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‡ Lund Institute for advanced Neutron and X-ray Science (LINXS), Lund University,

IDEON Building: Delta 5, Scheelevägen 19, 223 70 Lund, Sweden;
◦ Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC),

Manuel Lardizabal Ibilbidea 5, 20018 Donostia-San Sebastián, Spain

Abstract. We present an electromagnetic analogue of crystal (or ligand) field theory that describes geometric eigenmodes and the resonant
plasmon wavelength in plasmonic nanocrystals in terms of a simple shape descriptor. Our model - crystal field plasmon splitting - is based
on secular equations for geometric eigenmodes, allowing for the separation of pure shape from materials effects. As an example, the model
is implemented to the experimental gold nanoparticles that undergo cube-to-sphere transition, showing that geometric eigenvalues change
correspondingly in analogy to the atomic energy levels in Tanabe-Sugano correlation diagrams.
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Plasmonics arises from a complex interplay of electronic and geo-
metric properties, where size and shape,1 chemical composition,2

surface charge 3 and dielectric environment 4 turn out to dramat-
ically affect localized surface plasmon resonance (LSP) and ab-
sorption efficiency in plasmon-induced phenomena such as hot
carriers injection, 5,6 radiative and resonance energy transfers.7

While the relevance of topology was well established in elec-
tronic structure theory,8 a little is known about purely topolog-
ical shape effects in nanoplasmonics. The notion of shape, stand-
ing in between geometry and topology, is used therein mostly
in connection with the (differential) geometry of surfaces, e.g.
SP in curved media, scattering and radiation at bends and inter-
faces.9–12 Topology optimization of nanostructures 13 can be re-
garded as well as an unrestricted shape optimization of a geo-
metric functional.

A primary shape effect in LSP resonance may be detected by
the so-called figure of merit, the ratio between enhanced local
and incident fields, whose formal dependence on the real and
imaginary parts of the complex dielectric function is changing
with the particle shape.14 The linear optical response then may
be derived from Drude’s model or some semiclassical extension
of it,15,16 aiming to include the relevant electron relaxation and
transition processes implied by the metal band structure. Such
features, clearly, are still material- and chemistry-mediated, with
the problem that electronic Schrödinger’s equations for particles
of arbitrary shape may demand explicit solutions for very large
quantum numbers. On the other hand, since the time of De Witt
and da Costa,17,18 surface geometry is known to affect the motion
both of classical waves and quantum objects. A number of stud-
ies19–21 were foreseeing the existence of curvature-driven topol-
ogy eigenstates, inducing quantum interference phenomena and
influencing surface charge transmission in/out a nanostructure.
As an example, when optical waves squeeze onto a curved thin
dielectric layer (a film waveguide), a frictional energy of geomet-
ric nature was deduced in the wave-optics domain to act either as
a potential well or barrier, according to the sign of surface con-
cavity.22,23 On this basis, it seems to be plausible that damping
sources of topological origin may partake in the energy transfer

elicited by nanoparticles (plasmonic hot carriers, photocatalytic
processes, etc.). Shape effects on individual plasmonic particles
are also essential to understand the interaction of plasmon reso-
nances in complex structures. In this context, a sphere to cube
transition may significantly quench the excitation of Fano reso-
nances in coupled nanoplate-nanoshere systems.24

In this work, we link the topological shape effects in plasmonic
nanoparticles with crystal field theory (CFT) that rests on topol-
ogy and group theory. To separate pure shape from materials
effects, we implemented the framework of secular equations for
geometric eigenmodes.25,26 They define the complete basis set of
naturally self-sustained multipoles with no external sources, in
which the inhomogeneous term of the full electrostatic equation
can be represented. The theoretical section thus devises a formal-
ism which then is applied to sphere-to-cube plasmonic transition
in experimental gold nanoparticles. The CFT model is employed
either in a retarded or non-retarded (quasistatic) picture.

