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Abstract

In this work we have re-investigated two different kinds of texture zero ansatz of the low energy neutrino 
mass matrix in view of the Dark-Large-Mixing-Angle (DLMA) solution of the solar neutrino problem 
which can arise in the presence of non-standard interactions. In particular we revisit the cases of (i) one 
zero mass matrices when the lowest neutrino mass is zero and (ii) one zero texture with a vanishing minor. 
In our study we find that for most of the cases, the texture zero conditions which are allowed for the LMA 
solution, are also allowed for the DLMA solution. However, we found two textures belonging to the case of 
one zero texture with a vanishing minor where LMA solution does not give a viable solution whereas DLMA 
solution does. We analyze all the possible texture zero cases belonging to these two kinds of texture zero 
structures in detail and present correlations between different parameters. We also present the predictions 
for the effective neutrino mass governing neutrino-less double beta decay for the allowed textures.
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1. Introduction

With neutrino physics being in the precision era, the determination of neutrino observables 
and the associated theoretical studies have become one of the prime objectives in astroparticle 
and high energy physics. The unparalleled effort from various oscillation experiments has greatly 
helped in the precise determination of the neutrino parameters. As a result we have the informa-
tion on the magnitude of two non zero neutrino mass squared splittings (�m2

ij ) and three mixing 
angles (θij ) with a very good accuracy. However, a precise measurement of the value of δCP, the 
true octant of the atmospheric mixing angle θ23 and determination of the neutrino mass ordering 
still need more efforts. The measurements of all the above mentioned parameters are based only 
on the leading effects which describe the interactions among the light neutrinos and the matter 
fields via standard interaction only. But, these measurements can go through certain obscurities if 
one includes the non standard interaction (NSI) of light neutrinos with the matter field [1,2] along 
with the standard interactions. Experimental efforts are underway to investigate the sub-leading 
non-oscillation effects such as the NSI. On account of the presence of NSI, solar neutrino data 
admit a new solution corresponding to θ12 > 450, which is known as dark large mixing angle 
(DLMA) solution [3–5]. The standard large mixing angle (LMA) solution is nearly degenerate 
with this DLMA solution for �m2

21 ∼ 7.5 ×10−5 eV2 and sin2 θ12 ∼ 0.7. Very recently neutrino-
nucleus scattering data from COHERENT experiment has been found to constrain the DLMA 
parameter space severely [6]. However these bounds are model dependent and it depends on the 
mass of the light mediator [7]. In this regard it is to mention here that COHERENT data exclude 
the DLMA solution at 95% C.L. if the light mediator mass is greater than 48 MeV only. However, 
the global analysis including oscillation and COHERENT data says that the DLMA solution can 
still be allowed at 3σ , when the NSI parameters have a smaller range of values and with light 
mediators of mass ≥10 MeV. There have been various theoretical studies in regard to this alter-
nate solution to the solar mixing angle. It is shown that this DLMA solution is the manifestation 
of a generalized hierarchy degeneracy [5,8–10]. In the study of neutrinoless double beta decay, 
impact of the DLMA solution on the effective neutrino mass has been highlighted in [11–13].

In the last decade a plenty of theoretical studies have been carried out to understand the neu-
trino mixing pattern and hence the underlying symmetry of the low energy neutrino mass matrix. 
Texture zero is example of one of such studies. Textures imply certain relationships among lep-
tonic mixing parameters leading to the possibility of having vanishing elements/minors in the 
neutrino mass matrix. Study of texture zero in the standard three flavor scenario has been carried 
out in great detail in light of the LMA solution. We refer to [14] for a comprehensive review. 
However the studies of texture zero in the context of the DLMA solution have not received much 
attention. With the emergence of the DLMA solution, it is worthwhile to revisit the texture zero 
in light of these new solutions as the results obtained for the LMA solution may change in the 
presence of the DLMA solution.

In this work we re-examine texture zero scenarios of the neutrino mass matrix in light of the 
DLMA solution, where (i) one or more elements of the low energy neutrino mass matrix can be 
zero and (ii) one of the elements of neutrino mass matrix and its minor is zero simultaneously. 
Recently ref. [15] has carried out the analysis of (i) when the lowest neutrino mass is non zero. 
In this work, using the most recent data, the authors confirm the fact that all the possible six one-
zero textures are allowed [16–19] and among the possible 15 two-zero textures only seven are 
allowed [20–35] for the LMA solution. More than two zero textures are not allowed in standard 
three flavor framework. In addition they find that all the one-zero textures and all the two zero 
textures which are allowed with the LMA solution are also allowed with the DLMA solution 
2



M. Ghosh, S. Goswami and A. Mukherjee Nuclear Physics B 969 (2021) 115460
except the ones with vanishing mee. The cases with mee = 0 which are allowed with the LMA 
solution, are disfavored with the DLMA solution. In our present work we consider the same 
one-zero textures but when the lowest neutrino mass is zero.1 The theoretical motivation for 
considering the lowest neutrino mass to be zero goes as follows.

