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A B S T R A C T   

The aim of the study was to assess the value and applicability of multivariate tools for hematological and plasma 
biochemical responses of fish living in treated wastewater. Physicochemical water properties and heavy metals 
concentration of water in spring and fall were used as determinants of multiple fish stressors. Three methods of 
data analysis (Agglomerative Hierarchical Clustering, Factor Analysis, Principal Component Analysis) and one 
method of data modeling (Partial Least Square Regression) were applied. These methods enabled identification 
of clustering based on observed parameters, identification of significant variables in the observed data set, and 
correlation of observed variables with samples collected in different places and at different seasons. Prediction of 
total leukocytes, lymphocytes, granulocytes, hematocrit, glucose, alanine aminotransferase, triglycerides and 
cholesterol from fish blood (R2 

> 0.9) was better for fall than for spring variables, regardless the sampling site (R2 

> 0.98). For hematocrit and glucose (determination coefficient over 0.99), prediction was successful regardless 
the season and the sampling site. The effectiveness of prediction models was also evaluated using ratio of 
standard error of performance to standard deviation (RPD), and range error ratio (RER). High applicability of 
these models was found for multiple purposes (RPD > 8 and RER > 15), including prediction of parameters from 
fish blood with regard to water quality.   

1. Introduction 

Anthropogenic activities, particularly environmental pressures 
caused by pollution from excess nutrient loading deriving from waste-
water, agricultural and urban runoff, are the main factors for degrada-
tion of environments. Primary and secondary treatments of wastewater 
treatment plants (WWTPs) remove a good portion of fecal bacteria and 
reduce biological oxygen demand, suspended solids, nitrogen and 
phosphorus. However, quality of effluents is often insufficient for well-
being of aquatic animals living in such waters (Topić Popović et al., 
2015). Fish living in treated wastewaters are thus exposed to a variety of 
stressors. Although free-living fish react with avoidance of polluted 
waters when in sublethal threat, they nevertheless tend to adapt to 
altered environmental parameters, allowing them to survive in 

unfavorable conditions (Vosyliene et al., 2003). Cyprinid fish have the 
ability to live in waters of diminished quality and compensate for 
environmental changes (Topić Popović et al., 2016). The insight of their 
responses to various environmental factors can be obtained through 
hematological and plasma biochemical variables. 

Blood exhibits pathological changes before the occurrence of other 
clinical symptoms, and blood withdrawal is a non-lethal method (Bani 
and Vayghan, 2011). Fish blood variables are thus evermore used in 
toxicological research and as indicators of environmental stress (Li et al., 
2011). Specific plasma biochemistry indicators are reflecting acute 
exposure to certain stressors, or damage to a specific tissue. However, an 
array of non-specific indicators may better demonstrate the outcome of 
chronic exposure to a pollutant (Folmar, 1993). Hematologic disorders, 
on the other hand, are marked by aberrations in numbers, structure and 
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function of the blood cells (Clauss et al., 2008). Obtained hematological 
and plasma biochemical data therefore require adequate statistical 
evaluation. 

Since conventional statistical techniques cannot analyze large 
numbers of interrelated variables, a statistical approach with the power 
to extract principal components from a multitude of data needs to be 
applied (Sun et al., 2011). Application of mathematical and statistical 
methods used in order to process large data sets in an optimal way is 
termed multivariate data analysis (Kurtanjek and Gajdoš Kljusurić, 
2014). Multivariate analysis was proven as a powerful tool in data 
analysis (Hassoun and Karoui, 2017) including tasks as data reduction, 
regression modeling, and classification of observed samples (Cheng 
et al., 2014; Dai et al., 2014). Multivariate tools used for reduction of 
variables, classification and grouping are Factor Analysis (FA) and 
Principal Component Analysis (PCA). They can give an overview of 
complex multivariate data and reveal relations between observed sam-
ples, allowing detection of significant variables as well as outliers (Bro 
and Smilde, 2014). 