Cube-to-sphere transition in gold nanoparticles. Because this
work deals with a novel theoretical framework for plasmonic
shape effects, it is of the utmost importance resorting to a syn-
thesis scheme which is able of tuning shape variations with high
accuracy. We selected cube-like Au nanoparticles (40, 50, and 60
nm sized, Figure 1a - upper row) that were subjected towards ox-
idative etching. 27 The oxidation occurs at metal surface sites with
larger curvature (edges), leading to a gradual rounding to even-
tually produce nearly spherical nanoparticles (Figure 1a - bot-
tom row). The initial and partially oxidized nanocubes as well
as fully rounded nanoparticles are referred hereinafter as cubes,
semicubes and spheres, respectively (Figure 1a). The analysis by
Transmission Electron Microscopy confirmed that the mean par-
ticle length 〈L〉 decreases upon the oxidation process (Figure 1c).
Interestingly, the extent of size reduction upon etching is more
pronounced for larger particles, which is due to the well-defined
cube-like morphology (higher shape anisotropy) of larger cubes,
as compared to the smaller ones, displaying more rounded edges.
To obtain the values of length (L) and circularity (C) for each
sample, an analysis of TEM images was conducted by using Fiji
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software. As C is proportional to the ratio between particle area
and squared perimeter, some geometric analysis allowed us to
connect it to the shape descriptor used throughout this study, de-
fined in terms of particle length and radii of spherical caps (R)
as S = 1 − 2R

L (Figure 1d). A further statistical propagation error
was performed to correct the obtained data in light of the uncer-
tainty related to the analysis of TEM images and to get the best
predictions for S. Finally, the mean and standard deviation of
the particle radius follow under the assumption of a theorem on
the aleatory product distribution for two Gaussian variables (i.e.
L and R/L). All collected values are gathered in Table S1 of SI
section 2.

Fig. 1 Shape transition from cubes to spheres for large, medium and
small Au nanoparticles. a) TEM images of initial Au nanocubes (top row),
semicubes obtained after mild oxidation (middle row), and spheres after mod-
erate oxidation (bottom row). All images share the same scalebar. b) UV-Vis-
NIR spectra of all nanoparticles showing gradual LSP blueshift upon oxida-
tive etching. c) All length distributions versus oxidative etching. d) Circularity
change for large, medium and small nanoparticles showing that circularity
values increase upon the cube-to-sphere transition.

Geometric normal modes. In a quasistatic picture, neglecting
retardation but preserving a frequency-dependent dielectric func-
tion (ε), surface charges follow from the applied and induced ex-

ternal fields. 26,28 Normal modes are characterized by a family of
eigenvalues (λk) and eigenfunctions (σk) that only depend on the
geometric shape and can be represented by a multipole expansion
with Fourier’s coefficients k = {`,m}. Figure (2) shows their evolu-
tion (` ≤ 5) when a sphere is transformed into a cube by varying
the shape descriptor S. Between the extremes, (sphere) 0 < S < 1
(cube), lies a continuous class of semicubes with cylindrical con-
tours, uniquely defined by the value of S.

We performed numerical simulations by using the MNPBEM
code29 that relies on the boundary element method (SI section 1
- Numerical),26,30 returning a discrete set of

∑
(2`+1) = 35 normal

modes, corresponding to the most stable states. For a sphere, they
are given by spherical multipoles, each with degeneracy 2` + 1
(m = −` ... `, see next equation 2). Their individual evolution
for S , 0 shows a degeneracy breaking and defines in the end a
sort of band structure. However, tracking the mode evolution at a
fixed ` is not supplied in MNPBEN by a direct toolbox output. As
eigenvalues are ordered by their value, and not by the multipole
degree, it was necessary to introduce some analytical criterion to
discriminate among them. We found that imposing the numerical
continuity to eigenvalues and their first derivative with respect
to S was very efficient both to sort out different bands and to
follow individual modes. Results were clearly reversible, i.e. fully
reproducible upon reverting the transition, i.e. S = 0 → 1 or
S = 1→ 0.

Note that dipole (` = 1) is the only one always retaining the
same degeneracy, while the quadrupole of the sphere (` = 2)
splits into a three-fold corner mode and a two-fold edge mode
(Figure 2). Octupole (` = 3), on the other hand, is sent into three
bands, a non-degenerate corner mode, a three-fold edge mode,
and a three-fold corner-edge mode. Sphere eigenvalues mono-
tonically increase with increasing multipole degree, whereas the
three most stable cube modes are corner-like,31 displaying dipo-
lar, quadrupolar and octupolar nature (Figure 2 and SI section
3).
Predicting the optical spectra. To calculate the extinction cross
sections we used the MNPBEM toolbox under quasistatic and
fully retarded approximation schemes and using particle size and
shape descriptor that came from the statistical analysis in SI sec-
tions (2A,2B,2C). Optical response, which is isotropic as a conse-
quence of geometric symmetry, turns out to be mostly dominated
by dipole-like corner modes. Note that for Ag nanoparticles larger
higher-order contributions to LSP spectra are visible (SI section
4).