As we know in the type-I seesaw model, the effective neutrino mass matrix is described by 
Mν ≈ MDM−1

R MT
D , which requires at least two right handed neutrinos (RHN) to be consistent 

with the non-zero neutrino mass squared differences (solar and atmospheric). The addition of 
only two RHNs to the Standard Model brings an economical extension [36–38]. It is true that, 
presence of only two RHNs in the type-I seesaw model predicts one of the neutrino mass eigen-
value to be zero. Therefore, driven by this we have reconsidered a vanishing lowest neutrino 
mass. The study of one zero texture with a vanishing minor in light of LMA solution is carried 
out in [39,40]. These kinds of textures can be realized via seesaw mechanism when some of the 
elements of MD and MR are zero.

We organize this paper in the following manner. In Section 2 we describe the low energy 
neutrino mass matrix and the relevant parameters which delineate neutrino oscillation. Section 3
is kept for the new findings and analysis on one zero texture study with the present backgrounds 
for the solar mixing angle. In Section 4 we present the results and analysis on the neutrino mass 
pattern followed by the simultaneous existence of one zero texture and a vanishing minor. In 
Section 5, we present the predictions of the effective neutrino mass mββ for the allowed textures. 
Finally we draw our conclusion in Section 6.

2. Low energy neutrino mass matrix

The well known lepton mixing matrix UPMNS represents the mixing between the neutrino 
flavor eigenstates and their mass eigenstates. In a three flavored paradigm this matrix is parame-
terized in terms of three mixing angles and three CP phases as,

VPMNS = UPMNS UMaj (2.1)

where

UPMNS =
⎛
⎝ c12c13 s12c13 s13e

−iδCP

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

⎞
⎠ , (2.2)

with cij = cos θij , sij = sin θij and δCP as the Dirac CP phase. The diagonal matrix, UMaj =
diag(1, e−iα, ei(−β+δ)), contains the Majorana CP phases α, β which can only be probed in the 
neutrinoless double beta decay experiments and not in neutrino oscillation experiments.

With a diagonal charged lepton mass matrix, the low energy neutrino mass matrix in the flavor 
basis, can be expressed with the help of the lepton mixing matrix Eq. (2.2) as,

Mν = VPMNSM
diag
ν V T

PMNS, (2.3)

where, Mdiag
ν carries the neutrino mass eigenvalues m1, m2, m3. Depending on the choice of 

the neutrino mass hierarchy we can express the mass eigenvalues in terms of the solar (�m2
sol) 

and atmospheric (�m2
atm) mass splittings as m1, m2 =

√
m2

1 + �m2
sol, m3 =

√
m2

1 + �m2
atm for 

1 We have checked that two zero textures are not allowed when lowest neutrino mass is zero.
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Table 1
Latest 3σ bounds on the oscillation parameters from Ref. [41].

Parameters Normal ordering Inverted ordering

sin2 θ23 0.433- 0.609 0.436 - 0.610
sin2 θ12 0.275- 0.350 0.275- 0.350
sin2 θ13 0.02044- 0.02435 0.02064 - 0.02457
�m2

21 (6.79 − 8.01) × 10−5 eV2 (6.79 − 8.01) × 10−5 eV2

�m2
31 (2.436 − 2.618) × 10−3 eV2 −(2.601 − 2.419) × 10−3 eV2

δCP /0 144-357 205-348

normal hierarchy (NH) of the neutrino masses whereas for inverted hierarchy (IH) of the neutrino 

masses m1 =
√

m2
3 + �m2

atm, m2 =
√

m2
3 + �m2

sol + �m2
atm, m3. For NH, one can approximate 

the mass eigenvalues as |m3| � �m2
atm � |m2| � �m2

sol � |m1| and |m2| � |m1| � �m2
atm �

|m3| for IH.
As mentioned earlier, we re-investigate here the one zero texture scheme with vanishing 

lowest neutrino mass and one zero texture with vanishing minor considering a non-zero low-
est neutrino mass with the latest global fit for neutrino oscillation parameters along with the 
second choice of the solar mixing angle which is also known as Dark-LMA solution. The 
recent 3σ global fit of the three flavor oscillation parameters [41] can be found from the 
Table 1. The Dark-LMA values allow us to write the other solution for the solar angle as 
sin2 θ12(DLMA) = 0.650 − 0.725 [5]. It is to be mentioned here that for numerical analy-
sis we have chosen the entire 3σ ranges of the oscillation parameters and δCP varied from 
0 to 360◦. Taking these choices for oscillation parameters as inputs and imposing the tex-
ture zero conditions on the mass matrix elements we classify the allowed texture classes and 
study the correlations for these cases. It is to be noted that the global analysis including NSI 
predicts the ranges of sin2 θ12 = 0.214 − 0.356 (LMA), sin2 θ12 = 0.648 − 0.745 (DLMA), 
�m2

