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Abstract: The effects of changing hydrological and climatic conditions on the dynamics of phosphorus
(P) were studied in the Northern Adriatic Sea (NA), a coastal system currently affected by these
changes. P limitation is one of the key stresses in the NA and it is a globally important phenomenon
in aquatic ecosystems. Therefore, the response to P stress by inducing alkaline phosphatase activity
(APA) was studied in characteristic water types in the NA, formed by the changing freshwater
input in different thermic conditions. APA was important in providing P for microbial growth in
upper waters dominated by assimilation during the warmer part of the year in stratified conditions.
Contrarily, APA was not important during mixing in the colder part of the year, as well as in waters
dominated by regeneration. In waters influenced by freshwater, temperature had no effect on APA,
while in high-salinity waters, temperature was an important factor for APA increase. The highest APA
occurred during riverine nutrients supply, indicating that the alteration of anthropogenic nutrient
loads might strongly change P status in this coastal system. Furthermore, predicted increases in
winter sea temperature and summer Po River discharge could delay the water column mixing,
prolonging periods of P limitation.

Keywords: P limitation; alkaline phosphatase activity; climate changes; nutrients; organic phosphorus;
microbial biomass; continental shelf; Northern Adriatic

1. Introduction

Phosphorus (P) is an essential nutrient for marine microbes. Growing evidence sug-
gests that P is the limiting nutrient in aquatic environments, such as coastal systems [1–4],
the Mediterranean Sea [5,6], and oligotrophic oceans [7–10]. Furthermore, it is believed
that the open ocean, far from the continental inputs of nutrients, would evolve toward
P-limited conditions due to N2 fixation not balanced by external P inputs [11]. The rise in
N2 fixation and simultaneous disappearance of P stocks observed in the subtropical North
Pacific Ocean between 1989 and 2004 is an illustration of this phenomenon [12]. Many
species of marine phytoplankton and bacteria react to this limitation by accessing organic
P using the enzyme alkaline phosphatase (AP) [13]. Therefore, the importance of alkaline
phosphatase activity (APA) in marine environments has been investigated with a growing
attention (see reviews [13–16]).

On the other hand, most of the coastal zones and continental shelves surrounding
developed countries are subjected to large discharges of anthropogenic nutrients, which
primarily originate from the continental waters runoff [17,18]. These inputs have signifi-
cantly changed the biogeochemistry of these shallow marine environments, often causing
an exponential increase in frequency of coastal hypoxia, at least since the 1960s, as well
as dystrophic phenomena and altered post-eutrophic conditions during the most recent
decades [19,20].
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The Northern Adriatic (NA) is an excellent example of such marine ecosystems. It
is a continental shelf impacted by a large freshwater discharge. On annual scale, fresh-
water input accounts for about one third of the total seawater volume of this marine
region, whereas the discharge of riverine nutrients far exceeds their marine budget in the
area [21–23]. Consequently, parts of this region are among the most productive areas in the
Mediterranean [24,25].

The most prominent characteristic of nutrient discharges in the NA is the extreme
overload of nitrogen (N) compared to P, which makes it a clear example of a marine
ecosystem affected by a persistent nutrient imbalance [26,27]. In the Po River waters, the
main freshwater source in the region, total nitrogen and total phosphorus concentrations
are 249 µmol L−1 and 4.8 µmol L−1, respectively [27]. Consequently, in riverine waters, a
marked nitrogen surplus creates high N/P ratios (70–100) [27]. In productive upper NA
waters influenced by freshwater, inorganic N/P ratios further increase up to 100–600 [28],
reaching values significantly higher than the critical values that mark the transition between
N and P limitation (20–50) [29]. Bioassays based on selective nutrient additions and nutrient
molar ratios have shown P limitation in the NA ([30] and citations therein). In the area,
organic phosphorus concentration markedly exceeds orthophosphate (PO4) concentration,
representing an important source of P for microbial communities [31,32]. Enzyme assays
showed that alkaline phosphatase activity (APA) is important in providing P for microbial
growth in this area ([33] and citations therein). The importance of dissolved organic
phosphorus (DOP) in this area during periods of P limitation was evidenced also by a
mesocosm experiment [34]. However, the authors pointed out that not all DOP was directly
hydrolysable by AP, and that multiple hydrolase activities were necessary to transform
various organic matter pools into molecules accessible to AP.

The NA exhibits marked spatial and temporal variations in environmental conditions
due to alternating influence of the eutrophic freshwater from the western coast and ad-
vection of the oligotrophic waters from the middle Adriatic Sea along the eastern coast.
These two water bodies, characterized by different thermohaline properties and nutrient
contents, influence the geostrophic circulation and the biological cycle in the region [35–37].
Strong oscillations of the runoff and a long-term decrease in phosphate concentrations in
the Po River water (−1.34% yr−1) and seawater (in summer −2.56% yr−1) coupled with
a significant increase in nitrate concentration in seawater (+3.80% yr−1) were observed
in the last decades [27,28]. Moreover, an intense warming induced by climatic forcing
is currently impacting the NA [38,39]. These observations strongly suggest that, in the
future, anthropogenic and climatic drivers might have important cumulative effects on the
biogeochemistry of this shallow marine system.

For these reasons, the analysis of the dynamics of P utilization and recycling is a key
point for the assessment of the ecological status of this marine environment. Due to a
complex hydrodynamic and freshwater influence, it is expected that this region undergoes
different spatial and temporal P stress conditions, consequently inducing different APA
response. Therefore, multiannual datasets of hydrological parameters, nutrients, organic
phosphorus, and microbial biomass were analyzed to establish their influence on APA
(849 datasets collected in 2004–2013). Analyses were performed separately for waters
oversaturated with oxygen, where assimilation processes prevail, and undersaturated
waters, where regeneration processes dominate. The stratification period was compared to
the mixing period, since nutrient sources in these two periods greatly differ. Furthermore,
the situation when the freshwater supply of nutrients triggered new primary production
was compared with the situation in which microbial growth was based on a constant
recycling of once-produced organic matter.

Due to steep gradients of environmental parameters over the year, the NA is a favor-
able basin for conducting studies of environmental change scenarios and their influence
on P stress. The results of this study can improve the understanding of the potential
effects induced by changing hydrological and climatic conditions on the biogeochemistry
of coastal systems.
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2. Materials and Methods
2.1. Area Description and Main Case Study

The NA is a shallow continental shelf (up to 50 m of depth) with strong trophic
gradients and a high temporal variability of the oceanographic properties. The circula-
tion in the region is complex, exhibiting large- and small-scale patterns of thermohaline
origin [28,38,40,41]. The productivity and the cycling of the nutrients are highly vari-
able [26,38], but they can be summarized in the following main case studies.

Mixing period without freshwater inputs: In winter, a prevalent cyclonic circulation
pushes high-salinity waters, characterized by low nutrient contents and low phytoplankton
abundances, from the middle Adriatic Sea in the northern shelf [42–44]. The outflow
of more eutrophic low-salinity waters is restricted to a narrow belt along the western
coast [45]. The water column is completely mixed, and the main source of nutrients for
microbes is the remineralization of organic matter in the entire water column [38].

Mixing period with recent freshwater inputs: Episodic events of high runoff at the same
time as ENE wind can induce a “double gyre” circulation, characterized by a cyclonic gyre
in the northern area of the basin, which is able to push the Po River plume up to the eastern
coast [46]. This process causes the spreading of new freshwater over a rather homogeneous
water column and a large dispersion of riverine nutrients in the NA, resulting in high
production over the entire NA [38,47,48].