Simulated spectra were systematically red-shifted by a number
of nanometers in comparison with experimental spectra. In gen-
eral, the larger and less spherical the particles were, the larger
the shift magnitude was. Both the electrolyte-induced reduction
of the solution dielectric function and polydispersity effects were
ruled out as possible causes for this anomalous red-shift (SI sec-
tions 5D,5E). A suitable explanation can be given instead by some
excess charge at the Au/solution interface, implying a larger ef-
fective plasma frequency for Au particles that blue-shifts the plas-
mon resonance. Surface charge mechanisms result from a com-
plex interplay of intermolecular forces and can be well quanti-
fied by thorough thermodynamic models.32 The shift of the ratio
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Fig. 2 Eigenvalues (1 ≤ ` ≤ 5) as a function of shape descriptor (S = 0, 1
for perfect spheres and cubes, respectively). Different bands with equal l
are plotted using different line types and having the same colour. A space
representation of modes for up to l =3 is also reported in the lower figure
panel for the semicube with S = 1

2 , their degeneracy conforming to equations
(6-8).

between effective and bulk plasma frequencies may be either de-
scribed by a linear dependence in the particle specific surface or in
the shape descriptor (SI section 5F). By this linear law, and a stan-
dard procedure endowed with electronic interband transitions,33

the Au dielectric function was recalculated with corrected plasma
frequencies. The final comparison among experiments and com-
putations is depicted in Table (1), proving a satisfactory agree-
ment. A synopsis of all experimental and numerical results is
reported instead in Table (S2) of SI section (5G), where it may be
seen that quasistatic predictions exceed the experimental values
and turn out to be very close to corrected-retarded data (except
for S = 0.81). While this is confirming the need to correct retarda-
tion here, a quantitative explanation of this occurrence is not yet
ready and is left for future work. Qualitatively, an available excess
charge may tend to further balance the field across the particle.

Table 1 Summary of LSP resonance predictions. Theoretical (th) and exper-
imental (ex) wavelengths o are in nm.

S o (ex) o (th) S o (ex) o (th) S o (ex) o (th)
0.51 530 531 0.67 537 540 0.81 545 557
0.41 525 528 0.58 530 534 0.55 533 534
0.26 523 524 0.38 526 524 0.44 528 527

Figure 3 illustrates the uncorrected and corrected spectra
(without and with excess charge) versus measurements. The ex-
cellent agreement for the simulated widths confirms as well the
accuracy of the low-loss imaginary part of the adopted dielectric
function (Au single crystals). 34 If other widely used optical con-
stants were assumed,35 the predicted width would be larger than
the experimental one. To prove this conclusion, SI section (5F)
compares the results from single crystal and Johnson & Christy’s
optical data for Au.
Secular equation and sphere eigenvalues from vanishing elec-
trostatic energy. The study of electrostatic normal modes, for a
metal particle of arbitrary shape (p) in a dielectric medium (d),

is basically a boundary condition problem, where eigenvalues are
expressible by the ratio of the frequency-dependent dielectric con-
stants, λ ≡ εp(ω)/εd(ω). The condition λk < 0 translates the self-
sustainability of natural oscillations, the energy maintaining the
field externally being balanced by an equal amount of internal
work, or vice versa.36 This limiting constraint identifies topol-
ogy spectra that are only a signature of shape as, in the long-
wavelength limit, retardation is negligible and transverse modes
do not contribute to absorption.