21 = (6.73 − 8.14) × 10−5 (LMA) and �m2
21 = (6.82 − 8.02) × 10−5 (DLMA) while the 

other oscillation parameters remain unaffected. Since the change is very marginal [6], we have 
used the ranges in Table 1 in our analysis.

3. One-zero textures

In this section we present the viable cases in the context of one-zero texture neutrino mass 
matrices when the lowest neutrino mass is zero. One-zero texture implies that one of the elements 
of the low energy neutrino mass matrix is zero i.e.,

Mpq = 0, (3.1)

where p, q represent the three lepton flavors namely e, μ and τ . We have summarized our results 
in Table 2 and presented the correlations between the various leptonic mixing parameters in 
Fig. 1 for the allowed textures. Using the 3σ global fit values for the oscillation parameters along 
with the DLMA solution for the solar mixing angle as given in Table 1, we have numerically 
checked for the parameter space which can lead to a vanishing matrix element corresponding to 
each class. Numerically, our definition of texture zero condition is given by Mpq ≤ 10−8 with p, 
q as e, μ and τ . Below we discuss each case in detail.
M. Ghosh, S. Goswami and A. Mukherjee Nuclear Physics B 969 (2021) 115460
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Fig. 1. Correlations of the low energy parameters obtained for one zero texture classes. The grey shaded areas are the 
excluded values of δCP at 3σ as obtained by the global fit.
5
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Table 2
Results of one-zero texture when the lowest neutrino mass is zero.

Texture Element LMA-NH DLMA-NH LMA-IH DLMA-IH

G1 Mee = 0 x x x x
G2 Meμ = 0 x x � �
G3 Meτ = 0 x x � �
G4 Mμμ = 0 x x � �
G5 Mμτ = 0 x x x x
G6 Mττ = 0 x x � �

• With a vanishing mlowest none of the one zero texture case is allowed by the present data 
when the neutrino mass hierarchy is chosen to be normal. This can be understood in the 
following way. For NH, when the lowest mass i.e., m1 is zero, then the texture zero condition 
requires cancellation between the m2 and m3 terms. As the difference between m2 ∼ �m2

sol
and m3 ∼ �m2

atm terms is large, it is very difficult to achieve a cancellation between these 
two terms. For inverted mass ordering the classes G1 and G5 are disfavored by the current 
oscillation data. The textures G2, G3, G4 and G6 are allowed for IH and both for LMA and 
DLMA solutions of θ12. The textures G2 and G4 are related to textures G3 and G6 by μ − τ

symmetry respectively. μ − τ symmetry implies that G2 (G4) is related to G3 (G6) by the 
transformation θ23 → 90◦ − θ23.

• The textures G2 and G3 are allowed only for smaller values of sinα with a nearly maximal 
sin δCP . Though we have shown this only for the LMA solution (first row of Fig. 1), the 
correlation is exactly similar for the DLMA case. We do not find any correlations among the 
mixing angles for these cases. This can be understood from the analytical expression of Meμ

which is given by

|Meμ| � c13

√
�m2

atm

∣∣∣c12c23s12(e
2iα − 1) − s13s23(c

2
12 + s2

12e
2iα)eiδCP

∣∣∣ (3.2)

To obtain the above expression, we have used m3 = 0 and the approximations defined in 
Sec 2. From the above expression we understand that the texture G2 will never be allowed 
if alpha is exactly 0◦ or 180◦. But small values of sinα can make this element vanish. For 
small values of sinα, Meμ is almost independent of θ12 and therefore it is allowed for all the 
values of θ12 including the LMA and the DLMA solutions.