Stratified period with recent freshwater inputs: In late spring and early summer, the
formation of gyres causes a large retention of riverine waters in the upper layer over
most of the NA, reducing considerably the inflow of middle Adriatic waters [49,50]. The
stratification of the water column strongly increases, with the displacement of thermoclines
and haloclines at depths of 5–15 m [26]. Po River discharges generate low-salinity, nutrient-
rich waters in the upper layer, triggering and sustaining phytoplankton blooms, particularly
frequent during late spring [51].

Stratified period with the presence of aged freshwater: In summer and early autumn, a
high retention of riverine waters in the NA, supported by a reduced water exchange and
stable meteorological conditions, is often coupled with periods of scarce runoff. Optimal
light and temperature favor phytoplankton growth, causing the depletion of nutrients
in upper waters. Since stable pycnoclines do not permit the upward flux of nutrients
from deeper waters, nutrient availability in upper waters mainly depends on the recycling
of organic matter. However, these waters are characterized with high levels of organic
matter produced during freshwater inputs [52]. Persistent high concentrations of dissolved
organic carbon (DOC) are constituted mainly of compounds, transformed by bacteria,
microzooplankton, and viruses [53].

Stratified period without freshwater inputs: Presence of pronounced thermoclines in the
NA stabilize the water column even in the absence of a significant freshwater input. The
absence of riverine inputs causes the depletion of inorganic nutrient pools in the upper
waters, thus creating oligotrophic conditions [26,38].

Early autumn conditions: In October, summer stratification is usually broken out and
the cyclonic circulation is re-established, determining rather complex nutrient dynamics.
The enrichment of upper waters by the nutrients regenerated in deeper waters co-occurs
with the inflow of oligotrophic waters from the middle Adriatic Sea. Furthermore, sub-
stantial inputs of riverine nutrients, characteristic for this period, can trigger intensive
phytoplankton blooms [54]. With the onset of vertical mixing, the resuspension of nutrients
and organic matter from the sediments can occur due to the shallowness of this continental
shelf [55].

2.2. Sampling Strategy

Six stations were sampled during 45 oceanographic surveys carried out in the NA from
May 2004 to November 2013 (Figure 1). Sampling stations cover a west to east gradient of
oceanographic conditions representative of the major processes in this area. During these
surveys, a dataset (n = 849) of hydrological parameters, inorganic nutrients, dissolved
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organic phosphorus (DOP), APA, chlorophyll a (chl a), and heterotrophic bacteria (HB) was
collected. Today, it represents the largest dataset of APA data available in the NA, with
robust spatial and temporal coverage.
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Figure 1. Sampling stations in the Northern Adriatic and definition of the three sub-areas with
distinct oceanographic characteristics. Major rivers in the region [21] and monthly distribution of
APA data in the dataset are also shown.

Sea temperature and salinity were determined with an Sea-Bird Electronics, Wash-
ington, USA (SBE25) conductivity–temperature–depth probe. Samples for analysis of
dissolved oxygen, nutrients, APA, chl a, and HB were collected with 5 L Niskin bottles.
Surface, intermediate (10 m), and near bottom waters (2 m above the bottom) were always
sampled (maximum bottom depth 37 m), while additional depths (5, 20 and 30 m) were
taken often.

2.3. Analytical Protocol

Dissolved oxygen saturation (O2 sat) and inorganic nutrients (nitrate, NO3; nitrite,
NO2; ammonium, NH4; orthophosphate, PO4) analyses were performed aboard the re-
search vessel immediately after sample collection, using, respectively, Winkler titration and
spectrophotometric methods [56,57]. PO4 was determined as blue molybdate complex re-
duced with ascorbic acid. NO2 and NO3 were determined as a pink azo compound, before
and after reduction of the samples on columns filled with metallic cadmium filings coated
with copper. NH4 was determined using the indophenol blue method. Precision and limit
of detection were as follows: PO4 0.03 and 0.03 µmol L−1; NO3 0.05 and 0.025 µmoL l−1;
NO2 0.01 and 0.01 µmol L−1; ammonia 0.1 and 0.098 µmol L−1. Samples for total dissolved
phosphorus (TDP) were filtered (Whatman GF/F, precombusted at 500 ◦C) and stored
in autoclavable polypropylene tubes at −30 ◦C. In the laboratory, ashore analyses were
performed using a wet oxidation method with persulphate [58], and obtained PO4 was
measured as described above. Dissolved organic phosphorus (DOP) was calculated as TDP
– PO4. Dissolved inorganic nitrogen (DIN) was calculated as the sum of NO3, NO2, and
NH4.



Water 2021, 13, 2750 5 of 25

For the determination of chlorophyll a (chl a) concentration, 500 mL of seawater was
filtered on Whatman GF/C filters. Filters were frozen (−18 ◦C) and analyzed within a few
days by the fluorometric procedure [57].

Seawater samples for heterotrophic bacteria (bacteria; HB) counting were preserved
with formaldehyde (2% final concentration) and stored at 4 ◦C until ashore analysis.
The samples were stained with 4′,6-diamidino-2-phenylindole (DAPI, 1 µg mL−1 final
concentration) for 10 min [59] and filtered onto black 0.2 µm Nuclepore polycarbonate
filters (Whatman, UK). An epifluorescence microscope (Leitz Laborlux D and Nikon
Microphot-SA) was used at a magnification of 1000x. At least 500 cells per sample were
counted.

The determination of alkaline phosphatase activity (APA) was performed aboard
the research vessel immediately after sample collection. Seawater was filtered through a
200 µm mesh to remove mesozooplankton. Measurements were performed in duplicate or
triplicate, using the fluorogenic substrate analog methyllumbelliferyl–phosphate (MUF–P),
dissolved in methyl cellosolve and diluted with water immediately before addition, follow-
ing the procedure of Hoppe [60]. Aliquots of 5 mL were used and the final concentration
of the substrate in samples was 50 µmol L−1 (saturation concentration [61]). Incubation
was performed in dark, at in situ temperature and pH. Fluorescence was measured imme-
diately after substrate addition and after about 1 h of incubation using a Turner Designs
700 fluorometer with excitation at 365 nm and emission at 460 nm. APA (nmol L−1 h−1)
was calculated as the difference between those measurements divided by the incubation
time after calibration of the fluorometer with methyllumbelliferone, the product of MUF–P
degradation.

Specific APA was calculated by dividing total APA with the carbon (C) content in
microorganisms. HB abundance was converted to the C content by a conversion factor of
20 fg C cell−1 [62], while phytoplankton biomass was converted using a factor of 50 µg C
per µg chl a [63].