Formally, surface modes take place when the polarization field
inside the particle obeys the joint longitudinal and transverse con-
dition, ∇·P = ∇∧P = 0, while a polarization charge ∇·P , 0 devel-
ops at the surface. In the language of potential theory, equivalent
single-layer or double-layer representations may be afforded re-
spectively for the (internal) electric potential 37 (Vi) or the surface
charge density (σ):38∫

σk(r′) ∂n
1

|r − r′|
ds′ = Λkσk(r) (1)

∂n being the normal derivative at the surface and |r−r′|−1 denoting
the static limit of Green’s function with observation point r. The
(real-valued) eigenvalues, Λk = 2π(1 + λk)/(1 − λk), can be linked
to the secular equation in frequency domain provided an optical
dispersion law is stated for the dielectric function. When Mie’s
theory is applied to a sphere, for a given plasma frequency (ωp)
and angular momentum (`) of a plasmon mode, one has ω2

`/ω
2
p =

`/(2` + 1).39 Drude’s model then allows to recover:

λks = −1 − 1/` (sphere) (2)

We have proven in SI section (6H) that the eigenvalues of spheri-
cal harmonics Y`m(θ, ϕ) (θ, ϕ = polar, azimuth angles) in equation
(2) also stem from the flux equation for the fields internal (i)
and external (e) to the particle at a vanishing electrostatic energy
(E = 0):36

8πE = εp

∫
Vi(r)∇Vi · ds − εd

∫
Ve(r)∇Ve · ds (3)

i.e.:

λ =

∫
Ve∂nVeds∫
Vi∂nVids

(4)

which was generalized in terms of two Green functions (Gi,e), de-
fined at both surface sides for each k (see equation H2 of SI sec-
tion 6H). Note that, for negative eigenvalues to be attained, the
signs of normal gradients should be opposite, no matter which
specific convention may be adopted. The next applications of
equation (4) thus will stick for simplicity to equations (H4) of
SI section (6H) (∂nGi > 0 and ∂nGe < 0).

Plasmon resonance in semicubes from crystal field splitting.
Deforming a sphere into a highly spherical semicube (S→ 0+) re-
duces the particle symmetry, leading eigenvalues to a degeneracy
removal.40 The phenomenology subtended by Figure (2) will be
explained by CFT, pioneered long ago by Bethe41 to model coor-
dination complexes. Evolution of edges, faces and corners will be
described by a minimal model of effective surface charges, mim-
icking the topology transition by a suitable charge redistribution.
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Fig. 3 Experimental and simulated optical extinction spectra for all samples, corresponding to the TEM images in Figure (1). Simulations with uncorrected
(black), geometrically corrected (green) and charge corrected (blue) are superimposed to the experimental data (red) to show the proper trend of the approxi-
mations made and the accuracy of the final prediction.

To fix the ideas, let a S = 0→ 0+. At a given k = (`,m), each eigen-
value λk = λk(S) can be mapped into a monotonically increasing
energy function by some optical dispersion model, i.e.:

ε−2
k = 1 − λk (Drude′s) (5)

Energy will vary with respect to the barycenter values εks ≡

ε(λks) of the set of spherical multipoles, i.e. εks → εk+. We can
model the topology change by introducing some excess charge
at the face centers of the cube, with S = 1 taken on as a ref-
erence state. This makes our problem equivalent to the crystal
field splitting of 1-electron orbitals in the cubic-symmetry poten-
tial of an octahedral disposition with point group Oh.42 The nu-
merical analysis of the trends of eigenvalues in Figure (2) upon
S = 0→ 0+ confirms such a spectroscopic analogy. Once eigenval-
ues are mapped into the energy equation (5), the diagrams in Fig-
ure (4) are obtained, giving a pictorial representation of the elec-
tromagnetic analog of crystal field splitting. In a nutshell, when
shape changes, geometric eigenvalues change correspondingly as

atomic energy levels in Tanabe-Sugano correlation diagrams.

It may be useful to shortly remind the difference between plas-
mon hybridization and crystal field plasmon splitting. Both con-
cepts stem originally from quantum chemistry and manifest them-
selves in the form of energy level diagrams. The former points
out a mixing of different energy levels, where primitive plasmons
(symmetrically or anti-symmetrically) couple to give rise to hy-
bridized plasmons of the joint system, and the final diagram re-
sembles the energy’s for molecular orbital formation. Crystal field
theory instead is concerned with how degeneracy is split for a
given orbital level with symmetry group assigned. For each (plas-
mon energy) eigenvalue, degeneracy is splitting and evolving as
a function of particle topology.