• For G4, one needs to have the atmospheric mixing angle in the higher octant as realized from 
the second row of Fig. 1. It is also noticed that Mμμ = 0 is realized for higher values of θ12
of the allowed LMA range and lower values of θ12 of the allowed DLMA range. In addition 
to this for the class G4, we see the restrictions on the CP phases with a large value of sinα

and small values for sin δCP (third row of Fig. 1). Here, we notice that the allowed values of 
δCP in G4 are CP conserving and almost excluded by the current allowed values of δCP from 
the global data. The grey shaded areas in these plots are the excluded values of δCP at 3σ as 
obtained by the global fit. On the other hand, G4 restricts α close to maximal, i.e., 90◦. For 
G6, which is μ − τ symmetric to G4, we note that the lower octant for the atmospheric angle 
is allowed with a preference for the higher values of θ12 for the LMA solution whereas the 
smaller values of θ12 for the DLMA solution (fourth row of Fig. 1). The correlation between 
the Majorana phase α and Dirac phase δCP is similar as that of G4.
Let us try to understand the correlation between sin2 θ12 and sin2 θ23 of G4 by analyzing the 
analytical expression of Mμμ which can be written as
6



M. Ghosh, S. Goswami and A. Mukherjee Nuclear Physics B 969 (2021) 115460
|Mμμ| �
√

�m2
atm

∣∣∣c2
23

(
s2

12 + c2
12e

2iα
) + 1

2

(
1 − e2iα

)
sin 2θ12 sin 2θ23s13e

iδCP

∣∣∣ (3.3)

In obtaining this expression, apart from using the same approximations which we used for 
Meμ, we have also omitted the terms of the order of s2

13 and higher. For the texture G4, this 
equation can be further simplified as

θ12 = 0.5 tan−1
(

± c2
23

sin 2θ23s13

)
(3.4)

where the ‘+’ sign corresponds to the LMA solution i.e., α = 90◦ and δCP = 0◦ and the ‘−’ 
sign corresponds to the DLMA solution i.e., α = 90◦ and δCP = 180◦. For θ23 = 45◦ and 
s2

13 = 0.02, we obtain sin2 θ12 = 0.36(0.64) for LMA (DLMA). Therefore, above equation 
is satisfied only if θ23 lies in the higher octant. Further, from the above equation we under-
stand that as θ23 increases from maximal value, θ12 decreases (increases) towards its allowed 
values for LMA (DLMA) and that is why for the texture G4 to be allowed we need higher 
values of θ23 to allow the lower (higher) values of θ12 for the LMA (DLMA) solution.
Now let us briefly compare our results with the case when the lowest neutrino mass is non 
zero as obtained in Ref. [15]. As we have already mentioned in the introduction, when the 
lowest neutrino mass is non zero, all the one-zero textures which are allowed with the LMA 
solution are also allowed with the DLMA solution except G1. The later is allowed with the 
LMA solution in NH but disfavored with the DLMA solution. The textures G2, G3, G4 and 
G6 are allowed for both NH and IH, whereas the texture G5 is allowed only in IH. However, 
we have seen that when the lowest neutrino mass is zero, only the textures G2, G3, G4 and 
G6 are allowed for IH and for both LMA and DLMA solutions.

4. One zero texture and one vanishing minor

In this section we discuss the phenomenology of the neutrino mass matrix forms with the 
simultaneous appearance of one zero texture and one vanishing minor. Mathematically this con-
dition can be expressed as [39]

Mν(xy) = 0 (4.1)

Mν(pq)Mν(rs) − Mν(tu)Mν(vw) = 0. (4.2)

These above two equations can be explicitly written as

m1X + m2Ye−2iα + m3Ze2i(−β+δ) = 0 (4.3)

m1m2A3e
−2iα + m2m3A1e

2i(−α−β+δ) + m3m1A2e
2i(−β+δ) = 0 (4.4)

where, X = Ux1Uy1, Y = Ux2Uy2, Z = Ux3Uy3 and Ah = (
UplUqlUrkUsk − UtlUulUvkUwk

) +
(l ←→ k), h, l, k being the cyclic permutation of (1, 2, 3). If we solve the above equations si-
multaneously, then we obtain

m1

m3
e2iβ = −

(
XA1 − YA2 + ZA3 ±

√
X2A2

1 + (YA2 − ZA3)2 − 2XA1(YA2 + ZA3)

)
2XA3

× e2iδ (4.5)
7
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m1

m2
e2iα =

(
−XA1 − YA2 + ZA3 ±

√
X2A2

1 + (YA2 − ZA3)2 − 2XA1(YA2 + ZA3)

)
2XA2

(4.6)

Thus there can be four possible solutions of the mass ratios which can lead to a one zero texture 
and vanishing minor simultaneously. We will denote them by (+, +), (+, −), (−, +), (−, −). If 
we define,

S = −

(
XA1 − YA2 + ZA3 ±

√
X2A2

1 + (YA2 − ZA3)2 − 2XA1(YA2 + ZA3)

