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Abstract: We study the conditions under which an analog acoustic geometry of a relativistic fluid in
flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the
speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot
exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down
behind the horizon.
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1. Introduction

The analog acoustic metric was first introduced by Unruh [1], with the motivation
of explaining the Hawking radiation produced by black holes [2]. Since then, extensive
research on analog gravity has been done (see, e.g., [3,4] for reviews), but analog black
holes do not seem to have shed much light on one of the most difficult problems with
Hawking radiation—the black hole information paradox [5–13].

In general, the analog acoustic metric Gµν takes the form [14]

Gµν = ω[gµν − (1− c2
s)uµuν], (1)

where uµ is the 4-velocity of a relativistic fluid in the background metric gµν usually taken
to be the flat Minkowski metric, cs is the speed of sound, and the conformal factor ω is
related to the equation of state of the fluid. Normally, the fluid is assumed to satisfy the
Euler equation without external pressure, and particle number conservation is assumed.

Unfortunately, with these assumptions, the acoustic metric of the form (1), which
mimics the Schwarzschild black hole, cannot be found. It has been noted that a non-
relativistic version of the metric (1) can be found, which differs from the Schwarzschild
metric by a non-constant conformal factor [3,4,15]. However, even in this case, one must
assume an external force field to satisfy the Euler equation. De Oliveira et al. [16] have
recently obtained a closed form of an analog Schwarzschild geometry in a setup with
an external force. Unfortunately, their solution is subject to a slightly modified analog
geometry that is not exactly supported by fluid dynamics. For nonisentropic fluids, recently
studied in [17], one is more flexible and has the possibility to choose ω(x), such that the
analog metric exactly reproduces the Schwarzschild metric. Since gµν is the flat metric that
is not proportional to the Schwarzschild metric, one would naively expect Gµν to be equal
to the Schwarzschild metric only if cs in (1) is not equal to unity.

On the contrary, we find here that Gµν can be equal to the Schwarzschild metric if
cs → 1, so that (1− c2

s)uµuν remains non-zero. Since the acoustic horizon is by definition
a surface beyond which the fluid is faster than the speed of sound, it follows that the
fluid beyond the horizon should be superluminal, which is physically forbidden. This
means that analogue metric can take the form of a Schwarzschild geometry only outside of
the black hole, and not in the black hole interior. The horizon thus represents a physical
boundary beyond which the Schwarzschild geometry necessarily breaks down. This is
consistent with the expected behavior of black hole firewalls [18,19].
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The remainder of the paper is organized as follows. In Section 2, we derive the
Schwarzschild geometry as an analog gravity model in a relativistic fluid. In Section 3, we
briefly discuss the field theoretic description of the fluid relevant to the model considered
in Section 2. The concluding section, Section 4, is devoted to discussion and conclusions.

2. Analog Schwarzschild Geometry

In applications of analog geometry, particle number conservation is usually assumed,
in addition to energy-momentum conservation or the Euler equation. However, with this
assumption, some interesting geometries cannot be mimicked by analog geometry. The
fluid in which the particle number is not conserved is generally nonisentropic.

Here we study the conditions under which one can mimic the Schwarzschild geometry.
We assume the metric that is conformally equivalent to the Schwarzschild metric, i.e.,

ds2 = ω(r, t)
[
γ(r)dt2 − γ(r)−1dr2 − r2dΩ2

]
, (2)

where

γ(r) = 1− 2MG
r

. (3)

We look for an analog fluid model that mimics the metric of the form (2), and we
impose the necessary conditions so that the conformal factor ω can be set to one. The basic
idea is to find a suitable coordinate transformation t→ t̃, such that the new metric takes
the form of the relativistic acoustic metric

Gµν =
n

m2csw
[gµν − (1− c2

s)uµuν] , (4)

where gµν is the Minkowski metric in spherical coordinates, uµ is the four-velocity with
non-vanishing radial component, m is an arbitrary mass scale, n is the particle number
density, and w is the specific enthalpy defined as

w =
p + ρ

n
. (5)

We assume that the fluid is irrotational and satisfies Euler’s equation. Accordingly,
we assume that the enthalpy flow wuµ is a gradient of a scalar potential, i.e.,

wuµ = θ,µ, (6)

and that the entropy gradient is proportional to the gradient of θ [17]

s,µ =
uνs,ν

w
θ,µ. (7)

Next, following [20], we apply a coordinate transformation

t = κ t̃ + f (r), (8)

where κ is a constant, and the function f (r) is to be determined by the condition that the
transformed metric is of the form (4). The line element (2) in the new coordinates is of
the form

ds2 = ω(r, t)
[
κ2γ(r)dt̃2 + 2κγ f ′dt̃dr−

(
γ(r)−1 − γ(r) f ′2

)
dr2 − r2dΩ2

]
, (9)

similar to the Painlevé–Gullstrand metric. Comparing this with (4), we obtain a set of equations

