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Simple Summary: Ovarian cancers (OCs) are the most lethal form of gynecological tumors. The 

commonest are high-grade serous OCs, while rare OCs originate from many different cell types, 

such as epithelial, germ cell, sex cord-stromal, or mixed types. Rare OCs have distinct molecular 

characteristics, prognosis, and therapeutic approaches. However, all ovarian malignancies mostly 

share the same problem: late diagnosis due to the lack of specific symptoms. Therefore, there is a 

perpetual need to discover better diagnostic, prognostic, and predictive biomarkers, as well as new 

therapeutic approaches. In recent years, long non-coding RNAs (lncRNAs) have gained widespread 

attention because of their important role in various biological pathways. They have multiple mech-

anisms of action with an important role in many cellular processes related to OCs development and 

progression. This review will focus on the different aspects of lncRNAs in OCs and attempt to high-

light the distinctive role of lncRNAs in common and rare OCs. 

Abstract: Rare ovarian cancers (ROCs) are OCs with an annual incidence of fewer than 6 cases per 

100,000 women. They affect women of all ages, but due to their low incidence and the potential 

clinical inexperience in management, there can be a delay in diagnosis, leading to a poor prognosis. 

The underlying causes for these tumors are varied, but generally, the tumors arise due to alterations 

in gene/protein expression in cellular processes that regulate normal proliferation and its check-

points. Dysregulation of the cellular processes that lead to cancer includes gene mutations, epimu-

tations, non-coding RNA (ncRNA) regulation, posttranscriptional and posttranslational modifica-

tions. Long non-coding RNA (lncRNA) are defined as transcribed RNA molecules, more than 200 

nucleotides in length which are not translated into proteins. They regulate gene expression through 

several mechanisms and therefore add another level of complexity to the regulatory mechanisms 

affecting tumor development. Since few studies have been performed on ROCs, in this review we 

summarize the mechanisms of action of lncRNA in OC, with an emphasis on ROCs. 
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1. Introduction 

Gynecologic malignancies comprise about 19% of all cancers diagnosed in women, 

and out of these more than 50% are classified as rare [1]. They encompass more than 30 

different histologic diagnoses of various sites, such as vulva, vagina, uterine cervix and 

corpus, fallopian tube, and ovary. Ovarian cancers (OCs) are the deadliest of all gyneco-

logical malignancies, and in 2020 there were around 314,000 new cases and 207,000 deaths 

related to them around the globe [2]. They mostly fall into the epithelial subtype based on 

the cell of origin, and the most malignant but also the most common type is the high-grade 

serous OC (HGSOC) [3]. Rare cancers are usually defined as malignancies that have an 

incidence of <6 cases per 100,000 [4]. Rare ovarian cancers (ROCs) are malignancies of the 

ovary which can originate from different cell types, such as epithelial, germ cell, sex cord-

stromal, or mixed types [5]. Ovarian malignancies mostly share the same problem, which 

is late diagnosis [6]. ROC malignancies lack distinguishable symptoms during the early 

stages of disease development, which means that most cancers are diagnosed late when 

they have already progressed to advanced stages of the disease and are therefore more 

difficult to treat. This is especially true for ROCs, as they can be misdiagnosed due to their 

rarity and clinical inexperience. This results in poor outcomes for these patients and 

stresses the need for reliable markers for early diagnosis and potential specific targets for 

therapy. In recent years, one class of macromolecules called long non-coding RNAs 

(lncRNAs) has been emerging as promising diagnostic and prognostic biomarkers, as well 

as potential therapeutic targets, for many different types of cancers [7]. Although the role 

of lncRNAs in OCs has been extensively reviewed previously [8–15], this is, to the best of 

our knowledge, the first effort to differentiate the role of lncRNAs between common and 

rare OCs. 

Generally, a major drawback in the research on ROCs is the lack of studies that sep-

arate the OC subtypes, as in most cases the samples are just classified as OC. Most studies 

examine OC in general or focus on the most prevalent HGSOC subtype. Even LGSOC is 

not well characterized within these studies, which makes analyzing available data diffi-

cult, and possibly misleading. Therefore, this review will outline the lncRNAs associated 

with OC in general, with the OC subtype defined where available, focusing on ROCs 

when possible. 

2. Common Versus Rare Ovarian Cancers 

OC is a major cause of morbidity and mortality in women, with minimal improve-

ment in survival rates over the past decades [16]. OC is divided into epithelial and non-

epithelial subgroups. However, OC is a heterogeneous malignancy with diverse patho-

physiology and clinical development. In the case of epithelial ovarian cancers (EOCs), the 

majority of tumors originate outside the ovary, while only a subset develops within the 

ovarian surface epithelium [17]. Approximately 90% of OCs belong to the malignant epi-

thelial tumor (carcinomas) group, and there are currently five main subtypes of carci-

noma: high-grade serous ovarian carcinoma (HGSOC), low-grade serous ovarian carci-

noma (LGSOC), endometrioid carcinoma; clear cell carcinoma, and mucinous carcinoma 

[18]. HGSOC and endometrioid cancers are considered common OCs, while the others are 

deemed to be rare. Table 1 summarizes the most common molecular alterations as well as 

the prognosis of different types of ovarian cancers. 

HGSOCs are chromosomally unstable tumors that commonly have mutations in the 

TP53 tumor suppressor gene [19]. In most cases, there are also germline or somatic muta-

tions in BRCA1 or BRCA2, or hypermethylation of BRCA1 promoter with a loss of expres-

sion. The underlying loss of BRCA1/2 function and inability to repair double-strand repair 

breaks, which in turn leads to chromosomal instability, lead to a potential role for drugs 

targeting the DNA repair (e.g., PARP inhibitors) [20]. The PI3K-AKT pathway plays an 

important role in HGSOC [3]. The 5-year overall survival rates are 84.0%, 67.7%, and 32.1% 

for stage IA/IB, IC/II, and III/IV HGSOC, respectively [21]. 
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Table 1. Molecular alterations and prognosis of different types of ovarian cancers. 

Cancer Type 
Common or 

Rare 
Molecular Alterations Altered Pathways Prognosis Reference 

Epithelial      

High-Grade Serous Ovar-

ian Carcinoma (HGSCO) 
Common 

Genomic Instability, BRCA1, 

BRCA2, TP53, 
PI3K-AKT 

Almost 30% of Patients 

Die within 5-years of Di-

agnosis 

[3,19,20] 

Low-Grade Serous Ovar-

ian Carcinoma (LGSOC) 
Rare 

KRAS, BRAF, ERBB2, 

PIK3CA, FFAR1, USP9X and 

EIF1AX 

MAPK and AKT-

mTOR 

Better than The High-

Grade Serous Cancer 
[22] 

Endometrioid Carcinoma 

(EC) 
Common 

CTNNB1, CDKN2A, 

PIK3CA, KRAS, ARID1A, 

PTEN, and PPP2R1A 

WNT, MAPK/RAS 

and PI3K 
Good [19,20] 

Ovarian Clear Cell Carci-

noma (OCCC) 
Rare 

ARI1D1A,  

PI3KCA, PPP2R1A and 

KRAS 

PI3K and mTOR 
Favorable Compared 

with The Serous Cancer 
[23–25] 

Mucinous ovarian carci-

noma (MOC) 
Rare 

High Microsatellite Instabil-

ity (MSI-H), KRAS, 

CTNNB1, or APC 

WNT 
Worse than Advanced 

Stage Serous Cancer 
[23,26–28] 

Non-Epithelial      

Sex-Cord Stromal Tumors 

(Granulosa Cell Tumors) 
Rare FOXL2 

PI3K/AKT, TGF-β, 

and Notch 
Good [29–32] 

Sex-Cord Stromal Tumors 

(Sertoli–Leydig Cell Tu-

mors) 

Rare DICER1, FOXL2 Unknown Good [33] 

Germ-Cell Tumors Rare KIT, KRAS Unknown Unknown [34] 

Endometrioid carcinomas (EC) are the second commonest malignant ovarian neo-

plasm, accounting for 8–15% of all ovarian carcinomas. There is a strong association with 

endometriosis. Most EC is grade 1 or 2. Since at presentation they are predominantly low 

stage and low grade, the burden of morbidity and mortality associated with this subtype 

is relatively low, despite being common. The 5-year overall survival rates are 87.1%, 

83.9%, and 44.7% for stage IA/IB, IC/II, and III/IV EC, respectively [21]. There are no data 

currently available specifically on the benefit of adjuvant chemotherapy in patients with 

advanced-stage EC, and such data will be hard to acquire given the rarity of advanced-

stage or recurrent tumors. Genes that are typically mutated in EC include CTNNB1, 

CDKN2A, PIK3CA, KRAS, ARID1A, PTEN, and PPP2R1A [20]. Moreover, the MAPK/RAS, 

WNT, and PI3K pathways could be good candidate targets for molecular therapeutics 

[35]. 

LGSOC represent <5% of all ovarian serous carcinomas, affecting younger women 

with a median age of under 55 years. The 5-year overall survival rates are 93.2%, 82.7%, 

and 54.2% for stage IA/IB, IC/II, and III/IV LGSOC, respectively [21]. Despite its slow 

growth, there is a poor sensitivity of LGSOC to chemotherapy. In this type of malignancy, 

there are mutations of genes involved in the mitogen-activated protein kinase (MAPK) 

pathway, such as BRAF, KRAS, NRAS, and ERBB2, but occasionally there may be driver 

mutations of FFAR1, PIK3CA, USP9X, and EIF1AX linked to the AKT-mTOR pathway 

[22]. Moreover, RAD50 and NBS1 proteins are absent in LGSOC. Since estrogen and pro-

gesterone receptors are often expressed in LGSOC, hormone therapy can be a potential 

therapeutic alternative. Targeted therapy such as trametinib, a mitogen-activated protein 

kinase inhibitor, could represent a new standard of care treatment option for women with 

recurrent LGSOC. 

Ovarian clear cell carcinoma (OCCC) accounts for approximately 5% of all ovarian 

carcinomas. When diagnosed at an earlier stage, it tends to have a good prognosis as sur-

gery is often curative. In advanced stages, however, it is associated with a poor prognosis 

as it is often chemoresistant [23]. The 5-year overall survival rates are 81.7%, 69.0%, and 
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22.3% for stage IA/IB, IC/II, and III/IV OCCC, respectively [21]. OCCC and clear-cell car-

cinoma of the kidneys share similar molecular pathways [24], and therefore targeted ther-

apy aiming to inhibit angiogenesis, growth-factor signaling, and mTOR pathways might 

improve prognosis. Although preliminary clinical data focusing only on OCCC are lim-

ited, treatment with multikinase inhibitors (axitinib, sunitinib, sorafenib, and pazopanib), 

bevacizumab, temsirolimus, and everolimus may have anti-tumor activity in this partic-

ular malignancy. In OCCC, the most common somatic genetic alterations are loss of 

ARID1A, activation of PIK3CA, and mutations in PPP2R1A and KRAS [25]. Novel treat-

ment strategies in the case of ARID1A mutated OCCC include the inhibition of the me-

thyltransferase EZH2 and the administration of dasatinib and/or the HDAC6 inhibitor 

ACY1215. Since EGFR expression is detected in up to 60% of OCCC cases, EGFR inhibitors 

may also be effective. In addition, mTOR inhibitors may also be promising due to the high 

expression of mTOR in both early- and advanced-stage OCCC [27]. 