The aim of the study thus was to assess the value and applicability of 
multivariate tools (MVA) for hematological and plasma biochemical 
responses of fish living in the treated wastewater over two seasons 
(spring and fall), using physicochemical water properties and heavy 
metals concentration of water as determinants of multiple fish stressors. 
Important parameters were extracted from 1. physicochemical water 
properties, 2. heavy metals from water, 3. leukogram with PCV values, 
and 4. plasma biochemistry from Prussian carp (Carassius gibelio) blood 
over two seasons and two locations. After extracting primary parame-
ters, the Partial Least Squares Regression (PLSR) was used to investigate 
the possibility for direct and rapid prediction of expected hematological 
and plasma biochemistry responses based on the water quality. 

2. Materials and methods 

2.1. Fish and sampling sites 

Water and free-living fish were sampled during the operation of a 

municipal wastewater treatment plant (WWTP in NE Croatia). Repre-
sentative seasons for this work were spring (S) and fall (F). Represen-
tative sampling sites for this work were: 1. canal receiving the outflow of 
treated wastewater (polluted), and 2. WWTP-unrelated natural creek in 
vicinity of the plant (unpolluted). From both locations, fish were netted, 
angled and manipulated in accordance with the Bioethical Committee 
approval (No. BEP-274/2-2012), and European Council Directive 86/ 
609/EEC for animal experiments. Fish belonging to several species were 
captured in spring and fall, but only data from Prussian carp (Carassius 
gibelio) were taken into consideration, since it represented the most 
numerous fish group (n = 24 and 45, respectively). Fish were randomly 
sampled, kept in aerated tanks and anesthetized with tricaine methane- 
sulfonate (MS-222, Sigma, St. Louis, Missouri, USA) as described in 
Topić Popović et al. (2012). Blood was withdrawn by caudal vein 
puncture. 

2.2. Hematology and plasma biochemistry 

Blood was centrifuged for 90 s at 12,000 × g (Statspin VT (Idexx, 
USA)). Separated plasma was pipetted and frozen (− 80 ◦C). Concen-
trations of plasma metabolites and enzymes were determined by Beck-
man Coulter commercial kits (Olympus Life and Material Science 
Europe, Ireland) on the Olympus AU 640 biochemistry analyzer 
(Olympus, Japan) as concentrations of glucose (GLU), total proteins 
(TP), albumin (ALB), cholesterol (CHOL), triglyceride (TRIG), urea 
(URE), creatinine (CRE), activity of alanine aminotransferase (ALT), and 
alkaline phosphatase (ALP). All analyses were conducted in duplicates. 
All reagents were calibrated on at least two calibration points each, and 
they were controlled on three levels. For analytical performance of URE, 
CRE, TP, ALB, GLU, ALP, TRIG and CHOL, assay precision tests were 
performed (Westgard, 2020; Flatland et al., 2010). For intra-assay pre-
cision, two pools of samples with different concentrations of analytes 
(low and high) were prepared from fish plasma. Intra-assay coefficient 
of variation (CV) was calculated after analysis of the low and high pools, 
five times in a single assay run (Table 1). For inter-assay precision, one 
pool with high concentration of analytes was divided into aliquots and 
stored at − 20 ◦C until analysis. All samples used for repetitive analyses 
were frozen to avoid possible changes caused by repetitive thawing and 
freezing. Inter-assay CV was calculated by analyzing the same sample in 
separate runs performed on five consecutive days (Table 1). 

Blood smears were prepared in triplicate, air dried and stained with 
Diff-quick stain. Leukocyte morphology was evaluated under magnifi-
cation of 400× and later 1000× with immersion. Differential count was 
performed on 200 cells minimum (excluding platelets), under 400× in 
minimum 10 visual fields. The standardized total leukocyte count per µL 
of blood and their ratio as % was calculated adapted from Fudge (2000). 
In short, the total leukocyte count was estimated using the following 
formula: total slide leukocyte count/number of high power fields (400×, 
10 fields minimum) × 2000 = Total white blood cells. Total white blood 
cells number was then used to determine numbers of each leukocyte 
type with the following formula: differential count (in %) of counted 
leukocyte type/100× total number of white blood cells = number of 
leukocyte type. 