)
2XA3

e2iδ

(4.7)

T =

(
−XA1 − YA2 + ZA3 ±

√
X2A2

1 + (YA2 − ZA3)2 − 2XA1(YA2 + ZA3)

)
2XA2

,

(4.8)

then the mass ratios can be determined as

ρ = m1

m3
= |S| (4.9)

σ = m1

m2
= |T | , (4.10)

and the Majorana phases can be predicted as

α = 1

2
arg (T ) (4.11)

β = 1

2
arg (S) . (4.12)

Further using ρ and σ we can construct two independent expressions of m1 in the following way

m1 = ρ

√
�m2

21 + �m2
31

1 − ρ2 (4.13)

m1 = σ

√
�m2

21

1 − σ 2 . (4.14)

The condition of simultaneous appearance of one texture zero and vanishing minor will only be 
satisfied when the values of m1 calculated independently from ρ and σ are equal. Numerically, 
when this condition is satisfied, we obtain Mν(xy) ≤ 10−8 and Mν(pq)Mν(rs) − Mν(tu)Mν(vw) ≤
10−8 simultaneously with p, q as e, μ and τ .

As tabulated in Table 3 there are 36 possible cases which can allow the neutrino mass matrix 
to have one zero texture and a vanishing minor simultaneously. Among them certain cases belong 
to the two zero texture classes. Thus we have a total of 15 distinct cases with one texture zero 
and one vanishing minor that are not reducible to a two zero texture case.

In the Table 4 we summarize the validity of each class of this particular scheme of neutrino 
mass matrix taking LMA as well as DLMA solution for both the neutrino mass orderings and 
8
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Table 3
36 texture structures of Mν with a texture Zero and one vanishing minor.

A. B. C. D. E. F.

1.

⎛
⎝ 0 b c

b d e

c e f

⎞
⎠ df − e2 = 0 bf − ec = 0 be − cd = 0 Two Zero Two Zero Two Zero

2.

⎛
⎝ a 0 c

0 d e

c e f

⎞
⎠ df − e2 = 0 Two Zero Two Zero af − c2 = 0 Two Zero Two Zero

3.

⎛
⎝ a b 0

b d e

0 e f

⎞
⎠ df − e2 = 0 Two Zero Two Zero Two Zero Two Zero ad − b2 = 0

4.

⎛
⎝ a b c

b 0 e

c e f

⎞
⎠ Two Zero bf − ec = 0 Two Zero af − c2 = 0 ae − bc = 0 Two Zero

5.

⎛
⎝ a b c

b d 0
c 0 f

⎞
⎠ Two Zero Two Zero Two Zero af − c2 = 0 Two Zero ad − b2 = 0

6.

⎛
⎝ a b c

b d e

c e 0

⎞
⎠ Two Zero Two Zero be − dc = 0 Two Zero ae − bc = 0 ad − b2 = 0

Table 4
Results of one zero texture with one vanishing minor when lowest mass is non-zero. The allowed textures are marked 
with � and which is true only for the solutions of Eq. (4.5) and Eq. (4.6) mentioned in parentheses.

Texture LMA-NH DLMA-NH LMA-IH DLMA-IH

A1 x x x x
B1 x x x x
C1 x x x x

A2 x � (+,+) � (-,-) � (-,-)
D2 � (-,-), (+,+) � (-,-), (+,+) � (-,-) � (-,-)

A3 x � (-,-) � (+,+) � (+,+)
F3 � (-,-), (+,+) � (-,-), (+,+) � (+,+) � (+,+)

B4 � (-,-) � (-,-) � (-,-), (+,+) � (-,-), (+,+)
D4 x x x x
E4 x x x x

D5 x x x x
F5 x x x x

C6 � (-,-) � (-,-) � (-,-), (+,+) � (-,-), (+,+)
E6 x x x x
F6 x x x x

presented the correlations between different observables in Figs. 2, 3, and 4 when the lowest 
neutrino mass is non-zero.2

2 We have checked that when the lowest neutrino mass is zero, none of the cases are allowed.
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Fig. 2. Correlation plots for the classes A2 and A3. For explanation please see the text. The grey shaded areas in these 
plots are the excluded values of δCP at 3σ as obtained by the global fit. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

From Table 4 we understand that all the cases which are allowed for the LMA solution are 
also allowed for the DLMA solution except A2 and A3. A2 and A3 are the two cases which are 
allowed in DLMA with NH but not allowed for LMA with NH.