Mucinous epithelial ovarian cancer (MOC) accounts for less than 5% of EOCs. The 5-

year overall survival rates are 82.9%, 69.,5%, and 13.9% for stage IA/IB, IC/II, and III/IV 

OCCC, respectively [21]. While it is recommended to treat MOC with adjuvant car-

boplatin and paclitaxel, since HER2 is amplified or expressed in up to 19% of cases, 

trastuzumab and HER2- targeted therapies might be an effective treatment [23,26]. Mo-

lecular alterations in MOCs commonly involve KRAS, as well as mutations in CTNNB1 or 

APC gene, and high microsatellite instability (MSI-H) [28]. 

Sex-cord stromal tumors and malignant germ-cell tumors are very rare non-epithelial 

ovarian tumors, which overall account for only 6% of all ovarian malignancies [36–39]. A 

common type of malignant sex-cord stromal tumor is granulosa cell tumor (GCT), of 

which there are the adult type and juvenile granulosa cell tumors. Granulosa cell tumors 

secrete progesterone and estrogen [29]. Testing for the FOXL2 c.402C > G (p.C134W) mu-

tation is helpful in the diagnosis of adult-type tumors [30]. However, GATA4, SMAD, 

VEGF, PI3K/AKT, AMH, and TGF-β are also involved in this type of cancer [31]. Granu-

losa cell tumors tend to have a slow progression and late recurrence. In the case of women 

with advanced-stage or recurrent granulosa cell tumors, traditional chemotherapy is lim-

ited in effectiveness [40]. Carboplatin and paclitaxel, a combination of bleomycin, etopo-

side, and cisplatin (BEP), and targeted therapies including VEGF inhibitors, tyrosine ki-

nase inhibitors (TKIs), and hormonal treatment have been investigated as possible thera-

peutic options [23]. For Sertoli–Leydig cell tumors, DICER1 mutations seem to be a prog-

nostic factor that is associated with a higher risk of relapse, especially in younger patients. 

In these tumors, adjuvant chemotherapy is recommended in stage IA disease particularly 

if there is poor differentiation or heterologous elements. BEP is commonly used, or else 

etoposide/cisplatin, carboplatin, and paclitaxel, cyclophosphamide/doxorubicin/cisplatin, 

or platinum agents alone. The 5-year overall survival rates are 90.7% and 76.2% for gran-

ulosa cell tumors and Sertoli-Leydig cell tumors, respectively [41]. 

Germ-cell tumors can be histologically classified as dysgerminoma, immature tera-

toma, yolk sac tumor, choriocarcinoma, embryonal carcinoma, mixed germ-cell tumor, 

malignant struma ovarii, gonadoblastoma, and teratoma with malignant transformation 

[18]. They are different from EOCs because they tend to be diagnosed in younger women, 

and due to their rapid tumor growth, they are usually symptomatic, thus leading to earlier 

diagnosis and a significantly better prognosis. Germ-cell tumors also have a different set 

of biomarkers such as alpha-fetoprotein (AFP), serum human chorionic gonadotropin 

(HCG), and lactate dehydrogenase (LDH) [42]. The most common mutations were found 

in KIT and KRAS, akin to testicular germ cell tumors [34]. Platinum-based regimens have 

led to a 5-year overall survival of over 90% for early-stage tumors and above 75% for ad-

vanced disease [37]. Adjuvant chemotherapy such as BEP is being used routinely. In the 

case of relapsed ovarian germ-cell tumors, treatment includes the use of paclitaxel, 

ifosfamide, and cisplatin, with extrapolation from current treatment used for testicular 

germ-cell tumors, and even using more complex regimens containing combinations of 

methotrexate, cisplatin, vincristine, and bleomycin, alternating with cyclophosphamide, 
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etoposide and actinomycin D [36]. Furthermore, targeted therapies that have been inves-

tigated consist of trastuzumab (anti-HER2 monoclonal antibody, tyrosine kinase inhibi-

tors (TKIs) (i.e., imatinib and sunitinib), and antiangiogenic agents such as thalidomide 

and bevacizumab [29]. 

In contrast to almost all other common OCs, the treatment of ROCs is challenging 

and often must be based on expert opinion, retrospective studies, or extrapolation from 

other tumor sites with similar histology. This leads to difficulty in developing effective 

guidelines for clinical practice. 

Availability of Cell Culture Models for Studying Common and Rare Ovarian Cancers 

Cancer and its corresponding healthy tissue cell lines are indispensable in vitro mod-

els for discovering new biomarkers and pre-clinical drug testing. Due to its extreme het-

erogeneity, there are many problems with using OCs cell lines as models for so many 

different OCs subtypes. One of the biggest problems is often misclassification of com-

monly used cell lines with respect to their tumor subtype [43]. Domcke et al., analyzed a 

panel of 47 commonly used OC cell lines and found significant genetic differences be-

tween them and HGSOC tumor tissue samples, while several less frequently used cell 

lines were found to be more genetically alike to the primary tumors [44]. A collection of 

25 rigorously validated OC cell lines was reported to properly represent the OC subtypes 

from which they are derived [45]. Just recently, Barnes et al., used non-negative matrix 

factorization on transcriptomic data of 44 EOC cell lines to properly classify them into the 

five major histologically distinct subtypes (HGSOC, LGSOC, EC, OCCC, and MOC) [46]. 

All this pointed out an inevitable use of comprehensive omics techniques for proper clas-

sification of cell lines as models for tumor types which they represent. For instance, a ge-

nome-wide analysis of 45 OC cell lines, including some rare subtypes, revealed that these 

cell lines were largely representative of primary ovarian cancers. Analysis of mutation 

signatures demonstrated that serous, mucinous, and undifferentiated tumor subtypes 

showed the age-related signature, while clear cell and serous OCs also had a mismatch 

repair-associated signature. The most frequently mutated gene is TP53, followed by 

ARID1A, PIK3CA, SMAD4, KRAS, APC, CREBBP, and PPP2R1A. Frequent deletions in-

clude CDKN2A, CDKN2B, ERBB4, NF1, NF2, CDC73, EZH2 and STK11 [47]. This is some-

what consistent with the data available from The Cancer Genome Atlas (TCGA) project, 

which encompasses 489 HGSOC samples. The most frequently mutated gene in this da-

taset is also TP53, followed by NF1, BRCA1, BRCA2, RB1, and CDK12 [48]. TCGA analysis 

also revealed that somatic copy number abnormalities are common in HGSOC, resulting 

in frequent amplification of CCNE1, MYC, and MECOM genes, and deletions of PTEN, 

RB1, and NF1 [48]. Methylation analysis revealed increased promoter hypermethylation 

of AMT, CCL21, SPARCL1, RAB25, and BRCA1 [48]. Considering the limitations of the 

TCGA subset, an omics-wide integrated analysis was performed on 96 primary invasive 

early-stage OCs divided into OCCC, EC, HGSOC, LGSOC, and MOC. Unique DNA meth-

ylation patterns were identified for each subtype, with OCCC showing the highest meth-

ylation, and HGSOC the lowest. MOC showed the highest average number of copy num-

ber alterations. RNA expression was able to classify the different histotypes, but the dif-

ferences were more evident when using the DNA methylation heatmap [49]. 

One of the best and largest resources on cell lines is the Cellosaurus 

(https://web.expasy.org/cellosaurus/) (accessed on 7 October 2021) [50]. Furthermore, the 

Cancer Cell Line Encyclopedia (https://sites.broadinstitute.org/ccle/) (accessed on 7 Octo-

ber 2021) [51] and the COSMIC Cell Line Project (https://cancer.sanger.ac.uk/cell_lines) 

(accessed on 7 October 2021) [52] contain many different omics information obtained from 

cell lines. However, not all OC cell lines in those two databases are fully classified, so a 

combined survey of different databases and original publications is needed to discover to 

which OC subtype a cell line of interest belongs. 

3. Long Non-Coding RNAs: Classification and Mechanisms of Action 
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Non-coding RNAs (ncRNAs) are a large class of RNA molecules that are translated 

but do not encode proteins. This class includes a wide range of different RNA molecules, 

which can be broadly classified into infrastructural ncRNAs and regulatory ncRNAs. In-

frastructural ncRNAs include transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and 

small nuclear RNAs (snRNAs) and their functions are well-known and have been exam-

ined in detail [53]. Regulatory ncRNAs include molecules such as small nucleolar RNAs 

(snoRNAs), microRNAs (miRNAs), small interfering RNAs (siRNAs), P-element-induced 

wimpy testis interacting (PIWI) RNAs (piRNAs), and long non-coding RNAs (lncRNAs). 

SnoRNAs, miRNAs, and piRNAs are collectively named small non-coding RNAs 

(sncRNAs). 

LncRNA molecules are transcribed by RNA Polymerase II and processed in a way 

that resembles mRNA processing, as they are often 5′ capped, 3′ polyadenylated, and 

spliced similarly to mRNAs [54]. It has been demonstrated that 98% of lncRNAs are 

spliced [55], while only 40% of lncRNA transcripts are non-polyadenylated [56,57]. Fur-

thermore, lncRNAs show a bias toward two-exon transcripts, with slightly longer exons 

and longer introns than protein-coding genes which are often alternatively spliced. Their 

level of expression is generally lower than that of protein-coding genes and is more tissue-

specific [55,58,59]. 

Biogenesis of lncRNAs is based on their location in respect to protein-coding genes, 

and lncRNAs can thus be classified into four categories: (1) long intergenic non-coding 

RNAs (lincRNAs), transcribed intergenically from both strands; (2) sense intronic tran-

scripts, located within introns of coding genes without intersecting with exons; (3) sense 

overlapping transcripts, which overlap with the exons of coding genes on the same strand; 

and (4) antisense RNAs, which are located within the exons and introns of protein-coding 

genes but on the opposite strand (so-called natural antisense transcripts or NATs) (Figure 

1) [60–63]. The majority of lncRNA loci are located in intergenic regions [55]. A detailed 

explanation of lncRNA biogenesis can be found in [64]. 