The percentage of PCV (packed cells to total volume) was determined 
by direct measurement on StatSpin microhaematocrit capillary tube 
reader after centrifuging heparinized microhaematocrit capillaries at 
12,000g for 120 s. Data are presented in Supplementary material. 

2.3. Heavy metals concentration and physicochemical water properties 

Determination of water quality parameters was performed according 
to the following protocols: ISO 15586:2003 and ISO 15586:2004 Trace 
elements using atomic absorption spectrometry with graphite furnace; 
ISO 12846:2012 Mercury – Method using atomic absorption spectrom-
etry (AAS) with and without enrichment; ISO 11885:2007 Selected el-
ements by inductively coupled plasma optical emission spectrometry 

Table 1 
Intra- and inter-assay coefficients of variation (CV) for biochemical parameters 
in fish serum pools.  

Assay Comparison Pool Mean SD CV (%) 

Urea (mmol/L) intra low 0.67 0.06  8.66   
high 1.19 0.04  3.20  

inter  1.22 0.07  5.68 
Creatinin (μmol/L) intra low 9.33 1.53  16.37   

high 17.83 0.75  4.22  
inter  18.28 1.18  6.47 

Total proteins (g/L) intra low 16.00 0.73  10.83   
high 29.00 0.87  2.99  

inter  28.97 0.29  1.01 
Albumin (g/L) intra low 5.50 0.58  10.50   

high 10.11 0.33  3.30  
inter  10.11 0,19  1.90 

Glucose (mmol/L) intra low 6.80 1.26  10.91   
high 12.27 0.34  2.79  

inter  11.57 0.35  5.94 
Alkaline phosphatase (U/L) intra low 5.75 0.96  16.65   

high 9.00 0.89  9.94  
inter  8,67 1.04  12.01 

Alanine aminotransferase (U/ 
L) 

intra low 11.50 1.91  16.65   

high 18.00 1.79  9.94  
inter  18.00 2.00  11.11 

Triglycerides (mmol/L) intra low 1.13 0.07  6.54   
high 2.23 0.24  10.80  

inter  2.27 0.31  13.48 
Cholesterol (mmol/L) intra low 3.60 0.34  9.32   

high 6.44 0.13  2.01  
inter  5.90 0.97  16.51  
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(ICP-OES); ISO 872:2005 Suspended solids – Method by filtration 
through glass fiber filters; ISO 6878:2004 Phosphorus – Ammonium 
molybdate spectrometric method; ISO 10523:2008 pH; ISO 7888:1985 
Electrical conductivity; ISO 8467:1993 Permanganate index; ISO 
5813:1983 Dissolved oxygen – Iodometric method; ISO 5815:1989 
Biochemical oxygen demand after 5 days (BOD 5) – Dilution and seeding 
method; ISO 7150-1:1984 Ammonium – Part 1: Manual spectrometric 
method; Standard Methods: 4500-NO3-E Nitrate in water after cadmium 
reduction; ISO 6777:1984 Nitrite – Molecular absorption spectrometric 
method; ISO 15705:2002 Chemical oxygen demand index (ST-COD) – 
Small-scale sealed-tube method. All measurements were conducted in 
duplicates from three water samples in each season. Data are presented 
in Supplementary material. 

2.4. Data analysis 

Processing data contained (i) observations of water per two seasons, 
which included physicochemical properties (14 parameters), heavy 
metals (7 parameters); (ii) observations of Prussian carp blood per two 
seasons: leukogram and PCV (8 parameters), and plasma biochemistry 
(9 parameters). The total data matrix consisted of 38 rows (of the pre-
viously mentioned parameters) for which triplicates were measured per 
two seasons and two sampling sites. Therefore, the initial data matrix for 
processing contained 456 complex data. For all statistical analyses, 
Software Statistica v.10 (StatSoft, Tulsa, OK, USA) was used. Four 
different multivariate tools were used; three of them were Analysis of 
Data tools and one was a Modeling Data tool. Analysis of Data tools: 
Agglomerative Hierarchical Clustering (AHC), Factor Analysis (FA) and 
Principal Component Analysis (PCA). Modeling Data tool: Partial Least 
Square Regression (PLSR). 