κ2γ = 1− (1− c2
s)u

2
t̃ , (10)
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κγ f ′ = −(1− c2
s)ut̃ur, (11)(

γ(r)−1 − γ(r) f ′2
)
= 1 + (1− c2

s)u
2
r , (12)

u2
t̃ − u2

r = 1, (13)

and we require that the conformal factor in (2) is equal to that of (4); that is,

ω =
n

m2csw
. (14)

Equations (10)–(13) give
cs = κ, (15)

ut̃ =
(1− κ2γ)1/2

(1− κ2)1/2 , ur = −
κ(1− γ)1/2

(1− κ2)1/2 , (16)

f ′ =
(1− κ2γ)1/2(1− γ)1/2

γ
. (17)

We could absorb κ in the t̃-coordinate in (9) and formally set κ to a suitable constant
in (17), e.g., κ = 0 or κ = 1. With κ = 0, we would obtain the line element in the form

ds2 =
n

m2csw
[γdt̃2 + 2(1− γ)1/2dt̃drdr2 − r2dΩ2], (18)

conformally equivalent to the Painlevé-Gullstrand metric. With κ = 1, we would obtain

ds2 =
n

m2csw
[γdt̃2 + 2(1− γ)dt̃dr− (2− γ)dr2 − r2dΩ2]. (19)

So far, we basically agree with previous works [3,4,15], which have rendered the metric
conformally equivalent to the Schwarzschild metric in Painlevé-Gullstrand coordinates. We
differ only in the conformal factor, since these papers use a non-relativistic acoustic metric.

From now on, we depart from the approach of Refs. [3,4,15], in which the continuity
equation is imposed, and the external force is invoked to preserve the consistency of
the definition of the speed of sound with the Euler equation. Instead, we adopt the
approach of Ref. [17], which is different from the approaches in Refs. [3,4,15] basically,
in two assumptions. First, we do not require isentropy of our fluid, and therefore the
continuity equation need not be imposed. Second, we adhere to the standard definition of
the the speed of sound without invoking any external force.

By applying the potential-flow Equation (6), we derive closed-form expressions for w,
n, and ω. Since the metric (9) is stationary, except for the conformal factor ω, the velocity
potential must be of the form

θ = m(t̃ + g(r)), (20)

where g(r) is a function of r and m is an arbitrary mass. Then, Equation (6) gives

w =
m
ut̃

= m
(1− κ2)1/2

(1− κ2γ)1/2 . (21)

Moreover, it follows from (6) that the function g in (20) must satisfy

g′ =
w
m

ur = −
κ(1− γ)1/2

(1− κ2γ)1/2 . (22)

From the definition of the speed of sound

c2
s =

∂p
∂ρ

∣∣∣∣
s
=

n
w

(
∂n
∂w

∣∣∣∣
s

)−1
, (23)
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where the subscript s denotes that the specific entropy s is kept fixed, we find

n(w, s) = c1(s)w1/κ2
, (24)

where c1(s) is an arbitrary function of s. The specific entropy s is generally a function of
θ [17], so (20) implies s = s(t̃ + g(r)). Then, from (14), we obtain

ω =
c1(s)

κm3−1/κ2

(
1− κ2

1− κ2γ(r)

)(1/κ2−1)/2

. (25)

Clearly, if the speed of sound cs ≡ κ 6= 1, the conformal factor is a nontrivial function
of r and t̃, so the acoustic metric in ordinary fluids with cs < 1 can only describe the metric
conformally invariant to the Schwarzschild metric. However, if we choose

c1(s) = m3−1/κ2
h(s)1/κ2−1, (26)

where h is a function of s independent of κ, we get ω → 1 in the ultra-relativistic limit
cs → 1 of a stiff fluid, and the acoustic metric approaches the Schwarzschild metric
arbitrarily close.

At first sight, it looks as if the metric (4) is ill-defined in the limit cs → 1. However, we
can absorb the factor (1− c2

s) into the velocity vector by redefining

uµ = (1− c2
s)
−1/2ũµ, (27)

with normalization
gµνũµũν = 1− c2

s , (28)

so that in the limit cs → 1 the vector ũµ becomes light-like. In that limit we have

ũt̃ = −ũr =
√

2MG/r, (29)

f = 2MG ln
( r

2MG
− 1
)

. (30)

Now, the acoustic metric
Gµν = gµν − ũµũν (31)

is identical to the Schwarzschild metric in the form similar to Painlevé-Gullstrand coordi-
nates with line element

ds2 = γdt̃2 + 2(1− γ)dt̃dr− (2− γ)dr2 − r2dΩ2. (32)

It may be easily checked that, by applying the coordinate transformation inverse to (8)
with κ = 1 and f defined in (30), the Schwarzschild metric is recovered in the standard
diagonal form.