 

Figure 1. Categories of lncRNAs based on their location in respect to protein-coding genes. (A) Long intergenic non-coding 

RNAs (lincRNA) are transcribed intergenically from both strands. (B) Sense intronic transcripts are located within introns 

of coding genes without intersecting with exons. (C) Sense overlapping transcripts overlap with the exons of coding genes 

on the same strand. (D) Antisense RNAs are located within the exons and introns of protein-coding genes but on the 

opposite strand. Created with BioRender.com. 

Mutations and genomic rearrangements can affect the expression of lncRNA in the 

same way as they affect the protein-coding genes and can contribute to tumorigenesis. 

Aznaourova et al., have summarized a list of lncRNAs involved in various human dis-

eases, including gynecological cancers [65]. Regulation of tumor progression by lncRNA 

can occur through modification of several mechanisms: the epigenetic regulation of genes 
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(chromatin remodeling, histone modification, DNA methylation), the transcriptional reg-

ulation of genes (cis-regulation of nearby genes or trans-regulation of distant genes), and 

post-transcriptional regulation of gene expression (alternative splicing of pre-mRNA, sta-

bilization of mRNA, and translation and stabilization of proteins) [7]. 

Initial systematic large screening of lncRNA genes, using genome-wide chromatin-

state maps by immunoprecipitation, identified over a thousand highly conserved 

lncRNAs [66]. The current estimate of the number of genes encoding lncRNA according 

to the GENCODE and FANTOM projects is between 17,957 and 27,919 genes [67]. Their 

functions are classified as either (1) RNA-based, where lncRNA interacts with DNA, RNA, 

or proteins, (2) gene-regulatory, where lncRNA modifies the activity of regulatory ele-

ments, or (3) transcription-based, where the process of transcription influences gene ac-

tivity [67]. They can function as signals, decoys, guides, or scaffolds (Figure 2) [7]. 

LncRNAs are considered to signal molecules when they regulate the transcription of 

target genes. In this context, lncRNA can exert this effect alone, or in combination with 

transcription factors. Their expression is triggered by specific conditions, and they in turn 

trigger specific responses to those conditions. The best-known example of this type of reg-

ulation is the lncRNA XIST, which is involved in X-chromosome inactivation by direct 

interaction with the chromatin [68]. Other examples include lncRNA HOTAIR, which is 

transcribed from the homeobox transcription factor cluster (HOX) in tightly controlled 

conditions; PANDAR, which is induced by DNA damage; LINC-ROR, which is associated 

with reprogramming to induced pluripotent stem cells; and COLDAIR, which is induced 

by cold [69]. 

When acting as decoys, they usually block specific molecular pathways by binding 

to a specific protein or RNA and impairing its function. This is the most common type of 

regulation that lncRNAs exert on their targets. The targets are most often miRNA mole-

cules, and lncRNAs antagonize the miRNA they target by sequestering the miRNA away 

from their intended mRNA targets [69]. Competing endogenous RNAs (ceRNAs) or “mo-

lecular sponges” act as competitive inhibitors which block the activity of the target 

mRNAs. Most often this mechanism acts to “sponge” various miRNA molecules, thereby 

removing them from their intended targets and suppressing their effect [70]. 

 

Figure 2. Functional roles of lncRNAs. (A) As signal molecules, lncRNAs act either alone or in combination with proteins 

like transcription factors to mediate the transcription of downstream genes; (B) As decoys, lncRNAs either bind to func-

tional proteins to block their activity or compete with mRNAs for binding to miRNAs to block their inhibitory effects on 

mRNAs; (C) As guides, lncRNAs carry and locate functional proteins in the target area to perform their functions; (D) As 

scaffolds, lncRNAs guide different types of macromolecules to assemble complexes and facilitate their interactions. Cre-

ated with BioRender.com. 
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Guide lncRNAs direct the localization of ribonucleoprotein complexes to specific tar-

gets. This effect can be achieved in cis, when they affect neighboring genes, or in trans 

when the effect is on distant genes. These effects are mediated through changes in the 

structure of chromatin. Regulation in cis involves specific interaction between the lncRNA 

and chromatin at its promoter, leading to accumulation of proteins involved in histone 3 

lysine 9 (H3K9) methylation and gene silencing. Regulation in trans often targets proteins 

of the Polycomb Repressive Complex (PRC) and changes their localization, activity, and 

occupancy, leading to changes in chromatin structure in trans. HOTAIR is one such 

lncRNA, often found overexpressed in tumors and associated with cancer metastases [69]. 

When acting as scaffolds, they facilitate the interaction of different molecules and 

proteins. CDKN2B-AS1, a lncRNA located in the INK4b/ARF/INK4a locus, recruits multi-

ple chromatin-modifying proteins and thereby modulates transcriptional activity of the 

locus [69]. It is important to emphasize that lncRNAs employ more than one mechanism 

of action to exert their effects, so one function does not necessarily exclude all others. 

There are potentially other yet undescribed mechanisms by which lncRNAs can affect 

gene and protein expression and function. 

Even though lncRNAs were originally defined as RNA which do not encode proteins, 

recent reports suggest that some lncRNAs contain open reading frames (ORF) and may 

encode peptides [71]. These peptides are involved in various signaling processes, e.g., 

mTOR signaling, regulation of Ca2+-ATPase, mRNA decay, and mitochondrial activity. 

They can also be involved in metabolic reprogramming of several cancers, such as colon, 

liver, esophageal, and breast cancer, and melanoma [71]. Furthermore, lncRNAs can also 

encode miRNAs, as exemplified by miR-675 which is transcribed from exon 1 of H19 [72]. 

4. Intracellular and Extracellular Compartmentalization of lncRNAs 

LncRNAs can be found in different cellular compartments, from the nucleus to cyto-

plasm and mitochondria, and even exported from the cell via exosomes. About 30% of 

lncRNAs are located in the nucleus, where they can interact with transcription factors, 

chromatin complexes, and heterogenous ribonucleoprotein complexes [73]. Within the cy-

toplasmic compartment, lncRNAs can be found in many structures and organelles. 

LncRNAs in ribosomes are most often associated with nonproductive initiation of trans-

lation, but small peptides may be produced from open reading frames in individual 

lncRNA. Additionally, lncRNAs in the ribosome may act as regulators of translation [74]. 

So far, several lncRNAs that are transcribed from the mitochondrial genome, and about 

20 nuclear-encoded lncRNAs that affect mitochondrial biology have been described [75]. 

These include some ubiquitous lncRNAs that are involved in many oncogenic processes, 

such as SAMMSON, HOTAIR, H19, HOTTIP, and MEG3, but also some specific ones, like 

CEROX1 (cytoplasmic endogenous regulator of oxidative phosphorylation 1), which af-

fects the process of oxidative phosphorylation. Mitochondria-encoded lncRNAs are either 

antisense mitochondrial transcripts, like lncND5, lncND6, lncCYB, and MDL1AS; chimeric 

mitochondrial transcripts, like ASncmtRNA-1 and ASncmtRNA-2; or putative mitochon-

drial DNA-encoded lncRNAs, like LIPCAR [75]. 

Exosomes are bi-layered membrane vesicles secreted from the cells, 30–150 nm in 

diameter, which can contain a wide range of molecules usually found within the cells. 

They are generated by the budding of the endosomal membrane. LncRNAs are packed 

inside exosomes whereby they interact with RNA-binding proteins through specific mo-

tifs. Exosomes are used in cell-to-cell communication, and whatever is packed inside an 

exosome may be delivered to a receiving cell and trigger a specific molecular response in 

that cell. In the case of tumor-derived exosomes, these responses range from tumor 

growth, invasion, and metastasis to angiogenesis and reprogramming of the tumor mi-

croenvironment. Furthermore, several lncRNAs (UCA1, FAM225A, RAMP2-AS1, 

POU3F3, HOTAIR, CCAT2) have been identified that affect the endothelial cells of blood 

vessels and stimulate angiogenesis [76]. The cancer-associated fibroblasts-derived exo-

somes were shown to carry lncRNA H19, which is highly expressed in tumor stroma in 
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comparison to tumor tissue. This lncRNA promotes stemness and chemoresistance of can-

cer cells and increases the frequency of tumor-initiating cells [77]. 

5. The Role of lncRNAs in Various Biological Processes Related to Ovarian Carcino-

genesis 

Each hallmark of cancer can be modulated by lncRNA activity, thus leading to in-

creased proliferation, viability, growth suppression, motility, immortality, and angiogen-

esis [78]. It has been debated whether lncRNAs can act as initiators of tumorigenesis, or if 

they are dysregulated as a consequence of tumorigenesis. The Cancer LncRNA Census 

contains a compilation of 122 GENCODE lncRNAs associated with the initiation of tu-

morigenesis, some (63.1%) acting as oncogenes, some (28.7%) as tumor suppressors, and 

some (8.2%) with evidence of both activities depending on tumor type. LncRNAs HO-

TAIR, MALAT1, MEG3, and H19 are associated with a large number of cancer types [79]. 

The same study identified tumor-causing mutations in several lncRNAs, supporting their 

role in tumor initiation [79]. A recent literature survey of Salamini-Montemurri et al., has 

identified 215 lncRNAs being involved in OCs, of which for 157 there is experimental 

proof [8]. Apart from initiation, lncRNAs have been associated with many biological pro-

cesses associated with metastasis [80], such as the immune response [73], radiation re-

sponse [81], epithelial to mesenchymal transition (EMT) and stemness [82], cell-to-cell 

communication, and regulation of the microenvironment in which cells reside [77]. 

It is generally said that in the context of OC, there is proof that lncRNAs are involved 

in all the hallmarks of cancer except ‘genomic stability and mutation’ and ‘enabling repli-

cative immortality’ [8]. Several lncRNAs showed influence on the size and weight of ovar-

ian tumors in vivo, such as AB073614 [83], EPB41L4A-AS2 [84], GAS5 [85], LINC00565 [86], 

TINCR [87] and TPT1-AS1 [88]. Loss of cell cycle control, related to proliferative signal 

maintenance and evasion of growth suppressors, is in OC associated with lncRNAs 

MNX1-AS1 [89], SPRY4-IT [90], KB-1471A8.2 [91], and CASC15 [92]. Avoidance of cell 

death which causes cell immortalization has mostly been studied in the context of apop-

tosis. It was shown that lncRNA LNCRNA-ATB [93] can regulate apoptosis in OC. Also, 

GAS5 can trigger a highly inflammatory type of programmed cell death called pyroptosis 

[94], while some lncRNAs can either induce (MEG3 [95] and MALAT1 [96]) or inhibit (HO-

TAIR [97], HULC [98] and RP11-135L22.1 [99]) autophagy in OC. Some lncRNAs can con-

trol cancer cell metabolism by regulating key enzymes in metabolic pathways, mainly 

stimulating glycolysis (the Warburg effect) [100]. For instance, it was shown in OC that 

lncRNAs LINC00504 [101], NRCP [102], LINC00092 [103], and H19 [104] can activate dif-

ferent enzymes in the glycolysis pathway from glucose to pyruvate. It has been shown 

that MALAT1 promotes angiogenesis in OC by inducing the expression of VEGF and FGF 

[105], while DANCR [106] and HNF1A-AS1 [107] can promote it by inducing VEGF and 

SEMA4D expression. 

