to the value of B is not larger than 4NB .
Proof:

Let Wi denote the net gain of the i-th rule, Li denote
the lcpavg before the i-th rule replacement and Ni denote the
length of the compressed string and all the rules before
the i-th rule replacement. Then, Ni+1 = Ni −Wi.

Let us assume that IB > 4NB . Then, NIB < N4NB
, and

for every k < 4NB must hold Lk > B. By Lemma 2,
we have Wk ≥

B
4 . Then:

N4NB
= N −

4NB∑
j=1

Wj ≤ N − 4
N
B
B
4
= 0

Since this is impossible, it follows that IB ≤ 4NB .
�

Finally, we prove the new worst-case bounds for greedy
parsing.
Theorem 1: Using the hybrid method, the complexity of

the LAF parsing of a string is O(N
5
3 logN ).

Proof:
From (1) and Lemma 2, we have the complexity for the

reconstruction phase of the hybrid algorithm as

O(
N 2

B
logN ) (3)

Setting B = 3
√
N in (2) and (3), we obtain the complexity of

both phases of the algorithm as O(N
5
3 logN ). �

VI. CONCLUSION
We present the first feasible method for the largest area pars-
ing of a string that works fast on real data sets (represented
with the main and the real repetitive parts of the Pizza&Chili
Corpus). The previous method, which is about twenty years
old, cannot realistically be used for files larger than a fewMB.
Since the grammar compressed strings have advantages with
compressed patternmatching and querying and since the LAF
parsing produces the best results overall of all grammar based
strategies, a practical LAF parsing method can be of interest
to the researchers and practitioners in the field. Our algorithm
is also a contribution to the research on the important subject
of dynamic indexing.

In the theoretical domain, we have improved theworst-case
bound for LAF parsing from O(N 2 logN ) to O(N

5
3 logN ).

This is achieved using the hybrid between our algorithm,
based on index updates, and the previous algorithm, based
on index reconstruction.

Although the guiding idea for the new LAF algorithm was
found in the previous work on the longest first parsing [22],
the new algorithm does not follow trivially from that in [22].
The mechanics of the LAF algorithm are distinct, and the
complexity includes the additional lcpavg factor. The code for
an implementation of our LAF parsing method is publicly
available at https://bitbucket.org/marrose/esa-laf.

VII. APPENDIX: COMPLEXITY OF THE OVERLAP
PROBLEM
We show that the overlap problem can be solved within an
additional factor of O(logN ) operations in the worst case.

A. PROBLEM DEFINITION
Given the set of m instances Si, i = 1, 2, ..,m at positions pi
of a repeated substring S of length |S|, we have to maintain
information about the size of the largest subset of nonoverlap-
ping instances while supporting removals of instances from
the set.

B. SOLUTION
Let f (i, j) be the size of the largest subsequence of
nonoverlapping instances of S inclusive between the posi-
tions pi and pj, i.e., subsequence with no two positions having
a difference smaller than |S|. Let next(i) return the index of
the first nonoverlapped instance (where it exists) following
the instance at the position pi. Then, f (i, j) is equal to the
smallest positive integer k such that nextk (i) > j.
To efficiently compute f , we use a static table J , where

Ji,k = next (2
k )(i). Table J has O(NlogN ) elements and

can be computed in O(NlogN ) time using the following
expression:

Ji,k =

{
next(i) if k = 0
JJi,k−1,k−1 otherwise
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Algorithm 2 Computing f(i, j)
Input: i, j
Result: f(i, j)

1 result:= 1;
2 for k ← blog2Nc to 0 by −1 do
3 if J [i][k] ≤ j then
4 result ← result + 2k ;
5 i← J [i][k];
6 end
7 return result

Table J allows us to compute values of f in O(logN ) time
using Algorithm 2 to essentially perform a binary search for
the answer.

We recall that during the course of our LAF parsing
algorithm, instances of the repeated substrings are eliminated
when they partially overlap with the new rules. We say
that eliminated instances are "dead" or "killed". Initially, all
instances are "alive". When an instance is killed, we need to
verify whether this actually changes the weight of the interval
due to overlaps. In contrast from our practical code, here,
in this theoretical construct, we do not use the active/inactive
status of the individual substring instances to determine the
effect of the overlaps but instead recalculate the value of f
for each affected interval after the formation of a new rule.

The relevant changes can occur within chains of
overlapping alive instances of a repeated substring. When a
rule is formed within a chain, there are two possible cases.

1) A rule divides a chain into two new chains. This covers
the cases A2, A3, and A5 in Fig. 3. Then, except at
the start or the end of a chain, more than one repeated
substring instance is killed, and the dead instances
always divide the original chain into two distinct new
chains of live instances.
To process this case, we maintain two items:
• set C of [start, end] pairs, representing chains of
currently alive instances and

• the cumulative weight of the interval r =∑
c∈C f (c).

Initially, C = {[1,N ]} and r = f (1,N ).
Let us denote with a and b the first and the last instance
in a group of killed instances, respectively. At each
position of a new rule, we need to perform the following
four steps.
a) Find the chain in C that contains subchain [a, b].

Let that be chain [x, y].
b) Remove [x, y] fromC and subtract f (x, y) from r .
c) If x < a, add [x, a− 1] to C and add f (x, a− 1)

to r .
d) If b < y, add [b + 1, y] to C and add f (b + 1, y)

to r .
If C is implemented as a balanced binary search tree,
then all four steps are performed in O(logN ) time. This
process yields the total complexity of O(NlogN ) as the

number of iterations is bound by N since each iteration
kills at least one live instance.

2) A rule does not break the chain of live instances.
This occurs with the cases A1 and A4 in Fig. 3. In this
case, we cannot split chains in C , and we need to recal-
culate J . However, now, all instances of the affected
substring are visited during the replacement of Itop
with a rule. This means that when we recalculate J
in O(logN ) time for every instance, the total cost is
amortized within O(N logN ) bound.

This result is mainly theoretical since its implementation
would require considerable additional memory space and,
based on the corpora data, would be slower than the sequen-
tial search in most practical cases. Therefore, we do not
recommend this as a practical solution.
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