2.4. Definition of Water Types

Considering the main case study described in Section 2.1, data were divided into
waters saturated (O2 ≥ 100%) or undersaturated (O2 < 100%) in dissolved oxygen and
affected (S < 37.5; FW) or not affected (S ≥ 37.5; no-FW) by the input of freshwater. On
the basis of nutrients and chl a concentrations in low-salinity waters, it was distinguished
between “new” freshwater inputs (DIN > 1 µmol l−1 or chl a > 1; new-FW) and “aged”
freshwater (aged-FW) circulating in the region, in which nutrients are exhausted and chl a
values are low. The stratification (STRAT) and mixing (MIX) periods were differentiated
on the basis of temperature profiles in the water column (MIX ∆Tsurface-bottom < 1 ◦C). The
analysis of October was presented separately, since in this transient month, hydrodynamic
pattern and nutrient sources are rather complex. Only the main case studies were described
(Table A1). Marginal waters, rarely found, were not considered. During the mixing period,
aged-FW waters were not found. In October, only two cases of saturated no-FW waters
were found. In oxygen-undersaturated waters during STRAT and MIX, no-FW waters
strongly predominated (95%), with few cases of new- or aged-FW waters (3.5 and 1%,
respectively); consequently, these waters were not differentiated. In October, two types of
undersaturated waters were found: new-FW and no-FW waters (Table A1).

The differences among water types were discussed only if statistically significant;
otherwise, it was evidenced in the text.
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2.5. Data Processing

Results are presented in box-and-whisker statistical plots showing median, interquar-
tile, range of 95% of the data, and outliers. The significance of the differences among the
medians of each parameter in distinct water types (FW, aged-FW, no-FW) and periods (MIX,
STRAT, October) in saturated and undersaturated conditions was assessed by nonpara-
metric Kruskal–Wallis test [64]. The results of this analysis (H values and probability) are
shown in Appendix A (Table A1). If only two water types are compared, the routine returns
the U value of the Mann–Whitney test. The relationships among the parameters in different
water types were constructed by principal component analysis (PCA) on log-transformed
data.

3. Results

In the following sections, values reported in brackets are medians, unless stated
otherwise. Due to the large variability of presented parameters, medians are more realistic
than average values.

3.1. Annual Cycles of the Po River Flow, Environmental Conditions, Microbial Biomass, and APA

The regime of the Po River shows a clear seasonal cycle with two wet seasons (spring
and autumn) and two dry seasons (winter and summer), although high peaks of discharge
can be observed in every month (Figure 2). In 2004–2013, median flow rate of the Po River
was 1060 m3s−1, with values ranging from 168 to 7090 m3s−1.
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In 2004–2013, seawater temperature displayed an annual cycle typical of temperate re-
gions, with winter minimum (February 8.6 ◦C) and summer maximum in oxygen-saturated,
upper waters (July–August, 23.8 ◦C; Figure 3a). In undersaturated, deeper waters, changes
were less pronounced, and maximal values occurred with the onset of mixing in the wa-
ter column (October). In these deeper waters, salinity was almost constant (38.2–38.4),
except for a somewhat lower value (37.7) at the beginning of mixing in the water col-
umn (Figure 3b). The upper waters were characterized with markedly lower salinity in
April–October (36.9–37.6).
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Figure 3. Annual cycles of (a) temperature (T), and (b) salinity (S) in oxygen-saturated (blue squares)
and oxygen-undersaturated waters (golden squares) in the Northern Adriatic during 2004–2013. Plot
characteristics are reported in Figure 2.

In oxygen-saturated waters, DIN concentration gradually decreased from April/May
(1.8 µmol L−1) to the minimum in July–August (0.9 µmol L−1, down to 0.2 µmol L−1). In
these months, very high values (up to 76 µmol L−1) were found in concomitance to new
freshwater input. Values increased again toward autumn and winter (2.2–4.1 µmol L−1;
Figure 4a). In winter, peaks in DIN concentration were less frequent than in other seasons
(Figure 4a). In deeper, undersaturated waters, changes of DIN concentrations were alike,
although they were less marked (1.2–1.8 µmol L−1), except during the autumn when
maximal values (median 3.5 µmol L−1) were observed.
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PO4 concentration did not show a clear seasonal cycle (Figure 4f). In upper, oxygen-
saturated waters, it was usually below the detection limit of the method. In undersaturated
waters, it was somewhat higher, but rarely exceeding 0.1 µmol L−1.

Chl a concentration paralleled changes in nutrient concentration. In oxygen-saturated
waters, it decreased from April (0.8 µg L−1), reaching minimal values in July (0.2 µg L−1),
and afterwards, it gradually increased until October (1.7 µg L−1; Figure 4b). In spite of
generally low values during the summer, high values (up to 13.6 µg L−1) were found,
related to the freshwater nutrients supply (Figure 4a,b). In winter, chl a concentration was
similar to early spring values (0.6–1.0 µg L−1). Similar to DIN concentration, peaks of chl a
concentration were sporadic in winter months (Figure 4b). In undersaturated waters, the
seasonal cycle of chl a was not clear (Figure 4b), but summer values (0.7–0.8 µg L−1) were
markedly higher than those in oxygen-saturated waters.

Changes of HB abundance were similar in saturated and undersaturated waters
(Figure 4c). Minimal values were found in cold waters in February (31 × 107 cell L−1),
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whereas maximal values were found in April (60–63 × 107 cell L−1) and September
(70–80 × 107 cell L−1).

The annual APA cycle was inverse to those of nutrients (Figure 4a,d). In oxygen-
saturated waters, APA increased from March (91 nmol L−1h−1) to May (580 nmol L−1h−1)
and remained high during the summer and early autumn (Figure 4d). In contrast, APA was
low during the winter, with a minimum in January (4 nmol L−1h−1). In undersaturated
waters, the seasonal cycle of APA was similar to that in saturated waters, although the
values were several times lower (59–180 nmol L−1 h−1).

The seasonal cycle of DOP concentration was characterized by the highest values in
mixed waters in December–February (0.6–0–0.8 µmol L−1), by the lowest values in summer
(0.1 µmol L−1), and by similar concentrations in saturated and undersaturated waters
(Figure 4e). The changes of DOP concentration were clearly inverse to the changes of APA
(Figure 4d,e).

3.2. Spatial and Temporal Patterns of Water Types

The frequency of occurrence (%) of main water types defined in Section 2.4 (new-FW,
aged-FW, and no-FW waters, saturated or undersaturated in oxygen) showed distinct
patterns along this section (Figure 5).
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Water bodies characterized by the presence of a recent advection of riverine waters
(new-FW) were mainly located in the upper layer, with a higher frequency in the western
and central areas (up to 72 and 46% of the data, respectively) compared to the eastern
area (Figure 5a). They were almost always characterized by oxygen oversaturation; under-
saturated conditions were rarely observed in the subsurface layer (5–10 m of depth; not
shown).

Aged-FW waters were present along the whole section, with the highest frequency
in upper layers of central (SJ103) and eastern (SJ107) stations (up to 44%; Figure 5b). The
pattern of aged-FW waters confirmed that low-salinity water can spread in the central and
eastern areas, if vertical density gradients are persistent [26]. Aged-FW waters were almost
always oversaturated in oxygen.

Oxygen-saturated no-FW waters were mainly located in the intermediate layer of the
water column in the western and central areas (10–25 m of depth), as well as in the whole
water column in the easternmost station RV001 (up to 65%; Figure 5c). By contrast, the
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frequency of oxygen-undersaturated no-FW waters was higher than 50% below 20 m of
depth, and it was almost equal to 100% at the bottom of most of the stations (Figure 5d).

Reported water types showed a pronounced seasonal cycle (Figure 6). New-FW waters
were observed mainly in April–May and September–October, with a frequency up to 32%
of the data, whereas the retention of aged-FW waters was high in July–September (up to
35%) (Figure 6a). Together, these two low-salinity water types constituted from 34 to 52%
of the data in the period from April to October.
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Low-salinity waters were almost always oversaturated by dissolved oxygen, becoming
undersaturated only in October–December (8–26%; Figure 6b).