LncRNAs play a role in the regulation of immune response, where they are involved 

in several mechanisms of action. A major role is antisense silencing associated with DICER 

and molecular sponge function for reducing the regulatory effects of miRNAs [73]. Many 

stages of the immune response can be targeted and regulated by lncRNAs. Tumor antigen 

release, more specifically, the expression of chaperone calreticulin, can be inhibited by 

lncRNA expressed from the RB1 promoter (RB1-DT). Antigen presentation can be affected 

by the specific reduction of the abundance of antigen-presenting cells (lincRNA 

LINC01139) or by the regulation of pro-inflammatory cytokines. EGILA can affect the dif-

ferentiation of T lymphocytes, thereby affecting immune cell priming and activation. 

LncRNAs can also affect immune cell migration and infiltration, and affect recognition 

and attack of cancer cells [108]. HOTTIP was cited as the only lncRNA associated with the 

avoidance of immune surveillance by increasing IL6 expression in ovarian tumor cells, 

which triggers PD-L1 expression through the STAT3 pathway in neutrophils [109]. There-

fore, targeting specific lncRNAs or modifying their activity to boost the immune response 

or increase recognition of tumor cells may be a potential therapeutic approach in ROCs. 
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Resistance to radiation can be modulated positively and negatively by the lncRNAs. 

Some lncRNAs, such as GAS5, increase the radiosensitivity of cancer cells through their 

sponging mechanisms. In contrast, other lncRNAs, such as HOTAIR or TUG1, can increase 

radioresistance by sponging specific miRNAs. Expression of lncRNAs can also be used as 

biomarkers of radiation damage, as lncRNA TP53COR1, TUG1 and MEG3 have been 

found to be upregulated after radiation damage by multiple studies [81]. Increasing the 

radiation sensitivity of tumor cells or increasing radiation resistance in healthy tissues by 

targeting specific lncRNA targets could be a promising approach for the treatment of var-

ious cancers, including ROCs. 

EMT is a reversible process during which epithelial cells acquire mesenchymal char-

acteristics, including reduction of cell-cell contacts, changes in cell morphology, and in-

crease of migratory capability. This transition is considered one of the crucial steps during 

tumor invasion and metastasis. The process is reversible, and under the right conditions, 

the cells can transition back from mesenchymal to the epithelial phenotype, resulting in 

mesenchymal to epithelial transition (MET). EMT process is regulated by specific tran-

scription factors such as SNAIL, SLUG, TWIST1, TWIST2, ZEB1, and ZEB2 [110]. Cancer 

stem cells (CSC) are a subpopulation of tumor cells with the capacity for self-renewal, 

asymmetric division, and multipotency. This stemness phenotype is often acquired 

through the EMT process and regulated by transcription factors SOX2, OCT4, NANOG, 

KLF4, and LIN-28. Many of these EMT and CSC regulators can be controlled by lncRNA 

such as HOTAIR, H19, MALAT1, LINC-ROR, HOTTIP, NEAT1, LNCRNA-ATB, and others 

[82]. 

Cell-to-cell communication and the microenvironment are important factors during 

tumor progression and metastasis. Tumor cells interact with their environment and vari-

ous cell types in their surroundings. The most abundant and relevant cell types in this 

microenvironment are the cancer-associated fibroblasts (CAF), which respond to the cy-

tokines produced by the tumor to support tumor growth and dissemination. Many 

lncRNAs are upregulated in the CAF compared to normal fibroblasts, such as MALAT1, 

NEAT1, H19, GAS5, and MEG3 [77,111]. The communication also goes in the opposite di-

rection, from tumor cells to fibroblasts, reprogramming them into CAF-like cells [77]. In-

terrupting this cell-to-cell communication between tumor and stromal cells through 

lncRNAs is also a promising approach to tumor treatment, as the microenvironment plays 

a major role in the ability of tumors to grow, progress, and ultimately metastasize. 

Post-translational modifications (PTMs) of proteins are involved in several biological 

phenomena including signaling processes that occur at different stages of tumor develop-

ment [112,113]. Although the mechanism of action is not fully discovered, change in the 

PTMs affects protein activity, stability, protein-protein, and protein-nucleic acid interac-

tions. 

LncRNAs interfere with PTMs in the cytoplasm [114]. They may downregulate the 

PTMs by interacting with enzymes involved in PTMs and/or blocking the modification 

sites. The size of PTMs and associated proteoforms in biological systems are too large and 

there is no model system that shows the dynamic interactions in diseases. However, In-

cRNA-interacting genes obtained from bioinformatical analyses can be used to assess the 

potential IncRNA-PTMs relationship in OC. 

Histones are subjected to several PTMs including methylation, acetylation, phos-

phorylation, and ubiquitination [115]. It has been previously shown that methyl-CpG-

binding domain protein 1 (MBD1) interacts with H19 through repressing the methylated 

regions. It also affects the adjacent insulin-like growth factor 2 gene and associated pro-

teins [114]. Both alterations in MBD1 [116] and insulin-like growth factors are linked to 

OC. Histone acetylation is another key chromatin modification causing epigenetic varia-

tion that is implicated in OC pathogenesis [117,118]. LncRNAs can change this process 

either by interrupting the histone acetylation process, such as LNCPRESS1 binding to 

SIRT6 and preventing its binding to histones [119], or by acting as scaffolds regulating 
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histone acetylation and methylation, such as GClnc1 which acts as a scaffold for WDR5, 

and KAT2A proteins [120]. 

It is well-known that phosphorylation of proteins is one of the most common mech-

anisms that regulate protein activity, and phosphorylation is often dysregulated in cancer. 

AKT and mTOR phosphorylation have been detected as potential biomarkers for OC and 

tumor growth [121]. LncRNA-AKT interactions were experimentally shown in lung cancer 

[122] which might be a sign for similar connections for other cancers including ovarian. 

The majority of the proteins are glycosylated and glycosylation plays a crucial role in 

cancer biology [122] and serves both as a diagnostic and prognostic biomarker for OC 

[122–125]. Protein-specific glycosylation studies have discovered changes in Immuno-

globulin G (IgG), haptoglobin beta-chain, alpha1-acid glycoprotein, and alpha1-antichy-

motrypsin glycosylation in OC [126]. Although the role of IncRNAs has not been com-

pletely explored in OC, a link between lincRNAs and N-Glycosylation of IgG has been 

detected [127]. 

Both bioinformatical and experimental studies have discovered that lncRNAs 

prompt PTMs at different levels. The outcomes need to be further investigated to unravel 

the possible mechanisms leading to accurate diagnosis and effective treatments. 

LncRNAs, primarily through their crosstalk with miRNAs, regulate the osteogenic 

differentiation of mesenchymal stem cells (MSCs), a population of stromal cells in the 

bone marrow, and other anatomical regions such as adipose tissue and apical papilla of 

the tooth [128]. MSCs are capable of self-renewal and differentiation into multiple cell 

lineages, of which osteoblasts are important for bone development, homeostasis, and re-

generation [129]. Their differentiation is mediated by several signaling pathways of which 

TGF-β/BMP and WNT/β-catenin pathways are central [130]. Interestingly, several 

lncRNAs which were found to be differentially expressed in OCs, such as H19, NEAT1, 

MALAT1, HOTAIR, or XIST, participate in this cellular process [131]. Although osteogenic 

differentiation is primarily associated with the development of osteosarcoma [132], MSCs 

could be recruited to the tumor microenvironment and can both restrict [133] and promote 

solid tumor growth [134]. In OCs, carcinoma-associated MSCs have been identified in 

ovarian tumor tissue samples and it was proven that they can regulate ovarian cancer 

stem cells proliferation and tumorigenesis through altered production of BMP [135]. It 

was also shown that umbilical cord MSCs inhibited the growth of EC cell line TOV-112D 

[136], while bone marrow MSCs reduced the growth rate of cisplatin-resistant EC SKOV3 

cells [137]. Bu et al. showed that also endometrial MSCs derived from human menstrual 

blood can attenuate tumor growth of EC cell line SKOV3 and postulated that observed 

intrinsic anti-tumor properties of adult MSCs could be utilized for developing an MSC-

based therapy for treating OCs [138]. 

6. LncRNAs Associated with Common and Rare Ovarian Cancers 

TCGA data has been used to analyze lncRNA in different tumor types, but OC has 

not been analyzed in more detail because the TCGA database lacks the appropriate 

healthy tissue controls for HGSOC samples, thus making the differential expression anal-

ysis impossible for OC [139,140]. However, somatic copy number alterations are frequent 

in OC, and lncRNA BCAL8 has been found amplified in breast cancer and associated with 

poor clinical outcomes of OC [139]. HGSOC can be divided into four distinct subtypes: 

immunoreactive, characterized by CXCL11, CXCL10, and CXCR3 expression; differenti-

ated, characterized by MUC16 and MUC1 expression; proliferative, characterized by 

HMGA2, SOX11, MCM2, and PCNA overexpression and MUC1 and MUC16 downregu-

lation; and mesenchymal, characterized by high expression of HOX genes, FAP, ANGPTL2 

and ANGPTL11 [48]. Mesenchymal subtypes often show upregulation of MIAT (also 

known as gomafu in humans), proliferative types show downregulation of NEAT1 and 

UCA1, while serous subtypes show frequent amplification of OVAL [140]. 

Several lncRNAs have been found to have an effect in a wide range of human cancers, 

including many gynecological cancers. In OC, a specific signature of six lncRNA has been 
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identified by a bioinformatical analysis. This signature associates RUNX1-IT1, MALAT1, 

H19, HOTAIRM1, LOC100190986, and AL132709.8 lncRNAs [141]. Of these, MALAT1 and 

H19 have been extensively studied in OC, along with several other lncRNAs: HOTAIR, 

NEAT1, XIST, MEG3, and UCA1. Most extensively analyzed lncRNAs in OC have been 

listed in Table 2, and the lncRNAs more specific for ROCs are summarized in Table 3. 