2.4.1. Agglomerative hierarchical clustering (AHC) 
Cluster analysis (CA) was used to classify samples of observed pa-

rameters based on the physicochemical water properties, heavy metals 
in water, leukogram, PCV and plasma biochemistry, containing data for 
two seasons (spring (S) and fall (F)), and two sampling sites (treated 
wastewater (TW) and natural creek (NC)). CA forms groups based on 
their similarity or difference. From the analysis, it is possible to deter-
mine the qualitative reasons for such grouping, although CA is not a 
method that can differentiate between relevant and irrelevant variables. 
This method depends on the measurement units of the observed pa-
rameters and therefore, it is important to standardize them. Different 
initial clusterings can lead to different final clusterings (as our clusters S 
& F) and it is advisable to run the procedure several times with different 
(random) initial clusterings. 

2.4.2. Factor analysis (FA) 
In order to determine which variables were important in the 

observed set of data, the FA was applied. FA was used to test the re-
lationships between factor loadings and to test the strength and rela-
tionship between each common factor. First step was to determine the 
suitability of the input data size, and to create a correlation matrix for 
testing of adequacy. Second step was the extraction of factors minding to 
determine the number of factors to retain. For better interpretation of 
the factor structure, the factor rotation was used (Varimax rotation) to 
simplify the expression of a particular sub-space (Kurtanjek and Gajdoš 
Kljusurić, 2014). FA resulted with the appropriateness for reducing a 
number of factors, examining relationships between categories, and 
evaluating the construct validity of a measurement scale (as in the case 
of the leukogram and PCV values). FA analysis thus helped to indicate 
important variables (Ruscio and Roche, 2012; Schmitt, 2011). The 
outcome of applying this method will largely depend on the ability to 

Fig. 1. Dendrogram of the agglomerative hierarchical clustering (AHC) for physicochemical water properties, heavy metals in water, leukogram with PCV, and 
plasma biochemistry, containing data for two seasons (spring S/fall F) and two sampling sites (treated wastewater TW/natural creek NC). 
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develop a complete and accurate selection of important variables; we 
have decided to use the value 0.7 as the value of the significance of the 
contribution of the variable. 

2.4.3. Principal component analysis (PCA) 
For the factor extraction, PCA method can also be used, particularly 

when the aim is to reduce the number of variables while retaining as 
much of the original variance as possible. PCA resolves the input data 
matrix into product of scores and loading matrix. PCA was thus used to 
emphasize variations and to bring out strong patterns in the observed 
data set. The data were observed with reduced variables and parameters 
(Conway and Huffcutt, 2003; Jennrich and Bentler, 2011). By use of 
score and loading plots (observed were parameters in the rows and 
variables in the columns), PCA helped to explore and visualize the data 
easily. Scores matrix gave the position of samples in the PCA quadrant 
with two axes: the principal components (PCs) explaining the majority 
of data variability (Kurtanjek and Gajdoš Kljusurić, 2014), and the 
loadings presenting contributions of the observed variables to the PCs. 
This method is affected by scale, so the data standardization is a 
mandatory process before applying the analysis itself. 

2.4.4. Partial least square regression (PLSR) 
In order to examine the possibility of prediction and quantitative 

determination of certain parameters (expected values form the blood of 
Prussian carp) based on input parameters (water quality), PLSR models 
were used. PLSR models were evaluated regarding following parame-
ters: coefficient of determination (R2), ratio of performance to deviation 
(RPD) and Range Error Ratio (RER). More acceptable models have 
higher values of R2, RPD and RER. The models rating according the R2 