Oxygen-saturated no-FW waters occupied most of the section in February and March
(76–94%), when the respiration is not a predominant process in the water column and
the coastal front scarcely affects the considered area (Figure 6a). This water type became
progressively less frequent through the year, and disappeared in November–January, a
period of the year in which no-FW waters are almost always undersaturated in oxygen
(87%; Figure 6b).

3.3. Environmental and Trophic Characteristics of Water Types

High temperature was characteristic of saturated waters during STRAT and in October
(17.1–23.5 ◦C), with the maximum in aged-FW waters and the minimum in no-FW waters
(Figure A1a,b). MIX periods, as well as deeper undersaturated layers during STRAT, were
characterized by colder waters (8.6–14.2 ◦C). In undersaturated waters, markedly higher
values of temperature were found only in October (18.9 ◦C).

The highest DIN concentration was found in new-FW waters during STRAT and
MIX, as well as in October in undersaturated waters (3.2–5.7 µmol L−1; Figure 7a). It
was particularly low in aged-FW waters, and in saturated no-FW waters during STRAT
(0.8–1.1 µmol L−1). Intermediate values were found in saturated no-FW waters during
MIX and undersaturated waters during STRAT and MIX (2.0–2.9 µmol L−1).
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Figure 7. Distribution of (a) DIN, (b) chl a, (c) HB, (d) APA, (e) specific APA (sAPA), and (f) DOP in
water types in the Northern Adriatic during 2004–2013. Abbreviations and plot characteristics are
reported in Figures 2 and 4. The significance of the differences among the water types (Kruskal–Wallis
test) is reported in Appendix A (Table A1).

The pattern of PO4 (Figure A1c) was similar to that of DIN, although differences were
less pronounced. The highest values (0.04 µmol L−1) were found in undersaturated waters
in October, whereas the lowest values (0.01 µmol L−1) were found in saturated waters
during STRAT.

Inorganic N/P ratio (57–202; Figure A1d) was significantly higher than the critical for
P limitation in all water types. The highest N/P ratio was characteristic for new-FW waters
during STRAT and MIX. The lowest ratio was found in undersaturated waters in October,
followed by that in aged-FW and no-FW saturated waters during STRAT (75).

The highest chl a concentration (1.2–1.5 µg L−1) was found in new-FW waters satu-
rated by oxygen and rich in nutrients, in all periods (Figure 7b). The lowest values were
characteristic for nutrient-depleted aged-FW and saturated no-FW waters during STRAT
(0.3 and 0.4 µg L−1, respectively), as well as for nutrient-replete cold saturated waters
during MIX (0.4 µg L−1). In aged-FW waters during October, and in undersaturated waters,
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intermediate values were found (0.7 µg L−1): higher than in nutrient-depleted and lower
than in nutrient-rich saturated waters.

HB abundance was high in new-FW waters during STRAT and October (73–87× 107 cell L−1;
Figure 7c). A decrease was observed in aged-FW waters of both periods (59–63 × 107 cell L−1),
although much less marked than the decrease in chl a concentration (Figure 7b,c). Low
abundance was found in saturated no-FW waters during STRAT (39× 107 cell L−1), as well
as in MIX (32–37 × 107 cell L−1), irrespective of freshwater influence. In undersaturated
waters, bacterial abundance was at intermediate levels (50–51 × 107 cell L−1).

In new-FW waters, a clear decrease of APA was observed from high values in
STRAT (1129 nmol L−1 h−1; up to 43,000 nmol L−1 h−1), to intermediate in October
(484 nmol L−1 h−1) and to relatively low during MIX (163 nmol L−1 h−1 Figure 7d).
Intermediate values were observed in aged-FW waters (387–462 nmol L−1 h−1). Low
APA was found in no-FW saturated and undersaturated waters, particularly during MIX
(20–26 nmol L−1 h−1).

Since fluctuations in microbial biomass influence APA, specific APA was calculated
to eliminate this effect. In saturated waters, specific APA (Figure 7e) was for an or-
der of magnitude higher during STRAT (10.5–14.9 nmol µg C−1 h−1) than during MIX
(1.4 nmol µg C−1 h−1). Intermediate values were found in October (5.9–8.0 nmol µg C−1 h−1),
with higher values in aged-FW than in new-FW. During STRAT, the highest values were
characteristic for new-FW waters, and the lowest values for no-FW. During MIX, specific
APA was similar in waters influenced or not by freshwater. The lowest values were found
in undersaturated waters during MIX (0.5 nmol µg C−1 h−1).

DOP concentration was low in waters with high APA and vice versa (Figure 7d,f).
Consequently, in saturated waters, DOP concentration was markedly lower during STRAT
(0.15–0.18 µmol L−1) than during MIX (0.46–0.47 µmol L−1). However, in October, relatively
high APA was coupled with relatively high DOP (0.33–0.40 µmol L−1). In undersaturated
waters, DOP values increased from STRAT (0.19 µmol L−1) toward MIX (0.41 µmol L−1).

Unlike in STRAT and MIX, in October, undersaturated new-FW waters constituted an
important part of the water body. These waters had similar temperature, but lower DIN
concentration (3.0 µmol L−1), higher N/P ratio (246), chl a concentration (1.0 µg L−1), and
bacterial abundance (6 × 107 cell L−1) (data not shown) than the respective undersaturated
no-FW waters. Although APA was twice higher in new-FW waters, specific APA was
similarly low in both water types.

3.4. Relationships between APA and Relevant Parameters

The influence of microbial biomasses, phosphorus availability, and temperature on
APA was further analyzed by means of principal component analysis (PCA).

In oxygen-saturated new-FW waters, PC1 explained 38.04–43.17% and PC2 21.74–31.52%
of the variability (Figure 8). In all periods, chl a and HB were positively correlated. Positive
correlation of APA with HB and chl a was found only in STRAT (Figure 8a). In this period,
APA was not correlated with PO4, although PO4 and DOP were inversely correlated. In
October, APA was inversely correlated with DOP and PO4, and only loosely correlated
with chl a and HB (Figure 8b). In MIX, APA was not correlated with chl a and HB, but it
was inversely correlated with DOP (Figure 8c). APA and temperature were not correlated
in STRAT, while in October and MIX, they were inverse.



Water 2021, 13, 2750 13 of 25

Water 2021, 13, 2750  12  of  25 
 

 

cell L−1), although much less marked than the decrease in chl a concentration (Figure 7b,c). 

Low abundance was found in saturated no‐FW waters during STRAT (39.107 cell L−1), as 

well as in MIX (32–37.107 cell L−1), irrespective of freshwater influence. In undersaturated 

waters, bacterial abundance was at intermediate levels (50‐51.107 cell L−1). 

In new‐FW waters, a clear decrease of APA was observed from high values in STRAT 

(1129 nmol L−1 h−1; up to 43,000 nmol L−1 h−1), to intermediate in October (484 nmol L−1 h−1) 

and to relatively low during MIX (163 nmol L−1 h−1 Figure 7d). Intermediate values were 

observed in aged‐FW waters (387–462 nmol L−1 h−1). Low APA was found in no‐FW satu‐

rated and undersaturated waters, particularly during MIX (20‐26 nmol L−1 h−1). 