6.1. H19 

A locus for the H19 imprinted maternally expressed transcript produces a 2.3 kb long 

RNA transcript, which is abundantly expressed during embryonic development and 

downregulated after birth. It is a paternally imprinted gene, but imprinting loss, and sub-

sequent overexpression, have been associated with ovarian tumors [142,143]. Knockdown 

of this lncRNA promotes G2/M cell cycle arrest, induces apoptosis of OC cells, and inhibits 

cell growth [143]. H19 can act as a competing endogenous RNA of miR-370-3p, resulting 

in the promotion of TGFB1-induced EMT [144], and as an inhibitor of a tumor-suppressor 

miRNA let-7, resulting in increased tumor cell migration and invasion [145]. H19 is ele-

vated in OC cells resistant to cisplatin [146]. Its downregulation leads to increased sensi-

tivity to cisplatin [147,148]. Polymorphisms in the H19 locus are associated with platinum-

based chemotherapeutic response [149]. H19 can also affect cancer cell metabolism, 

through the sponging effect of miR-324-5p, which regulates PKM2, a major contributor to 

the Warburg effect [104]. Although most of these studies were performed on serous epi-

thelial ovarian cancer cell lines, the role of H19 has also been examined in some ROCs. 

H19-overexpressing choriocarcinoma cells were found to be more tumorigenic in vivo, 

even though there was no difference in their clonogenicity in the in vitro assays. There is 

a selection of cells expressing high levels of H19 during the microevolution of tumor pro-

gression, which suggests that this lncRNA does not act as a tumor-suppressor [150]. Loss 

of H19 imprinting has also been demonstrated in pediatric germ cell tumors, and it may 

reflect the origin of these tumors in different stages of germ cell development [151–153]. 

Benign ovarian teratomas show a varying degree of H19 hypomethylation, and DNA pre-

pared from cultured teratoma cells shows extreme hypomethylation of the H19 locus 

[154]. Ovarian granulosa cell tumor cell line KGN has been used to demonstrate that 

lncRNA H19 binds to miR-19b, resulting in upregulation of CTFG, increase in cell prolif-

eration,d reduction in the rate of apoptosis in these cells [155]. 

6.2. HOTAIR 

HOX transcript antisense RNA (HOTAIR) has shown some potential as a diagnostic 

and predictive biomarker. This lncRNA acts as a molecular scaffold and binds the Poly-

comb Repressive Complex 2 (PRC2) on its 5′ domain and the lysine-specific histone de-

methylase 1A (LSD1)/CoREST/REST complex on its 3′ domain, bringing them in close 

proximity and methylating lysine 27 and demethylating lysine 4 of histone H3, leading to 

consequent gene silencing [156,157]. Expression of HOTAIR promotes proliferation, stem-

ness, and epithelial-to-mesenchymal transition of OC cells [158–160]. The transcription of 

HOTAIR is induced by estrogen, making it a relevant lncRNA in the context of gyneco-

logical cancers [161]. It has been associated with poor prognosis and tumor metastasis in 

epithelial ovarian cancer and cervical cancer [162–164]. Its prognostic value has been eval-

uated by a meta-analysis in four estrogen-dependent tumor types (breast, ovarian, cervi-

cal, and endometrial), and it may be a predictor of poor prognosis [165]. Specific genetic 

variants of HOTAIR may in some populations affect OC susceptibility [166,167]. HOTAIR 

expression is also associated with chemoresistance in clinical samples and in vitro models, 

and its knockdown can lead to increased sensitivity to cisplatin and carboplatin both in 

vitro and on a mouse xenograft model [97,159,168,169]. A peptide nucleic acid (PNA) de-

signed to specifically block the activity of HOTAIR has been successful in reducing ovar-

ian tumor growth in vitro and in vivo, and improved survival of xenograft mice, and has 

been suggested as a potential new therapeutic approach for the treatment of OC [170]. The 
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potential use of this lncRNA as a biomarker has led to the development of various meth-

ods for detection of this lncRNA from samples derived from patients with OC, primarily 

plasma [171,172]. 

6.3. MALAT1/NEAT2 

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as 

nuclear-enriched abundant transcript 2 (NEAT2), is another lncRNA significantly overex-

pressed in various cancers [173,174], and has been extensively studied in OC. A meta-

analysis revealed that MALAT1 could be a novel biomarker in various cancers, including 

ovarian [175]. It can be detected in the plasma, and it has been suggested as a potentially 

useful marker for OC metastases [176]. Metastatic EOC cells show increased expression 

of MALAT1 and increased secretion through their exosomes, and this activates angiogen-

esis-related genes in the endothelial cells [105]. MALAT1 is highly overexpressed in OC 

and is associated with the FIGO stage. Its overexpression leads to increased cell prolifer-

ation, migration, and invasion [177,178]. It can act through sponging several different 

miRNA molecules, all resulting in increased proliferation and survival of cancer cells: 

miR-22 [179], miR-506 [180], miR-200c [181], miR-143-3p [182], miR-200a [96], miR-211 

[183], miR-503-5p [184]. MALAT1 has also been found to downregulate RBFOX2, which 

leads to the alternative splicing of the KIF1B and production of the pro-apoptotic long 

isoform of KIF1B, ultimately resulting in inhibition of anoikis [185]. 

Other signaling pathways which are directly or indirectly affected by MALAT1 in-

clude the PI3K-AKT pathway [186] and the ERK/MAPK pathway [187]. MALAT1 has also 

been implicated in drug resistance of OC, as it was found upregulated in cisplatin-re-

sistant OC cells, where it sponges miR-1271-5p, leading to upregulation of E2F5 and in-

creased proliferation, migration, and invasion [188]. MALAT1 is also upregulated in OC 

spheroids when compared to their adherent counterparts, suggesting a role of MALAT1 

in cancer cell stemness [189]. Knockdown of MALAT1 can restore chemosensitivity of OC 

to cisplatin through the inhibition of the NOTCH1 signaling pathway [190]. Apart from 

the effects of MALAT1 investigated in OC in general, some ROCs have also been investi-

gated. Experiments on the KGN cell line demonstrated that MALAT1 is upregulated in 

these cells and involved in the maintenance of proliferation and viability as well as inhi-

bition of autophagy [191]. MALAT1 knockdown induces upregulation of p21, p53, p-JNK, 

and p-ERK1/2, and downregulation of CDK2, cyclin D1, and p-P38 MAPK protein levels 

[187]. In choriocarcinoma MALAT1 binds to miR-218, leading to upregulation of FBXV8 

oncogene and cell proliferation [192]. In KGN cells knockdown of MALAT1 results in in-

hibition of the ERK/MAPK pathway leading to the inhibition of cell proliferation and cell 

cycle progression [187]. 

6.4. MEG3 

Maternally expressed 3 (MEG3) lncRNA has been reported as a tumor suppressor. 

Its major role is in the positive regulation of the tumor suppressor gene TP53 [193]. MEG3 

is downregulated in many cancers, such as breast [194], cervical [195], gastric [196], lung 

[197], and EOC [198]. Downregulation in EOC is achieved through hypermethylation of 

the MEG3 promoter, as treatment with demethylating agent 5-aza-2-deoxycytidine in-

creases MEG3 expression. Increased expression of MEG3 suppresses proliferation and 

growth and induces apoptosis, and suppresses tumorigenesis in vivo [95,198]. Upregula-

tion of MEG3 induces expression of PTEN and LAMA4, leading to inhibition of cell pro-

liferation, cell cycle arrest, and induction of apoptosis [199,200]. On the other hand, high 

expression of MEG3 is associated with better progression-free survival and overall sur-

vival in HGSOC, even though the same authors demonstrated that MEG3 is downregu-

lated in HGSOC cell lines compared to the normal fallopian tube and ovarian cell lines, 

and upregulation of MEG3 in HGSOC cells leads to inhibition of tumor growth in vitro 

and in vivo [201]. It can bind directly to ATG3 mRNA and protect it from actinomycin D-

induced degradation [95]. MEG3 is one of the three signature lncRNA that can be used to 
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predict cisplatin resistance in OC. Upregulated PVT1 and downregulated TUG1 and 

MEG3 have high sensitivity and specificity in predicting chemoresistance and are nega-

tively associated with OS and progression-free survival [202]. Sensitivity to cisplatin can 

be restored with curcumin treatment, as it leads to demethylation of the MEG3 promoter, 

sponging of miR-214 by MEG3, and consequent reduction of drug resistance [203]. MEG3 

expression can be negatively regulated by another lncRNA: AGAP2-AS1, which is upreg-

ulated in OC and participates in cancer cell proliferation [204]. 

6.5. NEAT1 

Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) is another lncRNA that is over-

expressed in various cancers, including OC. NEAT1 is upregulated in OC, positively cor-

related with FIGO stage, tumor grade, and distant metastasis. NEAT1 expression level is 

an independent factor in predicting the overall survival of OC patients [205]. A meta-anal-

ysis of 1354 patients from 11 studies revealed that NEAT1 expression is indeed signifi-

cantly associated with poor overall survival, larger tumor size, lymph node metastasis, 

distant metastasis, TNM-stage, poor differentiation, and invasion depth [206]. Based on 

all this, NEAT1 has been proposed as a prognostic biomarker in breast, ovarian, cervical, 

endometrial, and vulvar cancers [207]. It interacts with several miRNAs: miR-34a-5p [208], 

miR-124-3p [209], miR-382-3p [210], miR-506 [211], miR-1321 [212], miR-4500 [213] and 

miR-365 [214]. NEAT1 is also involved in the development of resistance. In the platinum-

resistant OC cells, NEAT1 binds miR-770-5p, leading to upregulation of PARP1. Knock-

down of NEAT1 expression results in a reduction in xenograft tumor growth as well as 

increases sensitivity to cisplatin [215]. In the case of paclitaxel (PTX) resistance, NEAT1 is 

upregulated in PTX-resistant OC tissues and cells and binds to miR-194. NEAT1 knock-

down enhanced the sensitivity of cells to PTX through the miR-194/ZEB1 axis [216]. The 

potential of NEAT1 as a possible diagnostic marker has been proposed in several cancers, 

such as prostate [217] and breast [218]. For EOC, a serum biomarker panel that combines 

gene and protein expression was proposed as a method for early detection of EOC, and 

NEAT1 is one of the proposed lncRNA in this panel [219]. 

6.6. UCA1 

Urothelial cancer associated 1 (UCA1) is an oncogenic lncRNA found to be upregu-

lated in many solid tumors. A meta-analysis revealed that upregulation of UCA1 is nega-

tively associated with overall survival and progression-free survival in many cancers, in-

cluding OC [220]. UCA1 acts as a sponge for miR-485-5p, which in turn upregulates the 

levels of MMP14, and this upregulation of MMP14 is an important factor in OC metastasis 

[221,222]. It can also bind directly to AMOT, a known regulator of YAP, and promote 

activation of YAP and subsequent transcription of target genes [223]. It has been suggested 

as a potential new biomarker and therapeutic target of OC, especially in the context of 

drug resistance where it may serve as an indicator of response to therapy [224,225]. For 

example, UCA1 expression induces cisplatin resistance in OC cell lines. This could be me-

diated through the upregulation of SRPK1 [226] or the miR-143/FOSL2 axis [227]. 