In the present case, for S = 0→ 0+, we first note that the x, y, z
symmetries of P states (` = 1) disallow a degeneracy removal:

ε+ {xk} = ε+ {xh} (P) (6)

while enquiring the cases ` = 2, 3, 4 allows to identify the follow-
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ing phenomenological series:

ε+ {xk xh} < ε+ {x
2 − y2, z2} (D)

ε+ {xyz} < ε+ {xk(x2
h − x2

q)} < ε+ {xk(x2
k − r2)} (F)

ε+ {(z
2 − r2)(x2 − y2), (x2 − r2)(y2 − z2) − (y2 − r2)(z2 − x2)}

< ε+ {xk xh(x2
k − x2

h)} < ε+ {x
4 + y4 + z4 − r4} (G)

(7)

subindices k and coefficients of orbital polynomials43 being omit-
ted for simplicity, with xk, xh, xq ∈ {x, y, z}.
All of these relationships agree with the predictions for octahedral
field splitting,44,45 i.e. in Mullikan’s notation:

ε (T2g) < ε (Eg) (D)

ε (A2g) < ε (T2g) < ε (T1g) (F)

ε (T2g) < ε (Eg) < ε (T1g) < ε (A1g) (G)

(8)

where, in parentheses, are the states representative of irreducible
representations of Oh, with degeneracy values that exactly cor-
respond to equations (7), i.e. deg(Ag) = 1, deg(Eg) = 2 and
deg(Tg) = 3.44 The eleven states of H series split into 2, 3, 3, 3
levels (from lower to higher energies), which agree with the sym-
metry group properties of atomic orbitals with ` = 5.43

Fig. 4 Scheme of the plasmon splitting mechanism, in a potential of octa-
hedral symmetry (Oh), implied by CFT (image not in energy scale). State
degeneracies are deg(Ag) = 1, deg(Eg) = 2 and deg(Tg) = 3 (g = gerade). It
is important to realize that colors were chosen as in Figure (2). While plas-
mon hybridization mixes different energy levels, crystal field theory predicts
if and how degeneracy is split for any orbital with a given symmetry.

At larger S values, λk are not monotonic thereby reflecting a
more general (and complex) symmetry behavior that requires a
more precise quantitative description. This is not surprising, as
the tetrahedral Td is another relevant cubic group in our context.
While degeneracy of P states won’t still be removed upon Td, an
extended law should explain the increasing trend of λk with in-
creasing S (` > 1). As it is usual in CFT, equation (4) may be
generalized by projecting the potential onto the implied bra-ket
eigenmodes. Vi is ascribed to the spherically symmetric monopole

produced at a radius L/2 by an innermost pointwise charge qi, e.g.
in Gaussian units and with the conventions specified at the end of
the former paragraph:

〈 00 | Vi∂nVi | 00 〉 ≡ 1
2

∫
Y∗

00
Y00∂n(V∗i Vi)ds = 2

q2
i

L
(9)

where the complex conjugate of Vi guarantees a real-valued func-
tional. To get the numerator in equation (4), we remind the most
general form the real part of octahedral, tetrahedral and cubic
potentials assume,42 and write (SI section 6I):

V`(r) =
qe

r

2∑̀
`′ ∈ 2N\2

r`′
L``′

r`′
(` ≥ 1) (10)

Here, qe is the effective charge generating Ve, the spatial average
in the sum is performed over a radial wave function (r0 = 1) and
L``′ is a linear superposition of the form L``′ = L``′ {Y`′0,Y`′±4}. We
then get eigenvalues from equation (4) by regarding Ve = V` into:

λkb =
〈 Xk | Ve∂nVe | Xk 〉

〈 00 | Vi∂nVi | 00 〉
(11)

that is clearly truncated to `′ ≤ ` and, from symmetry arguments,
doesn’t display any term for `′ = 2 (L`2 ≡ 0).44 Cubic harmonics
Xk, i.e. linear combinations of real Y`m at fixed `, form the natural
basis in irreducible representations of cubic groups.