Since fluctuations in microbial biomass influence APA, specific APA was calculated 

to eliminate this effect. In saturated waters, specific APA (Figure 7e) was for an order of 

magnitude higher during STRAT (10.5–14.9 nmol μg C−1 h−1) than during MIX (1.4 nmol 

μg C−1 h−1).  Intermediate values were  found  in October  (5.9–8.0 nmol μg C−1 h−1), with 

higher values in aged‐FW than in new‐FW. During STRAT, the highest values were char‐

acteristic for new‐FW waters, and the lowest values for no‐FW. During MIX, specific APA 

was similar in waters influenced or not by freshwater. The lowest values were found in 

undersaturated waters during MIX (0.5 nmol μg C−1 h−1). 

DOP concentration was low in waters with high APA and vice versa (Figure 7d,f). 

Consequently,  in  saturated  waters,  DOP  concentration  was  markedly  lower  during 

STRAT (0.15–0.18 μmol L−1) than during MIX (0.46–0.47 μmol L−1). However, in October, 

relatively high APA was coupled with relatively high DOP (0.33–0.40 μmol L−1). In under‐

saturated waters, DOP values increased from STRAT (0.19 μmol L−1) toward MIX (0.41 

μmol L−1). 

Unlike in STRAT and MIX, in October, undersaturated new‐FW waters constituted 

an  important part of  the water body. These waters had similar temperature, but  lower 

DIN concentration (3.0 μmol L−1), higher N/P ratio (246), chl a concentration (1.0 μg L−1), 

and bacterial abundance (6.107 cell L−1) (data not shown) than the respective undersatu‐

rated no‐FW waters. Although APA was twice higher in new‐FW waters, specific APA 

was similarly low in both water types. 

3.4. Relationships Between APA and Relevant Parameters 

The influence of microbial biomasses, phosphorus availability, and temperature on 

APA was further analyzed by means of principal component analysis (PCA). 

In oxygen‐saturated new‐FW waters, PC1 explained 38.04–43.17% and PC2 21.74–

31.52% of the variability (Figure 8). In all periods, chl a and HB were positively correlated. 

Positive correlation of APA with HB and chl a was found only in STRAT (Figure 8a). In 

this period, APA was not correlated with PO4, although PO4 and DOP were inversely cor‐

related. In October, APA was inversely correlated with DOP and PO4, and only loosely 

correlated with chl a and HB (Figure 8b). In MIX, APA was not correlated with chl a and 

HB, but it was inversely correlated with DOP (Figure 8c). APA and temperature were not 

correlated in STRAT, while in October and MIX, they were inverse. 

 

Figure 8. Principal component analysis (PCA) for relevant variables in oxygen‐saturated new‐FW 

waters during (a) STRAT, (b) October, and (c) MIX. Variables: alkaline phosphatase activity 

(APA), dissolved organic phosphorus (DOP), orthophosphate (PO4), chlorophyll a (chl a), and 

Figure 8. Principal component analysis (PCA) for relevant variables in oxygen-saturated new-FW
waters during (a) STRAT, (b) October, and (c) MIX. Variables: alkaline phosphatase activity (APA),
dissolved organic phosphorus (DOP), orthophosphate (PO4), chlorophyll a (chl a), and heterotrophic
bacteria (HB). PCA was constructed with log-transformed values of respective parameters.

In oxygen-saturated aged-FW waters, PC1 explained 29.59–61.35% and PC2 15.13–25.80%
of the variability (Figure 9). In these waters, HB and chl a were not correlated. APA was
positively correlated with chl a, but not with HB. In October, influence of APA was weak,
while chl a was also positively correlated with PO4. HB was negatively correlated with
DOP, and positively correlated with temperature and PO4 (Figure 9). However, in both
periods, HB correlation with temperature was more important than with PO4. APA was
not correlated (STRAT), or it was inverse (October) to temperature.
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Figure 9. Principal component analysis (PCA) for relevant variables in oxygen-saturated aged-FW
waters during (a) STRAT and (b) October. Abbreviations are reported in Figure 8.

In oxygen-saturated no-FW waters, PC1 explained 33.22–34.77% and PC2 24.05–26.86%
of the variability (Figure 10). In these waters, chl a and HB were positively correlated. APA
was not correlated with chl a and HB, but it was positively correlated with temperature,
negatively with DOP, and also with PO4 in MIX. In STRAT, chl a and HB were inverse to
PO4, while they were positively correlated in MIX.
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In oxygen-undersaturated no-FW waters, PC1 explained 30.48–43.19% and PC2
19.71–23.93% of the variability (Figure 11). APA, chl a, and HB were positively corre-
lated in STRAT and MIX (Figure 11a,c). APA was also negatively correlated with DOP, but
in STRAT, negative correlation with PO4 was more important than with DOP. Temperature
and APA were not correlated.
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Figure 11. Principal component analysis (PCA) for relevant variables in oxygen-undersaturated
waters in (a) STRAT, (b) October, and (c) MIX. Abbreviations are reported in Figure 8.

In October, undersaturated no-FW (Figure 11b) and new-FW (not shown) waters
showed similar PCA. Chl a and HB were not correlated. APA was positively correlated
with chl a and temperature, negatively correlated with PO4, and not correlated with HB.
The only difference between these two water types in October was that in no-FW waters,
HB was inversely correlated with DOP (Figure 11b), while in new-FW waters, HB was
positively correlated with PO4.

4. Discussion

During 2004–2013, environmental conditions and changes of microbial biomass were
affected by the seasonal heating/cooling processes, changes in light intensity, and freshwa-
ter inputs, as already reported for the area [28,38,65,66]. Temperature followed an annual
cycle common at these latitudes with minimal values in February and maximal values in
upper waters in July–August. The cold months, November–March, were characterized
with homogenous water column and high-salinity waters. From April, a progressive
stratification of the water column occurred, reaching the maximum in summer.

Phytoplankton biomass followed changes in nutrients availability, displaying high
values in late winter–spring and low values in summer. Bacterial abundance was minimal
in cold waters during November–March, while maximal values were observed during
phytoplankton blooms in April–May and in September–October. High Po River discharges
during the stratification period bring a high quantity of freshwater nutrients, triggering
massive phytoplankton blooms (chl a up to 13.6 µg L−1). Very fast PO4 uptake caused
low PO4 concentrations (maximal 0.15 µmol L−1), even in riverine plumes enriched in
DIN (up to 76 µmol L−1). This is consistent with the capacity of phytoplankton to store
large quantity of P into intracellular pools when growing in P-limiting conditions and in
changing nutrient availability [67,68].

APA followed a clear seasonal cycle with markedly higher values in waters with
predominating assimilation than in waters predominated by regeneration. During cold
months, low APA and high DOP concentration indicated that organic pool was not impor-
tant as P source for microbes, suggesting a weak P stress. In waters where the assimilation
prevailed, APA increased toward spring and remained high during summer. In these
months, microbial growth, particularly of phytoplankton, was limited by low nutrient con-
centration, especially by PO4 which was practically exhausted in upper oxygen-saturated
waters. High APA and low DOP concentration indicated a significant utilization of organic
pool. Pulses of riverine nutrients even boosted APA due to the marked DIN surplus
in respect to PO4 in riverine waters [23,27]. While the low winter APA was similar to
elsewhere, high spring–summer values during freshets (often >1000 nmol L−1 h−1) far
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exceeded values reported for the Mediterranean Sea [69] and coastal areas influenced by
freshwater [3,4,13,70,71], as well as for the productive Baltic Sea [72]. This high APA could
be explained by the combined effects of a high quantity of freshwater nutrients which
stimulate microbial growth, and a strongly unbalanced inorganic N/P ratio in riverine
waters which exacerbates P-limiting conditions. In productive eutrophic waters, low PO4
concentrations (0.01 µmol L−1) were similar to oligotrophic Mediterranean waters [6]. In
contrast, DIN concentrations often reach values typical for more eutrophic areas, such as
the Baltic Sea [73]. The high availability of DIN depletes PO4 and stimulates APA.