Paclitaxel resistance has also been associated with UCA1 expression, by regulating the 

miR-654-5p/SIK2 axis [228] and/or the miR-129/ABCB1 axis [229]. 

6.7. XIST 

X inactive specific transcript (XIST) regulates X-chromosome inactivation, by acting 

as a scaffold for repressive epigenetic factors, and as many as 30 different RNA-binding 

proteins are predicted to bind with XIST. XIST RNA contains structured regions, or Xist 

motifs, which are crucial for its function. Of these, the A-repeat (RepA) folds into a stem-

loop structure and is required for gene silencing [230]. A meta-analysis has demonstrated 

that XIST is associated with poor overall survival, larger tumor size, increased distant 
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metastases, and advanced tumor stage in a range of cancers [231]. In OC, there are con-

flicting results. XIST has been found to be downregulated and correlated to better prog-

nosis in OC in one study [232], while another study shows that XIST was upregulated in 

OC tissues and cell lines and is suggested as an independent predictor of prognosis for 

OC patients [233]. Studies regarding the role of XIST in OC are also contradictory–some 

claim upregulation of XIST leads to stimulation and increased proliferation of OC cells, 

while others claim it suppresses OC proliferation and tumor growth [233–237]. 

Table 2. The lncRNAs frequently involved in OCs and their mechanisms of action. OC type includes rare OC types (GCT–

granulosa cell tumor) and common OC types (HGSOC–high-grade serous ovarian carcinoma, EOC–epithelial ovarian 

cancer, EC–endometrioid carcinoma), while the abbreviation OC refers to papers that did not define specific OC subtypes, 

and OCSC refers to ovarian cancer stem cells. 

lncRNA Target OC Type Mode of Action Effect Role Reference 

H19 

miR-370-3p EC, HGSOC ceRNA Promotes TGFB1-Induced EMT Oncogene [144] 

miR-324-5p EC ceRNA Promotes Warburg Effect through PKM2 Oncogene [104] 

miR-19b GCT ceRNA 
Increased Expression of CTGF, Resulting in Cell 

Proliferation and Reduced Rate of Apoptosis 
Oncogene [155] 

let-7 EC, OCSC ceRNA Promotes Tumor Cell Migration and Invasion Oncogene [145] 

HOTAIR PRC2 / Scaffold 
The trimethylation of the H3K27 Histone and 

Consequent Gene Silencing 
Oncogene [156] 

MA-

LAT1 

miR-22 EOC ceRNA 
Increased Cell Proliferation, Migration, Invasion, 

Tumor Growth, and Metastasis 
Oncogene [179] 

miR-506 OC ceRNA Upregulation of iASPP and Cell Proliferation Oncogene [180] 

miR-200c EC, EOC ceRNA Increased Invasive Capacity Oncogene [181,238] 

miR-143-3p EOC ceRNA Upregulation of CMPK Oncogene [182] 

miR-200a EC ceRNA Promotes Autophagy and Invasion Oncogene [96] 

miR-211 EC, HGSOC ceRNA 
Upregulation of PHF19, Leading to OC Progres-

sion 
Oncogene [183] 

miR-503-5p EOC ceRNA 
Promotes Proliferation and Inhibits Apoptosis 

Through the JAK2-STAT3 Pathway 
Oncogene [184] 

miR-1271-

5p 
HGSOC, EC ceRNA 

Upregulation of E2F5 Expression, Mediates DPP-

Resistant OC Development 
Oncogene [188] 

SRSF1 EOC Scaffold 

Downregulation of RBFOX2, Leading to Alterna-

tive Splicing of KIF1B Leading to Production of 

the Pro-Apoptotic Isoform 

Oncogene [185] 

YAP EC ceRNA 

Inhibition of Nucleus-Cytoplasm Translocation, 

Resulting in Enhanced Activity and Promotion of 

Stemness Phenotype 

Oncogene [189] 

AMPK GCT Unknown 
Proliferation, Viability, Inhibition of Autophagy, 

Downregulation of AMPK 
Oncogene [191] 

multiple GCT Signal Molecule 
Downregulation of p21, p53, p-JNK, p-ERK1/2; 

Upregulation of CDK2, Cyclin D1, p-P38 MAPK 
Oncogene [187] 

MEG3 

ATG3 EOC Scaffold 
Protects ATG3 mRNA from Degradation, Induces 

Autophagy 

Tumor 

Suppressor 
[95] 

miR-214 EOC ceRNA Reduction of Resistance to Cisplatin 
Tumor 

Suppressor 
[203] 

PTEN EOC Unknown 
Upregulation of PTEN, Inhibition of Cell Prolifer-

ation, Induction of Apoptosis, Cell Cycle Block 

Tumor 

Suppressor 
[200] 

miR-219a-

5p 
OC ceRNA 

Downregulation of EGRF, Inhibition of Prolifera-

tion and Induction of Apoptosis 

Tumor 

Suppressor 
[239] 

miR-30e-3p OC ceRNA 
Upregulation of LAMA4, Reduced Proliferation, 

Migration, and Invasion of OC Cells 

Tumor 

Suppressor 
[199] 

miR-205-5p OC ceRNA 
Inhibition of Cell Viability, Migration, and Inva-

sion, Induction of Apoptosis 

Tumor 

Suppressor 
[240] 

NEAT1 miR-34a-5p OC ceRNA Promotes Proliferation by Upregulating BCL2 Oncogene [208] 
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miR-124-3p OC ceRNA 
Promotes Cell Proliferation and Invasion, NEAT1 

Expression is Stabilized by HuR Protein 
Oncogene [209] 

miR-382-3p OC ceRNA Promotes ROCK1-Mediated Metastasis Oncogene [210] 

miR-506 EOC ceRNA 
Promotes Cell Proliferation and Migration, 

NEAT1 is Stabilized by LIN28B 
Oncogene [211] 

miR-1321 OC ceRNA 
Increased Expression of TJP3, Enhances EMT, In-

vasion, and Migration 
Oncogene [212] 

miR-4500 OC ceRNA 

Increased Expression of BZW1, Enhances Cell 

Proliferation, Colony Formation, Migration, Inva-

sion, and Glycolysis, Reduces Apoptosis 

Oncogene [213] 

miR-365 EC, HGSOC ceRNA 
Increased Expression of FGF9, Promotes Cell Pro-

liferation and Angiogenesis 
Oncogene [214] 

UCA1 

miR-485-5p EOC ceRNA 
Increased Expression of MMP14, Possible Role in 

Metastasis of OC 
Oncogene [221] 

AMOT EOC ceRNA 
Enhances AMOT-YAP Interaction, Activation of 

YAP Target Genes,  
Oncogene [223] 

miR-143 OC ceRNA 
Upregulation of FOSL2, Increased Cisplatin Re-

sistance 
Oncogene [227] 

miR-654-5p OC ceRNA Upregulation of SIK2, Resistance to Paclitaxel Oncogene [228] 

miR-129 OC ceRNA Upregulation of ABCB1, Resistance to Paclitaxel Oncogene [229] 

XIST 

miR-149-3p EOC ceRNA 
Upregulation of FOXP3 Leading to OC Cell Pro-

liferation 
Oncogene [235] 

miR-101-3p HGSOC ceRNA 

Upregulation of C/EBPα and KLF6 Leading to 

Macrophage Polarization to Affect Cell Prolifera-

tion of OC 

Oncogene [237] 

miR-214-3p HGSOC ceRNA 

Suppression of Cell Proliferation, Invasion, In-

creased Chemosensitivity, Inhibition of Tumor 

Growth In Vivo 

Tumor 

Suppressor 
[236] 

miR-106a OC ceRNA 
Decrease in Cell Proliferation and Activation of 

Apoptosis, In Vivo Tumor Growth Deceleration 

Tumor 

Suppressor 
[234] 

6.8. Other lncRNAs Involved in Rare Ovarian Cancers 

LncRNA growth arrest-specific 5 (GAS5) is upregulated in the plasma of patients 

with polycystic ovary syndrome (PCOS). This was also demonstrated in the ovarian gran-

ulosa cell tumor cell line KGN, where it leads to upregulation of IL6, and decreased apop-

tosis rate of these cells [241]. HLA complex P5 (HCP5) promotes cell proliferation and 

inhibits apoptosis in the KGN cell line through the miR-27a-3p-IGF1 axis [242]. In contrast, 

NPTN intronic transcript 1 (NPTN-IT1, or lncRNA-LET) is downregulated in KGN cells, 

and its overexpression inhibited cell viability and migration and promoted apoptosis 

[243]. 

Upregulation of long intergenic non-protein coding RNA 324 (LINC00324) has been 

found in immature ovarian teratocarcinoma (IOT) tissues and cells. LINC00324 acts as a 

miR-214-5p sponge, thereby removing its inhibition of CDK6, CCND1, MDM2, and 

MDM4, consequently increasing IOT cell proliferation and decreasing apoptosis [244]. 

A study by Yan et al., identified neuroblastoma-associated transcript 1 (NBAT1) as a 

marker of favorable prognosis in OC. The study included 46 serous OC and 11 OC tumors 

of different origins, but there was no additional information on these other subtypes. 