From Table 4 we also see that some of the cases are allowed only for some specific solutions 
of the mass ratios but not for all the four solutions. The classes A1, B1, C1, D4, E4, D5, F5, E6
and F6 are not allowed by the recent data irrespective of the choice of the solution for the solar 
mixing angle. From the correlation plots we note the following:

• In the Fig. 2 we present the possible correlations among the neutrino parameters for the 
classes A2 and A3 which are related by μ − τ symmetry. For the class A2 with NH, the 
correlation between the atmospheric angle and the DLMA solution for the solar angle shows 
that for the smaller values of θ12 for the DLMA solution we can have both the octants for θ23, 
while the larger DLMA values are likely to favor the lower octant of θ23 (top left panel). For 
the A3 one can notice that the smaller DLMA values prefer both the octants for θ23, whereas 
the larger DLMA values prefer higher octant of θ23 in NH (bottom left panel). For the exact 
cancellations to make the A2 and A3 class allowed for NH, one needs a highly constrained 
value for the Majorana phase α which is around π/2, whereas the remaining two phases δCP
and β can have values in the range 0 − 2π and 0 − π respectively (top middle and bottom 
middle panels). For IH the correlations among the CP phases are found to be completely 
distinct as compared to the NH case. The correlations obtained among the three CP phases 
for A2 and A3 ensure that we need a nearly maximal sin δCP and sinβ and small sinα values 
for the LMA solutions (top right and bottom right panels). For the DLMA solution in IH, 
M. Ghosh, S. Goswami and A. Mukherjee Nuclear Physics B 969 (2021) 115460
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Fig. 3. Correlation plots for D2 and F3. The grey shaded areas in these plots are the excluded values of δCP and sin2 θ12
at 3σ as obtained by the global fit.
11
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the correlations are similar as that of LMA solutions. Now let us try to understand the above 
described results for A2 from the following analytical expressions. Using the (+, +) solution 
for A2 we obtain

S = c12s13s23e
iδCP

s12c23
, T = −c2

12

s2
12

(4.15)

which implies

m1

m3
= c12s13s23

s12c23
,

m1

m2
= c2

12

s2
12

(4.16)

α = 90◦, β = δCP

2
. (4.17)

From the above expression we understand that the mass ratio m1
m2

can only be less than one 
for the DLMA solution of θ12 and the mass ratio m1

m3
is always less than one, implying NH. 

Therefore the (+,+) solution is allowed only for NH and DLMA solution of θ12. It is also 
important to note that the prediction for the Majorana phases and the correlation of the Dirac 
phase δCP as obtained in the numerical analysis is correctly reproduced from the analytical 
expressions. Let us now see the same for the (−, −) solution of A2. For (−, −) solution we 
obtain

S = − 1

s2
13

+O[ 1

s13
], T = 1 − eiδs13s23

c12c23s12
(4.18)

which implies

m1

m3
= 1

s2
13

,
m1

m2
= 1 − 2 cos δCPs13s23

c12c23s12
(4.19)

α = 1

2
tan−1

(
s13s23 sin δCP

c12c23s12 − s13s23 cos δCP

)
, β = 90◦. (4.20)

From the above equations we note that the mass ratio m1
m3

is always greater than one implying 
IH. Further we notice that to have m1

m2
less than one, we need positive values of cosδCP for 

both LMA and DLMA solution of θ12. Therefore we understand that for (−, −) solution A2
is allowed in IH for both LMA and DLMA solution. Regarding the values of the phases, from 
the numerical simulation we obtain δCP close to 90◦ and 270◦ and this gives m1/m2 < 1. We 
also obtain the value of β as equals to 90◦ which is reproduced by our analytical expression. 
For α, from the analytic expressions we obtain

α = 1

2
tan−1

(
± s13

c12s12

)
(4.21)

where we have used θ23 = 45◦. The +(−) sign is for δCP = 90◦(270◦). Further us-
ing the best-fit values of θ12 = 33◦ or 57◦ and θ13 = 8.5◦ we obtain, α = 9◦(171◦) for 
δCP = 90◦(270◦). This correctly matches with our numerical results as presented in Fig. 2.

• In Fig. 3 we present the correlation plots for D2 and F3 which are again μ − τ symmetric. 
First let us discuss the case for NH. For D2 (F3), the (+, +) solution corresponds to the 
region m1 < (>)0.02 eV and the (−, −) solution corresponds to the region m1 > (<)0.02
for both LMA and DLMA solution. For D2 (F3), all the values of θ23 are allowed for (+, +)
12
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Fig. 4. Correlation plots for B4 and C6. The grey shaded areas in these plots are the excluded values of δCP and sin2 θ12
at 3σ as obtained by the global fit.