and RPD are typically interpreted according the guidelines published by 
Williams (2004) and Williams et al. (2012). The interpretation and 
utility of the calibration model is categorized as follows: R2 in the range 
0.50–0.64 presents a model usable for rough screening; R2 ranging from 
0.66 to 0.81 presents a model usable for screening and some “approxi-
mate” calibrations. Good model will have R2 in the range 0.83–0.90 
presenting a usable model that should be used with caution. A usable 
model in most applications will have R2 in the range of 0.92–0.96 while 
the models usable in any application will result with R2 > 0.98. When 
predicting accuracy of a model based on the RPD, its value tends to rise 
with the prediction ability of the model. Thus values from 3.1 to 4.9 refer 
to models with fair prediction ability. Values greater than 8.1 indicate a 
suitability of the model for predictions (Fearn, 2001; Williams, 2001). 
RER values for quantification should be greater than 15 (American As-
sociation Cereal Chemists International: Approved Method 39-00.01, 
1999). The main limitation of PLSR is the need of a large number of 
samples required for accurate calibration. There are also a number of 
parameters that assess the efficiency of the model (R2; RPD, SME etc.), 
and each of them has its shortcomings due to the way their amount is 
calculated. 

3. Results and discussion 

Multivariate tools were used to investigate potential relationships 
between variables in an overarching way. They were also used to 
qualify, and if possible, to quantify the relationship between the 
observed variables. In a system that seeks to examine the impact of 
quality on the observed parameters of fish inhabiting different 
(vulnerable) areas, MVA seems to be a good choice because these tools 
determine the links between the independent and dependent variables 
and specify the conditions under which the association takes place. MVA 
controls association between variables by using correspondences, partial 
correlation and multiple regressions, which emphasizes the main 
advantage of multivariate analysis: giving a more realistic assessment 
than if using a single variable. Results of this work explain which of the 
multivariate tools used were the most suitable for data sets divided in 
four different groups (1. physicochemical water properties, 2. heavy 
metals in water, 3. leukogram with PCV, and 4. plasma biochemistry) 
containing data for two seasons (spring S/fall F) and two sampling sites 
(treated wastewater TW/natural creek NC). 

3.1. Agglomerative hierarchical clustering (AHC) 

According to AHC, concentration of heavy metals had the same 
grouping pattern as plasma biochemistry (Fig. 1). The characteristic of 
AHC is that based on tables and charts it allows determining the ratio-
nale for such grouping. Clustering allowed grouping of observed data 
sets based on similarity of the observed cases, i.e. based on the season 
and the site of sampling (Fig. 1). Clustering regarding fish plasma 
biochemistry showed an increase of linkage distance (> 45) for fish 
caught in spring in TW vs. NC. The same trend, but with larger linkage 
distance (> 200) was noted when the observed variables in the clus-
tering process were heavy metals. 

Physicochemical water properties are grouped based on the sampling 
site and the main parameters (dissolved oxygen, saturated oxygen, 
suspended solids, COD, COD-Mn and BODn). These parameters were 
significantly responsible for such grouping, and the polluted site (TW) 
showed differences based on the season, i.e. they were significantly 
different in spring. 

Heavy metals are grouped significantly primarily depending on the 

Table 2 
Factor analysis showing the distribution of factor patterns for the first two 
factors.  

Observations in water per two seasons Variables F1 F2 

Physicochemical properties Temperature 0.9098 -0.3978 
Dissolved 
oxygen 

-0.7940 -0.6079 

Oxygen 
saturation 

-0.8342 -0.5493 

pH -0.9401 0.1034 
Suspended 
solids 

0.8612 -0.5082 

COD 0.5591 -0.6598 
COD-Mn 0.9688 -0.1271 
BODn 0.9315 -0.3578 
Ammonium 0.4743 0.8758 
Nitrite 0.3288 0.9343 
Nitrate 0.1059 0.9914 
Total nitrogen 0.8831 -0.4692 
Phosphate 0.9749 0.2214 
Total 
phosphorus 

0.9875 0.1574 

Heavy metals Cadmium 0.9603 0.0462 
Chromium 0.7652 0.1339 
Mercury 0.6727 -0.7399 
Lead 0.6807 -0.7326 
Nickel 0.9631 0.2690 
Zinc 0.9417 0.3364 
Copper 0.9604 0.2786 

Observations in Prussian carp blood 
per two seasons 

Variables F1 F2 

Leukogram and PCV Total 
Leukocytes 

0.9792 0.2027 

Lymphocytes 0.8825 -0.2215 
Lymphocytes -0.9624 -0.2528 
Granulocytes 0.9639 0.2484 
Granulocytes 0.9389 0.3360 
Monocytes 0.8947 -0.4466 
Monocytes 0.0670 -0.9839 
PCV 0.3604 -0.9300 