However, the authors state that there was no difference between histological subtypes, 

suggesting that this marker is applicable for ROCs as well [245]. 
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Table 3. Other lncRNAs with a role in ROCs. ROC analyzed in these papers include GCT–granulosa cell tumors, IOT-

immature ovarian teratocarcinoma, and undefined (other). 

lncRNA Target OC Type 
Mode of  

Action 
Effect Role Reference 

GAS5 IL6 GCT Unknown Upregulation of IL6, Decreased Apoptosis Oncogene [241] 

HCP5 miR-27a-3p GCT ceRNA Proliferation, Inhibition of Apoptosis Oncogene [242] 

NPTN-IT1 NF90 GCT Scaffold 
Reduced Cell Viability and Migration, In-

creased Apoptosis 

Tumor Sup-

pressor 
[243] 

LINC00324 miR-214-5p IOT ceRNA Proliferation, Decreased Apoptosis Oncogene [244] 

NBAT1 

ERK1/2 and 

AKT Signaling 

Pathways 

Serous and 

Other 
Unknown 

Inhibition of Cell Proliferation, Invasion, and 

Migration 

Tumor Sup-

pressor 
[245] 

7. Circulating lncRNAs as Diagnostic and Prognostic Biomarkers for OCs 

Liquid biopsies are considered a minimally invasive means for managing cancer pa-

tients, and they can be applied in diagnosis, follow-up, and prediction to therapy. Liquid 

biopsies can be used for the detection of circulating tumor cells (CTCs), cell-free tumor 

DNA (ctDNA), and non-coding RNAs [246]. Circulating non-coding RNAs (miRNA and 

lncRNAs) have been proposed as potential biomarkers for the early detection of OC. In 

particular, multiple miRNA panels have been proposed as screening tools in clinical prac-

tice [247]. Several publications examine the possible role of lncRNAs in the diagnosis, pre-

diction, and prognosis of OCs. Non-coding RNAs can be secreted from EOC cells via ex-

osomes, and in turn exosomes from the serum of patients can be used for detection of 

these non-coding RNAs. Elevated exosomal levels of MALAT1 in the serum of patients 

were highly correlated with advanced and metastatic subtypes of EOC, and an independ-

ent predictive factor for overall survival [105]. Exosomal HIF1A-AS2 levels from the serum 

of EOC patients have been associated with poorer overall survival and suggested as a non-

invasive predictive biomarker for unfavorable prognosis [248]. LOXL1-AS1 was analyzed 

in the plasma of EOC patients, and its expression was associated with advanced FIGO 

stage, distant metastases, and short overall survival. It was proposed to be an independent 

diagnostic and prognostic factor in EOC [249]. A meta-analysis, which encompassed 1732 

OC patients and 3958 controls, evaluated the diagnostic accuracy of ctDNA, miRNAs, and 

lncRNAs and found, albeit on a small number of studies, that lncRNAs were more accu-

rate than miRNAs in diagnosing OC, with similar specificities. The authors claim that 

combining ctDNA, miRNA, and lncRNA biomarkers is the best option as it avoids the 

shortcomings of single biomarkers regarding sensitivity and specificity [250]. The major 

drawbacks and challenges in the detection of lncRNAs from liquid biopsies, and their use 

as biomarkers, is their low concentration in the serum/plasma and potential contamina-

tion with genomic DNA. Even though nowadays RNA extraction kits are able to remove 

the bulk of contaminating genomic DNA, nevertheless care must be taken during sample 

preparation, as contamination with genomic DNA in RNA preparations can lead to a false 

positive signal in qRT-PCR assays. This is especially true for lncRNAs encoded by a single 

exon, such as MALAT1 [251]. Soda et al., have recently demonstrated that HOTAIR can be 

detected from plasma samples using electrochemical detection, and they propose that this 

assay could be used in a clinical setting for the detection of various lncRNA biomarkers 

[172]. It is also possible to detect microproteins encoded by lncRNAs in the extracellular 

vesicles in human plasma samples, and these microproteins could be used as diagnostic 

markers [252]. More studies of different circulating biomarkers in OCs are needed to as-

semble a good panel of miRNA/lncRNA targets for the diagnosis of OC and for determin-

ing their response to therapy. This could lead to better early detection and a personalized 

approach to therapy with a better outcome for OC patients. 

Expression levels of circulating extracellular or exosome/EV lncRNAs associated 

with body fluids such as plasma/serum could serve as a potential biomarker for routine 
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usage and a complementary liquid biopsy for the risk of ovarian tumor metastasis, recur-

rence, drug resistance, and potentially early detection. As single markers sometimes lack 

sensitivity and specificity, designing biomarker panels has been suggested as a good op-

tion for early detection, diagnosis, and prediction of recurrence. Such panels of lncRNAs 

have already been proposed for hepatocellular [253], liver [254], bladder [255,256], breast 

and cervical cancer [257]. A lncRNA panel as a candidate prognostic biomarker for OC 

has been proposed by Zhan et al. [258], but the focus was mainly on the construction of 

panels that can assess the response to therapy of OC patients, for example for platinum-

based chemoresistance [259,260] or paclitaxel resistance [261]. LncRNA has the potential 

to be companion diagnostic tools alongside ctDNA and even CTCs in predicting recur-

rence and resistance, but how they could be incorporated into a screening program re-

mains to be determined. In addition, a panel distinguishing between rare OC subtypes 

could prove to be most beneficial for diagnostic purposes. 

8. Strategies for Targeting lncRNAs as a Treatment for OCs 

The important role of lncRNAs in various biological processes related to carcinogen-

esis, together with their cancer-specific expression patterns, has made lncRNAs promising 

therapeutic targets. Therefore, many strategies have been developing for their targeting 

[262,263]. Generally, there are two main approaches, which have already been applied for 

targeting different lncRNAs in OC: to alter their expression level or to inhibit their inter-

actions with other macromolecules [13]. 

Oncogenic lncRNAs are overexpressed in cancers so their expression can be sup-

pressed using various, mostly nucleic acids-based techniques. Most commonly used 

methods are based on RNA interference (RNAi), like small interfering RNAs (siRNAs) or 

short/small hairpin RNAs (shRNAs) [264]. siRNAs are short, double-stranded (ds) RNAs 

that unwind into single strands (ss), bind to the RNA-induced silencing complex (RISC), 

and base-pair with targeting lncRNAs. That leads to Argonaute protein-dependent deg-

radation of the target transcripts. Chemically synthesized siRNAs are usually directly de-

livered into the cytoplasm through transfection. shRNAs are produced as ss molecules 

50–70 nucleotides long which form hairpin-like structures. They are usually encoded in 

DNA vectors and introduced into cells by plasmid transfection or viral transduction. They 

undergo processing and exert their mechanism of action similarly to siRNAs [265]. Pre-

sumably, all lncRNAs characterized in Tables 2 and 3 as oncogenes, i.e., those which are 

over-expressed in OC and thus contribute to its initiation, tumorigenesis, or metastasis, 

could be targeted using RNAi methods. LncRNA silencing by siRNA or shRNA is proba-

bly the most used method for deducing lncRNA function in vitro [266]. 

LncRNA expression can also be suppressed using antisense oligonucleotides (ASOs), 

locked nucleic acid GapmeRs (LNA GapmeRs), or antagonists to natural antisense tran-

scripts (antagoNATs) [267]. ASOs are ss antisense oligonucleotides made up of a DNA 

stretch at the central part with flanking RNA nucleotides. The DNA part with the target 

lncRNA, through Watson-Crick base pairing, forms a DNA/RNA heteroduplex which is 

cleaved by endogenous RNase H1 [268]. For instance, targeting lncRNA MALAT1, which 

is overexpressed in both common and rare OCs, by ASOs, inhibited tumor growth and 

metastasis of breast [269] and lung cancer [270]. LNA GapmeRs share structural and func-

tional similarities with ASOs but have chemically modified LNA in flanking parts which 

increases their binding affinity and nuclease resistance [271]. LNAs have been constructed 

for targeting XIST [272], a lncRNA both up- and down-regulated in EOCs. NATs are 

coded from the opposite strand of the host gene locus and regulate expression of either 

sense transcripts of the same locus (cis-NATs) or transcripts from other genomic loci 

(trans-NATs). They mediate transcriptional silencing through histone-modifying com-

plexes [273]. AntagoNATs are ss oligonucleotides designed to inhibit sense-antisense 

transcripts interactions and thus they can eliminate the epigenetic silencing effect of 

lncRNAs that act as NATs [274]. The first successfully applied antagoNAT was against 

BDNF-AS, a NAT that represses transcription of brain-derived neurotrophic factor 
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(BDNF) gene [274]. This approach could potentially be used for regulating the expression 

of ovarian BDNF, which promotes survival, migration, and attachment of tumor precur-

sors originated from TP53-mutated fallopian tube epithelial cells, precursors of HGSOC 

[275]. AntagoNATs could also be designed for targeting other NATs commonly dysregu-

lated in common and rare OCs, such as HOTAIR, MALAT1, MEG3, and GAS5 [273]. 

Other methods used for silencing lncRNA expression are mixmers and deoxy/ribo-

zymes. Mixmers are built of chemically modified nucleotides like LNAs and different 

types of monomers. They sterically inhibit interactions between lncRNAs, ribonucleopro-

teins, or nucleic acids. They are used for preventing the formation of epigenetic remodel-

ing complexes, altering gene expression and alternative splicing, repairing defective 

RNAs, and restoring protein production [276]. So far, the best-described example is a mix-

mer consisting of LNA interspersed with 2′-O-methyl nucleotides with a high-affinity for 

SMN-AS1, an antisense transcript that represses expression of survival motor neuron 2 

(SMN2) gene by recruiting the PRC2 to its locus [277]. For treating OCs, a similar approach 

could be used, for instance, for targeting interactions between PRC2 and HOTAIR [156] or 

XIST [278]. Deoxyribozymes are enzymatic ssDNA molecules that bind target RNA 

through Watson-Crick base pairing and catalyze RNA cleavage (ribonucleases) [279]. Sim-

ilarly, there exist engineered ribozymes that have better catalytic activities and more spe-

cific substrate recognition domains [280]. A site-specific deoxyribozymes have been de-

signed to cleave RNAs that have N6-methyladenosine (m6A) modifications [281]. In the 

meantime, it was discovered that many lncRNAs such as MALAT1 [282], XIST [283], HO-

TAIR [284], GAS5 [285], or DANCR [286] contain one to several m6A modifications, and 

thus deoxyribozymes could be used as therapeutics for OC [287]. 

Gene-editing methods like zinc finger nucleases (ZFNs), transcription activator-like 

effector nucleases (TALENs), and clustered regularly interspaced short palindromic re-

peats/CRISPR-associated protein 9 (CRISPR/Cas9) system can be used to suppress 

lncRNA expression [288,289]. It is worth noting that, unlike protein-coding genes, lncRNA 

genes are not vulnerable to small insertions, deletions, or frameshift mutations so their 

genes must be edited to a much larger extent. In addition, lncRNA expression can steri-

cally be repressed by CRISPR interference (CRISPRi) [290]. CRISPRi uses guide RNA 

(gRNA) for recognizing the target gene and catalytically dead Cas9 (dCas9) protein with-

out endonuclease activity for blocking initiation or elongation of transcription. Similarly, 

CRISPR activation (CRISPRa) can be used for sequence-specific activation of gene expres-

sion. Besides several large scales, genome-wide deletion of up to several thousand 

lncRNA loci [291,292], CRISPRi was successfully used for knocking out particular, single 

lncRNA such as MALAT1 [293], XIST [294], HOTAIR [295], NEAT1 [296] or UCA1 [297]. 

Furthermore, instead of transcriptional silencing of the whole lncRNA gene, CRISPR/Cas9 

could be also used for “repairing” alleles of lncRNAs genes found to be associated with 

ovarian cancer susceptibility, such as HOTAIR polymorphism rs920778 [298]. 