In waters predominated by regeneration, APA was markedly lower than in waters
where the assimilation prevailed. In these waters, regenerated PO4 was generally higher
than in oxygen-saturated waters, and APA could have a different function. Some authors
supposed that APA is not regulated only by PO4 concentration, but it could be expressed
in C-limited conditions, contributing to both C and P cycles [13,74,75].

4.1. Eutrophic Events

In upper waters, freshets increased nutrients availability and sustained high phyto-
plankton biomass in all periods. In these waters, where classic food web predominates [51],
bacteria and phytoplankton were related, suggesting a coupling between primary produc-
tion and bacterial carbon demand. However, microbial ecology in specific periods differs
greatly. During eutrophic events, APA was not influenced by temperature.

During the stratification, bacterial abundance and phytoplankton biomass were high.
Both phytoplankton and bacteria were not related to PO4, but correlated with APA, indi-
cating that both relied on DOP. The ability of phytoplankton and bacteria to use DOP as a
source of P was already confirmed in the NA [76,77]. In conditions of high inorganic nutri-
ents, phytoplankton outcompeted bacteria [78,79] that remained P-limited. However, due
to the marked riverine overload of N compared to P, phytoplankton also remained P-limited.
These eutrophic waters were characterized with the highest N/P ratio and the highest
degree of P stress. High APA (median 1129 nmol L−1 h−1, up to 43,000 nmol L−1 h−1)
exceed values reported for other coastal areas influenced by freshwater, as mentioned
above. While the high APA in eutrophic waters could be due to high microbial biomass,
the highest specific APA gives a good insight into P limitation of microbial growth [80].
Indeed, during the stratification in eutrophic NA waters all dominant diatom species
expressed APA and P turnover time mediated by APA was shorter than 5 h [33], indicating
P limitation [81]. Consequently, the lowest DOP concentration was found, in spite of the
enhanced production of dissolved organic matter in these low-salinity waters [52].

During the mixing period, bacterial growth in eutrophic waters was slowed down by
unfavorable low temperature, causing their low abundance. Phytoplankton and bacteria
were not related to APA but to PO4, suggesting that they thrived on it. Low APA and
high DOP concentration indicated that DOP was not a significant source of P for microbes.
Specific APA was for one order of magnitude lower than in the respective waters during the
stratification period, pointing to the low level of P stress. In these waters, long P turnover
time was found (62–257 h), and phytoplankton did not express APA [33]. These findings
indicate the mitigation of P limitation during the mixing period.

The observed differences of nutrient acquisition mechanisms during freshets in strat-
ified and mixed conditions are due to different nutrient sources. While during freshets
in stratified conditions the main source was N/P unbalanced riverine supply, during the
mixing, N/P-balanced nutrient flux from bottom waters was superimposed to the riverine
supply. In bottom waters, N/P ratio is almost balanced for microbial requirements [33,82].
However, during the mixing period, N/P ratio was still high and apparently unbalanced
for microbial requirements in waters where the assimilation prevailed. This is due to the
very fast uptake of imported PO4 [83]. Furthermore, in this period, microbial growth is
also limited by low temperature (bacteria) and low light intensity (phytoplankton).

During freshets in October, the nutrient flux from the bottom and their riverine im-
port triggered phytoplankton blooms. Water temperature was still favorable for bacterial
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growth, and in these waters their maximal abundance was found. Bacteria and phyto-
plankton were not completely independent of APA, although their relation was looser than
during the stratification, particularly for phytoplankton. Specific APA was between the
low winter and high summer values. DOP concentration was twice the summer value,
although significantly lower than during the mixing period. This is in agreement with an
intermediate P turnover time found in this month (17–24 h) [33]. Onset of mixing alleviates
P limitation, but unlike during the winter, microbes are still experiencing P deficit.

Productive low-salinity waters constituted an important part of waters in the NA,
particularly in upper layers of western and central areas (up to 72% of waters). Their maxi-
mal incidence was observed in April–May and September–October, when the increased Po
River discharge and formation of anticyclonic gyres retained freshwater in the area and
transported it towards the east [40,84]. During the mixing period, contribution of eutrophic
low-salinity waters was only intermittent, due to a cyclonic circulation and outflow of
riverine waters along the western coast [45].

4.2. Post-Eutrophic Conditions

In oxygen-saturated, aged low-salinity waters circulating in the area during the stratifi-
cation, nutrients were exhausted and phytoplankton biomass minimal. Low phytoplankton
biomass was not caused only by low nutrient concentration, since in summer a peak of
photosynthetic activity with no corresponding peak in phytoplankton biomass is often
found in the NA [85]. This discrepancy could be explained by grazing, since the summer is
characterized by high microzooplankton abundance [86]. In aged waters, phytoplankton
and bacteria were not related, suggesting a decoupling between primary production and
bacterial carbon demand [87,88]. Bacterial growth was probably supported by the excess
of organic matter retained after eutrophic events. Rich pools of transformed dissolved
organic matter were most probably produced by microheterotrophs [53], due to distinct
predominance of heterotrophs over autotrophs in these waters [51]. Consequently, the
decrease of bacterial abundance in post-eutrophic conditions was mild compared to the
drastic decrease in phytoplankton biomass. Besides the substrate availability, bacterial
growth was favored by seawater warming, as these waters were characterized with the
highest temperature. The thermic increase in the Central Mediterranean was reflected in
the increase of bacterial abundance and activities [89].

In post-eutrophic conditions during the stratification, APA was lower than during
freshets, following the decrease in microbial (particularly phytoplankton) biomass, and
still independent of temperature. However, specific APA was similarly high as during
freshets, suggesting persistence of P limitation. This is supported by short APA-mediated P
turnover time in these waters (1 min to 5 h [33]). APA was associated with phytoplankton,
while bacteria were related to PO4. In conditions of low inorganic nutrient availability,
bacteria are superior competitors in their uptake [78,79], thus depriving phytoplankton
of nutrients. Therefore, bacteria thrived on low concentration of regenerated PO4, while
phytoplankton used DOP. During post-eutrophic conditions, an increased abundance of
protozoans was found in the NA [51], which are important in regenerating P [90,91]. In
other mid-latitude coastal areas influenced by river effluent, phytoplankton also used DOP
to alleviate P limitation [71]. The inverse correlation of bacteria and DOP may indicate
bacterial consumption of DOP, although bacteria were apparently not related to APA. Al-
though bacteria can express other enzymes to hydrolyze DOP, much higher phytoplankton
than bacterial APA can cause observed discrepancy between APA and bacteria, even if they
express this activity. In post-eutrophic conditions during the stratification, bacterial and
phytoplankton biomasses were almost equal, while phytoplankton APA contributed on
average 67%, and bacterial only 23%, in total activity [92]. Bacteria can express APA even if
not P-limited, since it could also serve to provide C [13,75]. An increased utilization and
recycling of dissolved organic matter by bacteria in warm periods has also been observed
in the Central Mediterranean [89].
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In post-eutrophic conditions during October, nutrient concentration and phytoplank-
ton biomass were about two times higher than during the stratification. The decoupling
between primary production and bacterial carbon demand still persisted. Unlike the strati-
fication, phytoplankton was more associated with PO4 than with APA, implying that their
growth was more stimulated by PO4 supply from the deeper layer than sustained by or-
ganic P. Even though APA was similar to respective waters during the stratification, specific
APA was half, and DOP concentration more than two times higher. This is consistent with
the alleviation of P deficit by the onset of vertical mixing.