Plasma biochemistry URE -0.5398 -0.8418 
CRE -0.9310 0.3651 
TP 0.9892 0.0278 
ALB 0.9671 0.2016 
GLU -0.8068 0.2821 
ALT -0.8303 -0.4735 
ALP 0.1067 -0.9943 
TRIG 0.6685 -0.3778 
CHOL 0.9742 -0.1451  
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season. Significant differences were caused by concentrations of Ni, Zn 
and Cu. Groupings of plasma biochemistry had no significant changes 
for URE, TRIG and CHOL, while all other parameters differed based on 
the season and the sampling site. This multivariate analyzing data 
method thus proved to be a useful qualitative tool in differentiation of 
observed data based on physicochemical water properties, heavy metals 
in water and fish plasma biochemistry. 

3.2. Factor analysis (FA) 

As previously demonstrated, cluster analysis groups data based on 
the similarity of cases. Factor analysis, as an explorative analysis, groups 
similar variables into dimensions (Schmitt, 2011). As an explorative 
analysis, FA does not distinguish between independent and dependent 
variables. It reduces the information in a model by reducing dimensions 
of observations (Jennrich and Bentler, 2011), and is often used to reduce 
the number of variables (Schmitt, 2011). 

In this work, FA was conducted to determine a potential reduction of 
input parameters for further analysis, for each set of data (Table 2). It 
was used to eliminate variables which were not significant enough. The 
stringent criteria i.e. cut-off was set at 0.7. The rotated factor loading is 
presented in Table 2. 

All parameters with the absolute value of loading greater than the 

cut-off were used in the subsequent multivariate analysis, Principal 
Component Analysis (PCA). The first factor (F1) of FA explained the 
largest percentage of variance in the observed set of data (Williams 
et al., 2012). Therefore, from the data set of physicochemical properties 
some data were reduced from further observation, thus excluding COD, 
ammonium, nitrite and nitrate from further calculations. In the data set 
of heavy metals, Hg and Pb were excluded from further calculations 
without any significant impact. Monocytes and PCV values were also 
excluded from the data set of leukogram and PCV, as well as ALP from 
the data set of plasma biochemistry. 

3.3. Principal component analysis (PCA) 

PCA analysis was conducted to determine similarities and differences 
in the observed sets of data depending on sampling sites and seasons 
(Fig. 2A–D). Analyses were conducted on the reduced data, using only 
significant F1 data from Table 2. 

PCA confirmed the results of AHC which showed clear groupings (S/ 
F and TW/NC). It also demonstrated which parameters were dominant 
in which season and on which sampling site. Unlike in the AHC method, 
there were quantitative differences for the observed parameters. In 
Fig. 2A it is visible that total phosphorus and phosphate have the highest 
values in treated wastewater (F_TW and S_TW). Heavy metals were the 

Fig. 2. Biplots of principal component analysis (PCA) for A) physicochemical water properties, B) heavy metals in water, C) leukogram with PCV, and D) plasma 
biochemistry, containing data for two seasons (spring S/fall F) and two sampling sites (treated wastewater TW/natural creek NC). 
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highest in treated wastewater in spring (S_TW), positioned in the right 
side of the biplot, in the fourth quadrant. 

Reduced data set for leukogram and PCV demonstrated that unpol-
luted natural creek during fall (F_NC) was positioned inversely propor-
tional to lymphocytes (%). Similar positioning was in polluted waters 
(F_TW) for the lowest blood values of monocytes and lymphocytes. 

Biplot of plasma biochemistry parameters brought out a pattern for 
the lowest values of CRE in spring fish (S_TW), and the lowest values of 
TP and ALB in fall fish (F_TW) in polluted waters. 

PCA thus demonstrated an objective way of calculating indices that 
reduce dimensionality of the data by their linear combination, gener-
ating latent variables uncorrelated to each other, and concisely 
accounted for variability of the data (Bhuiyan et al., 2016). It also 
demonstrated a general picture of trends and groupings of the individual 
variables, as well as pinpointed particular determinants influencing the 
variability of data (Li et al., 2011). Qualitative determination ending 
with quantitative determination was reliable. 