Manipulation with lncRNAs expression levels with any of the aforementioned meth-

ods could be used to interfere with the function of lncRNAs as miRNA sponges. Increased 

expression of lncRNAs that bind oncomiRs or decreased expression of lncRNAs that bind 

tumor-suppressor miRNAs could normalize gene regulatory network and signaling path-

ways, and reverse malignant phenotype, just like using miRNA mimics or antagomiRs 

[299]. For instance, since the expression of ceRNA SNHG5 is reduced in paclitaxel-re-

sistant OC patients, either SNHG5 overexpression or miR-23a inhibition could enhance 

paclitaxel sensitivity [300]. Similarly, ceRNA UCA1 can sponge miR-654-5p, while its 

knockdown enhances miR-654-5p expression, which reduces ovarian tumor cells viability 

in vitro and in vivo [301]. 

As mentioned above, the second general therapeutic approach for targeting lncRNAs 

in OC would be to abolish their function by inhibiting their interactions with other mac-

romolecules, either through competition or steric blockade. There are several approaches 

including aptamers, nanobodies, small molecules, and RNA decoys [302]. Aptamers are 

short (up to 200 nucleotides) ss DNA or RNA molecules with high specificity and affinity 



Cancers 2021, 13, 5040 20 of 36 
 

 

for their targets and are considered nucleic acid analogs of antibodies [303]. However, 

they have better tissue penetration, lower immunogenicity, and in vivo stability. They act 

through dynamic three-dimensional structure, by recognizing the secondary structure of 

lncRNAs, and thus interfering with lncRNA-protein interactions [304]. For instance, there 

exist aptamers against HOTAIR [305] and H19 [306], which could be used as OC thera-

peutics. Nanobodies are heavy chain-only antibodies (HCAbs), found naturally in sharks 

and camelids, that is built of a single variable domain (VHH), which is similar to the Fab 

fragment of human IgG antibodies and thus non-immunogenic [307]. They have both high 

affinity and specificity and the potential to interrupt lncRNA-RBP interactions [308]. 

Nanobodies can be designed to specifically target highly structured RNA molecules [309], 

and since it is known that many lncRNAs such as MALAT1 [310], NEAT1 [311], XIST [230], 

or HOTAIR [312] are well-structured, this approach could be used for treating OC types 

in which those lncRNAs are overexpressed. Small molecules (chemical compounds), by 

binding to either lncRNAs or RNA-binding proteins (RBPs), can change their secondary 

or tertiary structures or mask protein-binding sites on lncRNAs or lncRNA-binding do-

mains of RBPs, and thus disrupt interactions between them [313,314]. Similar to nanobod-

ies, highly structured parts of lncRNAs can also be targeted by small molecules. Therefore, 

the use of high-throughput screening identified a small molecule ellipticine that can in-

hibit interactions between HOTAIR-EZH2 and BDNF-AS-EZH2 [315]. Furthermore, sev-

eral small molecules have been discovered that can target MALAT1 [316,317]. RNA decoys 

or imitators of lncRNAs could be designed to act through binding to and sequestering of 

proteins, to disrupt the creation of functional lncRNA-RBP complexes [318]. One such ex-

ample is an anti-HIV decoy that targets the HIV-1 Tat protein. It has a trans-activation 

response (TAR) element RNA hairpin and binds to the Tat protein. This decoy localizes 

in the nucleolus while natural TAR RNA is localized in the nucleus [319]. Another exam-

ple is a mimic of HULC, a lncRNA that interacts with phenylalanine hydroxylase (PAH) 

and modulates its function. HULC depletion causes reduced enzymatic activities of PAH, 

which is a characteristic of metabolic disorder phenylketonuria. The introduction of HULC 

mimics successfully restores the function of that liver lncRNA and reduces excess phenyl-

alanine levels [320]. Therefore, this therapeutic approach could be used for treating OC 

types in which reduced levels of certain lncRNA, e.g., those that were in Tables 2 and 3 

classified as a tumor suppressor, is a cause for OC initiation, tumorigenesis, or metastasis. 

Regulatory regions of lncRNAs could be also used for constructing more efficient 

drugs. There exists a DNA plasmid called H19-DTA (BC-819) that carries the gene for A 

subunit of diphtheria toxin under the regulation of the H19 promoter and it is used for 

treating cancers with high H19 expression such as OC [321]. Its safety and efficacy for 

treating ovarian and peritoneal cancer patients with advanced recurrent disease had al-

ready been proven in the Phase I/IIa clinical trial [322]. 

All previously described methods consider targeting a lncRNA of interest as a pri-

mary therapeutic goal for treating OCs. However, targeting lncRNAs could also be used 

to enhance the efficiency of already applied therapeutic regimes, since for many OC-re-

lated lncRNAs described in this paper their involvement in resistance to radio- and chem-

otherapy was mentioned. This has been comprehensively reviewed in [323,324]. 

Although constantly on the rise in recent years [325], RNA-based or RNA-targeted 

therapeutic approaches still have many limitations, such as inefficient delivery to the tar-

get tissue, toxicity and immunogenicity, and off-target effects (non-selectivity). Over the 

past decade, in parallel with the development of novel RNA therapeutics, promising ap-

proaches have been developed to overcome these hurdles and to boost their success [326]. 

Hopefully, this will bring to more (successful) clinical trials for targeting long non-coding 

RNAs as a potential therapeutic approach for the treatment of OCs. 

9. Online Resources for lncRNA Research 

Expanding interest in lncRNA research has led to the accumulation of a vast amount 

of knowledge that has to be properly analyzed, organized, and made available for the 
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wider scientific community. Therefore, a constantly growing number of web resources 

and bioinformatical tools have been developed that can help many different aspects of 

lncRNA research [327,328]. However, for an ordinary wet-lab lncRNA cancer researcher 

without advanced computational skills, databases, and online tools would be the most 

useful [329]. Unlike miRbase for microRNAs [330], there is still no primary, central repos-

itory for lncRNAs. In Table 4 there is a shortlist of the best known and most used lncRNA 

web resources. 

Table 4. A short overview of online resources useful for lncRNA research in cancer. 

Type Web Address Reference 

General lncRNA Databases 

RNAcentral https://rnacentral.org/ [331] 

LNCipedia https://lncipedia.org/ [332] 

LncBook http://bigd.big.ac.cn/lncbook/index [333] 

lncRNAdb http://lncrnadb.org/ [334] 

lncRNome http://genome.igib.res.in/lncRNome/ [335] 

GENCODE https://www.gencodegenes.org/ [55] 

General Expression Databases 

GTEx https://gtexportal.org/home/ [336] 

GEO https://www.ncbi.nlm.nih.gov/geo/ [337] 

TCGA https://portal.gdc.cancer.gov/ [338] 

Expression Atlas https://www.ebi.ac.uk/gxa/home [339] 

The lncRNA-Specific Expression Databases 

NONCODEV5 http://v5.noncode.org/index.php [340] 

NRED http://jsm-research.imb.uq.edu.au/nred/cgi-bin/ncrnadb.pl [341] 

LncExpDB https://bigd.big.ac.cn/lncexpdb/ [342] 

LncSpA http://bio-bigdata.hrbmu.edu.cn/LncSpA/ [343] 

General Disease- and Cancer-Specific lncRNA Databases 

TANRIC https://www.tanric.org/ [344] 

LncRNADisease 2.0 http://www.rnanut.net/lncrnadisease/ [345] 

Lnc2Cancer 3.0 http://www.bio-bigdata.com/lnc2cancer/ [346] 

lncRNASNP2 http://bioinfo.life.hust.edu.cn/lncRNASNP/ [347] 

Lnc2Catlas https://lnc2catlas.bioinfotech.org/ [348] 

Function-Specific and Other Useful lncRNA Databases 

DIANA-LncBase v3 https://diana.e-ce.uth.gr/lncbasev3/home [349] 

SEEKR http://seekr.org/home [350] 

LPI-MiRNA 
https://github.com/zyk2118216069/LncRNA-protein-interac-

tions-prediction 
[351] 

LncRNAWiki http://lncrna.big.ac.cn [352] 

lncRNA Blog https://www.lncrnablog.com/ - 

10. Conclusions and Future Perspectives 

Recently we celebrated the 20th anniversary of publishing the draft human genome 

sequence. Initially, only about 2% of the human genome was reported to comprise pro-

tein-coding genes, and the rest referred to as “junk” DNA, it has become increasingly ev-

ident that this “junk” DNA is a goldmine for many regulatory non-coding transcripts. 

One type of such transcript is the lncRNAs. Consequently, their mechanisms of action and 

the molecular processes which they regulate are still being unraveled. As anticipated, their 

causative roles in the development and progression of many human neoplasms, including 

OCs, are becoming increasingly evident. 

The major drawback in discovering the (in)distinctive roles of lncRNAs in common 

and rare OCs is the lack of studies that clearly and properly separate the OC subtypes. 
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One potential reason for that could be both clinicians’ and researchers’ inexperience in 

diagnosing rare gynecological cancers. On the other hand, the manuscript reviewers 

should insist that authors need to put more effort into describing their clinical samples. 

Hopefully, international collaborations such as the GYNOCARE COST Action will con-

tribute to a more unified and standardized diagnosis and classification of ROCs [1]. 

Long non-coding RNA molecules are promising diagnostic and prognostic bi-

omarkers for ROCs [353]. Currently, we have been witnessing an accelerated develop-

ment and an increased efficiency of RNA-bases therapeutics. Further in-depth knowledge 

about lncRNAs should direct researchers and pharmaceutical companies in the post-

COVID era to become more interested in lncRNAs as potential therapeutic agents or ther-

apeutic targets. These emerging technologies and approaches could certainly improve the 

quality of life and outcome of many women with ROCs. 
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Abbreviations 

BEP bleomycin, etoposide, and cisplatin 

CAF cancer-associated fibroblasts 

ceRNA competing endogenous RNA 

CSC cancer stem cells 

EC endometroid carcinoma 

EMT epithelial to mesenchymal transition 

EOC epithelial ovarian cancer 

FIGO Fédération Internationale de Gynécologie et d’Obstétrique 

GCT granulosa cell tumor 

HGSOC high-grade serous ovarian cancer 

HOTAIR HOX transcript antisense RNA 

IOT immature ovarian teratocarcinoma 

LGSOC low-grade serous ovarian cancer 

lincRNA long intergenic non-coding RNA 

lncRNA long non-coding RNA 

MALAT1 metastasis-associated lung adenocarcinoma transcript 1 

MSC mesenchymal stem cell 

MET mesenchymal to epithelial transition 

miRNA/miR microRNA 

MOC mucinous ovarian carcinoma 

NAT natural antisense transcript 

ncRNA non-coding RNA 

OC ovarian cancer 

OCCC ovarian clear cell carcinoma 

OCSC ovarian cancer stem cells 

PCOS polycystic ovary syndrome 

PRC Polycomb Repressive Complex 

RNAi RNA interference 

ROC rare ovarian cancer 
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siRNA small interfering RNA 

shRNA short hairpin RNA 

XIST X-inactive specific transcript 
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