Post-eutrophic conditions were found in upper layers of the entire area, with a max-
imal incidence at the central and eastern areas (up to 44% of waters). Aged low-salinity
waters were retained in the area during the stratification and in October, with maximal
occurrence from July to September. These waters were not found during winter due to the
intensive water exchange with the middle Adriatic.

4.3. Oligotrophic Conditions

In high-salinity waters dominated by assimilation, nutrient concentration and micro-
bial biomass were markedly lower than during freshets. Bacteria and phytoplankton were
coupled, and both were independent of APA. In these waters originating from the middle
Adriatic, APA increased with temperature, as already observed in the Ionian Sea and in the
Otranto Strait [89], waters entering in the Adriatic Sea.

In oligotrophic waters during the stratification, microbial food web became very
important in nutrient recycling [51,93]. Phytoplankton and bacteria were inversely related
to PO4, indicating its intensive removal, probably by bacteria which are better competitors
in these conditions. APA was for one order of magnitude lower than in eutrophic waters,
and similar to coastal areas in the Mediterranean Sea [3,70,89]. Specific APA was also lower
than in eutrophic waters, although it was still high, suggesting persistence of P limitation.
Furthermore, APA and low DOP concentration were opposite, suggesting considerable
hydrolysis of organic P. Disconnection between APA and microbes could not be attributed
to free enzymes, since in oxygen-saturated NA waters, their activity is always low, less
than 10% of total activity [33,77]. Most likely, this discrepancy is due to the fact that many
phytoplankton species expressing APA are not abundant, while more abundant species
do not express APA. In oligotrophic conditions during the stratification, the study area
is generally dominated by pico- and nanophytoplankton [51,94]. Smaller phytoplankton
exhibit higher APA than larger phytoplankton due to the higher surface/volume ratio,
since AP is bound to the cell surface [95]. However, smaller phytoplankton contribute less
to total biomass than the larger ones. Furthermore, diatom species with low contribution
to total biomass express APA during oligotrophic conditions in summer, while those
contributing more to total biomass did not express APA [33].

In oxygen-saturated high-salinity waters during the mixing period, nutrient concen-
tration was higher than during the stratification, and probably not limiting for microbial
growth. Their growth was slowed down by unfavorable conditions, particularly for bac-
teria. Low APA was similar to winter values in the Mediterranean Sea [89]. Although
APA and DOP concentration were opposite, low activity and high DOP concentration
showed that hydrolysis was not significant. Low specific APA, characteristic for all water
types during the mixing, indicated low level of P stress. During the mixing period, long
APA-mediated P turnover (80–257 h) [33] confirms the mitigation of P stress.
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Saturated oligotrophic waters are mainly located in intermediate layers of the water
column at the western and central areas, and they often occupy the whole water column
at the easternmost area. Their maximal incidence was found during February and March
(80–94% of waters) when a prevalent cyclonic circulation advected oligotrophic waters
from the middle Adriatic, and the increasing light intensity favored assimilation processes.
During May–September, these waters were less frequent than saturated low-salinity waters,
and practically disappeared from October to January, being replaced with undersaturated
high-salinity waters.

4.4. Undersaturated Waters

In deeper waters of all periods, regenerative processes generate high nutrient con-
centration, predominating over the input of Southern Adriatic waters, which are olig-
otrophic [38,96]. In these waters, the highest nutrient concentration was found in October,
due to the progressive accumulation during the stratification period. Phytoplankton
biomass was also higher than in oligotrophic upper waters. This is partially due to the
increased chlorophyll a content per cell in these cold, nutrient-replete waters with low
light intensity [97,98]. On the other hand, during oligotrophic conditions in upper waters,
production in these nutrient-rich waters could be enhanced [99]. The NA is a shallow sea,
and the euphotic zone can extend to the bottom in clear oligotrophic waters. However,
during extensive phytoplankton blooms in upper waters, light may be limiting for phy-
toplankton growth in these deeper waters. Bacterial abundance was relatively high, and
during the mixing period, it was higher than in upper, oxygen-saturated waters due to
higher temperature in these deeper waters. During the stratification and mixing periods,
bacterial abundance was coupled with phytoplankton biomass. Although in these periods
APA was associated with microbes, low specific APA suggested that they probably were not
P-limited. This is in agreement with long APA-mediated P turnover time in undersaturated
waters, generally far above 5 h (up to 135 h [33]). In these waters, APA could be suppressed
by PO4 [100], as shown by their inverse correlation during the stratification.

During October, two types of undersaturated waters were found: high-salinity and
new low-salinity waters, formed by cooling and sinking of currently present surface
waters. Although in low-salinity waters phytoplankton biomass and bacterial abundance
were higher than in high-salinity waters, the relationships between microbial biomass, P
sources, and APA were similar. Bacteria and phytoplankton were uncoupled, and APA was
associated with phytoplankton. However, specific APA was low, implying that it was not
important in providing P to phytoplankton. The only difference was that in high-salinity
waters, bacteria probably used DOP, while in fresher waters, thrived on PO4.

Oxygen-undersaturated waters were important below 20 m of depth, contributing
more than 50% of waters in these layers along the entire area. Their maximal incidence,
often 100%, was found at the bottom. From November to January, their contribution was
important also in the upper part of the water column. In October/November, the mixing
in the water column raised up undersaturated bottom waters and the reduced assimilation
during cold winter months could not compensate consumed oxygen. Slightly undersat-
urated water column during winter months is characteristic for eutrophic areas [38]. In
October, eutrophic waters also constituted an important fraction (~20%) in undersaturated
waters. This is due to the combined effect of intensive vertical mixing and conspicuous
input of new freshwater.
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5. Conclusions

This study showed the microbial response to different trophic conditions created by
changing freshwater inputs in different hydrodynamic conditions. This is an essential
forcing in the NA ecosystem, since low-salinity waters constitute an important part of
waters in the area during most of the year (April–October), shaping the environmental and
trophic conditions. In low-salinity waters, specific APA was markedly higher than in high-
salinity waters, indicating that freshwater exerts an important influence on P status in the
area. The P-limited conditions in the Po discharge are largely due to a direct anthropogenic
alteration of the nutrient fluxes in its drainage basin [21,23,27]. A future increase in the
frequency of extremely high Po River discharges in spring and early summer [28] would
not only influence the productivity of the area, but could push the system toward more
expressed P-limiting conditions.