3.4. Partial least square regression (PLSR) 

PLSR was used to investigate a possibility for direct and rapid pre-
diction of expected hematological and plasma biochemistry responses to 
water quality (Table 3). It explained and qualitatively evaluated data 
with three different parameters: coefficient of determination (R2), ratio 
of standard error of performance to standard deviation (RPD), and range 
error ratio (RER). Each parameter described the PLSR model in a 
particular way. The R2 described how well the data points fitted the 
model, with values ranging from 0 to 1, and accuracy of the model 
expressed by values closer to 1. Higher RPD values also suggested 
models with increasing accuracy. RER values greater than 10 indicated 
the model as acceptable for quality control while values over 15 indi-
cated a possibility of applying the model for quantification (American 
Association Cereal Chemists International: Approved Method 39-00.01, 
1999). 

Based on the results from FA (Table 2), significant values were 
chosen for leukogram and PCV data set. From plasma biochemistry 
parameters, four (GLU, ALT, TRIG and CHOL) were chosen as parame-
ters related to water pollution. The lowest model indicators (R2, RPD 
and RER; 0.75; 2.4; 6.1, respectively) were established for TRIG when 

the content of heavy metals in water (HMW model) was used as the input 
data of the PLSR model. However, for TRIG in S_TW the standard de-
viation was equal to zero. All other parameters were evaluated as suit-
able for quality control (RPD ≥ 5 and/or RER ≥10), for good calibration 
for quantification (RER ≥ 15), and for applied research (RPD ≥ 8) based 
on the American Association Cereal Chemists International: Approved 
Method 39-00.01 (1999). This is an additional confirmation for the 
soundness of conducted methods of multivariate analyses, as well as the 
applicability of the model for prediction of expected parameters in the 
blood of Prussian carp based on water pollution in different seasons. 

Application of a statistical approach on a certain data set often 
carries dilemmas. Multivariate approach on environmental data is 
complex and the input data set needs to be informative enough (without 
missing data) to enable qualitative and quantitative analyses. Qualita-
tive analysis observed similarities and/or differences in the computed 
data through different seasons and sampling sites, and enabled quanti-
tative analyses. These presented the prediction potential of expected 
hematological and plasma biochemistry responses to water quality. 

3.5. Conclusions 

The results corroborate the concept that multivariate tools are 
valuable in determination of biological responses of fish to multiple fish 
stressors, particularly the PCA analysis. PCA confirmed clustering 
groups and determined dominant parameters. In a biological sense, 
leucopenia and lymphopenia, namely mononuclear leukocytes (lym-
phocytes and monocytes) grouped for F_TW fish, indicate a reaction to 
stressor(s) (Clauss et al., 2008). These stressors were likely elevated 
ammonium, nitrite, nitrate and phosphorus, which were excessively 
high in that period in treated wastewater. Such an elevation could be 
attributed to industrial waters generated from the sugar beet processing 
(Topić Popović et al., 2016). Water quality diminished to such an extent 
might stimulate the algae overgrowth and hence reduce the oxygen level 
needed for fish breathing (Sahu and Chaudhari, 2015). Although the FA 
reduced the data set of physicochemical properties excluding ammo-
nium, nitrite and nitrate, it included the phosphorus variable as a 
representative of the effect. Granulocytes decreased in S_TW fish and 
were correctly grouped with the leukocytes variables, as they contribute 
a significant portion of white blood cells in the form of 

Table 3 
PLS regression model parameters (coefficient of determination, R2 and the ratio of standard error of prediction to sample standard deviation, RPD). The input data for 
prediction: physicochemical water properties (PWP) or heavy metals from water (HMW), over two seasons (spring (S) and fall (F)), in treated wastewater (TW) and a 
natural creek (NC).     