3. Field Theoretic Description of the Nonisentropic Fluid Flow

In general, the fluid can be described as a classical field theory in terms of a scalar field
θ(x) and the kinetic term X = gµνθ,µθ,ν through the prescription [17]: p(w, s) = L(X, θ),
w =

√
X, n = 2

√
XLX , where the subscript X denotes a derivative with respect to X. The

specific entropy s may be identified with θ or more generally with an unknown function
of θ.

From the thermodynamic relation

n =
∂p
∂w

∣∣∣∣
s

(33)
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we have
p(w, s) =

∫
dw n(w, s). (34)

Using (24), this gives

p(w, s) = c1(s)
w1+1/κ2

1 + 1/κ2 + c2(s), (35)

where the integration constant c2 is a function of s. This gives the on-shell Lagrangian

L = W(θ)

√
X1+1/κ2

1 + 1/κ2 −V(θ), (36)

where we have denoted c1(s) = W(θ), c2(s) = −V(θ). The function V(θ) is not arbitrary,
since we must also satisfy the equation of motion [17]

(2LX gµνθ,µ);ν − ∂L/∂θ = 0. (37)

Consider next the limit 1− κ2 ≡ ε→ 0. In this limit, we find

w =
√

X = mε1/2
( r

2MG

)1/2
, (38)

L =
m3−ε

2
h(s(θ))εXXε/2 −V(θ), (39)

n = m3−εh(s(θ))ε
√

XXε/2 = m3h(s(θ))εε1/2
( r

2MG

)1/2
. (40)

The equation of motion (37) can be written as

2∂t̃(LX∂t̃θ)−
2
r2 ∂r(r2LX∂rθ) =

∂L
∂θ

. (41)

This, together with (20) and (22), has a leading order in ε

2m3

r
= −∂V

∂θ
. (42)

This equation can be solved by making use of the explicit functional relation between
θ and r. From (20) and (22), one finds

θ = −4mMGκ

(
r

2MGε
+

κ2

ε2

)1/2

+ mt̃ + const. (43)

In the limit ε→ 0, we may neglect the t̃ dependence, and keeping the leading orders
in ε, we obtain

r =
εθ2

8m2MG
− 2MG

ε
. (44)

Then, substituting this for r in (42) and integrating, we obtain

V(θ) = 2m4 ln
∣∣∣∣ εθ + 4mMG
εθ − 4mMG

∣∣∣∣. (45)

In the limit ε → 0, the potential tends to zero as V ∼ εθm3/(2MG), so that the La-
grangian (39) in this limit becomes a free massless scalar field Lagrangian. This Lagrangian
describes a stiff fluid with the equation of state p = ρ and the sound speed equal to the
speed of light, as it should according to the discussion in Section 2.
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4. Conclusions

By making use of nonisentropic fluid dynamics, we have succeeded in modeling an
analog of the Schwarzschild spacetime. Applying an analog metric in the form similar
to the metric in Painlevé–Gullstrand coordinates, we have been able to reproduce the
exterior of a Schwarzschild black hole in the limit when the speed of sound approaches the
speed of light. In this case, the acoustic horizon is a physical boundary beyond which the
Schwarzschild geometry breaks down in a way similar to the expected behavior of black
hole firewalls [18,19].

It is important to stress that neither the firewall proposal nor our analog geometry
model can make specific predictions for physics in the black hole interior. Nevertheless, our
analog model offers a physically clear explanation as to why the interior cannot be described
by Schwarzschild geometry. This explanation does not have any explicit dependence on
quantum theory and small distance physics, nor does it depend on the existence of analog
Hawking radiation. It only depends on the assumption that curved geometry emerges from
the acoustic properties of a relativistic fluid. This result is compatible with the general idea
that classical Einstein gravity could be emergent as a fluid phase of some more fundamental
degrees of freedom [21,22].

It is worth mentioning that the analog metric in this paper and in other papers
on analog gravity describes an effective geometry in which fluid acoustic perturbations
propagate and cannot be related to the Einstein equations, as in general relativity. In
particular, the classical BH thermodynamics (first, second and third law) are tightly related
to the Einstein equations, and hence, these thermodynamic laws cannot be reproduced
by an analog metric. However, as demonstrated in previous works, e.g., Refs. [3,4,14], the
analog horizon radiation, dubbed also the analog Hawking radiation, can be reproduced
in the usual way. The analog horizon radiation is a genuine quantum effect in which the
phonon quanta participate.

Finally, we would like to mention that we are not aware of any astrophysical research
related to the study presented here. However, in the framework of the relativistic acoustic
geometry in general, possible effects could be observed in the BH accretion [23] and in high
energy experiments [24,25].
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