In low-salinity waters, effect of temperature on APA was not observed, as P stress
exerted markedly higher influence on the activity. However, in waters not influenced by
freshwater, temperature was important in regulating APA. The NA is currently affected
by a long-term warming, more pronounced in winter (+2.98% year−1) than in summer
(0.14% year−1) [28]. Consequently, in the future, a potential APA increase could be expected
during the winter. Since in winter APA is not an important prerequisite to sustain microbial
growth, the possible future increase in winter activity should not have a great ecological
importance on P availability. However, it remains to establish the effect of sea water
warming and changes in Po River regime on the circulation in the area and on the water
column stability. A delay of the water column mixing and of water exchange with the
middle Adriatic could prolong periods of P limitation.

Results of this study are important in the light of the growing evidence that P is the
limiting nutrient in coastal systems affected by continental nutrients loads worldwide.
In these systems, APA is reported to be important to supply P for the microbial growth.
Consequently, results of this study can improve the understanding of the importance
of organic P pools for the microbial growth in coastal systems influenced by changing
hydrological and climatic conditions.
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Appendix A

Table A1. Comparison of parameters in (a) different water types * by period ** and (b) in different periods by water type
using nonparametric Kruskal–Wallis H test. Reported H values are bolded when significant at p < 0.01, in italic when
significant at p < 0.05, and in grey when not significant.

(a) New-FW Aged-FW No-FW No-FW

O2 Sat ≥ 100% ≥100% ≥100% <100%

Parameter *** Strat, Oct, Mix Strat, Oct Strat, Mix Strat, Oct, Mix Fig.

T ◦C 37.2 154.5 8.7 61.3 Figure A1a
S 10.3 36.4 5.9 7.0 Figure A1b

DIN µmol L−1 9.4 114.2 6.9 56.1 Figure 7a
PO4 µmol L−1 6.3 26.5 1.8 30.0 Figure A1c

N/P 6.4 4.7 5.1 8.9 Figure A1d
Chl a µg L−1 2.0 21.3 16.9 21.2 Figure 7b
HB cell L−1 18.1 8.0 0.4 4.1 Figure 7c

APA nmol L−1h−1 40.2 130.5 0.9 122.4 Figure 7d
sAPA nmol µC−1h−1 45.1 72.8 8.4 80.7 Figure 7e

DOP µmol L−1 26.0 115.7 20.9 92.0 Figure 7f
n **** 15, 92, 35 119, 9 93, 158 118, 144, 33

Mix Strat Oct Oct

(b) O2 Sat ≥ 100% ≥100% ≥100% <100%

New-, No-FW New-, Aged-,
No-FW New-, Aged-FW New-, No-FW Fig.

T ◦C 6.4 92.9 6.7 8.4 Figure A1a
S 38.1 284.8 9.6 36.7 Figure A1b

DIN µmol L−1 34.2 135.9 7.4 6.4 Figure 7a
PO4 µmol L−1 2.4 14.1 5.3 16.3 Figure A1c

N/P 7.8 96.7 0.3 18.5 Figure A1d
Chl a µmol L−1 19.8 105.1 7.2 17.3 Figure 7b

HB cell L−1 1.5 84.5 2.1 1.7 Figure 7c
APA nmol L−1 h−1 17.1 132.2 0.3 5.6 Figure 7d

sAPA nmol µgC−1 h−1 0.9 8.2 4.4 0.0 Figure 7e
DOP µmol L−1 0.9 4.7 4.0 0.6 Figure 7f

n ***** 15, 93 92, 119, 158 35, 9 21, 33

* Waters oversaturated in oxygen (O2 sat ≥ 100%): new freshwater (new-FW), aged freshwater (aged-FW), and without freshwater (no-FW);
undersaturated waters (O2 sat < 100%): no-FW. ** Mixing period (MIX), stratification period (STRAT), and October (OCT). *** Temperature
(T), salinity (S), dissolved inorganic nitrogen (DIN), orthophosphate (PO4), inorganic N/P ratio (N/P), chlorophyll a (chl a), heterotrophic
bacteria (HB), alkaline phosphatase activity (APA), specific APA (sAPA), dissolved organic phosphorus (DOP). **** Number of data for
the respective period, except for HB and sAPA (O2 sat ≥ 100% new-FW: 15, 81, 19; aged-FW: 97, 9; no-FW: 59, 107; O2 sat < 100% no-FW:
76, 113, 23). ***** Number of data for the water type, except for HB and sAPA (O2 sat ≥ 100% MIX: 15, 59; STRAT: 81, 97, 107; OCT: 19, 9;
O2 sat < 100% OCT: 17, 23).
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31. Ivančić, I.; Degobbis, D. Mechanisms of production and fate of organic phosphorus in the northern Adriatic Sea. Mar. Biol. 1987,
94, 117–125. [CrossRef]

32. Cozzi, S.; Lipizer, M.; Cantoni, C.; Catalano, G. Nutrient balance in the ecosystem of the North Western Adriatic Sea. Chem. Ecol.
2002, 18, 1–12. [CrossRef]
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36. Kraus, R.; Supić, N. Sea dynamics impacts on the macroaggregates: A case study of the 1997 mucilage event in the northern
Adriatic. Prog. Oceanogr. 2015, 138, 249–267. [CrossRef]
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D.; et al. Dissolved organic carbon accumulation during a bloom of invasive gelatinous zooplankton Mnemiopsis leidyi in the
northern Adriatic Sea; case of the anomalous summer in 2017. J. Mar. Syst. 2021, 222, 103599. [CrossRef]

38. Solidoro, C.; Bastianini, M.; Bandelj, V.; Codermatz, R.; Cossarini, G.; Melakucanu, D.; Ravagnan, E.; Salon, S.; Trevisani, S.
Current state, scales of variability, and trends of biogeochemical properties in the northern Adriatic Sea. J. Geophys. Res. 2009, 114,
C07S91. [CrossRef]

http://doi.org/10.1111/jpy.12365
http://doi.org/10.1515/hsz-2020-0197
http://doi.org/10.1126/science.1185198
http://doi.org/10.1038/ncomms3934
http://doi.org/10.1065/espr2002.12.142
http://www.ncbi.nlm.nih.gov/pubmed/12729046
http://doi.org/10.1890/100008
http://doi.org/10.1016/j.csr.2011.08.010
http://doi.org/10.1016/j.jhydrol.2013.09.044
http://doi.org/10.1016/j.scitotenv.2018.05.233
http://doi.org/10.1016/j.marpol.2016.03.010
http://doi.org/10.1016/j.scitotenv.2019.03.021
http://doi.org/10.1016/j.ecss.2012.08.023
http://doi.org/10.3390/w11010001
http://doi.org/10.3390/w12082280
http://doi.org/10.1017/S0967026201003456
http://doi.org/10.2307/1352354
http://doi.org/10.1007/BF00392904
http://doi.org/10.1080/02757540212685
http://doi.org/10.1016/j.pocean.2016.07.003
http://doi.org/10.1016/j.scitotenv.2013.10.040
http://www.ncbi.nlm.nih.gov/pubmed/24246940
http://doi.org/10.1111/j.1439-0485.2008.00266.x
http://doi.org/10.1016/j.pocean.2015.06.005
http://doi.org/10.1016/j.jmarsys.2021.103599
http://doi.org/10.1029/2008JC004838


Water 2021, 13, 2750 23 of 25

39. Raicich, F.; Colucci, R.R. A near-surface sea temperature time series from Trieste, northern Adriatic Sea (1899–2015). Earth Syst.
Sci. Data 2019, 11, 761–768. [CrossRef]
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