Total Leukocytes Lymphocytes Granulocytes PCV GLU ALT TRIG CHOL 

S_TW model PWP R2  0.9465  0.9637  0.9983  0.9980  0.9988 0.9423  0.9990  0.9973   
RPD  5.3  6.4  8.6  8.6  8.6 5.0  8.6  8.5   
RER  10.6  12.8  17.1  17.1  17.2 10.1  17.2  17.0  

model HMW R2  0.9465  0.9637  0.9983  0.9980  0.9988 0.9423  0.7500  0.9973   
RPD  5.3  6.4  8.6  8.6  8.6 5.0  2.4  8.5   
RER  10.6  12.8  17.1  17.1  17.2 10.1  6.1  17.0 

F_TW model PWP R2  0.9909  0.9843  0.9866  0.9997  0.9895 0.9995  0.9991  0.9868   
RPD  8.1  7.7  7.8  8.7  8.0 8.6  8.6  7.8   
RER  16.2  15.4  15.7  17.3  16.0 17.3  17.2  15.7  

model HMW R2  0.9909  0.9843  0.9866  0.9997  0.9895 0.9995  0.9356  0.9868   
RPD  8.1  7.7  7.8  8.7  8.0 8.6  4.6  7.8   
RER  16.2  15.4  15.7  17.3  16.0 17.3  9.2  15.7 

S_NC model PWP R2  0.9948  0.9981  0.9616  0.9957  0.9998 0.8246  0.9900  0.9176   
RPD  8.4  8.6  6.2  8.4  8.7 -2.4  8.0  3.5   
RER  16.7  17.1  12.5  16.8  17.3 -4.8  16.1  6.9  

model HMW R2  0.9948  0.9981  0.9616  0.9957  0.9998 0.8246  0.9891  0.9176   
RPD  8.4  8.6  6.2  8.4  8.7 -2.4  8.0  3.5   
RER  16.7  17.1  12.5  16.8  17.3 -4.8  16.0  6.9 

F_NC model PWP R2  0.9997  0.9960  0.9794  0.9996  0.9990 0.9316  0.9990  0.9996   
RPD  8.7  8.4  7.4  8.7  8.6 4.4  8.6  8.7   
RER  17.3  16.9  14.7  17.3  17.2 8.7  17.2  17.3  

model HMW R2  0.9997  0.9960  0.9794  0.9996  0.9990 0.9316  0.9990  0.9996   
RPD  8.7  8.4  7.4  8.7  8.6 4.4  8.6  8.7   
RER  17.3  16.9  14.7  17.3  17.2 8.7  17.2  17.3  
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polymorphonuclears (Folmar, 1993). Their decrease might be connected 
to immunosuppression resulting from the poor quality of wastewater, 
particularly high concentrations of all tested heavy metals in that period 
(Dunier, 1996). Although AHC positioned leukogram variables in a 
small linkage distance, PCA highlighted the granulocyte parameter as 
dominant. Elevated levels of ALB and TP in spring TW fish were also 
interrelated with the increased levels of heavy metals in that period, 
providing valuable information on fish physiological status and stress 
impact on blood biochemistry (Topić Popović et al., 2016). Overall, PCA 
gave a strong definition of factors relative to the immune suppression of 
fish captured from treated wastewater in both seasons. 

Multivariate tools are powerful and versatile methods that have 
shown their capacity for a detailed insight in complex multivariate data 
sets. Depending on the set hypothesis, different multivariate tools for 
analyses and modeling should be used. Complex data sets in this work 
contained data of physicochemical properties and heavy metals in water 
over two seasons measured in two sampling sites as well as data of 
leukogram, PCV and plasma biochemistry from Prussian carp blood. By 
use of multivariate tools, it was possible to provide a comprehensible 
scrutiny of complex multivariate data, such as relations between vari-
ables and relations between samples (clustering). It was also possible to 
detect which parameters could be reduced based on their (in)signifi-
cance and quantifying patterns, as well as to predict significant trends of 
variables to be expected in Prussian carp blood based on the water 
quality and season. 
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Kljusurić, J., Čož-Rakovac, R., 2016. Native Prussian carp (Carassius gibelio) health 
status, biochemical and histological responses to treated wastewaters. Environ. 
Pollut. 218, 689–701. 
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