To highlight the role of shape descriptor when an arbitrary sur-
face is concerned, we resort to the mean value theorem for def-
inite integrals (SI section 6L). The particle is divided into cubic
(c), spherical (s) and semicubic (b) domains, each contributing
(in units of 6L2) to the overall area as ac = S 2, as = π

6 (1 − S )2,
ab = π

2 S (1 − S ). Let f be a continuous function onto a compact
and rectifiable surface, the following notation is employed:

1
6L2

∫
f ds = 〈 f 〉c ac + 〈 f 〉s as + 〈 f 〉b ab (12)

the effective charge (qe) variation from sphere to cube obeying a
minimal, linear and homogeneous, description:

qkb(S) = qks + (qkc − qks)S (13)

In comparison to the purely spherical symmetry, with qi = qe (S =

0), a change of shape in CFT is carrying a charge displacement.
In light of equations (12) and (13), the eigenvalue equation (11)
can be written as a polynomial in S:

λkb = − (zks + zkbS)2
[
σ`m(1 − S)2 + µ`mS(1 − S) + χ`mS2

]
(14)

where, for any mode, zks and zkb express qks and qkc − qks in unit of
charge qi. Coefficients σ`m, µ`m, χ`m > 0 are, respectively, averages
of the spherical, semicubic and cubic contributions to λkb, whose
explicit expressions can be found in SI section (6M). Because of
the tough calculations involved (Clebsh-Gordan coefficients and
integration over arbitrary surfaces), their numerical determina-
tion falls beyond the aims of this study, but equation (14) specifies
a minimal fourth-degree polynomial well fitting the eigenvalues
in the whole S domain with χ`m, µ`m, σ`m ∈ (0.4− 1.3), zks ∈ (1− 2),
zkb ∈ (0 − 1) (see SI section 6N). We observed that the charge de-
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fect zkb/zks = qkc/qks − 1 tends to be negligible in dipole (≤ 5 · 10−3)
and quadrupole modes (≤ 5 · 10−2), suggesting the topology con-
tribution of the dominant modes to be only slightly dependent
on geometry, and justifying further the factorization in equation
(14).
Non-retarded and retarded analog of crystal field splitting. In
a quasistatic picture, equation (14) affords a topological interpre-
tation of LSP resonance, as Drude’s model predicts o ∝

√
1 − λ

(equation 5). When surface effects are discarded, we expect from
the only topological charge term:

√
∆o2

o0

≈ zs + zbS (non − retarded) (15)

where, at some wavelength scale o0 , one has ∆o2 ≡ o2 − o2
0
, with

o being the resonance wavelength. Note that a behavior more or
less deviating from linearity depends on the entity of o/o0. Equa-
tion (15) has been applied to quasistatic LSP values (dataset in
column qs of Table S2 in SI section 5G) under two different con-
ditions. In a first, the best-fit was constrained to the zk ranges ex-
trapolated numerically from the analysis of multipole coefficients
at different (`,m) (see former paragraph), returning an almost
linear behavior. In the second, unconstrained, the LSP resonant
wavelength gains a little more precision at the expense of a mild
non-linearity. The two interpolations are shown in Figure (5),
both in satisfactory agreement with the computed dataset.

Fig. 5 Quasistatic LSP wavelength o (qs) vs shape descriptor S (points).
Blue and red lines (equation 15) respectively for zs = 1.65, zb = 0.24, o0 =

236.7 nm (R2 = 0.97), and zs = 9.9 · 10−3, zb = 0.44, o0 = 521.8 nm (R2 =

0.99).

To include retardation in CFT by analytical means may be
rather demanding, especially for non-spherical shapes. However,
with some judicious choice of retarded fields, an evaluation of
finite-size effects may be provided, even though remarkable cor-
rections are not expected. Spherical `-modes should get (mean-
ingfully) retarded when ` < L/(2o),46 which here is far from being
satisfied. On adopting Coulomb’s gauge, SI section (6O) reports a
thorough analysis of retardation effects in light of CFT, and here
the two main results follow. For the spherical symmetry, calcula-
tions can be specialized at R = L/2 and the first corrected eigen-
value reads:

λ ret
`=1 = − 2 [1 + (kR)2 + i(kR)3] + O (kr)4 (sphere) (16)

in fair agreement with previous corrections from radiation damp-

ing and depolarization,47 implying δλ ret
`=1 = −3(kR)2 − 2i(kR)3, and

with the second-order term48 coming from an analysis of Mie’s
scattering coefficients, − 12

5 (kR)2.
Concerning semicubic eigenvalues, it is proven in SI section (6O)
that the numerator in equation (11) transforms as ∂nVe → −ikn ·
Aret, where Aret is the retarded vector potential. Accordingly, the
retardation correction reads:

∆o2
ret =

[
1
66

r4

R∗4

(
23 + 2527

39
r4

R∗4

)
∆o2 + 2o2

0

]
(kR∗)2 + O(kR∗)3 (17)

with ∆o2
ret = o ret2 − o2 being the second-order difference between

the squares of retarded and non-retarded wavelengths, while
R∗ = R∗(S) denotes the radius of a spherical volume equivalent
to the semicube’s. To use the last relation simply requires to
recover the non-retarded best fit (equation 15) and the expres-
sion R∗(S) = (29.92 S + 11.80) nm (SI section 5F). In Figure (6)
are two applications, one to the retarded-geometrically corrected
data (sc), the second to the experimental measurements (ex). We
remind that the latter are affected by an excess charge injection
term (ξ), increasing the plasma frequency by a factor of

√
1 + ξ.

The wavelength o0 thus was lowered accordingly, based on the
expression ξ(S) = 0.213 S − 0.041 best fitting the numerical com-
putations (SI section 5F). The average spatial scale, which in the
original CFT roughly identifies Bohr’s radius,42 r4 ∼ a4

0
, here is

expected to range in the nm scale (some lattice constants). Best
fits return in fact r4 ∼ 1 nm4 in both circumstances (see caption
to Figure 6).

Fig. 6 Retarded LSP wavelength o ret vs shape descriptor S (points), based
on the interpolation (blue line) in Figure (5) and corrected by equation (17).
Upper line interprets the retarded and geometrically corrected data, o (sc) in
Table (S2) (SI section 5G), with k = 11.4 µm−1. Lower line fits the experimen-
tal data, o (ex), where k = 11.8 µm−1 and o0 was excess-charge corrected

(see text). Best fits yield r4 = 0.98 (R2 = 0.91) and 0.99 nm4 (R2 = 0.86),
respectively.

Eigenvalues and hybridization in cubes. The accuracy best fits
were conducted with (average determination coefficient = 0.99)
is encouraging to get reliable extrapolations of cube eigenvalues
(λkb → λkc for S → 1−), as they can suffer from numerical insta-
bilities due to wedge- and vertex-like effects.
Values of λkc are inferred from polynomial coefficients in SI sec-
tion (6N) and classified in Tables (S3,S4) in terms of the spherical
`, the degeneracy of m states and their symmetry character. These
trends agree with former studies on resonating cubes,36,39,49 and
seem to suggest hybridization of a number of `-bands (e.g. see
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` = 5).

Table 2 Cube eigenvalues extrapolated from the first five spherical ` values.

` deg sym - λkc ` deg sym - λkc

1 3 z 4.00 3 3 xy 2.23
2 3 xy 3.97 4 3 xyz, x2 − y2 2.17
3 1 xyz 3.96 5 3 xy, x2 − y2 2.16
4 1 xyz 3.37 5 2 z 2.12
3 3 z 2.79 4 2 xy 1.96
4 3 xy 2.74 5 1 xy 1.90
2 2 x2 − y2 2.36 5 2 z, x2 − y2 1.88
5 3 z, x2 − y2 2.36

Conclusions. An analysis of spontaneous electric oscillations is
carried out in light of crystal (or ligand) field theory (CFT), al-
lowing a reinterpretation of geometric eigenmodes and the res-
onant plasmon wavelength in terms of a simple shape descrip-
tor (S). This relationship is promising to better understand the
role of shape in plasmonics and nanophotonics, continuing a
cross-fertilization with theoretical chemistry started almost two
decades ago with particle hybridization.50,51 An essential trait of
CFT is that a shape or geometric perturbation alters the energy
levels giving rise to Tanabe-Sugano correlation diagram. If the
starting configuration is spherical, energies at a fixed l will no
longer be isoenergetic. Accordingly, a plasmon splitting concept
is inferred from the electromagnetic analog of CFT, both in a non-
retarded (i.e. electrostatic) and retarded picture. From a broader
prospect, this research is still in its infancy. The insights here
provided, for instance, have important implications in assessing
the exact nanocrystal topology by merely optical means. In addi-
tion, the well-resolved relation between maxima of LSP resonance
and shape descriptor can serve as a useful tool in plasmon-based
biosensing, as it either relies on refractive index changes52,53 or
nanocrystal shape transitions in response to a certain degree of
oxidative stress in a given medium.54
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