((−, −)) solution and only higher (lower) octant is allowed for (−, −) ((+, +)) solution in 
LMA. However for DLMA only lower (higher) octant is allowed for D2 (F3).
For NH both the LMA and DLMA show analogous predictions on the Majorana phases for 
the choice of (−, −) ((+, +)) for D2 (F3), but the other choice of solution gives rise to a 
considerably different region of parameter space for all the CP phases. One can notice that 
for the solution (+, +) ((−, −)), D2 (F3) for LMA-NH needs a larger sinα and sin δ with 
a smaller sinβ , but for DLMA-NH the one needs to have larger and almost similar range 
of values for sinα and sinβ for relatively smaller values for sin δ. These constraints on the 
mlowest and the Majorana phases can be insightful in the study of effective neutrino mass 
mββ governing the 0νββ process. It is seen that D2 (F3) with IH can survive for both the 
LMA and DLMA choices with a strict preference of lower (higher) octant for the θ23. Here 
13
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for both the class D2 and F3 with IH, all the three CP phases are tightly constrained to very 
narrow regions with δCP ∼ 90◦ and the Majorana phases around 0◦ and 180◦.

• In Fig. 4 we present the constraints on neutrino observables for the μ − τ symmetric class 
B4 and C6. Here we see that for NH this class remains alive for the (−, −) solution. As can 
be seen from the figure that D2 (C6) class for NH is allowed for both LMA and DLMA 
provided the true octant for θ23 is the lower (higher) one. Along with this preference, the 
constraints on the phases for B4 are quite strong allowing a very narrow range of parameter 
space with maximal sin δCP and almost vanishing sinα and sinβ . The correlations for C6 are 
very similar as that of B4 (not shown). For IH with the choice of LMA/DLMA we obtain ex-
actly similar correlations between sin2 θ23 and the mlowest for both B4 and C6 and we present 
figures only for LMA. For both B4 and C6, the (+, +) solution corresponds to the region 
m1 < 0.02 eV and the (−, −) solution corresponds to the region m1 > 0.02. For B4 (C6), all 
the values of θ23 are allowed for (+, +) solution and only higher (lower) octant is allowed 
for (−, −) solution. Regarding the constraint on the phases, the (−, −) solution severely 
restricts the range of the phases with maximal sin δCP and almost vanishing sinα and sinβ . 
This is true for both B4 and C6 and for both LMA and DLMA. However for (+, +) solution, 
we see that both B4 and C6 with the LMA is allowed for nearly maximal range of sinα and 
moderately smaller values for sinβ and sin δCP. But for the DLMA solution prefers larger 
values of sinα and sinβ with relatively smaller values of sinδCP.

5. Predictions for neutrinoless double beta decay

In the three generation picture the half-life for the 0νββ process is given by

�0νββ

ln2
= G

∣∣∣MNME

me

∣∣∣2
m2

ββ (5.1)

with G containing the phase space factors, me as the electron mass, and MNME as the nuclear 
matrix element (NME). One can write the effective neutrino mass (mββ ∼ Mee) governing neu-
trinoless double beta decay process as,

mββ =
∣∣∣∑

i

U2
eimi

∣∣∣ (5.2)

where U is the unitary lepton mixing matrix and mi are the mass eigenvalues for the three active 
neutrinos. Putting the expressions of the mixing matrix elements, the above equation can be 
recast into the following form

mββ =
∣∣∣m1c

2
12c

2
13 + m2s

2
12c

2
13e

2iα + m3s
2
13e

2iβ
∣∣∣ (5.3)

As is evident, the effective neutrino mass depends on all the neutrino oscillation parameters 
except the atmospheric mixing angle and the CP phase δCP. Thus, it is expected that any alteration 
on any of these parameters has significant impact on the effective neutrino mass [11]. Recently 
Ref. [15] has studied the prediction for mββ for the allowed one zero and two zero textures when 
the lowest neutrino mass is non vanishing. In this section we present the prediction for mββ

for the allowed one zero texture with vanishing lowest neutrino mass and the texture carrying 
simultaneously the one texture zero with vanishing minor in Fig. 5. For one-zero texture with a 
vanishing neutrino mass we obtain allowed solutions only for IH. For this scenario, LMA and 
DLMA give similar predictions [11] for mββ . This is reflected in the top left panel of Fig. 5
where we have presented the results for G2 and G4. In addition, the textures which are related 
14
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Fig. 5. Effective mass prediction versus the neutrino parameters for the allowed texture structures. The grey band indicates 
the latest KamLAND-Zen bound for effective neutrino mass |mββ | ≤ (0.061 − 0.165) eV [42]. For explanation please 
refer to text.

by μ − τ symmetry also predict similar values of mββ . Therefore, for the one-zero textures with 
vanishing lowest neutrino mass we have not shown the results for G3 and G6. These values are 
well below the current bounds on mββ and can be understood in the following way. For m3 = 0, 
mββ is maximum (minimum) when the α is zero (maximal) and this is the case for G2 (G4).

In the upper right panel, we present the predictions for the allowed textures of A2. The pre-
diction for A2(DLMA)-NH is around 0.005 eV while for A2(LMA)-IH, is close to 0.05 eV. The 
prediction for A2(LMA)-IH is similar with the predictions of G2 because in this case m3 is small 
and α is close to zero. A2(DLMA)-IH, also gives similar prediction. As A3 is μ − τ symmetric 
to A2, we have not presented the results for A3.

In the lower panels we present the predictions for B4(LMA) and D2(LMA) for various al-
lowed solutions. For a given hierarchy LMA and DLMA solutions predict similar values of mββ . 
In these plots the grey band indicates the latest KamLAND-Zen bound for effective neutrino 
mass |mββ | ≤ (0.061 − 0.165) eV [42]. For B4 (D2) we notice that the NH (IH) solution is al-
most ruled out from the current bounds of the mββ . As F3 and C6 are μ − τ symmetric to B4
and D2, we have not presented the results for F3 and C6.

Though mββ depends on θ12, we notice that the predictions for mββ are same for both LMA 
and DLMA solutions for all the allowed textures. This can be understood in the following way. 
For the values m1 � m2 = x, the expression for mββ can be re-written as

mββ =
∣∣∣xc2

13 + A

∣∣∣ if α = 0◦ (5.4)
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=
∣∣∣xc2

13 cos 2θ12 + A

∣∣∣ if α = 90◦ (5.5)

where A is the θ12 independent term containing m3. Note that the Eq. (5.4) is independent of θ12
whereas Eq. (5.5) depends on cos 2θ12 which has same value for both LMA and DLMA solution 
but with opposite sign. Therefore depending on the values of A, the values of mββ can be almost 
degenerate in LMA and DLMA solution when α = 90◦. Now as almost all the allowed textures 
satisfy the above conditions, we observe similar prediction for mββ for both LMA and DLMA 
solution.

6. Conclusion

In this work we revisit the texture zeros in low energy neutrino mass matrices in the standard 
three flavor framework in light of the DLMA solution of the solar mixing angle θ12. In particular 
we study the cases of (i) one-zero texture and (ii) simultaneous appearance of one-zero texture 
and one minor zero. Recently one-zero and two-zero textures in presence of DLMA solution has 
been performed considering the case when the lowest neutrino mass is non-zero. In this work we 
re-examined the above two texture classes considering the lowest neutrino mass vanishing. This 
is motivated by the fact that vanishing lowest neutrino mass corresponds to the most economical 
extension of the Standard Model. First of all we find that two zero textures are not allowed if 
we consider the lowest neutrino mass as zero. For one zero texture, we find that among the six 
possible scenarios only four are allowed for both LMA and DLMA solution of θ12 in IH. For NH, 
none of the one zero textures are allowed. For the allowed texture zero cases we have presented 
the correlation between different mixing parameters and explained our numerical results from 
the analytical expressions. For the textures with the simultaneous appearance of one-zero texture 
and vanishing minor we have found that none of the possible cases are allowed when the lowest 
neutrino mass vanishes. However if the lowest neutrino mass is non-zero then we find that among 
the 15 possible cases only 6 are allowed. Among the 6 allowed classes, 4 are allowed for both 
LMA and DLMA solution of θ12. Interestingly there exist two cases for which we find that in the 
presence of DLMA solution of θ12 they are allowed in NH but they are not allowed with LMA 
solution of θ12 in NH. In IH, these two cases are allowed for both LMA and DLMA solution of 
θ12. Apart from presenting the correlation between different parameters, we have also explained 
the numerical results of these particular two cases using analytic expressions. Further, we have 
also presented the predictions for the effective mass mββ for all the allowed case belonging to the 
(i) one zero textures considering lowest neutrino mass to be zero and (ii) simultaneous appearance 
of texture zero and vanishing minor when the lowest neutrino mass is non-zero. We identified two 
classes belonging to the case of simultaneous appearance of texture zero and vanishing minor, 
which can be excluded from the current bounds on the mββ from the neutrinoless double beta 
decay experiments. We expect that future neutrino experiments will provide us more accurate 
determination on the true octant of the atmospheric mixing angle, CP-violating phases, mass 
hierarchy and will finally guide us to choose the appropriate form for low energy neutrino mass 
matrix.
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